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Introduction

Past and on-going climatic changes are amplified in the polar regions [START_REF] Holland | Polar amplification of climate change in coupled models[END_REF].

Current climate changes, associated with largescale anthropogenic emissions of greenhouse gases, involve a warming of the ocean, changes in its chemical composition, as well as a dramatic sea ice retreat in the Arctic [START_REF] Comiso | Variability and Trends of the Global Sea Ice Cover[END_REF]. Future changes in the polar seas and continued sea ice retreat [START_REF] Arzel | Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs[END_REF] will affect future marine biogeochemistry, with important feedbacks on climate and consequences for marine ecosystems, some of which have already been observed [e.g., [START_REF] Montes-Hugo | Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula[END_REF][START_REF] Wassmann | Footprints of climate change in the Arctic marine ecosystem[END_REF]. Paleo-climate studies indicate that past climatic and atmospheric composition changes were associated with extensive modifications in the polar oceans, in terms of circulation, sea ice cover and chemical composition [START_REF] Crosta | Application of modern analog technique to marine Antarctic diatoms: reconstruction of maximum sea ice extent at the Last Glacial Maximum[END_REF][START_REF] Sarnthein | Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates[END_REF][START_REF] De Vernal | Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages[END_REF][START_REF] Sigman | The polar ocean and glacial cycles in atmospheric CO 2 concentration[END_REF]. While a seasonal ice cover should subsist in the future [START_REF] Armour | The reversibility of sea ice loss in a state-of-the-art climate model[END_REF], the future large-scale biogeochemical dynamics of the polar oceans and in particular the contribution of sea ice are difficult to predict.

Ocean biogeochemistry exerts a large control on atmospheric chemistry and climate: by absorbing about a fourth of anthropogenic carbon dioxide (CO 2 ) emissions [START_REF] Sabine | The Oceanic Sink for Anthropogenic CO 2[END_REF], the ocean dampens global warming. The polar and sub-polar oceans are of central importance as they support most of the oceanic CO 2 uptake [START_REF] Takahashi | Climatological mean and decadal change in surface ocean pCO 2 , and net sea-air CO 2 flux over the global oceans[END_REF]. Air-sea carbon exchanges are ultimately driven by two main categories of processes: the solubility and biological pumps. The solubility pump is the ensemble of physical and chemical processes driving CO 2 dissolution and outgassing. The biological pump is driven by (i) the fixation of inorganic carbon into organic matter and its export to depth by sinking plankton material and (ii) the formation of calcium carbonate (CaCO 3 ) via calcification, releasing CO 2 [START_REF] Sigman | The polar ocean and glacial cycles in atmospheric CO 2 concentration[END_REF]. While the natural carbon cycle is largely driven by the biological pump [START_REF] Sarmiento | Ocean Biogeochemical Dynamics[END_REF], the uptake of anthropogenic carbon can be, so far, almost entirely explained by physical and chemical processes [START_REF] Prentice | The carbon cycle and atmospheric CO2[END_REF]. The oceanic CO 2 absorption capacity decreases with increasing oceanic CO 2 burden, but may also be reduced because of future anthropogenic climate change (decreasing solubility and increased upper ocean stratification), hence amplifying global warming [START_REF] Friedlingstein | Climate-Carbon Cycle Feedback Analysis : Results from the C 4 MIP Model Intercomparison[END_REF]. The ocean suffers from the increase in its CO 2 burden: more dissolved CO 2 acidifies the ocean [START_REF] Doney | Ocean acidification : a critical emerging problem for the ocean sciences[END_REF], threatening sensitive and essential marine species, with potential consequences for entire marine food webs. Besides absorbing CO 2 , the ocean is also a preferential site for dimethylsulfide (DMS) emissions. In the atmosphere, DMS acts as a precursor of acidic aerosol sulfates which as cloud condensation nuclei have a potential cooling effect on the planet [START_REF] Charlson | Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[END_REF][START_REF] Watson | Marine biological controls on climate via the carbon and sulphur geochemical cycles[END_REF].

Sea ice -the ice forming from the freezing of seawater [START_REF] Wmo | WMO sea-ice nomenclature, terminology, codes and illustrated glossary[END_REF] -is one of the largest known biomes on Earth [START_REF] Dieckmann | The importance of Sea Ice: an overview[END_REF], covering about 7% of the World Ocean, with remarkable seasonal variations seen in both hemispheres [see Comiso, 2010, for a review]. The Arctic sea ice pack has lost about 30% of its summer coverage over the last thirty years [e.g., [START_REF] Comiso | Variability and Trends of the Global Sea Ice Cover[END_REF] with a spectacular culmination in 2012. This could lead to a summer ice-free Arctic Ocean by the middle of this century [e.g., [START_REF] Massonnet | Constraining projections of summer Arctic sea ice[END_REF]. The Antarctic sea ice extent has slightly increased over the last thirty years (~1% per decade). However, regional variability is large: increases in the Ross and Weddell Sectors exceed the strong retreat in the Amundsen-Bellingshausen regions [START_REF] Stammerjohn | Regions of rapid sea ice change: An interhemispheric seasonal comparison[END_REF]. In addition, the Antarctic sea ice extent is consistently projected to significantly decrease by the end of this century [START_REF] Arzel | Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs[END_REF]. The implications of sea ice retreat on the future oceanic capacity to absorb CO 2 and emit DMS, as well as the consequences for climate change, ocean acidification and marine ecosystems, are poorly understood.

Focussing on sea ice processes relevant to polar marine biogeochemistry (see Figure 1) is first motivated by the potentially significant influence of sea ice on air-sea gas exchanges. Seen as an impervious cap, sea ice would drastically reduce air-sea CO 2 exchange [START_REF] Stephens | The influence of Antarctic sea ice on glacial-interglacial CO 2 variations[END_REF]. However this is hardly the case in practice, because of the presence of open water within the pack (leads and polynyas), providing pathways for atmosphere-ocean gas exchanges [START_REF] Morales Maqueda | Did Antarctic sea-ice expansion cause glacial CO 2 decline?[END_REF]. Sea ice itself is permeable when warm enough [e.g., Golden et al., 1998], supporting gas exchanges [e.g., [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF][START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF][START_REF] Papakyriakou | Springtime CO 2 exchange over seasonal sea ice in the Canadian Arctic Archipelago[END_REF] and acts as a source for some gases, for example DMS [START_REF] Zemmelink | Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea[END_REF] and potentially Bromine Oxide (BrO) [e.g., [START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF]. Until now, the research community has mainly been interested in the study of biogenic and climatically significant gases (i.e., N 2 O, O 2 , CO 2 , DMS) [e.g., [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF], although there is growing interest in research on other gases such as Br components, which influence polar atmospheric chemistry [e.g., [START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF] and methane (CH 4 ), a strong greenhouse gas that is present in gas bubbles released from anoxic sediments to the water column and sea ice [START_REF] Shakhova | The contribution of the East Siberian shelf to the modern methane cycle[END_REF]. A second process of interest is the sinking to depth of CO 2 -rich brine (e.g., richer than seawater), released into the surface ocean during sea ice formation [START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF]. This process should be among the important mechanisms contributing to the ocean CO 2 sink, not only today [START_REF] Rysgaard | Sea ice contribution to the air-sea CO 2 exchange in the Arctic and Southern Oceans[END_REF], but also during the last glacial maximum [START_REF] Bouttes | Impact of brine-induced stratification on the glacial carbon cycle[END_REF].

In addition, mounting field observations show dynamic biogeochemical processes in the sea ice zone [START_REF] Thomas | Sea Ice, Second Edition[END_REF], with potential impacts on open ocean biogeochemistry and atmospheric composition. Sea ice microbial communities are present, and often thrive, in a network of liquid saline brine inclusions distributed within a pure ice matrix (see Figure 2), providing a habitat that is both stable and ventilated by nutrient-rich seawater, depending on the complex brine flow through the ice [e.g., [START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF]. Organic carbon is produced by ice algae via photosynthesis in specific light, nutrient and temperature conditions, to which the organisms are usually adapted and acclimated. Ice algae can also produce copious amounts of dimethylsulfoniopropionate (DMSP), the precursor of DMS, an osmotic regulator and a cryoprotectant [e.g., [START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]. Finally, iron concentrations in sea ice can be much higher than in the ocean and sea ice can act as a seasonal reservoir in the Southern Ocean [START_REF] Lannuzel | Distribution and biogeochemical behaviour of iron in the East Antarctic sea-ice[END_REF]2011]: growing sea ice incorporates large amounts of iron, later released into surface waters when the ice melts. This seasonal process may temporarily relieve iron limitation on phytoplankton growth, notably in the Southern Ocean [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF], a key player in the marine carbon cycle [START_REF] Sarmiento | Ocean Biogeochemical Dynamics[END_REF][START_REF] Sigman | The polar ocean and glacial cycles in atmospheric CO 2 concentration[END_REF], but also in the Bering Sea [START_REF] Aguilar-Islas | Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea[END_REF] Sea ice proxies integrate information from biological, chemical and physical processes occurring in the polar oceans in an attempt to reconstruct past sea ice conditions [see Armand and Leventer, 2010, for a review]. Many sea ice proxies rely on assumptions related to the biogeochemical properties of the polar oceans, as recorded in marine sediment or glacial ice cores. For instance, changes in diatoms and dinoflagellates community composition, attributed to the open ocean-sea ice zone transition, are used to reconstruct past sea ice characteristics. [START_REF] Crosta | Sea ice seasonality during the Holocene, Adélie Land, East Antarctica[END_REF], de [START_REF] De Vernal | Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages[END_REF] and Müller et al [2009], based on marine sediment core data, use diatom frustules, dynocysts and biomarkers specifically produced by sea ice-associated diatoms and open water phytoplankton, respectively. [START_REF] Curran | Ice core evidence for Antarctic sea ice decline since the 1950s[END_REF] and [START_REF] Wolff | Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[END_REF] use the concentration of methane-sulphonic acid (MSA), an atmospheric by-product of DMS emission in the sea ice zone; and sea salt sodium from glacial ice core data, respectively. However, [START_REF] Hezel | Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice[END_REF] -in an attempt to model the sulphur cycle in the Southern Ocean -find that the presence of sea ice does not exert the dominant control on the interannual variability in DMS emissions. This, combined with the longer simulated lifetime of MSA and DMS in the atmosphere in the high latitudes, raises questions about the applicability of MSA as a proxy for the global Antarctic sea ice extent. Hence, it is apparent that reliable estimates of past sea ice coverage require a proper understanding of present-day large-scale biogeochemical processes occurring in the polar oceans. Conversely, reconstructions of past sea ice extent could enhance our understanding of past polar marine biogeochemistry and reduce uncertainty in future projections of the physical, biological and chemical characteristics of the global ocean.

In this paper, our goal is (i) to review recent advances and caveats in the observation and modelling of the processes driving the dynamics of chemical elements and biological material in the sea ice zone that are relevant to large-scale polar biogeochemical cycles, (ii) to examine the challenges that we face to upscale those processes and understand their role in the global marine biogeochemical cycles, and (iii) to discuss how the growing fields of sea ice biogeochemistry and sea ice paleo-proxy development could synergistically evolve and contribute to each other. We first revisit the physical forcings of relevance to large-scale sea ice biogeochemical processes (Section 2). In Section 3, we summarize recent information on some of the key sea ice biogeochemical properties and processes, with particular focus on their potential large-scale impact and on the associated uncertainties. In Section 4, we review the modelling approaches that have been used to represent polar marine biogeochemical processes. Finally, in Section 5, we give directions for future research with respect to sea ice proxies.

Physical controls on sea ice biogeochemistry

An analysis of sea ice vertical profiles of the most relevant biogeochemical tracers reveals contrasting behaviours (Figure 3). Inorganic macro-nutrients generally conservatively follow salinity, with concentrations much smaller than seawater values in bulk ice. Significant deviations in nutrient concentrations as compared to salinity are associated with biological activity. Gases such as argon (Ar) and oxygen (O 2 ) have relatively higher and more variable concentrations, compared to ice salinity, because of the formation of gas bubbles. However their concentrations are still below seawater values, except sometimes near the surface. Organic matter and dissolved iron typically show higher concentrations in sea ice than in the underlying ocean. The vertical profiles of biogeochemical sea ice properties reveal the disparity in the physical and biogeochemical processes driving them, which we review hereafter.

Physical processes provide the first set of constraints for biogeochemical developments in sea ice as envisioned by [START_REF] Ackley | Physical controls on the development and characteristics of Antarctic sea ice biological communities -a review and synthesis[END_REF]. In this section, we cover the aspects of sea ice physics that we consider relevant for biogeochemistry, in both hemispheres.

Large scale sea ice characteristics

Some differences in the characteristics of the polar oceans ice covers (see Table 1 for a summary) are driven by the strong differences in their regional geographic, geo-morphological and geophysical settings [e.g., Eisenman, 2009]. The Arctic Ocean is a high latitude (>65°N) semienclosed basin with only limited connection and exchange with the world's oceans. It is characterized by extensive continental shelves, serving as important areas for sea ice formation and for primary productivity. In contrast, the Southern Ocean is circumpolar, connecting the Atlantic, Indian and Pacific Oceans and showing an ice cover ranging over 55-75°S, i.e., at lower latitudes when compared to the Arctic. The Antarctic continental shelf area is relatively narrow, and extensive areas of sea ice formation are located over deep waters [START_REF] Dieckmann | The importance of Sea Ice: an overview[END_REF].

Ice extent, monitored from satellites continuously since 1979, varies seasonally more substantially in the Antarctic than in the Arctic. Arctic first-year sea ice cover only makes about half of the total ice extent, while in Antarctica first-year sea ice largely dominates. Over 1979-2009, the annual mean Arctic sea ice extent has been rapidly decreasing by almost 4% per decade, while in the Southern Hemisphere, ice extent has slightly increased by about 1% per decade [START_REF] Comiso | Variability and Trends of the Global Sea Ice Cover[END_REF]. Regional scatter in the trends is significant in both hemispheres. In particular, the Southern Hemisphere increase has to be viewed in regard to strong inter-regional differences: the sharp decrease in the Amundsen/Bellingshausen sector is slightly more than compensated by increases in the Ross, Weddell and Indian sectors [START_REF] Stammerjohn | Regions of rapid sea ice change: An interhemispheric seasonal comparison[END_REF]. Changes in the timing of sea ice retreat and freeze-up have significant and regionally dependent impacts on primary production [Arrigo et al., 2008b;[START_REF] Montes-Hugo | Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula[END_REF][START_REF] Stammerjohn | Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives[END_REF]] and associated marine food webs [START_REF] Grebmeier | A major ecosystem shift in the Northern Bering Sea[END_REF][START_REF] Moreau | Variability of the microbial community in the western Antarctic Peninsula from late fall to spring during a low-ice cover year[END_REF].

As sea ice is much thinner than it is wide, vertical exchange of biogeochemical material is of primary importance. Ice thickness, however, is more difficult to observe from space than ice extent, and hence global ice thickness data are relatively scarce. In the Arctic, combined information from upward-looking sonars onboard submarines as well as satellite laser altimeters suggests a decrease in ice thickness from 3.64 m in 1980 to 1.85 m in 2008 in the Arctic Ocean [START_REF] Kwok | Decline in Arctic sea ice thickness from submarine and ICESat records: 1958 -2008[END_REF]. In the Southern Hemisphere, the most reliable source of information for ice thickness, the ASPeCt (Antarctic Sea ice Processes and Climate) database, a compilation of ship-based visual observations, suggests a mean ice thickness of 0.87 ± 0.91 m [START_REF] Worby | Thickness distribution of Antarctic sea ice[END_REF][Worby et al., ] over 1981[Worby et al., -2005. . Because of sampling limitations, temporal changes cannot be derived from the ASPeCt database, but on-going progress in remote sensing techniques is being made towards that goal. A recent model study including satellite ice concentration assimilation suggests an increasing Antarctic sea ice volume by 5.6 ± 5.3 % per decade over [START_REF] Warren | A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols[END_REF]-2008 [Massonnet et al., in revision] [Massonnet et al., in revision].

