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Closed-loop control of silicon nanotweezers for improvement of

sensitivity to mechanical stiffness measurement

and bio-sensing on DNA molecules

Nicolas Lafitte1, Yassine Haddab2, Yann Le Gorrec2, Hervé Guillou1,3, Momoko Kumemura1, Laurent Jalabert1,

Hiroyuki Fujita4 and Dominique Collard1,4

Abstract— In this work we show that implementation of
closed loop control to silicon nanotweezers improves the sensi-
tivity of the tool for mechanical characterizations of biological
molecules. Micromachined tweezers have already been used
for the characterizations of mechanical properties of DNA
molecules as well as for the sensing of enzymatic reactions
on DNA bundle. However the resolution of the experiments
does not allow the sensing on single molecules. Hereafter
we show theoretically and experimentally that, reducing the
resonance frequency of the system by the implementation of a
state feedback, the sensitivity to stiffness variation is enhanced.
Such improvement leads to better resolution for detection of
enzymatic reactions on DNA.

I. INTRODUCTION

In the field of molecular biology, a variety of remarkable

techniques such as fluidic, electric, magnetic and optical

traps have been developed to trap and directly interrogate

molecules [1]. These techniques interact mechanically with

the molecule and measure the forces related to the struc-

tural configuration of the molecule. These have proven the

relevance of mechanical characterizations in biology and we

have thus developed a MEMS (Micro Electro Mechanical

Systems) device which enables these mechanical assays in

a systematic manner for diagnostic applications. MEMS are

appropriate because they are integrated, monolithic, cheap

and can be engineered for specific applications.

The paper is organized as follows. The silicon nanotweez-

ers (SNT), the platform and the sensing method are intro-

duced in the next Section. In Section III, the theory of the

closed loop control is developed followed by simulations

and experimental results. Especially Section III-B demon-

strates experimentally the enhancement of the sensitivity

for DNA molecules stiffness. The paper concludes with a

discussion on the limitations of the moment (Section IV),

and summarizing the capabilities of the developed platform

and perspectives (Section V).
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II. BIO-CHARACTERIZATIONS ON MOLECULES

WITH SILICON NANOTWEEZERS (SNT)

A short description of the device and its operating princi-

ple are presented in this Section. The mechanical design, the

instrumentation and the sensing method are deeply detailed

in [2].

A. Silicon nanotweezers (SNT)
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Fig. 1. Silicon nanotweezers (SNT) for bio-electro-mechanical characteri-
zations of molecules bundle. (a) 3D schematic view: the mobile electrode is
electrostatically actuated by Vact and the motion displacement ∆x changes
the capacitances C1 and C2. Chip dimensions: 4.5 × 4.5 mm. (b) Close
view on the electrostatic comb-drive actuator (SEM img). (c) Sharp tips in
between a bundle of DNA molecules is trapped (optical microscope img).
(d) Close view on the capacitive sensor (SEM img).

The Figure 1 shows a three-dimensional illustration of the

device. It consists of two sharp tips that act as electrodes

for both DNA trapping by dielectrophoresis and conductivity

measurement of DNA molecules [3], [4]. One tip is fixed

and the other one moves with an electrostatic actuator. The

motion of the electrode is measured using two capacitances

with gaps that vary in proportion to the electrode displace-

ment. Therefore with an appropriate electronic read-out (2

current amplifiers and 1 lock-in amplifier), the displacement



or the velocity of the moving tip is inquired in real-time and

continuously [3].

B. Sensing method

The SNT is driven at its main mechanical resonance

which variations are monitored in real-time and enable the

quantitative detection of the molecules rigidity. The Figure 2

demonstrates the frequency response of the SNT through the

sensor and actuated with a voltage of 1 Vrms.

1) Model: Considering one degree of freedom, we assume

that the SNT can be identified as a 2nd-order oscillator

with M the mass of the moving tip, k the mechanical

stiffness of the suspensions and ν the Stokes viscous losses

mainly due to the medium, i.e. air and liquid when tips are

immersed in solution. Other modes of resonance arise at

higher frequencies which are irrelevant for this study (e.g.

at 2.4 and 3 kHz in the Figure 2-a).

2) Characterizations of DNA molecules: The mechanical

characteristics of the trapped molecules (rigidity and vis-

cous losses) are measured in real-time by monitoring the

resonance frequency of the SNT. When a bundle is trapped

in between the tips, the resonance curves change according

to the added rigidity kbundle and the added losses νbundle

(Figure 2-b). The mechanical contribution of the sample are

extracted from the resonance frequency and amplitude shifts

according to the original model of the SNT (Figure 2-c).

3) Resolution: The resolution of the measurements is

based on the precision we can measure the peak of the reso-

nance and discriminate shifts in frequency and in amplitude.

Resolutions achieved are as low as 10 mHz in frequency

and 0.01 in quality factor changes, which corresponds to

resolutions in stiffness and in viscous losses of respectively

0.5 mN ·m−1 and 0.05 µN · s ·m−1. Such resolutions cor-

respond to the sensing of 10 λ-DNA molecules1 [5], [6].

These numerical values are obtained after differentiation

of the 2nd-order oscillator resonance equations:

fR =
1

2π

√

k

M
and Q =

√
kM

ν
(1)

and from the model parameters (i.e. M , ν and k). fR being

the frequency and Q the quality factor of the resonance. The

derivative ∂fR/∂k is:

∂fR
∂k

=
1

2π

1

2
√
kM

or
1

8π2MfR
(2)

such this sensitivity of the resonance frequency to stiffness

variations is 20 Hz ·N−1 ·m. These resolutions and this

sensitivity limit the method for more relevant experiments

at the single-molecule level.

Currently the device is limited by its mechanical structure,

especially its stiffness. k is around 30 N.m−1 and can not

be lowered more because of fabrication and manipulation

concerns. However the device can be controlled such as to

1λ-DNA molecules are a type of DNA molecules we use for our
experiments, see Section III-B.3.
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Fig. 2. Model and sensing principle of the SNT. (a) SNT frequency
response driven with 1 Vrms actuation. (b) Variations of the resonance
response in air with 2 different DNA bundles. (c) Mechanical model of
the system SNT + DNA molecules bundle.

change the characteristics of the system. In the Equation 2,

it appears that the variation of fR with respect to k is even

more pronounced when fR is small. Sensitivity to stiffness

variation can be enhanced by designing a low resonance

frequency sensor.

III. CLOSED-LOOP CONTROL: THEORY,

SIMULATIONS AND EXPERIMENTAL RESULTS

The Section describes the adopted state feedback method,

shows simulations and ends with experimental results for the

validation.

A. Theory and simulations

a) Model based control loop method: As aforemen-

tioned, the system is represented by an equivalent mass-

spring-damper system shown in Figure 2-c. From Newton’s

second law we can write:

M
d2x

dt2
+ ν

dx

dt
+ kx = Fes (3)

where M is the mass of the movable part of the device, ν
is the equivalent viscosity of the system, k is the stiffness

of the suspensions and Fes is the electrostatic force applied

to the tip through the comb-drive actuator. kbundle and νbundle

are the rigidity and the equivalent of the bundle of molecules

are omitted here.

The Equation 3 is so recasted under an equivalent control-

lable canonical state space representation (A,B,C) where

A ∈ R
2, B ∈ R

(2,1), C ∈ R
(1,2) and X is the state vector



H Actuator
Mechanical 

motion

Observer

Command

u

Velocity measurementReference

xc

L

Tweezers

System state
displacement & velocity

+
-

dSPACE implementation

Sinusoidal

signal generator

Reference

Lock-in

amplifier

Amplitude

Phase 

A

φ

fR

X

LX (M, k, v)(αes)

Fig. 3. Feedback control scheme. The Tweezers box includes the mechanical structure of the SNT. The dSPACE implementation box shows the closed-loop
elements numerically implemented in the dSPACE prototyping board.

(displacement & velocity) X =

(
x
ẋ

)

.

Ẋ =

[
0 1

−
k

M
−

ν

M

]

︸ ︷︷ ︸

A

X+

[
0
1

M

]

︸ ︷︷ ︸

B

Fes (4)

and

y =
[
0 1

]

︸ ︷︷ ︸

C

X (5)

y is the output vector, i.e. the measurement.

b) State feedback design: The control design strategy

is depicted in the flow chart of Figure 3. Accordingly

to the motivation, we use a state feedback eigenstructure

assignment approach and reduce the resonance frequency

of the system through the placement of the poles of the

closed-loop system. The drawback of this method is that

it is required the implementation of an observer for the

reconstruction of the state vector.