During its formation, sea ice incorporates biogeochemical material (e.g., macro-nutrients, iron, organic matter, sediments), which is stored, transformed, and later released in seawater when the ice melts. In addition, organic matter accumulates in the sea ice as a result of autoand heterotrophic production. Therefore, sea ice drift, induced by winds and ocean currents, horizontally redistributes biogeochemical material. Ice drift is observed using drifting buoys as well as satellites by comparing two subsequent satellite images [START_REF] Kwok | An ice-motion tracking system at the Alaska SAR Facility[END_REF]. Satellite-derived maps of large-scale sea ice drift patterns can be found in [START_REF] Emery | Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994[END_REF]. Ice velocity is on average between 6 and 7 km/day in the Arctic and has been increasing by 17% per decade in winter over [START_REF] Tsurikov | The formation and composition of the gas content of sea ice[END_REF][START_REF] Zhou | Antarctic data come from (i) the SIMBA drift station, Brussels site (5 stations)[END_REF][START_REF] Rampal | Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007[END_REF]. In the Antarctic, ice velocity typically ranges between 8 and 9 km/day [START_REF] Heil | Antarctic sea-ice velocity as derived from SSM/I imagery[END_REF], while wind patterns over the last two decades have significantly changed [START_REF] Holland | Wind-driven trends in Antarctic sea-ice drift[END_REF]. The consequences of ice transport include the potential initiation of phytoplankton blooms induced by the storage and release of iron in the iron-limited Southern Ocean marginal ice zones [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF][START_REF] Lannuzel | Distribution of dissolved iron in Antarctic sea ice: Spatial, seasonal and inter-annual variability[END_REF]. Ice transport also involves that the material found in marine sediment cores used in paleoclimate proxies may reflect the conditions a few hundreds to thousands of kilometres away from where the core was extracted.

Sea ice mass balance

Large-scale variations in sea ice mass are driven by thermodynamic and dynamic processes, which all affect the ice-ocean exchanges of biogeochemical material. Several mechanisms contribute to a net gain of ice mass. (i) Small unconsolidated (frazil) ice crystals forming from super-cooled water either aggregate at the ocean's surface or adhere onto pre-existing ice [START_REF] Martin | Frazil ice in rivers and oceans[END_REF][START_REF] Smedsrud | A model for entrainment of sediment into sea ice by aggregation between frazil-ice crystals and sediment grains[END_REF]. (ii) An existing ice cover over quiescent waters grows from the base by congelation if the upward conductive heat flux is higher than the oceanic heat input [START_REF] Maykut | Some results from a time-dependent thermodynamic model of sea ice[END_REF]]. (iii) Snow ice forms by the refreezing of slush at the snow-ice interface. Slush forms from the infiltration of seawater and brine at the base of the snow pack, when snow is deep enough to depress the ice surface below sea level [e.g., [START_REF] Maksym | Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth[END_REF]. (iv) Superimposed ice forms if snow melt water, percolating downwards, refreezes deeper in the snow or at the snow-ice interface, where temperature is lower than freezing [e.g., [START_REF] Nicolaus | Evolution of first-year and second-year snow properties on sea ice in the Weddell Sea during spring-summer transition[END_REF]. The ice formation mechanism can be tracked from specific textural and oxygen isotopes (d 18 O) signatures: granular type for frazil, columnar type for congelation, granular with low d 18 O for snowice formation, and polygonal granular for superimposed ice formation [START_REF] Weeks | The growth, structure, and properties of sea ice[END_REF][START_REF] Eicken | Factors determining microstructure, salinity and stable-isotope composition of Antarctic sea ice: Deriving modes and rates of ice growth in the Weddell Sea[END_REF][START_REF] Tison | Linking landfast sea ice variability to marine ice accretion at Hells Gate Ice Shelf, Ross Sea[END_REF][START_REF] Haas | Surface properties and processes of perennial Antarctic sea ice in summer[END_REF][START_REF] Tison | Temporal evolution of decaying summer first-year sea ice in the western Weddell Sea, Antarctica[END_REF]. Depending on the energetic constraints at the interfaces, ice can melt at its surface, at its base, and from the lateral edges of the ice floes.

Changes in the thermodynamic regime of the Arctic sea ice cover have been observed. In the 20 th century, the Arctic sea ice mass balance was driven mostly by basal congelation growth and surface melt [START_REF] Untersteiner | On the mass and heat budget of arctic sea ice[END_REF]. In contrast, over the last two decades, the shares of basal and surface melt have been comparable. Thinner ice fosters the summer reduction in ice concentration, which in turn increases basal melt through to the ice-albedo feedback, as observed [START_REF] Perovich | Thin and thinner: Sea ice mass balance measurements during SHEBA[END_REF][START_REF] Perovich | Increasing solar heating of the Arctic Ocean and adjacent seas, 1979 -2005: Attribution and role in the ice-albedo feedback[END_REF] and simulated [Vancoppenolle et al., 2009b]. Because the long-term ice retreat is more pronounced in summer than in winter [see, e.g., [START_REF] Deser | Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979-2007. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications[END_REF], the amplitude of the seasonal cycle of Arctic sea ice extent has been increasing, which means that the total annual sea ice growth and melt has been increasing and should continue to increase in the future [e.g., [START_REF] Holland | Future abrupt reductions in the summer Arctic sea ice[END_REF]. In the Southern Ocean, observations and models indicate that ice formation mechanisms are more diverse than in the Arctic: congelation, frazil ice and snow-ice formation all contribute significantly [START_REF] Worby | The thickness distribution of sea ice and snow cover during late winter in the Bellingshausen and Amundsen Seas, Antarctica[END_REF][START_REF] Jeffries | Seasonal variations in the properties and structural composition of sea ice and snow cover in the Bellingshausen and Amundsen Seas, Antarctica[END_REF]Vancoppenolle et al., 2009b]. The direct exposure of the Southern Ocean sea ice pack to ocean swell results in a higher contribution of frazil ice than in the Arctic, associated with so-called pancake ice formation [START_REF] Lange | Devel-opment of sea ice in the Weddell Sea[END_REF]. Because Antarctic air masses are relatively cold and dry [START_REF] Andreas | On the differences in ablation seasons of Arctic and Antarctic sea ice[END_REF], and because the ocean heat flux is much larger than in the Arctic [e.g., McPhee, 2008], basal ice melt largely overcomes surface melt in the Southern Ocean [Vancoppenolle et al., 2009b;[START_REF] Maksym | Antarctic Sea Ice -A Polar Opposite?[END_REF]. Lateral melting is confined to the zones where ice floes are sufficiently small [START_REF] Steele | Sea ice melting and floe geometry in a simple ice-ocean model[END_REF][START_REF] Perovich | Thin and thinner: Sea ice mass balance measurements during SHEBA[END_REF] and has not been clearly evidenced as a significant large-scale mass balance contributor.

Without dynamical deformation processes, the sea ice would be relatively uniform. However, sea ice dynamics introduce small-scale variations in ice thickness through opening (the creation of leads and polynyas), rafting (the overriding of two ice plates on top of each other) and ridging (the piling of broken ice pieces into pressure ridges) [see [START_REF] Tuhkuri | Laboratory tests on ridging and rafting of ice sheets[END_REF]. Ridging and rafting do not induce a net change in sea ice volume, but change the sea ice landscape and the areal distribution of ice thickness. Pressure ridges and the constant formation of new ice in recently opened water due to exposure to cold air induces high variability in ice thickness at subfloe scales [START_REF] Thorndike | The thickness distribution of sea ice[END_REF]. In the Arctic, models suggest that slightly less than half of the ice volume lies within pressure ridges, while rafted ice contribution is likely very small [Mårtensson et al., 2012]. In the Antarctic, observations suggest a significant influence of deformation processes on the thickness distribution of Antarctic sea ice [START_REF] Worby | Thickness distribution of Antarctic sea ice[END_REF], but a proper quantification of the volumetric contribution of deformed ice has still yet to come. As the meridional change in zonal stress associated with the transition from the Antarctic Circumpolar Current to the coastal East Wind Drift induces a generally divergent circulation in the Antarctic sea ice zone, open water is more prevalent in winter in the Antarctic sea ice pack (>20% of extent) than in the Arctic (~10%) [Gloersen et al., 1993].

Sea ice thermodynamic growth and mechanical redistribution provide important controls on sea ice and upper ocean biogeochemistry. Columnar ice growth at the ice base [START_REF] Notz | Desalination processes of sea ice revisited[END_REF] and snow ice formation associated with surface flooding trap salt [START_REF] Maksym | A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice[END_REF][START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF], as well as dissolved and particulate material [START_REF] Krembs | A mesocosm study of physical-biological interactions in artificial sea ice: effects of brine channel surface evolution and brine movement on algal biomass[END_REF][START_REF] Thomas | Dissolved organic matter in Antarctic sea ice[END_REF] initially present in seawater, promoting the development of bottom and surface ice algal communities. Rising frazil ice crystals are known to harvest some of the available particulate material suspended in the water column and to incorporate it in the ice [START_REF] Martin | Frazil ice in rivers and oceans[END_REF][START_REF] Garrison | A physical mechanism for establishing algal populations in frazil ice[END_REF][START_REF] Ackley | Physical controls on the development and characteristics of Antarctic sea ice biological communities -a review and synthesis[END_REF]. Due to brine drainage, a large part of dissolved material is quickly released to the ocean (see Section 2.3). Melting sea ice releases material in seawater [START_REF] Riebesell | Aggregation of algae released from melting sea ice: implications for seeding and sedimentation[END_REF][START_REF] Michel | Carbon budget of sea-ice algae under first-year ice in spring: evidence of a significant transfer to zooplanton grazers[END_REF], which affects both planktonic and benthic communities.

Ridging and rafting must affect ice algal communities significantly, but to what extent is not well understood. The analysis of a circumpolar Southern Ocean sea ice chlorophyll database suggests that at least a third of the biomass in the Southern Ocean pack ice is associated with internal communities living in deformed ice [START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF]. Ice deformation by ridging and rafting vertically redistributes biogeochemical material [START_REF] Horner | Ecology of sea ice biota: 1. Habitat, terminology, and methodology[END_REF]. Rafting brings algal communities that were previously near the ice base to the ice interior, while ridging randomly redistributes material within the pressure ridges. Ridges are initially highly porous: about 30% of ridged ice volume is trapped seawater, which should expose the newly dispersed communities to large amounts of macro-nutrients and therefore make this habitat very productive, but this is still a speculation at this stage. In the Arctic, this would also largely depend on the amount of nutrients initially present in seawater, which is controlled by vertical mixing and upwelling in the underlying ocean.

Factors influencing light availability in sea ice

The strong seasonality in light conditions in polar regions, from complete winter darkness to 24-h daylight near the poles, sets constraints on quantum irradiance available to primary producers, or Photosynthetically Active Radiation (PAR). The factors influencing radiation transfer through sea ice are mainly the snow cover, melt ponds, as well as the presence of sediments, pollutants and biological material in the ice. The snow cover above sea ice can be very reflective (hence opaque) and is therefore of primary importance in spring. The evolution of snow depth is governed by snowfall, sublimation, melt and metamorphism. In addition, wind redistributes snow from undeformed ice towards the vicinity of rough topographic features such as pressure ridges, while some blowing snow can be lost on its way to open water [START_REF] Massom | Snow on Antarctic sea ice[END_REF][START_REF] Sturm | Snow and sea ice[END_REF][START_REF] Leonard | The importance of wind-blown snow rdistribution to snow accumulation on Bellingshausen sea ice[END_REF]. The irregularities of the sea ice surface, combined with the spatially dependent snowfall rate, snow thermodynamics and wind redistribution induce large variations in snow depth even at sub-meter scales [see, e.g., [START_REF] Mundy | Variability of snow and ice thermal, physical and optial properties pertinent to sea ice algae biomass during spring[END_REF][START_REF] Lewis | Sea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen Sea: An overview of SIMBA 2007[END_REF]. This has important consequences for light-dependent biological process in and under ice, as snow attenuates light very efficiently.

Measurements of radiation extinction coefficients in the visible waveband fall within 6-80 m -1 for all types of snow [START_REF] Hamre | Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard[END_REF]Järvinen and Lepparanta, 2010], within 0.8-1.5 m -1 for natural sea ice [e.g. [START_REF] Light | Transmission and absorption of solar radiation by Arctic sea ice during the melt season[END_REF][START_REF] Nicolaus | Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007[END_REF], and within 0.02-0.49 m -1 for seawater [e.g., DeGrandpre et al., 1996]. Hence a few centimetres of snow can attenuate as much shortwave radiation as a meter of sea ice. Field studies suggest that, within a floe, ice algae are found where light intensity is the strongest [START_REF] Rysgaard | Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland)[END_REF], with the thickness of the combined snow-ice system being the most important factor controlling the algal biomass patch sizes at subfloe scales (~10 m) in the absence of nutrient limitation [Gosselin et al., 1986;[START_REF] Rysgaard | Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland)[END_REF]. Historical data of Southern Ocean sea ice chlorophyll [START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF] indicate that low ice algal biomasses (< 1mg chla/m 2 ) constitute ~30% of observations, even when sea ice is overall biologically productive, which is in part due to light attenuation by snow. Besides its effect on light attenuation, snow depth also controls the thermal field and hence the intensity and depth of brine convection rates [START_REF] Notz | In situ measurements of the evolution of young sea ice[END_REF]. Snow depth also determines the formation of snow ice and the flooding of the snow base by seawater, which can bring nutrients near the ice surface and promote the development of surface layer communities [START_REF] Fritsen | Autumn bloom of Antarctic pack-ice algae[END_REF].

The Antarctic sea ice pack experiences some of the largest snowfall rates on Earth, hence high snow-loading results in frequent flooding of Antarctic sea ice, fostering snow ice formation [START_REF] Maksym | Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth[END_REF]. In contrast, snowfall on Arctic sea ice is generally lower than in the Antarctic, whereas sea ice is generally thicker, and therefore requires a heavier snow cover to flood. Therefore, surface flooding is rather rare in the Arctic. In the Northern Hemisphere, due to the proximity of pollutant sources, snow falling onto sea ice can result in deposition and accumulation of NO 3 , NH 4 and soot [START_REF] Ehn | Optical properties of melting landfast sea ice and underlying seawater in Santala Bay, Gulf of Finland[END_REF][START_REF] Nomura | Incorporation of nitrogen compounds into sea ice from atmospheric deposition[END_REF].

The incorporation of sediments, rare in Antarctic sea ice but frequently observed in Arctic sea ice especially near the coasts, strongly affects light availability for ice algae and transmittance of light to the under ice pelagic environment [START_REF] Light | The effect of included particulates on the spectral albedo of sea ice[END_REF][START_REF] Gradinger | Pivotal role of sea ice sediments in the seasonal development of near-shore Arctic fast ice biota[END_REF]. Sediment-laden ice has been shown to impact on the spectral light composition and can also delay and inhibit the ice algal spring bloom development [START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF].

Another property of importance for light availability under sea ice is the presence of melt ponds. These are pools resulting from the accumulation of melt water over impermeable sea ice, forming shortly after melt onset [Perovich et al., 2002b;[START_REF] Polashenski | The mechanisms of sea ice melt pond formation and evolution[END_REF], and characterized by much lower albedo than bare ice [START_REF] Perovich | Albedo evolution of seasonal Arctic sea ice[END_REF]. Widespread in the Arctic, where they cover about 1.5 million km 2 at their summer maximum [Rösel and [START_REF] Rosel | Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data[END_REF], melt ponds are rarely reported on Antarctic sea ice, because of drier and colder air than in the Arctic [START_REF] Andreas | On the differences in ablation seasons of Arctic and Antarctic sea ice[END_REF], favouring evaporation rather than melt water accumulation at the surface [START_REF] Nicolaus | Evolution of first-year and second-year snow properties on sea ice in the Weddell Sea during spring-summer transition[END_REF]. Melt ponds efficiently transmit light to the underlying ocean, with transmission values typically an order of magnitude higher than bare ice [START_REF] Frey | The spatial distribution of solar radiation under a melting Arctic sea ice cover[END_REF]. Therefore, substantial melt pond coverage changes the ocean's surface energy budget [START_REF] Nicolaus | Changes in Arctic sea ice result in increasing light transmittance and absorption[END_REF] and stimulates under-ice primary productivity [e.g., [START_REF] Arrigo | Massive phytoplankton blooms under Arctic sea ice[END_REF]. Melt ponds also host their own planktonic communities [START_REF] Horner | Sea Ice Biota[END_REF], but their contribution in the large-scale carbon cycle is likely limited [START_REF] Lee | Phytoplankton production from melting ponds on Arctic sea ice[END_REF].

Controls of fluid transport on biogeochemical tracers

One of the key characteristics of sea ice making it suitable as a microbial habitat is the presence of liquid inclusions of saline brine, which are at least near the ice base connected with the underlying ocean, providing pathways for nutrient supply [Reeburgh, 1984, Petrich andEicken, 2010] and gas exchange [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF][START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]Loose et al., 2011]. The salt trapped within sea ice during formation is hardly incorporated into the ice crystalline lattice [START_REF] Weeks | The growth, structure, and properties of sea ice[END_REF] and rather remains dissolved in brine [see Hunke et al., 2011, for a review]. The bulk salinity of sea ice (i.e., for the combined ice and brine pockets) is usually much less than seawater, although brine salinity can be much higher. Brine salinity strongly increases with decreasing temperatures to maintain phase equilibrium within sea ice, while the brine volume fraction increases with temperature and ice bulk salinity [START_REF] Assur | Composition of sea ice and its tensile strength[END_REF][START_REF] Cox | Equations for determining the gas and brine volumes in sea-ice samples[END_REF][START_REF] Hunke | The multiphase physics of sea ice: a review for model developers[END_REF]. As sea ice ages, much of the brine is lost from the ice, decreasing bulk salinity and brine volume.

Above a ~5% threshold in brine volume, the brine network connects and fluid permeability of sea ice drastically increases [Golden et al., 1998], enabling fluid transport through sea ice. In practice, the vertical structure of fluid permeability in sea ice is seasonally dependent, following temperature changes modulating the vertical position of the 5% brine volume contour. Near the ice base, where the ice is warm and saline, the brine network is virtually always in connection with the underlying ocean. In winter, the 5% brine volume contour is at about one third of the ice thickness from the ice-ocean interface, hence only the lowermost part of the ice is permeable [START_REF] Vancoppenolle | Summer landfast sea ice desalination at Point Barrow, Alaska: Modeling and observations[END_REF][START_REF] Notz | Desalination processes of sea ice revisited[END_REF]. In summer the 5% brine volume contour moves upwards in the ice due to warming. Full-depth connectivity happens in spring once the ice is warm enough [START_REF] Jardon | Full-depth desalination of warm sea ice[END_REF]. In summer, in particular in the Arctic, strong desalination of sea ice due to flushing can reduce the brine volume below 5% over most of the sea ice depth [START_REF] Vancoppenolle | Summer landfast sea ice desalination at Point Barrow, Alaska: Modeling and observations[END_REF].

Recent results suggest life in sea ice also exerts some control on brine inclusions. Exopolymeric polysaccharides (EPS) released by ice algae and bacteria [Krembs et al., 2002a] change the size and shape of brine inclusions, reduce fluid permeability and increase salt retention in sea ice [START_REF] Krembs | Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic[END_REF]. To which extent ice algae affect fluid transport through sea ice in natural conditions is not clear yet and not represented in current thermodynamical theories of the sea ice microstructure.

The markers of biochemical activity -nutrients, gases, micro-organisms -are all influenced by the sea ice microstructure. In practice, they are considered as passive tracers, i.e., influenced by their physical environment but not affecting the sea ice thermodynamic state. Their abundance in the ice can be characterized using bulk molar volumetric concentration C(z,t), i.e., the number of moles of tracer per unit volume of sea ice. This volume has to be small enough so that a single brine volume fraction is representative of the volume, but large enough so that individual brine inclusions are averaged [START_REF] Jeffery | Modeling the transport of passive tracers in sea ice[END_REF]. Changes in C are driven by physical transport (S φ ) and by biological and chemical source and sinks (S βχ ):

,

(1) Physical transport depends on the tracer of interest, which can be of three different kinds: dissolved, gas, or particulate.

Dissolved tracers.

Dissolved tracers (as dissolved macro-nutrients and inorganic carbon) behave like salt, i.e., their concentration in pure ice is nil and they are transported vertically with brine motion. For these tracers, the brine concentration C br , or the number of moles of tracer per unit volume of liquid brine, is introduced as:

, ( 2 
)
where e is brine volume fraction. In the sense that sea ice is a two-phase, reactive porous medium, it constitutes a mushy-layer [START_REF] Notz | Desalination processes of sea ice revisited[END_REF]. Mushy-layer theory provides a theoretical framework to express changes in C due to brine transport (see below), which are currently formulated as functions of e and C br [see, e.g., [START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF][START_REF] Jeffery | Modeling the transport of passive tracers in sea ice[END_REF].

Brine transport. Fluid transport in brine inclusions drives a net loss of salt from the sea ice to the ocean. Fluid transport through the ice is controlled by the vertical thermo-haline structure of sea ice, which determines both the vertical stability of the brine network and its connectivity. Only gravity drainage and flushing are believed to contribute to any measurable net loss of salt [START_REF] Untersteiner | Natural desalination and equilibrium salinity profile of perennial sea ice[END_REF][START_REF] Notz | Desalination processes of sea ice revisited[END_REF]. Gravity drainage refers to the natural convection of salty, heavy brine and its replacement with less dense underlying seawater, which is limited to where the ice is permeable and when the brine salinity decreases from the top of the ice downward (when air temperature is below seawater freezing point). This salinity gradient leads to an unstable density gradient of the interstitial brine, prone to convection, primarily through vertical brine channels -liquid conduits extending through the ice which naturally form during sea ice formation [START_REF] Niedrauer | An Experimental Study of Brine Drainage and Convection in Young Sea Ice[END_REF][START_REF] Wells | Brine fluxes from growing sea ice[END_REF]. Gravity drainage results in an important net rejection of salt from the sea ice into the ocean.

Flushing is the dominant desalination process during the Arctic summer. This process refers to the "washing out" of salty brine by relatively fresh surface melt water that percolates into the pore space during summer [START_REF] Untersteiner | Natural desalination and equilibrium salinity profile of perennial sea ice[END_REF]. Because surface melting is not frequent in the Antarctic, flushing is rarely observed there [see Vancoppenolle et al., 2009a and references therein]. Flushing also expels dissolved material from the ice during the melt period, which typically ends the ice algal season in the Arctic [e.g., [START_REF] Riedel | Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean[END_REF].

A last brine motion mechanism that potentially can play a role is forced convection. Forced convection in the lowermost parts of the brine network is driven by the pressure difference induced by the shear of ocean current under sea ice, as suggested by theoretical and experimental studies [START_REF] Neufeld | Natural and forced convection during solidification[END_REF]. Forced convection may bring in and redistribute salt and nutrients in sea ice, but when, how and how much have not yet been evaluated. Forced convection could occur for instance due to strong tidal currents and play an important role when the brine network is stable in summer. This is corroborated by the hypothesized control of tidal forcing on nutrient supply to the sea ice, required to explain the high ice algal biomass accumulation observed in the bottom layers of fast ice in Resolute Bay, in the Canadian Arctic Archipelago [START_REF] Cota | Nutrient fluxes during extended blooms of Arctic ice algae[END_REF][START_REF] Cota | Physical control of Arctic ice algal production[END_REF]]. Significant progress on the fundamental understanding of brine transport mechanisms is still required [see, [START_REF] Hunke | The multiphase physics of sea ice: a review for model developers[END_REF].

Brine transport and nutrients. Most macronutrients are, like salt, dissolved in brine. Hence, fluid transport removes nutrients from (or supplies them to) the ice interior [START_REF] Reeburgh | Fluxes associated with brine motion in growing sea ice-atmosphere[END_REF][START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF]. Salt is trapped within sea ice during basal accretion and surface flooding. During basal ice growth, the salinity field is continuous across the ice-ocean interface, hence there is no immediate segregation of salt from the ice to the ocean [START_REF] Weeks | The growth, structure, and properties of sea ice[END_REF] at the advancing front [START_REF] Notz | Desalination processes of sea ice revisited[END_REF]. All nutrients included in the freezing seawater should conservatively follow salt and be incorporated into forming ice. Flooding of the base of the snow layer under negative freeboard conditions occurs either (i) laterally via the infiltration of seawater through fractures associated with open water, deformed ice and thermal cracks, or (ii) vertically via the percolation of brine through brine channels [START_REF] Maksym | A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice[END_REF]. Flooding is a source of salt to the ice surface [START_REF] Eicken | Salinity profiles of Antarctic sea ice: Field data and model results[END_REF] and should bring and redistribute nutrients near the ice surface.

Interactions between transport and biochemical sources and sinks. Nutrient concentrations in sea ice are in part controlled by brine dynamics but also depend on ice algal uptake and remineralization processes due to heterotrophic activity. Because nutrients are nonconservative elements, affected by biological processes acting as nutrient sources or sinks, the effect of gravity drainage on nutrients can deviate from its effect on salt. Depending on whether the concentration of nutrients in brines is higher or lower than in seawater below, gravity drainage rejects or supplies nutrients to the sea ice [START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF]. In theory, as long as the air temperature is below the seawater freezing point, which implies an unstable brine salinity profile (i.e., brine salinity increases upwards), gravity drainage can supply nutrientsif depleted -to the permeable sections of the ice, which are in most cases restricted to the lowermost 10 cm of the ice, but can extend further up within the ice in late spring [see, e.g., Zhou et al., in revision].

Gas tracers

Like salt and nutrients, dissolved gases are incorporated in sea ice and concentrated into brine inclusions during ice formation (basal congelation, snow-ice, frazil) [START_REF] Matsuo | Gas composition in ice samples from Antarctica[END_REF]Glud et al., 2002;[START_REF] Tison | Tank study of physico-chemical controls on gas content and composition during growth of young sea ice[END_REF], while gas bubbles coming from the ocean below penetrate the ice via the open brine network [START_REF] Tsurikov | The formation and composition of the gas content of sea ice[END_REF]. Most of the gases are then quickly released into the underlying ocean through convective brine release, where they partly sink, following dense waters convection [START_REF] Killawee | Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems[END_REF][START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF][START_REF] Sejr | Air-sea flux of CO 2 in Aarctic coastal waters influenced by glacial melt water and sea ice[END_REF] or escape upwards through the open water-atmosphere interface [START_REF] Nomura | The effect of sea-ice growth on air-sea CO 2 flux in a tank experiment[END_REF]Loose et al., 2011].

Gas tracers easily form bubbles within growing sea ice, because of two synergetic effects of decreasing ice temperature: (i) brine volume decreases, which increases dissolved gas concentration in brine possibly above gas solubility [Zhou et al., in revision]; and (ii) gas solubility decreases. The latter effect is because brine salinity and temperature are coupled: the increase in solubility due to cooling is overcompensated by the decrease due to increasing brine salinity [Thomas et al., 2010]. Above saturation, if the sum of all dissolved gases partial pressures is higher than the local hydrostatic pressure, bubbles can nucleate and accumulate in the direct vicinity of sea ice inclusions [START_REF] Tison | Tank study of physico-chemical controls on gas content and composition during growth of young sea ice[END_REF][START_REF] Light | Effects of temperature on the microstructure of first-year Arctic sea ice[END_REF]. Internal melting also promotes gas bubble formation: melting involves a ~10% volume reduction, leaving a void where gas will flow from nearby brine until equilibrium [START_REF] Perovich | A quantitative description of sea ice inclusions[END_REF]. When brine inclusions enlarge in spring and summer, the brine concentration of gases decreases, possibly reaching under-saturation. This under-saturation can be relieved by inputs from dissolving gas bubbles, as well as from atmospheric and oceanic inputs [START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]Zhou et al., in revision]. If the ice is permeable, gas bubbles can directly escape to the atmosphere. During the melt season, flushing transports dissolved gases towards the ocean.

Gas tracers (O 2 , Ar, CO 2 ) are distributed in both the liquid and gas phases, and their bulk concentration is given by:

, ( 3 
)
where C bub is the contribution of gas bubbles to bulk ice concentration. The physical transport term (S φ ) in equation ( 1) includes not only brine transport (affecting C br ), but also gas bubble transport (affecting C bub ).

While the transport of dissolved gas should be similar to that of salt, the transport of gas bubbles, little studied, is likely driven by different processes, including the buoyant rise of gas bubbles, and their entrapment in the sea ice microstructure [Zhou et al., in revision]. A scaling analysis suggests that gas bubbles should quickly escape out of the ice due to their buoyancy once the brine network opens in spring [Moreau et al., in revision]. Recent observations [Zhou et al., in revision] indicate that the permeability transition for gas bubble transport could occur at a higher brine volume permeability threshold than the commonly accepted threshold of 5% for fluid transport [Golden et al., 1998].

In contrast to the general behaviour of dissolved salt and nutrients, dissolved gases and gas bubbles can cross the ice-atmosphere interface.

Ice-atmosphere gas exchange depends on the differential partial pressure of gases between brine and the atmosphere, wind speed, ice microstructure and snow properties [START_REF] Delille | Inorganic carbon dynamics and air-ice-sea CO 2 fluxes in the open and coastal waters of the Southern Ocean[END_REF][START_REF] Heinesch | Measuring air-ice CO 2 fluxes in the Arctic[END_REF][START_REF] Papakyriakou | Springtime CO 2 exchange over seasonal sea ice in the Canadian Arctic Archipelago[END_REF][START_REF] Bowling | Persistent windinduced enhancement of diffusive CO 2 transport in a mountain forest snowpack[END_REF]. When present, snow can act as an intermediate reservoir for gas until wind speed exceeds a given threshold [START_REF] Bowling | Persistent windinduced enhancement of diffusive CO 2 transport in a mountain forest snowpack[END_REF][START_REF] Papakyriakou | Springtime CO 2 exchange over seasonal sea ice in the Canadian Arctic Archipelago[END_REF] while, when absent, brine-atmosphere or melt pondatmosphere gas exchanges may occur [START_REF] Semiletov | Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses[END_REF]. The formation of superimposed ice impedes sea ice-atmosphere gas exchanges [START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF]. The central question of the partitioning of gas exchange between open water and sea ice has not been resolved yet [see, e.g., Loose et al., 2011;and references therein].

Gas dynamics in sea ice are complicated by biogeochemical processes. These include the metabolic activities (i.e., primary production and respiration) [e.g., [START_REF] Arrigo | Primary producers and sea ice[END_REF][START_REF] Deming | Sea ice bacteria and viruses[END_REF], which produce and absorb biogenic gases such as O 2 , CO 2 and DMS [Gleitz et al., 1995;Glud et al., 2002;[START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF][START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]. They also include carbonate chemistry, which plays an important role in the dynamics of dissolved inorganic carbon (DIC) in sea ice [START_REF] Delille | Inorganic carbon dynamics and air-ice-sea CO 2 fluxes in the open and coastal waters of the Southern Ocean[END_REF][START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF]Miller et al., 2011a;Geilfus et al., 2012], and the precipitation of calcium carbonate (CaCO 3 ) in the form of ikaite crystals as recently observed in Arctic and Antarctic sea ice [START_REF] Dieckmann | Calcium carbonate as ikaite crystals in Antarctic sea ice[END_REF]2010].

Particulate tracers

Particulate tracers cannot dissolve in brine. Their incorporation in the sea ice matrix and actual transport behaviour depends on several characteristics which are not currently well constrained: (i) whether the particles move actively (e.g., flagellates), (ii) whether the particles are transported passively (by moving brine), (iii) whether and how quickly they stick on the walls of brine inclusions or on other impurities, (iv) whether they can get sealed into the sea ice microstructure. For instance, ice microorganisms combine mobility and attachment onto ice surfaces via the release of EPS and icebinding proteins [START_REF] Krembs | Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice[END_REF][START_REF] Becquevort | Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctic during early spring[END_REF][START_REF] Juhl | Seasonal development and discontinuous export of ice algae and other organic fractions from Arctic sea ice[END_REF][START_REF] Raymond | Possible role of horizontal gene transfer in the colonization of sea ice by algae[END_REF].

Biogeochemical processes

Active biogeochemical processes in sea ice involve macro-nutrients, trace elements, organic carbon, inorganic carbon, other climaticallysignificant gases (DMS, methane, nitrous oxide), and atmospheric halogen chemistry, in strong interaction with oceanic and atmospheric processes.