From the system under its controllable canonical state

space representation (A,B,C) given by Equations 4 and

5, The state feedback gain vector L = (l1, l2) ∈ R
(1,2) is

designed to assign the desired closed-loop poles. The closed-

loop system model becomes:

Ẋ =

[
0 1

−
k + l1
M

−
ν + l2
M

]

X +

[
0
1

M

]

Fes (6)

Thus, the closed loop resonance frequency and sensitivity

become:

fR−cl =
1

2π

√

(k + l1)

M
(7)

∂fR−cl

∂k
=

1

4π
√

(k + l1)M
=

1

8π2MfR−cl

(8)

such as both values can be controlled by the feedback

parameter l1.

c) Identification of the model parameters: For the de-

velopment of the feedback method, the model of the device is

identified around the operating point over all the experiments

are performed. Differences have been pointed out between

the theoretical and the final geometrical dimensions of the

device after fabrication, leading to parameter uncertainties.

Tiny structures such as the mechanical suspensions are

more delicate to overetching, changing significantly related

parameters as the device stiffness.

The identification is achieved through standard recursive

approach with a method of least squares. Responses to small

signals around 9 V offset (i.e. 110 nm offset) are recorded

in open-loop and identified. During the experimentations 2

SNT from the same wafer of fabrication have been used and

the identified model parameters for both are summarized in

the Table I.

Parameters TwN13.A4 TwN13.B4

Mechanical parameters

M (kg) 344× 10−9 344× 10−9

k (N/m) 29.83 28.71
ν (N.s/m) 80.9× 10−6 87.1× 10−6

Comb-drive actuator

αes

(

N/V2
)

53.25× 10−9 57.51× 10−9

Capacitive sensor

βC (F/m) 227.5× 10−9 227.5× 10−9

TABLE I

IDENTIFIED PARAMETER VALUES OF THE 2 SILICON NANOTWEEZERS

USED IN THESE EXPERIMENTS.

d) Simulations: With the parameters identified in the

Table I, the feedback system has been first implemented and

tested under Matlab/Simulink without observer (i.e. all the

state variables are supposed to be measured).

The Figure 4 shows the resonance frequency shifts of

open-loop and closed-loop systems undergoing a stiffness

variations from −1 to 1 N/m. The closed-loop systems with

a resonance frequency reduction factor set at n = 1.2 and

n = 2 have respectively 1.2 and 2 times more important

shifts than the open-loop system. Indeed, as theoretically

expected, the sensitivities of the closed-loop system are n
times enhance.

In the second instance, we design and simulate a Luen-
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berger observer for the real implementation of the feedback.

The design of the observer is not discussed in this paper

but the main objective is to reconstruct the system state

without altering the closed-loop sensitivity or amplifying

the measurement noise. More simulations demonstrate that

the overall parametric sensitivity of the system depends on

the observer dynamics. In the following experimental part,

the observer is specifically designed in such a way that the

closed-loop performances are not degraded.

B. Experimental sensing results

In order to validate the theoretical results, here we aim to

conduct different experiments :

• with an added stiffness by contact with a cantilever,

• with an added mass by coating an additional layer of

photoresist on the SNT’s tip,

• and, finally, characterizing DNA molecules rigidity.

The feedback controller and the observer are implemented

in a dSPACE’s prototyping board. The Figure 5 shows the

results of the three experiment cases. All the responses are

fitted with a 2nd-order oscillator resonance curve in order to

extract the resonance frequency.

1) Added stiffness: First measurements are performed

causing variations of the stiffness parameters (Figure 5-A).

In order to change the stiffness of the system, a cantilever

of calibrated stiffness is put in contact with the SNT’s tip.

Two experiments are performed with two cantilevers adding

different stiffness, respectively 0.3 and 0.42 N/m (with

±0.15 N.m−1 manufacturer tolerance).

In Figure 5-A1, three curves are plotted standing for the

experiments 1) without cantilever contact, 2) with the first

cantilever of 0.3 N/m and 3) with the second cantilever of

0.42 N/m. For each curve/configuration, 7 points plot the

resonance frequency of the open loop system (n = 0) and

for 6 closed-loop systems with different n from 1.1 to 2.1.

As expected, it appears that in all the cases the frequency

increases due to the stiffness of the cantilevers.