Organic carbon processes in sea ice

Biodiversity. Sea ice provides a vast habitat for productive microbial communities consisting of algae, bacteria, archea, heterotrophic protists, funghi as well as viruses [START_REF] Horner | Ecology of sea ice biota: 1. Habitat, terminology, and methodology[END_REF][START_REF] Deming | Sea ice bacteria and viruses[END_REF][START_REF] Thomas | Sea Ice, Second Edition[END_REF][START_REF] Poulin | Pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a firstattempt assessment[END_REF]. Distinct communities are found at the base, in the interior and at the surface of ice floes [see, [START_REF] Horner | Sea Ice Biota[END_REF][START_REF] Arrigo | Primary producers and sea ice[END_REF].

In terms of biomass, these communities are generally dominated by algae, particularly diatoms during the bloom period. However, heterotrophs can dominate prior to the bloom period, as well as during the winter [START_REF] Riedel | Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean[END_REF][START_REF] Niemi | Protists assemblages in winter sea ice: setting the stage for the spring ice algal bloom[END_REF][START_REF] Paterson | Sea Ice microbial dynamics over an annual cycle in Prydz Bay, Antarctica[END_REF]. There are over one thousand protist species known to live in Arctic sea ice, including diatoms, dinoflagellates, chrysophytes, prasinophytes, silicoflagellates, primnesiophytes and chlorophytes amongst others [START_REF] Poulin | Pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a firstattempt assessment[END_REF]. Pennate diatoms, with morphotypes resembling surface-associated and benthic life-styles, are the dominant sea ice algal group. The arborescent colonial diatom Nitzschia frigida is the most abundant and the most widely distributed ice algal species in Arctic first-year ice and therefore is a key sea ice species in the circumpolar Arctic [START_REF] Różańska | Influence of environmental factors on the development of bottom ice protist communities during the winter-spring transition[END_REF]. Other diatom species such as Melosira arctica, which can form meter-long strands attached to the sea ice, can also be overwhelmingly dominant in Arctic sea ice. An important Antarctic sea ice pennate diatom genus is Fragilariopsis, which is commonly found in pack ice habitats and has been widely used as a sea ice proxy [see [START_REF] Armand | Palaeo Sea Ice Distribution and Reconstruction Derived from the Geological Record[END_REF]and references therein]. Ice algae in general extend the duration of the productive season in high latitude ecosystems. This is mostly because ice algae are attached to the ice and therefore not subject to vertical motion in the water column affecting average light exposure of phytoplankton in a mixed layer. Ice algae also provide a critical early season and high-quality food source for the growth and reproduction of pelagic herbivores [START_REF] Søreide | Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic[END_REF][START_REF] Flores | Impact of climate change on Antarctic krill[END_REF].

Variability. There is a high spatial and temporal variability in ice algal biomass and production. The seasonal development of ice algal communities is driven by the strong seasonal physical forcing regime of polar marine environments. During the dark winter at high latitudes, protist abundance is relatively low in sea ice [START_REF] Günther | Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica[END_REF][START_REF] Niemi | Protists assemblages in winter sea ice: setting the stage for the spring ice algal bloom[END_REF]; however Arctic winter sea ice biodiversity is comparable to that of spring assemblages [START_REF] Niemi | Protists assemblages in winter sea ice: setting the stage for the spring ice algal bloom[END_REF]. Ice algae are typically shade adapted and can thrive at very low irradiances. Increasing light levels in late winter trigger the onset of ice-algal blooms [START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF][START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF]. The decline of Arctic ice algal blooms depends on a variety of factors including nutrient limitation by nitrogen [START_REF] Różańska | Influence of environmental factors on the development of bottom ice protist communities during the winter-spring transition[END_REF] and silicic acid [START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF], self-shading [START_REF] Smith | Abundance and production of ice algae in Resolute Passage, Canadian Arctic[END_REF], as well as temperature and brine salinity stress [START_REF] Arrigo | The influence of salinity and temperature covariation on the photophysiological characteristics of Antarctic sea ice microalgae[END_REF]. Nutrient limitation occurs when supplies are limited, which is promoted by brine stratification at nearfreezing temperatures. Decreasing light levels, low temperatures and high brine salinities limit ice algal growth during late autumn and winter. For some high-biomass Antarctic sea ice microhabitats, potential algal growth limitation by depleted CO 2 , elevated brine pH, and oxygen supersaturation has been reported [Gleitz et al., 1995;Thomas et al., 2010]. In contrast, heterotrophic processes, e.g., bacterial activity, heterotrophic grazing and excretion, as well as viral lysis of host cells, can result in nutrient remineralization within the sea ice [Gleitz et al., 1995;[START_REF] Papadimitriou | Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer[END_REF][START_REF] Riedel | Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean[END_REF]Thomas et al., 2010]. Large spatial variability in ice algal activity is found from submeter to large scales [START_REF] Rysgaard | Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland)[END_REF][START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF], due to processes that operate at micro-(individual pores), meso-(snow distribution) and macro-(nutrient input) scales.

Characterization of biomass and organic carbon.

There are several quantities that are used to characterize the organic matter content in sea ice. Chlorophyll a (chl a), the dominant photosynthetic pigment in marine microalgae, is easily measured fluorometrically, and is the most frequently used indicator of autotrophic biomass. Vertically-integrated concentration of chl a (I chla ), or areal chlorophyll content, is an indicator of the total biomass per unit area of sea ice [START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF][START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF]. I chla is generally highest in landfast ice, i.e., sea ice that is "fastened" by attachment to the coast, ice shelves, glacier-tongues or locked-in by grounded icebergs. Landfast ice is more productive due to coastal processes that influence nutrient supply, i.e., riverine influence (in the Arctic) and tidal currents, which promote vertical mixing and forced convection in sea ice. Values of I chla for a given ice core (or a part of it, depending on authors) range between 1 and 340 mg m -2 in the Arctic and between <1 and 1090 mg m -2 in the Antarctic, which includes both pack and fast ice [see [START_REF] Arrigo | Primary producers and sea ice[END_REF]and references therein]. The highest values probably do not reflect a large-scale measure but rather local maxima. As I chla estimates presented in the literature often include only a fraction of the ice thickness, they have to be interpreted carefully.

The sea ice particulate organic matter (POM) pool, operationally defined as material retained on glass-fibre filters with a nominal pore size of 0.7 micron, provides a more general measure of organic matter in sea ice, comprised of different fractions including ice algae, some exopolymers, attached bacteria, heterotrophic protists, and detritus. POM is mostly measured as particulate organic carbon (POC) but particulate organic nitrogen (PON) is also used in nitrogen-based budgets and models.

POC and Chl a in sea ice can show strong vertical gradients and can vary spatially and seasonally over 3 orders of magnitude [e.g., [START_REF] Kennedy | Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition[END_REF]. POC and Chl a also vary as a function of the age of sea ice. The distribution of POC in sea ice is usually correlated with that of Chl a, implying that ice algae represent a large part of, and partly produce the POC. However, during fall and winter, sea ice POC and Chl a are decoupled, indicating a significant contribution of non-pigmented biomass (heterotrophs and detritus) [e.g., [START_REF] Meiners | Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea)[END_REF][START_REF] Niemi | Protists assemblages in winter sea ice: setting the stage for the spring ice algal bloom[END_REF]. In addition, allochtonous riverine and terrestrial material input in sea ice can be high on Arctic shelves, which influences the POM sea ice signature in Arctic sea ice.

While Chl a is a widely used proxy for ice algal (and phytoplankton) biomass in ecological studies, other cell constituents, such a biogenic silica, a structuring element of diatom frustules, can also be used. Each indicator has advantages and shortcomings. Therefore, a combination of indicators offers the best description of the biomass and physiological state of ice community assemblages. POC indiscriminately measures all of the organic carbon regardless of its physiological (e.g., healthy cells or detritus) or functional (autotrophic or heterotrophic) roles. Chl a specifically targets phototrophic biomass (excluding cyanobacteria), whereas biogenic silica targets diatoms. Overall, since these indicators change with the composition and physiological status of ice communities, they may not accurately reflect ice algal biomass across different seasons, regions and sea ice habitats.

DOM. Dissolved organic matter (DOM) is a diverse pool of molecules including carbohydrates, proteins, amino acids as well as more complex substances such as humic substances. DOM is defined as organic matter smaller than 0.2 µm. However, operationally, DOM is often measured as the material that passes through glass-fibre filters with a nominal pore size of 0.7 µm. DOM can be derived from various sources such as viral lysis of cells, inefficient and destructive sloppy-feeding by grazers, with the most important sea ice source being exudation by microalgae. Allochtonous DOM input into marine systems also occurs via rivers transporting complex humic substances into the marine realm. DOM can range in size from monomers to large polymers and can be divided in a biological labile and a relatively stable (refractory) pool. Labile DOM provides an important food source for bacteria channelling energy through sea ice microbial food webs. DOM includes chelating agents that are considered to influence the bio-availability of nutrients, such as iron [START_REF] Hassler | Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean[END_REF]. DOC (Dissolved Organic Carbon, measured via catalytic combustion) in the sea ice is often correlated with ice algal biomass and can reach very high concentrations when compared to the pelagic realm. DOC concentrations of up to > 2.5 x 10 3 µM have been reported for Arctic sea ice [START_REF] Riedel | Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean[END_REF]. DOC concentrations in Antarctic sea ice vary widely with values of up to >1.8 x 10 3 µM in melted ice cores [e.g., [START_REF] Thomas | Dissolved organic matter in Antarctic sea ice[END_REF][START_REF] Herborg | Dissolved carbohydrates in Antarctic sea ice[END_REF]Thomas et al., 2010]. As DOC is further concentrated within sea ice brines, organisms living in brine are exposed to DOC concentrations that are up to 3 orders of magnitude higher than in seawater. Coloured Dissolved Organic Matter (CDOM) constitutes a significant fraction of the sea ice DOM pool and can significantly contribute to the attenuation of sunlight (particularly in the UV wavelength ranges) and serve as substrate for photochemical reactions that can remineralize the CDOM breaking it down into more labile compunds [START_REF] Belzile | Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya[END_REF][START_REF] Norman | The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice[END_REF].

EPS.

Over the last decade or so, various studies have shown that part of the organic matter is constituted of gel-like organic substances, often referred to as extracellular polymeric substances (EPS), which can represent up to 70 % of the sea ice POC pool [Krembs et al., 2002a;[START_REF] Meiners | Vertical distribution of exoploymer particles in sea ice of the Fram Strait (Arctic) during autumn[END_REF]2004]. EPS are thought to serve in cell attachment and motility, act as a buffer against pH/chemical variations, provide protection from grazers and improve sea ice habitability [e.g., Krembs et al., 2002a;[START_REF] Meiners | Vertical distribution of exoploymer particles in sea ice of the Fram Strait (Arctic) during autumn[END_REF][START_REF] Riedel | Seasonal study of sea-ice exopolymeric substances (ES) on the Mackenzie shelf: implications for the transport of sea-ice bacteria and algae[END_REF][START_REF] Underwood | Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice[END_REF]Krembs et al. 2011]. Importantly, recent studies on Arctic fast ice have shown that EPS can be retained in sea ice during ice melt in spring when particulate organic carbon is lost from the ice into the underlying water [START_REF] Riedel | Seasonal study of sea-ice exopolymeric substances (ES) on the Mackenzie shelf: implications for the transport of sea-ice bacteria and algae[END_REF][START_REF] Juhl | Seasonal development and discontinuous export of ice algae and other organic fractions from Arctic sea ice[END_REF]. This discontinuous export of organic matter from seasonal sea ice suggests that the released material changes in quality and quantity with the progression of the melt season, which in turn affects its biogeochemical cycling.

Macro-nutrients in sea ice and in the water column

All macro-nutrients, namely nitrate (NO 3 -), nitrite (NO 2 -), phosphate (PO 4 3-) and silicic acid (Si(0H) 4 ), are dissolved in brine inclusions, with the notable exception of ammonium (NH 4 + ). Therefore, nutrient concentrations in bulk ice (C) follow equation (2). For, NH 4 + , one of the rare ions that can be trapped within ice crystals during freezing [START_REF] Weeks | On sea ice[END_REF], equation (1) does not apply and its dynamics are different from other nutrients. There are numerous examples of vertical nutrient profiles in sea ice in the literature [see Thomas et al., 2010, and references therein;and Figure 3, for indicative profiles]. They indicate that macronutrient concentrations in bulk ice are relatively low compared to seawater values. During the ice algal production period, from spring to fall, C usually lies on or below the dilution line [e.g., [START_REF] Tison | Temporal evolution of decaying summer first-year sea ice in the western Weddell Sea, Antarctica[END_REF]Zhou et al., in revision], e.g., C/S ≤ C w /S w (no superscript refers to sea ice, superscript w refers to seawater, S is salinity), which indicates a net consumption by photosynthetic organisms, superimposed on the brine dynamics-driven signal. On some occasions, essentially in winter [e.g., [START_REF] Dieckmann | The nutrient status in sea ice of the Weddell Sea during winter: Effects of sea ice texture and algae[END_REF]Zhou et al., in revision], C is above the dilution line, which suggests significant remineralization. Ammonium concentrations are typically on or above the dilution line, which is due to NH 4 + entrapment into ice crystals and could also result from heterotrophic nitrogen remineralization.

Since bulk ice concentrations are small, macronutrients are quickly exhausted in the absence of external supply (see Section 2.4). In contrast, if nutrient supply is on-going, macro-nutrients in sea ice are hardly limiting. Equation (2) indicates that this is because nutrients are concentrated in brines (e<<1), and C br -the nutrient concentration experienced by ice algae -is much larger than the corresponding half-saturation concentration (the value below which ice algae start to significantly suffer from low nutrients) [START_REF] Monod | The growth of bacterial cultures[END_REF]. Nutrient limitation induces significant modification in ice algae metabolism, such as in their carbon content (increasing POC: Chl a and POC : PON ratios), in cell-specific lipid content and fatty acid composition, and in carbon isotopic composition, when limited by CO 2 [START_REF] Palmisano | Changes in photosynthetic carbon assimilation in Antarctic sea-ice diatoms during spring bloom: variation in synthesis of lipid classes[END_REF][START_REF] Mcminn | Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica[END_REF][START_REF] Mock | Changes in photosynthetic carbon allocation in algal assemblages of Arctic sea ice with decreasing nutrient concentrations and irradiance[END_REF][START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF]. The changes in cell composition can alter algae sinking rates as well as their aggregation potential, impacting on ice algal export [START_REF] Riebesell | Aggregation of algae released from melting sea ice: implications for seeding and sedimentation[END_REF][START_REF] Michel | Springtime coupling between ice algal and phytoplankton assemblages in Southeastern Hudson Bay, Canadian Arctic[END_REF].

After stabilization of the brine network, nutrient supply stops when air temperature approaches the freezing point. Hence, despite significant light levels, various chemical elements have been reported to limit ice algal production in Arctic sea ice in late spring / early summer: N in the Chukchi and Beaufort Seas, in June [START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF], and Si in the Canadian Arctic Archipelago in June [START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF]. Nutrient limitation of Antarctic sea ice algae has also been reported for both surface and bottom communities [e.g., [START_REF] Kristiansen | Nitrogen uptake in the filtration community, an ice algal community in Antarctic pack ice[END_REF][START_REF] Mcminn | Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica[END_REF] but seems less widespread than in the Arctic, although it is not clear whether this is due to a lack of summer observations or to undocumented summer nutrient supply mechanisms. Strong currents, as tides in coastal regions, or the Antarctic Circumpolar Current, may contribute to nutrient supply by forced convection [START_REF] Cota | Nutrient fluxes during extended blooms of Arctic ice algae[END_REF][START_REF] Cota | Physical control of Arctic ice algal production[END_REF].

As supply mechanisms bring nutrients into the ice, seawater provides the ultimate constraint on nutrient availability for sea ice communities. Seawater nutrient concentrations feature strong regional variations, but in the Arctic, those are not well constrained: the World Ocean Atlas Climatology [START_REF] Garcia | Nutrients (Phosphate, Nitrate, Silicate)[END_REF] has almost no data coverage in the Arctic Basin, and riverine inputs of nutrients are poorly understood [START_REF] Popova | What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[END_REF]. Some general features can however be found in the literature. The Atlantic Arctic is rather poor in nutrients, receiving northwardflowing surface waters, already exhausted in nutrients, especially silicic acid, while the Pacific Arctic receives much more nutrients, from the influence of nutrient-rich deep Pacific waters [START_REF] Sakshaug | Primary and secondary production in the Arctic Seas, in The Organic Carbon Cycle in the Arctic Ocean[END_REF]. High interannual variability in nutrient inventories and biological processes on the Arctic shelves, influenced by variable Pacific inflow, suggests a control of primary production on those shelves by nutrient availability [Michel et al. 2006 ;[START_REF] Apollonio | Marine primary production in the Canadian Arctic, 1956, 1961-1963[END_REF]. Nitrogen seems to be the primary liming nutrient in the Arctic Ocean and its peripheral seas [see [START_REF] Tremblay | The effect of irradiance and nutrient supply on the productivity of Arctic waters: A perspective on climate change[END_REF]and references therein]. Phosphorous limitation is likely in riverinfluenced waters, because Arctic rivers are relatively rich in nitrogen but poor in phosphate [START_REF] Sakshaug | Primary and secondary production in the Arctic Seas, in The Organic Carbon Cycle in the Arctic Ocean[END_REF]. However, the significance of riverine input might be limited because residual inorganic nutrients are exhausted before the riverine water advances into the Arctic Ocean [START_REF] Tremblay | The effect of irradiance and nutrient supply on the productivity of Arctic waters: A perspective on climate change[END_REF]. The Southern Ocean and North Pacific Arctic waters are relatively rich in macro-nutrients [START_REF] Garcia | Nutrients (Phosphate, Nitrate, Silicate)[END_REF], because of the upwelling of nutrient-rich deep waters [START_REF] Sakshaug | Primary and secondary production in the Arctic Seas, in The Organic Carbon Cycle in the Arctic Ocean[END_REF], and these regions are considered as iron limited [see [START_REF] Boyd | The biogeochemical cycle of iron in the ocean[END_REF]and references therein]. While iron availability affects the photosynthesis and production of common Antarctic ice algal species, in situ sea ice concentrations are generally above iron half-saturation constants for these species [START_REF] Pankowski | Iron availability regulates growth, photosynthesis, and production of ferredoxin and flavodoxin in Antarctic sea ice diatoms[END_REF]. Therefore, in contrast to Southern Ocean phytoplankton, Antarctic sea ice algae are usually not iron limited [e.g., van der [START_REF] Van Der Merwe | Biogeochemical observations during the winter-spring transition in East Antarctic sea ice: Evidence of iron and exopolysaccharide controls[END_REF]Thomas et al., 2010] 

Trace metals

In regions where iron (Fe) is potentially limiting phytoplankton growth (Southern Ocean and North Pacific), the evidence of high concentrations of Fe in sea ice [START_REF] Lannuzel | Distribution and biogeochemical behaviour of iron in the East Antarctic sea-ice[END_REF][START_REF] Aguilar-Islas | Sea ice-derived dissolved iron and its potential influence on the spring algal bloom in the Bering Sea[END_REF] -much higher than in the water column -raised strong interest in the role of seasonal sea ice retreat as a potential trigger for phytoplankton blooms in Felimited surface waters [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF]. Iron is important for photosynthesis and nutrient assimilation processes. Low Fe availability for phytoplankton reduces growth rates and abundance of large phytoplankton classes [START_REF] Martin | The case for iron[END_REF], because small phytoplankton groups have high surface area to volume ratios and assimilate Fe more efficiently than large phytoplankton [START_REF] De Baar | von Liebig's Law of the Minimum and Plankton Ecology (1899-1991[END_REF]. In regions where Fe is plentiful (like the Arctic ocean, due to the proximity of continents), the role of Fe release by sea ice is obviously minor.

The contribution of the potential mechanisms driving Fe cycling in sea ice is not yet fully understood [see Lannuzel et al, 2010 for a complete discussion]; here only the key elements are summarized. Firstly, observations from melted ice core sections indicate that Fe in sea ice is either dissolved in brine (dFe) or found in the particulate form (PFe) [e.g., [START_REF] Lannuzel | Distribution and biogeochemical behaviour of iron in the East Antarctic sea-ice[END_REF]. Hence, equation ( 2) is not applicable for Fe. Both forms exchange with each other: dFe is converted into PFe through assimilation by growing micro-algae and organic compounds sealed in the ice, including bacteria biofilms with a high affinity for Fe [START_REF] Hassler | Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean[END_REF]. Conversely, some PFe goes into dFe due to cell lysis, heterotrophic activity and photooxidation. Secondly, throughout winter, Fe-rich particulates, colloids and organic matter, are harvested by frazil crystals, rising through the water column towards the ice base, simultaneously with a net upwards component from Langmuir cells and wave field pumping [e.g., [START_REF] Garrison | A physical mechanism for establishing algal populations in frazil ice[END_REF]. This should provide a PFe-rich substrate at the time of incorporation into sea ice. Thirdly, the removal of dFe from brine by assimilation onto ice-attached, biogenic PFe [van der [START_REF] Van Der Merwe | Biogeochemical observations during the winter-spring transition in East Antarctic sea ice: Evidence of iron and exopolysaccharide controls[END_REF], combined with a supply of dFe from seawater to the ice due to brine mixing, can substantially increase the total concentration of Fe (dFe+PFe) in sea ice as compared to seawater [START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF]. Finally, since the large majority of dFe and PFe in marine systems is complexed by organic ligands [e.g., [START_REF] Rue | Complexation of iron (III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/ adsorptive cathodic stripping voltammetric method[END_REF][START_REF] Boye | Organic complexation of iron in the Southern Ocean[END_REF], the direct adsorption of uncomplexed Fe on sea ice is not expected to be significant.

The reported sources for Fe in the ocean include aeolian dust deposition [e.g., [START_REF] Wagener | Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications[END_REF], extraterrestrial dust [e.g., [START_REF] Johnson | Iron supply and demand to the upper ocean: Iis extraterrestrial dust a significant source of bioavailable iron?[END_REF], sediment resuspension [e.g., [START_REF] Moore | Sedimentary and mineral dust sources of dissolved iron to the world ocean[END_REF], inputs from continental margins and icebergs [e.g., [START_REF] Raiswell | Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt[END_REF] and hydrothermalism [e.g., [START_REF] Tagliabue | Hydrothermal contribution to the oceanic dissolved iron inventory[END_REF]. In this context, sea ice is not a new source of Fe, but rather an important seasonal Fe reservoir [van der Merwe et al., 2011b]. During the melt season, the release of the excess Fe stored in the sea ice coincidentally occurs when light and mixed layer depth are favourable to phytoplankton growth [van der Merwe et al., 2011b]. Hence, the seasonal Fe accumulation and release from sea ice enhance the availability and utilisation of Fe. Most of the Fe released in the water colum sinks with organic matter, while a small part, associated with the micro-organisms and dead material remaining in suspension is incorporated at the onset of the new ice season.

The release of Fe by melting ice could partly contribute to large ice edge blooms [Arrigo et al., 2008a] in the Southern Ocean. Indeed, although much uncertainty exists, a modelling study by [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF] in the Antarctic sea ice zone suggests that the timing of sea ice formation, the uptake of Fe in growing ice from the different available sources and its subsequent transport by drifting ice are fundamental to predicting the location and magnitude of the Antarctic marginal ice zone (MIZ) production. This line of reasoning may also apply in other Fe-limited areas of icecovered waters, such as the Bering Sea.

Let us caution that, once released into the water column, Fe may not always be readily available to phytoplankton, with some forms being unavailable for assimilation in plankton. The socalled Fe bioavailability -presently difficult to predict -is a function of the physical and chemical forms of Fe, as well as of the uptake strategies employed by the various biota to access Fe [START_REF] Hassler | Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean[END_REF].

As a stronger glacial Fe supply inducing an intensified nutrient utilization is one of the potential explanations for the strengthening of Southern Ocean CO 2 uptake in glacial periods [START_REF] Sigman | The polar ocean and glacial cycles in atmospheric CO 2 concentration[END_REF], understanding Fe accumulation in sea ice, its release in the ocean by melting sea ice, and Fe bioavailability for phytoplankton, remains one of the crucial questions of present-day sea ice biogeochemistry.

Note that the cycling of bio-essential Fe contrasts with other non-essential trace metals (such as molybdenum, barium, chromium and aluminium), which, like macro-nutrients, remain unchanged in proportion to ice salinity after their incorporation into sea ice [START_REF] Lannuzel | Distribution of dissolved and particulate metals in Antarctic sea ice[END_REF].

Biological interactions with the water column

Observations indicate: (i) phytoplankton blooms start under the ice [e.g., [START_REF] Arrigo | Massive phytoplankton blooms under Arctic sea ice[END_REF] and then typically follow the summer ice retreat in the Arctic [START_REF] Perrette | Near-ubiquity of ice-edge blooms in the Arctic[END_REF], while only ice-edge blooms have been reported in the Southern Ocean [START_REF] Smith | Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field[END_REF]; (ii) recent Arctic Ocean sea ice retreat is associated with a significant increase in pelagic primary production [Arrigo et al., 2008b;[START_REF] Tremblay | Climate forcing multiplies biological productivity in the coastal Arctic Ocean[END_REF]; and (iii) marine ecosystem shifts have occurred due to changing sea ice conditions, notably in the Bering Sea (Arctic) [START_REF] Grebmeier | A major ecosystem shift in the Northern Bering Sea[END_REF] and in the West Antarctic Peninsula area [e.g., [START_REF] Montes-Hugo | Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula[END_REF].

These observations support a significant role for sea ice on water column primary productivity, which can be mediated by physical and biogeochemical processes. First, sea ice, the material it contains (organic matter and sediments), and its snow cover control the incoming light in the upper ocean; while ice growth and melt affect the upper ocean stratification and nutrient supply [START_REF] Tremblay | The effect of irradiance and nutrient supply on the productivity of Arctic waters: A perspective on climate change[END_REF]. Secondly, once released in the ocean, ice algae and the associated material influence pelagic biogeochemistry and food webs, through the seeding of phytoplankton blooms [e.g. [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF], heteorotrophic grazing, and organic matter export to depth, feeding the benthos [START_REF] Constable | Southern Ocean productivity in relation to spatial and temporal variation in the physical environment[END_REF].

Light transmission.

As discussed above, sea ice, its snow cover [Perovich et al., 2002a] and particles stored within sea ice, mainly soot [START_REF] Warren | A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols[END_REF] influence the surface albedo and the spectral transmission of light in waters under the ice cover.

Light limitation of phytoplankton production in the presence of snow-covered sea ice is typically observed prior to significant melt [START_REF] Fortier | Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice[END_REF][START_REF] Michel | Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago[END_REF]. In addition, during the ice-algal bloom in Arctic first-year ice, the presence of an optically-dense biomass layer in the bottom ice contributes to reduce the available light in the upper ocean [e.g., [START_REF] Mundy | Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice[END_REF]. Light limitation is also fundamental to the classic understanding that Arctic basins, where multiyear ice used to prevail year-round, are areas of low primary production.

The fate of the material released in the water column after sea ice melt is an important challenge [e.g., [START_REF] Tedesco | Process studies on the ecological coupling between sea ice algae and phytoplankton[END_REF], but the partitioning between seeding, grazing, and export is complicated and currently not well constrained. Sea ice constitutes a reservoir where primaryproduced biomass accumulates along a sizecontinuum ranging from dissolved, gel-like, to particulate fractions. Dissolved organic carbon concentrations is often higher than algal biomass, and exopolymeric substances can significantly contribute to the total organic carbon in sea ice [Krembs et al., 2002a;[START_REF] Riedel | Seasonal study of sea-ice exopolymeric substances (ES) on the Mackenzie shelf: implications for the transport of sea-ice bacteria and algae[END_REF]2008;[START_REF] Meiners | Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea)[END_REF][START_REF] Van Der Merwe | Biogeochemical observations during the winter-spring transition in East Antarctic sea ice: Evidence of iron and exopolysaccharide controls[END_REF]. At the time of melt, most of the particulate organic material in the sea ice reservoir is released into surface waters since there is no top-down control (i.e., due to grazing by upper trophic level organisms) on the accumulation of biomass in the ice [START_REF] Michel | Significance of sedimentation and grazing by ice micro-and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay)[END_REF]. The strong pulse of particulate organic matter released into the water column can fuel planktonic food webs [START_REF] Michel | Carbon budget of sea-ice algae under first-year ice in spring: evidence of a significant transfer to zooplanton grazers[END_REF][START_REF] Lizotte | The contributions of sea ice algae to Antarctic marine primary production[END_REF] or sink to the bottom [START_REF] Riebesell | Aggregation of algae released from melting sea ice: implications for seeding and sedimentation[END_REF][START_REF] Fortier | Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice[END_REF][START_REF] Renaud | Seasonal variations in the benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic[END_REF]. Ultimately, the material that is not grazed or remineralized during its descent or at the seafloor can be stored in sediments. Many factors influence the quantity and the quality of the material reaching the seafloor, including water depth, morphological and physiological factors that influence cell coagulation sinking rates, water column processes that influence mixing and stratification, and top-down control by under-ice and water column grazers. Ice algae provide an important and essential food source for key pelagic herbivores [START_REF] Søreide | Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic[END_REF] for which egg production and stage development are synchronized to match the timing of the bloom [START_REF] Fortier | Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice[END_REF]. Therefore, a mismatch between the timing of the ice algal bloom and zooplankton grazing may shift the nature of the sinking organic material, from more fecal pellets to more fresh algal cells [Michel et al., 2006]. In addition, the timing and duration of the melt period also influences the quality of the material exported to the seafloor since rapid melt can favour a rapid export of intact algal cells to depth [START_REF] Fortier | Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice[END_REF][START_REF] Michel | Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago[END_REF]. Tracers associated with certain taxonomic groups that are well-preserved in sediments such as diatoms, dinoflagellates and foraminifera, are well-suited to serve as paleo-proxies. In sea ice, the high dominance of diatoms during the spring bloom has led to the recent development of the sea ice diatom-specific marker IP 25 for paleoreconstructions of ice extent [START_REF] Belt | A novel chemical fossil of palaeo sea ice: IP 25[END_REF].

Arctic and Antarctic ice edge blooms. In the Arctic, ice edge blooms seem to be frequent, typically last 20 days in a 100 km band near the ice edge, but may last longer in some instances [START_REF] Perrette | Near-ubiquity of ice-edge blooms in the Arctic[END_REF]. As they are transient in space and time, quantifying their contribution to overall production is challenging. In the Arctic, increases in phytoplankton biomass and productivity associated with reductions in sea ice extent have been identified from satellite ocean colour observations. The annual pelagic primary production was 416 Tg C y -1 over 1998-2002 and increased by 27.5 Tg C y -1 each year between 2003 and 2007 [Arrigo et al., 2008b]. Southern Ocean ice-associated pelagic primary production occurs generally in the form of ice-edge blooms which are most productive on the continental shelves, and no sustained blooms occur in waters of depth > 1000 m [START_REF] Smith | Influence of sea ice on primary production in the Southern Ocean: A satellite perspective[END_REF]. While the MIZs can show high primary production rates, mixed-layer depths are often not favourable to ice-edge bloom development. Therefore, productivity in the MIZ is often similar to open water productivity and the contribution of MIZ primary production to the overall Southern Ocean production is considered to be low [Arrigo et al., 2008a]. However, MIZ blooms can provide, at times and in distinct regions, a highly productive environment supporting higher trophic levels and biogeochemical cycling in the region [START_REF] Smith | Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field[END_REF][START_REF] Arrigo | Primary production in Southern Ocean waters[END_REF]. The release of Fe into the water column should also play a role [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF].

Arctic ice-edge blooms can also be the continuation of under-ice blooms, which can develop when under-ice light conditions are favourable after surface melt onset [START_REF] Fortier | Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice[END_REF][START_REF] Mundy | Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea[END_REF] and can cover extensive areas [START_REF] Arrigo | Massive phytoplankton blooms under Arctic sea ice[END_REF]. These blooms can be highly productive and support high biomasses, indicating that current estimates of Arctic primary production are underestimated [START_REF] Arrigo | Massive phytoplankton blooms under Arctic sea ice[END_REF]. When present, melt ponds increase light transmission through sea ice by about one order of magnitude [START_REF] Frey | The spatial distribution of solar radiation under a melting Arctic sea ice cover[END_REF]. Under-ice phytoplankton blooms have not been reported in the Antarctic. Antarctic sea ice is virtually always snow-covered, has nearly no melt ponds, and hence the transmitted under-ice irradiance is arguably insufficient to support high phytoplankton growth rates.