For comparison, Figure 5-A4 plots the shifts in frequency

between configurations with and without cantilever contact,

for the two cantilevers and for the different closed loop

systems. Both curves show a linear increase of the shift in

frequency with the reduction factor n, expressing an increase

of the sensitivity to stiffness variations

However the improvements are more important than ex-

pected. First in open-loop, the shifts of frequency are +9.2
and +15.3 Hz respectively for stiffness of 0.3 and 0.42 N/m,

instead of +6.0 and +8.4 Hz according to Equation 2.

Moreover the improvement of the sensitivity is, for example,

×3.5 instead of ×2.1 in the case of n = 2.1. The shifts

and the improvement are 1.7 times more important than

predicted.

2) With mass variations: Another evaluation of the closed

loop control is to test the effect when the mass changes

(Figure 5-B). In order to add mass to the system, a small

layer of photoresist is deposited on the mobile tip. We dip

it into a droplet of photoresist (Shipley S1805) prepared on

a glass, retrieved and wait until all solvent has evaporated

(Figure 5-B3). The remaining dried layer of photoresist

increase the inertial mass of the system. The operation is

repeated in a second time for a second experiment. This

method has the advantage to be simple and efficient but the

quantity of photoresist is unknown.

As for the cantilevers, the performances are compared

between open loop and closed loop systems with different

reduction factor n. The Figure 5-B1 shows the resonance

frequency of the systems for experiment without additional

mass and with the two added layers. As expected in open-

loop configuration, the resonance frequency decreased first

of −2.3 Hz and then of −7.7 Hz because of the increased

inertia. From Equation 1, the added mass is deduced to be

1.1 µg after the 1st deposition and 3.7 µg after the 2nd

deposition.

The Figure 5-B4 compares the shifts in frequency between

the systems with and without additional mass and for both

added mass. It appears in both cases that the variations

are first negative and tend to 0, then becomes positive and

increases for large reduction of the resonance frequency.

By theory, it is expected that the negative variation shifts

decrease until 0. Furthermore, it is hard to conceive that an

increased of the mass tend to cause positive variation of the
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Fig. 5. Experimental results comparing the sensitivities of different closed-loop systems (A) when a stiffness is added, (B) when a mass is added and
(C) for the mechanical characterizations of DNA molecules bundle. Resonance frequencies of closed-loop systems are designed with different reduction
factor n of the original resonance frequency (fR ≃ 1480 Hz). n = 1.0 corresponds to the open-loop configuration.
(A) Cantilever experiments: (A)-1 Resonance frequencies of systems with different reduction factor n from 1.1 until 2.1 with 0.2 steps. The black curve

is the bare tweezers systems without cantilever contact. The blue curve is with the cantilever of 0.3 N/m stiffness in contact with the tweezers tips
(Figure (A)-3). The green curve is with a shorter and stiffer cantilever (0.42 N/m). (A)-2 & -3 Microscopy images of the cantilever chip respectively in
approach of the tweezer’s tip and in contact with the tweezer’s tip. (A)-4 Resonance frequency shifts due to the added stiffness.
(B) Added mass experiments: (B)-1 Resonance frequencies of systems with different reduction factor n from 1.1 until 2.2 with 0.1 steps. The black curve
is the bare tweezers system. The blue curve is with an added layer of photoresist on the tweezers tips (Figure (B)-3). The green curve is with one more
additional layer of photoresist coated at the end of tip. (B)-2 & -3 Microscopy image of the immersion of the tip in S1818 photoresist and of the resulting
remaining photoresist layer on the tip. (B)-4 Resonance frequency shifts due to the added mass.
(C) λ-DNA characterization experiments: (C)-1 Resonance frequencies of systems with different reduction factor n from 1.1 until 2.1 with 0.2 steps. The

black curve is the bare tweezers systems. The blue curve is with an small trapped λ-DNA molecule bundle characterized in air (Figure (C)-2). The green
curve is with the same molecule bundle characterized very close (< 100 µm) to a humidity source in order to soften the bundle (Figure (C)-3). (C)-2
Photo of the bundle of λ-DNA molecules. (C)-3 Photo of the setup softening the DNA bundle because of the close vicinity of water. (C)-4 Resonance
frequency shifts due to the DNA bundle.

frequency such as demonstrated. This leads us to understand

the cause of this behavior and probably to improve the model

and its parameters. This point is considered in the following

discussion Section.