Finally, the remnants of ice edge phytoplankton blooms can be trapped in sea ice during freezing if they encounter rising frazil ice crystals, and the timing and location of sea ice formation may affect the amount and quality of material (algae, particulate carbon, nutrients) physically incorporated into the sea ice [START_REF] Garrison | A physical mechanism for establishing algal populations in frazil ice[END_REF][START_REF] Fritsen | Interannual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica[END_REF][START_REF] Lannuzel | Distribution of dissolved iron in Antarctic sea ice: Spatial, seasonal and inter-annual variability[END_REF].

The large-scale contribution of sea ice to primary productivity has been evaluated in a few instances and compared to water column values. While it is possible to estimate large-scale pelagic primary production from ocean color data [Arrigo et al., 2008 ;[START_REF] Arrigo | Impact of a shrinking Arctic ice cover on marine primary production[END_REF], this is not the case for sea ice. Consequently, estimates of large-scale primary production in sea ice derive from the extrapolation of in situ data [START_REF] Horner | Ecology of sea ice biota: 1. Habitat, terminology, and methodology[END_REF] and from numerical models [START_REF] Arrigo | Primary production in Antarctic sea ice[END_REF][START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF], involving a number of assumptions. Therefore, sea ice primary production estimates have to be considered carefully. In the Arctic, the satellite-estimated contributions to primary production are 240 Tg C y -1 over open ocean and 179 Tg C y -1 for the marginal ice zones [START_REF] Arrigo | Impact of a shrinking Arctic ice cover on marine primary production[END_REF]. The contribution of sea ice is estimated to range over 9-73 Tg C y -1 , from Chl a data [START_REF] Horner | Ecology of sea ice biota: 1. Habitat, terminology, and methodology[END_REF]; and to reach 15 Tg C y -1 in 1992, from a model study [START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF]. The fraction of sea ice versus pelagic productivity is ~10% on average but is larger in the Arctic Basin, and smaller in the seasonally ice covered seas [START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF]. In the Antarctic, 1795 Tg C y -1 are produced in the open ocean, 114 Tg C y -1 are produced in the marginal ice zones, and from 40 to 70 Tg C y -1 are produced within the sea ice, based on observations of Chl a and modelling studies, respectively [START_REF] Horner | Ecology of sea ice biota: 1. Habitat, terminology, and methodology[END_REF][START_REF] Arrigo | Primary production in Antarctic sea ice[END_REF]. Under-ice production is absent from those estimates, because those regions are beyond the reach of satellites.

Inorganic carbon dynamics

Inorganic carbon dynamics in sea ice are driven by brine dynamics, gas-exchanges at the brinesnow-atmosphere interfacial region [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF]Miller et al, 2011b], carbonate chemistry in brines, CaC0 3 precipitation [START_REF] Dieckmann | Calcium carbonate as ikaite crystals in Antarctic sea ice[END_REF]2010] and biological processes [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF]. Dissolved inorganic carbon (DIC) and alkalinity (Alk) enter the sea ice system during formation. A large part of the DIC is lost via brine rejection and possibly through outgassing to the atmosphere. Carbonate system chemistry would as in the ocean alter the repartition of DIC between the aqueous CO 2 , and the carbonate (C0 3 2-) and bicarbonate (HCO 3 -) ions [Thomas et al., 2010]. DIC can escape the liquid brine phase following the formation of CO 2 -rich gas bubbles [START_REF] Tison | Tank study of physico-chemical controls on gas content and composition during growth of young sea ice[END_REF], by the precipitation of calcium carbonate (CaCO 3 •6H 2 O); and through uptake by primary producers [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF].

Gas exchanges. When sea ice was believed to be impermeable, the large-scale oceanatmosphere CO 2 exchange (FCO 2 ) was thought to occur only during the open water season [START_REF] Yager | The Northeast Water Polynya as an atmospheric CO 2 sink: A seasonal rectification hypothesis[END_REF]. However, recent findings point to significant CO 2 fluxes through sea ice [START_REF] Delille | Inorganic carbon dynamics and air-ice-sea CO 2 fluxes in the open and coastal waters of the Southern Ocean[END_REF][START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF]. At this stage, observations suggest that the sea ice zone could be a source of atmospheric CO 2 in winter [Miller et al., 2011b], and a sink in summer and fall [START_REF] Else | Observations of sea surface f CO 2 distributions and estimated air-sea CO 2 fluxes in the Hudson Bay region (Canada) during the open water season[END_REF][START_REF] Mucci | CO 2 fluxes across the air-sea interface in the southeastern Beaufort Sea: Ice-free period[END_REF], with a transition period in between [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF][START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF], and a net uptake from the sea ice zone on an annual basis [START_REF] Rysgaard | Sea ice contribution to the air-sea CO 2 exchange in the Arctic and Southern Oceans[END_REF].

The atmosphere-ice flux of CO 2 [mol C/(m 2 .s)] can be expressed as [START_REF] Nomura | The effect of sea-ice growth on air-sea CO 2 flux in a tank experiment[END_REF]:

, ( 4 
)
where k CO2 is the CO 2 transfer velocity across the brine-air interface (m/s), α CO2 is the solubility of CO 2 in surface brine (mol C/(m 3 .atm)), a eff is the fraction of the ice surface occupied by brine (equal to brine volume if brine inclusions are assumed isotropic, less in the more realistic case), and pCO 2 a and pCO 2 br are the air and brine partial pressure of CO 2 (atm), respectively. Therefore, the small size of brine inclusions tends to reduce FCO 2 ice , while the large values of pCO 2 br [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF] tend to increase it.

A complete understanding of the seasonality of the large-scale CO 2 flux (FCO 2 ) in the sea ice zones of the polar oceans is not achieved yet. FCO 2 should follow: , (5) including sea ice and open water contributions (FCO 2 ow ), weighted by ice concentration A. If brine inclusions are small enough for sea ice fluxes to be negligible and if the ocean responds linearly, as frequently assumed [START_REF] Bates | An increasing CO 2 sink in the Arctic Ocean due to sea-ice loss[END_REF][START_REF] Else | Observations of sea surface f CO 2 distributions and estimated air-sea CO 2 fluxes in the Hudson Bay region (Canada) during the open water season[END_REF], FCO 2 could linearly decrease with ice concentration. However, lab experiments [START_REF] Loose | Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments[END_REF] indicate that such a relation is non-linear, although the underlying principles remain unclear. The processes that may contribute to non-linearities include dynamical fluxes through the sea ice cover [e.g., [START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF][START_REF] Papakyriakou | Springtime CO 2 exchange over seasonal sea ice in the Canadian Arctic Archipelago[END_REF], but also changes in convective activity or stratification in the water column [START_REF] Loose | Sea ice and its effect on CO 2 flux between the atmosphere and the Southern Ocean interior[END_REF]. In addition, the sign of FCO 2 changes with location and time of the season, whereas the absolute value of FCO 2 may span several orders of magnitude. For instance, much larger FCO 2 in the sea ice zone than in typical open water situations were observed, in regions of large sea ice concentrations, notably in the vicinity of polynyas [START_REF] Else | Wintertime CO 2 fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-sea gas transfer during ice formation[END_REF].

The fluxes over sea ice are notoriously difficult to estimate, and methodological uncertainties certainly play a role [see Loose et al, 2011; for a detailed discussion]. FCO 2 has been estimated by applying bulk formulae to atmosphere-ocean pCO 2 differences, linearly weighted by ice concentration [e.g., [START_REF] Bates | An increasing CO 2 sink in the Arctic Ocean due to sea-ice loss[END_REF][START_REF] Else | Observations of sea surface f CO 2 distributions and estimated air-sea CO 2 fluxes in the Hudson Bay region (Canada) during the open water season[END_REF], which inherently neglects the contribution of sea ice fluxes to FCO 2 . Chambers provide a direct estimation of FCO 2 ice [e.g., [START_REF] Nomura | Rapid physically driven inversion of the air-sea ice CO 2 flux in the seasonal landfast ice off Barrow, Alaska after onset of surface melt[END_REF], but those devices affect gas transport, measure small-scale fluxes, and thermally alter the sea-ice system. The eddy covariance method [e.g., [START_REF] Papakyriakou | Springtime CO 2 exchange over seasonal sea ice in the Canadian Arctic Archipelago[END_REF] provides an integrated, larger-scale measure of FCO 2 but suffers from a number of corrections. In addition, the horizontal footprint of eddy covariance retrievals and how they integrate sea ice, cracks and leads is difficult to assess. Clarifying the CO 2 exchanges in ice-covered seas, as well as understanding the differences arising from different methods is a challenge for future research.

CaCO 3 precipitation. Vertical profiles of DIC and Alk in sea ice are qualitatively very close to salinity. However, in depth analyses reveal an Alk:DIC ratio in sea ice that is sometimes higher than in seawater [e.g., [START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF]Geilfus et al., in press], which supports a significant role for precipitation and storage of CaCO 3 crystals within sea ice [START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF]. CaCO 3 precipitation is theoretically possible below -2.2°C [e.g., [START_REF] Assur | Composition of sea ice and its tensile strength[END_REF], well above typically observed sea ice temperatures. CaCO 3 would hardly be limited by Ca availability, since the latter is abundant in seawater, with concentration reaching ~10,000 mmol/m 3, [START_REF] Sarmiento | Ocean Biogeochemical Dynamics[END_REF], i.e., much more than what is required to precipitate significant amounts of CaCO 3 . Ikaite crystals, thermodynamically stable at -4.5°C, have been observed in Weddell Sea and Arctic sea ice [START_REF] Dieckmann | Calcium carbonate as ikaite crystals in Antarctic sea ice[END_REF]2010], which suggests that other anhydrous carbonate mineral phases (calcite, aragonite, vaterite), stable at higher temperatures, could be kinetically inhibited [Thomas et al., 2010]. However, it has proven difficult to reproduce CaCO 3 precipitation in artificial sea ice growth experiments, highlighting that the authigenesis of ikaite in sea ice is not yet fully understood [e.g., [START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF]. Indeed, little is known about the spatial and temporal occurrence of ikaite precipitates in sea ice, but as summarized by Geilfus et al. [in press], it appears that the ikaite stability field is limited to near-freezing temperatures and below, and is favoured by alkaline conditions, elevated phosphate concentrations and by the presence of certain additives like amino-acids.

Export of CO 2 to depth and net air-sea CO 2 flux. In a recent compilation, [START_REF] Rysgaard | Sea ice contribution to the air-sea CO 2 exchange in the Arctic and Southern Oceans[END_REF] estimated the annual rejection of DIC into the ocean due to ice formation to be 324 Tg C y -1 integrated over both polar oceans (>62°N and >50°S). However, the repartition of this excess DIC between an atmospheric efflux and the export below the mixed layer is not well constrained. Sea ice melt reduces surface seawater pCO 2 . In the absence of CaC0 3 storage in sea ice, and assuming that all brine is exported below the mixed layer in winter, restoring this reduced seawater pCO 2 due to sea ice melt to its equilibrium value before freeze up would require a net air-sea flux of about 33 Tg C y -1 , integrated over both the Arctic and Southern Oceans [START_REF] Rysgaard | Sea ice contribution to the air-sea CO 2 exchange in the Arctic and Southern Oceans[END_REF].

The precipitation and storage of CaCO 3 in sea ice could enhance this annual net uptake of DIC in the polar oceans. [START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF] suggest that, if the brine enriched in CO 2 sinks below the mixed layer when ice grows, the release of sea ice melt water with increased Alk/DIC ratio would increase Alk in surface waters, reduce oceanic pCO 2 in summer and promote a further uptake of atmospheric CO 2 by the ocean. This abiotic DIC pump [see Loose et al., 2011; for a discussion] would represent a sink of 83 Tg C y -1 of atmospheric CO 2 integrated over both Arctic and Southern Oceans, in the context of the [START_REF] Rysgaard | Sea ice contribution to the air-sea CO 2 exchange in the Arctic and Southern Oceans[END_REF] simple computations, to be compared to the overall uptake of 200 Tg C y -1 of atmospheric CO 2 by open water polar oceans [START_REF] Takahashi | Climatological mean and decadal change in surface ocean pCO 2 , and net sea-air CO 2 flux over the global oceans[END_REF]. However, the above assessment of the uptake of atmospheric CO 2 in the polar oceans is built on two assumptions: (i) the produced CO 2 is released to the underlying water and entrained to deeper waters together with brines, while (ii) CaCO 3 crystals remain trapped within the ice matrix. The first assumption is not guaranteed at this stage, because CaCO 3 precipitation is not always simultaneous with the sinking of brine below the mixed layer. Besides, CaCO 3 precipitation produces CO 2 , and if this CO 2 finds a pathway towards the atmosphere, for instance, via a permeable brine network, then the excess carbon could be instead exported into the atmosphere [START_REF] Geilfus | Inorganic carbon dynamics in coastal arctic sea ice and related air-ice CO 2 exchanges[END_REF]. Therefore, a robust assessment of the role of CaCO 3 precipitation as a sink of atmospheric CO 2 requires better constraints on the timing and location of CaCO 3 precipitation. The second assumption is also uncertain, because the increase in Alk/DIC ratio reported by [START_REF] Rysgaard | Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas[END_REF] has not been confirmed in other comparable studies [Miller et al., 2011b;Geilfus et al., 2012].

More investigations on the various aspects of the carbonate chemistry in sea ice and the polar oceans are required to better constrain CO 2 exchanges in the polar oceans. The absence of a proper representation of carbon cycling in the sea ice zone in present Earth system models may be at the source of a fundamental flaw in our understanding of the role of polar seas in the global ocean CO 2 sink: observations of ocean pCO 2 suggest that the Southern Ocean sea ice zone is a source for CO 2 [START_REF] Takahashi | Climatological mean and decadal change in surface ocean pCO 2 , and net sea-air CO 2 flux over the global oceans[END_REF] while ocean model inversions suggest an oceanic sink for CO 2 in the sea ice zone [START_REF] Gruber | Oceanic sources, sinks, and transport of atmospheric CO 2[END_REF].

Other climatically significant gases: DMS, N 2 O and CH 4

Sea ice has been considered as a potential important source of DMS in the polar oceans when extremely high concentrations (up to three orders of magnitude higher than background sub-nanomolar seawater concentrations) of its precursor DMSP were found in Antarctic [START_REF] Kirst | Dimethylsulphoniopropionate (DMSP) in ice algae and its possible biological role[END_REF] and Arctic [START_REF] Levasseur | A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms[END_REF]] sea ice cores. The production of DMSP in sea ice is favored by the high concentration of its producers (i.e., ice microalgae) [START_REF] Trevena | Profiles of dimethylsulphoniopropionate (DMSP), algal pigments, nutrients and salinity in fast ice of Prydz Bay, Antarctica[END_REF][START_REF] Gambaro | Temporal evolution of DMS and DMSP in Antarctic Coastal Sea water[END_REF] and by the extreme environmental conditions of the sea ice habitat. The high salt concentrations and low temperatures that prevail in sea ice favour high intracellular contents in DMSP [START_REF] Kirst | Dimethylsulphoniopropionate (DMSP) in ice algae and its possible biological role[END_REF][START_REF] Ditullio | Dimethylsulfoniopropionate in sea ice algae from the Ross Sea polynia, in Antarctic Sea Ice: biological processes, interaction and variability[END_REF] which is known to act as a cryoprotectant and osmoregulator [START_REF] Stefels | Physiological aspects of the production and conversion of DMSP in marine algae and higher plants[END_REF][START_REF] Stefels | Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling[END_REF]. DMS, the enzymatic cleavage product of DMSP, has long remained difficult to measure in sea ice, since the thawing of the ice samples and the subsequent osmotic shock result in cell lysis and in the artificial conversion of DMSP into DMS [START_REF] Stefels | The analysis of dimethylsulfide and dimethylsulfoniopropionate in sea ice: dry-crushing and melting using stable isotope additions[END_REF]. However, techniques such as acidification of samples [START_REF] Trevena | Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting[END_REF], drycrushing and addition of stable isotopes [Tison et al., 2010;[START_REF] Stefels | The analysis of dimethylsulfide and dimethylsulfoniopropionate in sea ice: dry-crushing and melting using stable isotope additions[END_REF], have all been successfully used to confirm the important stocks of DMS in sea ice.

Sea ice concentrations in DMS and DMSP are not only extremely high but also extremely variable, as illustrated by high-resolution vertical profiles [START_REF] Trevena | Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica[END_REF]2003;[START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]] and strong regional and seasonal variations [e.g., [START_REF] Turner | The distribution of dimethyl sulphide and dimethylsulphoniopropionate in Antarctic waters and sea ice[END_REF][START_REF] Curran | Dimethylsulfide in the Southern Ocean: seasonality and flux[END_REF]. This variability results from complex interactions between the physical, biological and chemical processes that drive the DMS(P) cycle [START_REF] Stefels | Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling[END_REF], and sea ice thermodynamic processes. Many of these processes are difficult to follow separately in field studies and remain poorly quantified and understood. Some authors [START_REF] Levasseur | A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms[END_REF][START_REF] Trevena | Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica[END_REF][START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF] have shown the strong influence of community composition on the DMS and DMSP profiles (the biosynthesis of DMSP being species specific). [START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF] described the influence of temporal changes in brine volume and brine salinity on the vertical migration of DMS and DMSP within sea ice. The broadening of brine channels, which facilitates access to grazers, and the decrease in brine salinity during ice melt both favour DMSP release from ice microalgae cells. Yet to be confirmed, an increase in DMS production would also be favored by oxidative stress in the spring when enhanced biological activity leads to reduced CO 2 and increased O 2 concentrations in the ice [START_REF] Delille | Biogas (CO 2 , O 2 , dimethylsulfide) dynamics in spring Antarctic fast ice[END_REF]. In that case, DMS(P) would scavenge hydroxyl radicals and other reactive oxygen species following an antioxidant cascade as suggested by [START_REF] Sunda | An antioxidant function for DMSP and DMS in marine algae[END_REF]. Many uncertainties remain about the role played by dimethylsulfoxide (DMSO) in the sea ice DMS(P) cycle [START_REF] Lee | Particulate dimethylsulfoxide in Arctic sea-ice algal communities: the cryoprotectant hypothesis revisited[END_REF]. High concentrations of DMSO have been reported in sea ice [START_REF] Lee | Particulate dimethylsulfoxide in Arctic sea-ice algal communities: the cryoprotectant hypothesis revisited[END_REF][START_REF] Brabant | A robust approach for the determination of dimethylsulfoxide in sea ice[END_REF]. However, the physiological roles played by DMSO in ice microalgae cells [START_REF] Lee | Particulate dimethylsulfoxide in Arctic sea-ice algal communities: the cryoprotectant hypothesis revisited[END_REF] or the dynamics of photochemical and bacterial oxydation of DMS into DMSO in the sea ice column require further investigations.

Melting of sea ice considerably increases the concentration of DMS in surface waters of the polar ocean either through the direct release of DMS(P) or through the onset of phytoplankton blooms [START_REF] Levasseur | A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms[END_REF][START_REF] Curran | Dimethylsulfide in the Southern Ocean: seasonality and flux[END_REF][START_REF] Trevena | Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting[END_REF]Tison et al., 2010;[START_REF] Trevena | DMS flux over the Antarctic sea ice zone[END_REF]. These pulses of DMS(P) may considerably increase the regional oceanic DMS emissions [see [START_REF] Levasseur | A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms[END_REF][START_REF] Tison | High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica[END_REF]Trevena and[START_REF] Trevena | DMS flux over the Antarctic sea ice zone[END_REF] for estimates]. Also of particular interest is the direct venting of DMS from sea ice. Very few attempts of measuring sea iceatmosphere DMS fluxes have been made. [START_REF] Zemmelink | Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea[END_REF], using the Relaxed Eddy Accumulation method, reported important fluxes (up to 11 µmol DMS m -2 d -1 ) from multi-year ice in the Weddell Sea with very productive ice microalgae communities. Using an accumulation chamber techinque, [START_REF] Nomura | Direct measurements of DMS flux from Antarctic fast sea ice to the atmosphere by a chamber technique[END_REF] reported fluxes ranging from 0.1 to 5.3 µmol DMS m -2 d -1 from landfast multi-year ice off the Dronning Maud Land, in the Southern Ocean. The two studies show that the direct venting of DMS from sea ice may represent an additional significant source of DMS for the polar atmosphere. However, these regional fluxes measured over specific sea ice types cannot be extrapolated to the whole Arctic and Antarctic sea ice cover. Therefore, the contribution of sea ice to the global DMS emissions is currently unknown.

Two other powerful greenhouse gases recently focussed attention in the sea ice zone, namely methane (CH 4 ) and nitrous oxide (N 2 O). Several recent studies indicate significant sources of CH 4 in the Arctic Ocean [e.g., [START_REF] Damm | Methane production in aerobic oligotrophic surface water in the central Arctic Ocean[END_REF][START_REF] Shakhova | The contribution of the East Siberian shelf to the modern methane cycle[END_REF][START_REF] Kort | Atmospheric observations of Arctic Ocean methane emissions up to 82° north[END_REF]. A primary source of CH 4 are the East Siberian shelf sediments, venting methane to the surface, through the sea ice zone, reaching an annual contribution of 90 Tg y -1 , about 15% of human emissions [START_REF] Shakhova | The contribution of the East Siberian shelf to the modern methane cycle[END_REF]. A second source seems to be associated with the surface waters of the sea ice zone, which were found to emit methane at a rate of ~2 mg CH 4 m -2 d -1 , in fall and spring, near open water and fractured regions of the sea ice zone [START_REF] Kort | Atmospheric observations of Arctic Ocean methane emissions up to 82° north[END_REF], a value that is comparable with emissions from the Siberian shelves. The sea ice zone could also biologically produce CH 4 if nitrate is depleted but phosphate is available as a P source (as occurring in Pacific waters of the Arctic Ocean) [START_REF] Karl | Aerobic production of methane in the sea[END_REF][START_REF] Damm | Methane production in aerobic oligotrophic surface water in the central Arctic Ocean[END_REF]. A low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite DMSP is utilized as a C source. During the process, methyl-phosphonate is converted into methane, without requiring anoxia [START_REF] Karl | Aerobic production of methane in the sea[END_REF]. Hence, there are potentially important methane cycle processes in the sea ice zone, however how they function and how they relate to sea ice is not clear at this stage. For N 2 O, the role of sea ice is even less clear. N 2 O is a powerful greenhouse gas also involved in stratospheric ozone depletion. N 2 O can be produced within sea ice, as suggested by studies on ammonium oxidation and anaerobic bacterial cultures [START_REF] Priscu | Dynamics of ammonium oxidizer activity and nitrous oxide (N 2 0) within and beneath Antarctic sea ice[END_REF]. N 2 O production was also found to possibly occur in O 2 depleted microenvironments in (sub-) Arctic sea ice, via denitrification [START_REF] Kaartokallio | Evidence for active microbial nitrogen transformations in sea ice (Gulf of Bothnia, Baltic Sea) in midwinter[END_REF][START_REF] Rysgaard | Anaerobic N 2 production in Arctic sea ice[END_REF]. For the time being, only one study presents N 2 O measurement within sea ice [START_REF] Randall | First measurements of nitrous oxide in Arctic sea ice[END_REF], pointing out that sea ice formation and melt have the potential to generate sea-air or air-sea fluxes of N 2 O, respectively, but how this could affect the large-scale N 2 O cycle is not understood at the moment.

Sea ice surface, bromine and tropospheric ozone chemistry

The properties of the sea ice surface and snow cover provide major controls to the bromine (Br) and ozone (O 3 ) chemistry in the polar atmospheric boundary layer [START_REF] Rankin | Frost flowers: Implications for tropospheric chemistry and ice core interpretation[END_REF][START_REF] Kaleschke | Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry[END_REF][START_REF] Jones | A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence from Halley station, Antarctica[END_REF][START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF][START_REF] Yang | Sea salt aerosol production and bromine release: Rrole of snow on sea ice[END_REF][START_REF] Nghiem | Field and satellite observations of the formation and distribution of Arctic atmospheric bromine above a rejuvenated sea ice cover[END_REF], but mechanisms are not yet clear. The surface of first-year ice is generally more saline than that of multi-year ice, due to contributions from sea ice brine, flooding seawater and deposited sea salt from nearby leads and polynyas, while the surface of Arctic multi-year ice is washed by flushing in summer and is therefore almost fresh [e.g., [START_REF] Vancoppenolle | Summer landfast sea ice desalination at Point Barrow, Alaska: Modeling and observations[END_REF]. In addition, the surface of newly formed ice is frequently covered by frost flowers, which are vapour-deposited ice crystals, wicking brine from the sea ice [START_REF] Perovich | Surface characteristics of lead ice[END_REF]Domine et al., 2005]. Frost flowers can develop within a few hours when the ice surface temperature is much larger than that of the overlying air, as is the case for newly forming sea ice [START_REF] Style | Frost flower formation on sea ice and lake ice[END_REF]. Frost flowers last a few days at most, then disappear, covered with condensation (hoar), entrained in winds, covered by snowfall, or flooded with seawater [see [START_REF] Douglas | Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 1. Chemical composition[END_REF]and references therein].

The surface of both young and older first-year ice could be a major source of reactive Br during polar spring [START_REF] Rankin | Frost flowers: Implications for tropospheric chemistry and ice core interpretation[END_REF]. During that season, an exponential increase in reactive halogens ("bromine explosions") -of which bromine monoxide (BrO) is an indicator -induces (i) a boundary-layer ozone depletion and (ii) mercury deposition in the polar regions [see, e.g., [START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF]and references therein].

Frost flowers [START_REF] Rankin | Frost flowers: Implications for tropospheric chemistry and ice core interpretation[END_REF] were the first candidate for the strong BrO source, because of their high content in brine, a potentially large specific surface area, and the associated enrichment in major ions compared to seawater [START_REF] Douglas | Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 1. Chemical composition[END_REF]. Backtracking atmospheric parcel trajectories identified young ice regions as sources of bromine explosions and ozone depletion in the Antarctic sea ice zone [START_REF] Kaleschke | Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry[END_REF][START_REF] Jones | A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence from Halley station, Antarctica[END_REF]. First-year ice surfaces, rather than only frost flowers, are now considered to provide the source of BrO, as the specific surface area of frost flowers is not as large as initially expected [Domine et al., 2005]. In addition, low correlations between potential frost flowers and BrO anomalies, were found in an Arctic BrO backtracking exercise, while much higher correlations were found with first-year sea ice [START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF]. As all estimates of frost flower distributions used in the aforementioned studies are indirect (based on temperature), the actual BrO source in the sea ice zone remains unclearly identified.

The sea ice surface seems also to be a source of sea-salt aerosols to the atmosphere during polar winter [START_REF] Rankin | Frost flowers: Implications for tropospheric chemistry and ice core interpretation[END_REF]. Sea salt aerosols in glacial ice cores, in particular sea salt sodium, are used as sea ice proxies [START_REF] Wolff | Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[END_REF]. Surprisingly, a more extensive sea ice cover induces more sea salt recorded in Antarctic continental ice cores for present conditions [START_REF] Iizuka | Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence[END_REF], which is attributed to the highly saline frost flowers [START_REF] Rankin | Frost flowers: Implications for tropospheric chemistry and ice core interpretation[END_REF] or to first-year, snow-covered sea ice. Snow lying on sea ice is a potentially important source of sea salt aerosol, as small snow particles, rich in salts, can be easily lifted into the air though blowingsnow events [START_REF] Yang | Sea salt aerosol production and bromine release: Rrole of snow on sea ice[END_REF].

Modelling and up-scaling the role of sea ice in the marine biogeochemical cycles

The interactions between sea ice and the global marine biogeochemical cycles, outlined in the previous sections, are not well represented in Earth system models. Present large-scale models view sea ice as biologically and chemically inert and impervious to gas exchange. The incorporation of a proper representation of polar biogeochemical processes into largescale ocean modelling systems will help to better assess the role of sea ice in the polar marine biogeochemical cycles. It should also help to identify, if not to resolve, some of the problems and uncertainties of those models. For example, the degree of realism of large-scale ocean modelling systems in terms of ocean biological productivity seems to be systematically worse in polar regions than elsewhere. For instance, the sign of the projected future change in Arctic primary productivity in response to climate change is not consistent among different Earth system models [START_REF] Steinacher | Projected 21st century decrease in marine productivity : a multi-model analysis[END_REF]. Models also do not agree on whether light or nutrients limit primary production in the contemporary Arctic Ocean, due to inter-model differences in ice and ocean physics [START_REF] Popova | Control of primary production in the Arctic by nutrients and light : insights from a high resolution ocean general circulation model[END_REF]2012]. In addition, the simulated stocks of heterotrophic consumers in the Arctic Ocean seem to be systematically underestimated, likely due to a lack of a model ice algal compartment [START_REF] Zhang | Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem[END_REF]. Finally, the sign of the reconstructed atmosphere-ocean CO 2 flux is opposite to observations in the Southern Ocean sea ice zone [START_REF] Gruber | Oceanic sources, sinks, and transport of atmospheric CO 2[END_REF].

Ocean modelling systems (see Figure 4a) typically have three components. The blue component represents ocean physics: ocean circulation, salinity, temperature, light, etc. [e.g., Madec and the NEMO team, 2008]. The white component includes sea ice, its growth, melt and drift [e.g., [START_REF] Hunke | CICE: The Llos Aalamos sea ice model documentation and software user's manual[END_REF][START_REF] Vancoppenolle | LIM, The Louvain-la-Neuve sea Ice Model, Notes du Pôle de modélisation[END_REF]. The green component includes a representation of the response of ocean microbial communities to changing environmental factors and of their impact on nutrients and trace metals [e.g., [START_REF] Aumont | An ecosystem model of the global ocean including Fe, Si, P colimitations[END_REF]. These three components are coupled, by exchanging energy, momentum and material.

Research

is ongoing to introduce a representation of specific biogeochemical processes in the sea ice zone, with a number of modelling attempts, made in various regions and using different approaches (see Table 2), all directed towards the development of a representation of sea ice processes in large-scale ice-ocean models used for climate and marine biogeochemical simulations.

These developments must fit with the existing physical sea ice models. In these models, the changes in state variables are typically represented as the sum of the contributions of (i) vertical processes (growth and melt, sources and sink terms, …), (ii) horizontal transport, and (iii) mechanical redistribution by deformation processes (opening, ridging and rafting) (see Figure 4b). As subgrid-scale variations in state variables are usually large, in particular for ice thickness, sea ice state variables are often represented as probability density functions, which, once discretized, correspond to so-called thickness categories [START_REF] Thorndike | The thickness distribution of sea ice[END_REF][START_REF] Bitz | Simulating the ice-thickness distribution in a coupled climate model[END_REF]. The fundamental probability density function is the ice thickness distribution g(h), introduced by Thorndike et al. [1975] and representing the fractional area of the grid cell covered by ice of thickness h. To each depthdependent (z) sea ice field (including biochemical tracers), must correspond a distribution function x(z,h) = C(z,h) g(h), following an equation of the type:

, ( 6 
)
where the terms on the right-hand side represent horizontal transport by horizontal velocity u; mechanical redistribution (Ψ x ); transport in thickness space with f=f(h) the vertical ice growth-melt rate; and vertical processes (θ x ) , respectively. Chla is highly spatially variable (see Section 2.3), hence accounting for its subgridscale variations is necessary. In addition, observations of Chl a distribution in Arctic and Antarctic sea ice [START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF][START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF] indicate a significant contribution of bottom, internal, and surface algal communities at global scales, which suggests that vertically multi-layer formulations are required. In addition, [START_REF] Fischer | Quantification of ikaite in Antarctic sea ice[END_REF] suggest that ridging and rafting play a significant role in the vertical redistribution of biomass.