3) DNA characterizations: Finally characterizations of

DNA molecule bundle have been performed (Figure 5-C).

The goal being to characterize, as for the cantilevers, the

rigidity of DNA molecules. λ-DNA molecules (which are

DNA molecules of 16 µm length of the bacteriophage

lambda) are trapped from a DNA solution droplet combining

dielectrophoresis [5], [7] and combing methods [8].

The bundle is first characterized in air under biological

room conditions (at 22◦C and with 30% of humidity).

Afterwards the bundle is softened by bringing the bundle

at less than 100 µm of a 50 µL water droplet (Figure 5-C3),

and the bundle is tested again. The humidity at this level is

not measured.

The Figure 5-C1 shows the characterizations of the bundle

rigidity in open loop and closed-loop configurations. In open-

loop configuration, the resonance frequency increased of

+69.2 Hz in dry condition and of +7.1 Hz in wet condition;

such as, from Equation 2, the rigidity of the DNA bundle are

deduced to be respectively 2.77 and 0.28 N/m.

Finally the last Figure 5-C4 demonstrates the shifts in

frequency caused by the rigidity of the bundle. The sensi-



tivity of the resonance frequency to stiffness variations are

significantly improved by reducing the resonance frequency

in closed loop. Once again the method shows a linear

enhancement of the sensitivity upon the reduction factor

n. The enhancement is again more important than theory

predicts and is discussed in the next Section.

IV. DISCUSSION

In the previous Section, experimental results demonstrate

the fulfillment of the initial motivation for this work by the

control of the SNT. The enhancement of the sensitivity for

more relevant experimentations has been achieved. However,

as it has been pointed out, the improvement is more im-

portant than theory and simulations predict. Moreover the

method is currently limited to a reduction factor of n = 2.2;

further, the closed loop system goes to an unstable behavior

(i.e. to saturation or to oscillations). Especially two points

are under investigation and discussed here: the relevance of

the model and the identification of the model parameters.

The identification of the parameters is a delicate and

essential step for the modeling and the development of

the feedback. On the one hand, the dimensions and the

shape of the smallest parts of the device such as the width

of the mechanical suspensions (which are 12 µm wide,

30 µm thick, and 1 mm long) are highly dependent on the

fabrication. On the other hand, parameters are many and hard

to characterize precisely and independently one after one.

In this work, the mass M of the movable part have been

considered to be a reference being close to the theoretical

value. However according to the experiment on sensitivity

to added mass, the set of parameters is not yet accurately

identified and parameter identification should be improved.

Besides, limitations in the performances may arise from

the model of the system. The mechanical motion of the SNT

fits accurately with a 2nd-order oscillator model and other

modes of motion are out of the bandwidth. Nevertheless, in

the current instrumentation, the current pre-amplifiers show

a low-pass filter behavior with a cut-off frequency (∼ 2 kHz)

close to the dynamic of the SNT. Moreover Analog-to-

Digital and Digital-to-Analog Converters associated with the

dSPACE prototyping board bring non-negligible delays to the

loop. Both behaviors has been for the moment, considered

as a delay and approximated with a Padé model [2].

Work on a more accurate model is on the way on and may

lead to a complete validation of the method.

V. CONCLUSIONS

A state feedback control has been applied to silicon

nanotweezers in order to improve characterizations of bi-

ological molecules. Sensing with micromachined tweezers

enables systematic and routine experimentations on biolog-

ical samples such as DNA molecules but, in addition, the

sensitivity has been improved by control strategy toward

single molecule resolution. The implementation of a feed-

back control achieved to reduce the resonance frequency and

emulate a more compliant (i.e. low stiffness) sensor which

increase the sensitivity of the tool to detect rigidity of the

molecules.

The method have been illustrated with three cases of ex-

periments: 1) characterizing the rigidity of silicon cantilevers,

2) characterizing the mass of extra deposited layer and finally

3) characterizing DNA molecules bundle rigidity. Before the

work, the resolution was of 10 molecules of λ-DNA. This

work allowed experimentally to improve this value by 3.5
and bring the resolution close to the single molecule.

This approach paves the way for diagnostic analysis

with micromachined silicon nanotweezers and with single

molecule resolution.
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