One-dimensional (1D) biogeochemical sea ice models have been developed to understand vertical processes in isolation (θ x ). These models (see Figure 4c) can be viewed as testing tools focussing on undeformed sea ice and can be used in a single location but not globally. Originally inspired from ocean biogeochemistry models, they are based on simple N-P formulations [see, e.g., [START_REF] Sarmiento | Ocean Biogeochemical Dynamics[END_REF] and include (i) a single plankton group (diatoms) located at a prescribed depth in the ice (surface or bottom), (ii) one or several limiting nutrients, assimilated by ice algae with prescribed elemental (Redfield) ratios, and simple physics [START_REF] Arrigo | A simulated Antarctic fast ice ecosystem[END_REF][START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF][START_REF] Jin | Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska[END_REF][START_REF] Saenz | Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination[END_REF]. Those 1D models reasonably well simulate Arctic and the Antarctic sea ice algal developments over a few months. However, they also suffer from a number of drawbacks. First, the nutrient fluxes are based on simple formulations and do not account for brine transport. Consequently, the location of ice algal growth has to be prescribed, either at the base [e.g., [START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF] or at the top of the ice cover [e.g., [START_REF] Arrigo | Primary production in Antarctic sea ice[END_REF][START_REF] Saenz | Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination[END_REF], and therefore the models are not general enough to handle both Arctic and Antarctic situations. [START_REF] Vancoppenolle | Modeling brine and nutrient dynamics in Antarctic sea ice : the case of dissolved silica[END_REF] and [START_REF] Jeffery | Modeling the transport of passive tracers in sea ice[END_REF], have developed schemes to couple dissolved tracers to brine dynamics, and applied their model to successful simulations of silicate concentrations and salinity, respectively, but their approach has not yet been coupled to formulations of ecodynamics.

In addition, the required complexity for the radiative transfer component is not known. There are instances of mono-band [e.g., [START_REF] Lavoie | Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Aarchipelago)[END_REF] or multi-band schemes [START_REF] Arrigo | A simulated Antarctic fast ice ecosystem[END_REF] in the literature, but all suffer from uncertainties, the largest being associated with the optical properties of snow [START_REF] Pogson | Development and validation of a onedimensional snow-ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago[END_REF]. Furthermore, the required components for proper eco-dynamics are not known either. Most models have N-P modules only. [START_REF] Tedesco | A dynamic Biologically Active Layer for numerical studies of the sea ice ecosystem[END_REF], using a more advanced biogeochemical component (two algal species, varying nutrient quotas in algal cells), showed that so-called survivors, i.e., single algal cells surviving adverse environmental conditions, can significantly contribute to ice algal production. Furthermore, no model at this stage includes organic matter, while organic matter storage in sea ice is quite large, with important consequences for nutrient remineralization [START_REF] Meiners | Exopolymer particles: microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea)[END_REF]. Finally, a 1D representation of gas dynamics in sea ice has been applied to Ar, underlining the important role of bubbles [Moreau et al., in revision], but has not yet been applied to other climatically significant biogases.

1D models have been coupled to water column models [START_REF] Lavoie | Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: A modelling study[END_REF][START_REF] Tedesco | Process studies on the ecological coupling between sea ice algae and phytoplankton[END_REF], showing that sea ice can substantially increase annual primary production, and contribute to the triggering of phytoplankton blooms, via the drastic increase in irradiance associated with ice retreat, water column stratification, or seeding of phytoplankton blooms. In the latter case, the potential role of ice algae depends on their viability, as well as on their degree of aggregation in the water column, controlling organic matter export to depth [START_REF] Tedesco | Process studies on the ecological coupling between sea ice algae and phytoplankton[END_REF]. Some groups have already included an ice algal component in regional 3D ocean modelling systems. The ice algae model of [START_REF] Jin | Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska[END_REF] has been included into a large-scale ocean modelling system running at regional scales [START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF][START_REF] Popova | What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry[END_REF], while an N-P-Z 3D ice-ocean model has been applied to the Hudson Bay [START_REF] Sibert | 3D bio-physical model of the sympagic and planktonic productions in the Hudson Bay system[END_REF]. These studies indicate a moderate role for ice algae in the Arctic carbon cycle, reaching 15% of the total Arctic production [START_REF] Deal | Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992[END_REF]. In addition, these studies also suggest a key role for nutrients, but the model ice physics used to simulate nutrients are incomplete. In the Southern Ocean, prescribed Fe concentrations have been added in a 3D ice-ocean model [START_REF] De Montety | Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study[END_REF], suggesting significant spatio-temporal controls of phytoplankton by sea ice Fe release.

Discussion and outlook

Recent observations point out active biogeochemical processes specific to the sea ice zone, involving primary production in the ice and the water, CO 2 exchanges through sea ice, CaCO 3 precipitation in the ice, export to depth of carbon-rich seawater, Fe release in oligotrophic regions of the ocean, and intense DMS, CH 4 and BrO emissions, all in tight interactions with the physical sea ice environment. Both polar regions are believed to be among the most sensitive places on Earth, where anthropogenic changes will be the most pronounced, and its impacts will be the largest and occur the earliest. Anthropogenic impacts include not only the rise in atmospheric and oceanic temperatures, and changes in ice extent and volume, but also changes in atmospheric chemistry [START_REF] Simpson | First-year sea ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact[END_REF], pelagic primary production [e.g., [START_REF] Steinacher | Projected 21st century decrease in marine productivity : a multi-model analysis[END_REF], ocean acidity [e.g., [START_REF] Doney | Ocean acidification : a critical emerging problem for the ocean sciences[END_REF], and shifts in marine ecosystems, as already observed today [e.g., [START_REF] Grebmeier | A major ecosystem shift in the Northern Bering Sea[END_REF]. Uncertainties in these large-scale changes, even in their sign for some of them, are large, and therefore, a sound understanding of the sea ice zone processes and how they affect the Earth system at large scales is highly necessary. Some physical processes of high relevance for biogeochemistry are not well documented, like the nutrient supply mechanisms (brine transport), the radiative transfer in ice-covered oceans, and the formation of pressure ridges and their impact on ice algae. The key parameters that characterize biogeochemical processes of the sea ice zone discussed in Section 3 are not properly quantified at the relevant scales. These processes are: primary production in sea ice, the fate of ice algae in the water column after ice melt, gas exchanges, the precipitation of CaCO 3 in sea ice, and the emission of CH 4 , BrO, and DMS by the sea ice zone.

Progress in understanding biogeochemistry of the sea ice zone is limited due to harsh environmental conditions and expensive logistics required to access these areas. Furthermore, under-ice habitats, as well as biological and chemical properties of sea ice can hardly be observed from space. The classical sea ice sampling methods -ice coring and brine sackhole sampling -destroy the object of study. As physical, chemical and biological sea ice properties feature high horizontal variability at the meter scale, this complicates the interpretation of ice-core based time-series of observations. Spatial variability also hampers the upscaling of in situ observations at geophysical scales. In addition, ice coring involves the loss of brine and associated material in the permeable sections of the cores [START_REF] Notz | A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ[END_REF]. Finally, brine sackhole sampling implies some modification of the brine on its path to the hole, including the loss of particulate material; an integration of brine originating from various depths; and some exchange with the atmosphere [Thomas et al., 2010].

Novel and emerging technologies and methods, including the use of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUV) instrumented with up-ward looking sonars and optical sensors, promise measurements of physical (e.g., under-ice topography) and biological (e.g., transmitted under-ice irradiance used as proxy for ice algal biomass) parameters on ecological and biogeochemical relevant scales [START_REF] Mundy | Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice[END_REF][START_REF] Nicolaus | Changes in Arctic sea ice result in increasing light transmittance and absorption[END_REF]Williams et al., submitted].

Earth system models already representadmittedly not optimally -the physical processes that affect the pelagic ecosystems in the sea ice zone, i.e., the strong light attenuation and the reduced wind stirring of the mixed layer. However, they do not yet represent the biogeochemical processes that are specific to the sea ice zone. For instance, these models currently miss, the ice-associated production, which provides a food source for the upper trophic levels early in the season. Future projections performed with these models omit significant processes, while future ice conditions will change the seasonality of ice algae and phytoplankton. For instance, [START_REF] Tedesco | Process studies on the ecological coupling between sea ice algae and phytoplankton[END_REF], using a 1D ice-ocean model under a mild future climate scenario, project a more productive sea ice community, but less phytoplankton growth. This is because ice retreat occurs when light is less favourable to phytoplankton in a deep mixed layer. As far as other tracers are concerned, there have been very few attempts to simulate them. Both process and large-scale models will help us to identify the key processes and parameters that need to be properly monitored to evaluate the impacts of anthropogenic changes on polar climate, atmospheric chemistry, marine biogeochemistry and marine ecosystems.

At this stage, large-scale models are the most promising tools to improve the understanding of the role of sea ice in polar marine biogeochemistry. Present estimates indicate a small but significant contribution of sea ice algae to the total water column production, with a relative contribution depending on the region. Under-ice blooms may significantly contribute to primary production in the sea ice zone, and they may increase in the future, but they are unaccounted for in present estimates. Measurements and modelling of primary production under the ice in the central Arctic and on the shelves require immediate attention.

Of course, research in this domain is only beginning and large gaps in our understanding remain. These should be addressed in the next few years by collecting more in situ dataparticularly from under-sampled ice types, as multi-year ice and deformed ice -, by improving observing systems, especially at scales larger than the diameter of an ice core, by collecting glacial and marine sediment core data, by exploring the potential of remote sensing techniques, and by developing process models and large-scale parameterizations for Earth system models.

Sea ice proxies trace information of past sea ice characteristics at climate time scales, mostly based on biogeochemical properties of marine sediment cores. Deriving from biogeochemical processes in the sea ice zone, sea ice proxies will not only benefit from the upcoming better understanding of polar marine biogeochemistry, but also contribute to bracket its sensitivity to and impact on climatic and marine biogeochemical changes. 3 See [START_REF] Rothrock | The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data[END_REF] for the Arctic; [START_REF] Worby | Thickness distribution of Antarctic sea ice[END_REF] for the Antarctic (1981Antarctic ( -2005)).
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4 See Serreze and Hurst [2000] for the Arctic; [START_REF] Massom | Snow on Antarctic sea ice[END_REF] for the Antarctic.

5 See [START_REF] Warren | Snow depth on Arctic sea ice[END_REF] for the Arctic; [START_REF] Worby | Thickness distribution of Antarctic sea ice[END_REF] for the Antarctic.

6 See [START_REF] Arrigo | Primary producers and sea ice[END_REF].

7 See [START_REF] Gradinger | Sea ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort sea during May/June 2002[END_REF] for the Arctic; Meiners et al. [submitted] for the Antarctic. 
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Table 1 .

 1 Selected properties of Arctic versus Antarctic sea ice (adapted from[START_REF] Dieckmann | The importance of Sea Ice: an overview[END_REF]. With excursions up to 40°N in localized regions (e.g., Sea of Okhotsk). Satellite passive-microwave estimates from[START_REF] Comiso | Variability and Trends of the Global Sea Ice Cover[END_REF]Comiso [ ], covering 1979[START_REF] Smith | Influence of sea ice on primary production in the Southern Ocean: A satellite perspective[END_REF] 

		Arctic	Antarctic
	Latitudinal limits	90 °N -60 °N1	55 °S -75 °S
	Average maximum extent 2	15.2 x 10 6 km 2	18.3 x 10 6 km 2
	Average minimum extent 2	6.8 x 10 6 km 2	3.0 x 10 6 km 2
	Trend, annual mean extent 2	-3.8 % per decade	+1.2% per decade
	Seasonal ice extent (% of	8.4 x 10 6 km 2 (< 60%) 15.3 x 10 6 km 2 (> 80%)
	max) 2		
	Sea ice residence time	< 1 -7 years	< 1-2 years
	Mean ice thickness 3	3.4 m (1980) -2.3 m	0.87 ± 0.91 m
		(2000)	
	Observed trend in ice	Decreasing	No available data
	thickness		
	Annual snowfall 4	150-400 mm	> 1000 mm
	Annual mean snow depth 5	23 cm	16 ± 20 cm
	Flooding & snow ice	Rare	Extensive
	Surface melt & melt ponds	Extensive	Rare
	Ice textural type	Mainly columnar	Columnar and (orbicular)
			granular
	Maximum algal biomass 6	Lower	Higher
	Location of algal biomass 7	Primarily bottom	Bottom, internal and
			surface
	Riverine influence	High	None
	Sediment-laden sea ice	Frequent	Rare
	Aeolian influence	High	Low
	1		

2

Table 2 .

 2 Summary of modelling studies involving sea ice biogeochemical processes (extended fromLoose et al., 2011).

		Location	Ice physics	Eco-	Vertical	Optic	Nutrient	Ocean
		(period)		Dynamics,	grid for	s	fluxes	
				algal groups	eco-			
				(limiting	dynami			
				nutrients)	cs			
	Arrigo et al.	Antarctic	1D Semtner 1 0L	N-P Redfield,	Multi-	N-	Diffusion	n.a.
	(1993)	fast ice		1 group (N, Si,	layer	band		
		(Sep-Jan)		P)		(no		
						snow)		
	Arrigo et al.	Southern	3D Satellite	N-P Redfield,	Box 2	N-	Diffusion	n.a.
	(1997)	Ocean	concentration +	1 group (N, Si,	(surface)	band		
		(Oct 89-	Semtner 1 0L	P)		(no		
		Apr 98)				snow)		
	Lavoie et al.	Canadian	1D Semtner 1 3L	N-P Redfield,	Box 2	1-	Diffusion	n.a.
	(2005)	Arctic		1 group (Si)	(bottom)	band		
		(May-July						
		02)						
	Jin et al.	Barrow,	Ice physical	N-P Redfield,	Box 2	1-	Diffusion + ad-	n.a.
	(2006)	Arctic	observations	1 group (NO 3 ,	(bottom)	band	hoc summer	
		(Apr-Jun		NH 4 , Si)			enhancement	
		02)						
	Tedesco et al.	Arctic	1D Semtner 1 OL	2 groups,	Box 2	1-	Growth and	n.a.
	(2010)	(Sep 05-	+ snow	varying C, N,	(BAL)	band	melt	
		Apr 06);		P, Si, Chl cell				
		Baltic (Dec		quotas				
		00 -Mar						
		01)						
	Vancoppenoll	Weddell	1D Multi-layer	Prescribed	Multi-	1-	Brine	n.a.
	e et al. (2010)	Sea (Feb-	energy	production, 1	layer	band	transport +	
		Dec 04)	conserving +	nutrient (Si)			growth and	
			brine physics				melt	
	Pogson et al.	Canadian	1D Multi-layer	N-P, 1 group	Box 2	1-	Diffusion	n.a.
	(2011)	Arctic	energy	(Si)	(bottom)	band		
		(May-July	conserving					
		02)						
	Lavoie et al.	Canadian	1D Semtner 1 3L	N-P Redfield,	Box 2	1-	Diffusion	1D
	(2009)	Arctic		1 group (Si)	(bottom)	band		physic
		(Jan-Dec						s and
		87)						BGC
	Sibert et al.	Hudson	3D Transport,	N-P-Z, 1	Box 2	1-	Turbulent flux	3D
	(2011)	Bay (Jan-	Semtner 1 3L	group (N)	(bottom)	band		physic
		Dec 03)						s and
								BGC
	Jin et al.	Arctic	3D transport,	N-P (NO 3 ,	Box 2	1-	Diffusion + ad-	3D
	(2011)	Ocean	ITD 3 , multi-layer	NH 4 , Si)	(bottom)	band	hoc summer	physic
		(92-07)	energy				enhancement	s and
			conserving					BGC
	Saenz and	Weddell	1D Multi-layer	N-P, 1 group	Multi-	N-	Desalination-	n.a.
	Arrigo (2012)	Sea (Mar-	energy	(NO 3 , NH 4 , Si,	layer	band	based	
		May 92)	conserving +	PO 4 )				
			slush layer					
	Deal et al.	Arctic	3D transport,	N-P (NO 3 ,	Box 2	1-	Diffusion + ad-	3D
	(2011)	Ocean (92)	ITD 3 , multi-layer	NH 4 , Si)	(bottom)	band	hoc summer	physic
			energy				enhancement	s and
			conserving					BGC
	Tedesco et al.	Greenland	1D Semtner 1 OL	2 groups,	Box 2	1-	Growth and	1D
	(2012)	fast ice	+ snow	varying C, N,	(BAL)	band	melt	physic
		(Sep 05-		P, Si, Chl cell				s and
		Apr 06)		quotas				BGC

balance: The role of Arctic sea ice.GeophysicalResearch Letters,

31, L05121, doi:10.1029/2003GL017996.

see Semtner[1976], for more details on the zero-(0L) and three-layer (3L) versions of his thermodynamic sea ice model.

Box models prescribe the location of communities, either at the surface, at the base, or in the so-called Biologically-Active-Layer (BAL) a variable-thickness layer following the 5% brine volume fraction contour.
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