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A sup +C inf inequality on a domain of R 2

Under some conditions, we give an inequality of type sup +C inf on open set of R 2 for the prescribed scalar curvature equation.

Introduction and Main Results

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

Let's consider a sequence of functions solutions to:

-∆u i = V i (x)e ui (E) with, 0 ≤ V i (x) ≤ b, ( * ) 
Ω e ui dx ≤ C, ( * * )

According to Brezis-Merle result, see [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], we have:

Theorem A. We have the following alternative: 1) (u i ) i is uniformly locally bounded, or,

2) u i → -∞ on each compact set of Ω, or,

3) There is a finite set (of blow-up points) S = {x 0 , x 1 , . . . , x m } ⊂ Ω and sequences of points (x i k ) i such that,

x i k → x k , u i (x i k )
→ +∞ and, in the sense of distributions we have:

V i e ui → m k=0 α k δ x k , α k ≥ 4π,
and, u i → -∞, on each compact set of Ω -S.

Here, we are interested by to know if, we can have an inequality of type:

sup Ω u i + C 1 inf K u i ≥ -C 2 ,
where C 1 and C 2 are two positive constant which depend only on b, C, K and Ω.

First, we give an example of a corecif operator on a manifold with boundary for which the lower bound of the Green function on each compact set of the unit ball tends to 0.

Nullity of the lower bound of the Green function for a manifold with boundary

We have the following result which express that we can not apply the Nash-Moser iterate scheme to prove the existence of a lower bound for sup + inf inequality. We need other arguments to obtain such estimate. Note that, in dimension n ≥ 3, and, in the case of a compact riemannian manifold, we need the existence of a lower bound of the Green function to have a sup × inf inequality.

Example 1.1 Consider the sequence of blow-up functions :

u i (r) = log 8i 2 (1 + i 2 r 2 ) 2
which satisfy u i (0) → +∞, and, u i (x) → -∞ ∀ x = 0, and, for all 0 < k ≤ 1,

u i (0) + u i (k) → c k ∈ (-∞, +∞),
Let's consider the Green function G i of the following coercif operator in H 1 0 (B 1 (0)):

-∆ + ǫ i , and,

ǫ i = 1 + |∇u i | 2 ,
with the following properties:

u ′ i (r) = - 4i 2 r (1 + i 2 r 2 )
,

||∇u i || L ∞ (B1(0)-Br (0)) ≤ C r < +∞, and, |∇u i (1/i)| = 2i → +∞, then for all 0 < k < 1, lim i inf x,y∈B k (0) G i (x, y) = 0,
We have the following theorem.

Theorem 1.2 Let (u i ) and (V i ) two sequences of functions solutions to the previous problem, then 1) For all compact K of Ω we have:

sup K u i → -∞ or,
2) For all compact K ⊂ Ω, there are two positive constants

C 1 = C 1 (dist(K, ∂Ω), b, C) and C 2 = C 2 (K, Ω, b, C) such that: sup Ω u i + C 1 inf K u i ≥ -C 2
2 Proof of the results:

Proof of the Example 1: Nullity of the lower bound of the Green function.

We want to prove by contradiction that: For all 1 > ǫ > 0 and γ > 0 , there is a constant c = c(b, C, ǫ, γ) such that:

γu i (0) + u i (ǫ) → +∞,
For this, we consider the function:

v i = e ui -∆v i + |∇u i | 2 v i = v 2
i . Also, we can write:

-∆v i + (1 + |∇u i | 2 )v i = v 2 i + v i , And, inf B k (0) v i ≥ B k+ǫ (0) G i (y i , y)(v 2 i + v i )dy
Thus, by contradiction, we suppose that:

lim i inf x,y∈B k+ǫ (0) G i (x, y) > c > 0, thus, sup B1(0) e γui × v i (k) ≥ c B k+ǫ (0) (v 2+γ i + v 1+γ i )dy,
If we argue by contradiction, and suppose that sup + inf is finite:

B k+ǫ (0) v 1+γ i dy ≤ C 1 , (1) 
and,

B k+ǫ (0) v 2+γ i dy ≤ C 2 , (2) 
In particular, we have, using the Nash-Moser iterate scheme, the following inequality:

B k+ǫ/2 (0) |∇(ηv 1+γ 2 i )| 2 ≤ C 3 , (3) 
where η is a cutoff function. With the Sobolev embeding, we obtain:

||v i || L q (B k+ǫ/4 ) ≤ C q (4)
Also, we choose (because of Brezis-Merle result) r 0 such that, u i → -∞ on ∂B r0 and thus v i → 0 on ∂B r0 .

We use the Green representation formula to have:

v i (0) = Br 0 (0) G 0 (0, y)(v 2 i -|∇u i | 2 v i )dy + ∂Br 0 (0) ∂ ν G 0 (0, s)v i ds
Here, G 0 is the Green function of the Laplacian with Dirichlet condition on

B r0 . We can write, G 0 (x, y) = - 1 2π log |x -y| + H 0 (x, y). For x ∈ B 1/2+ǫ/6 and y ∈ B r0 , G 0 ∈ L q , ∀q ≥ 1.
We use Holder inequality and (1), (2) or 4 to obtain:

v i (0) ≤ ||G 0 (0, .)|| L q ||v i || L p + C 4 ||v i || L ∞ (∂Br 0 ) ≤ C 5
which contradict the fact that :

v i (0) = e ui(0) → +∞
Thus, for all γ > 0 :

γu i (0) + u i (ǫ) → +∞.
This means that, for our particular sequence:

u i (0) + u i (1) → +∞,
it is impossible. Thus:

lim i inf x,y∈B k+ǫ (0) G i (x, y) = 0.

Proof of the theorem 1

Let's consider the sequence (u i ) i on the ball of radius 2. Now, suppose that, we are in the case 3) of the Brezis-Merle result. We assume that, Ω = B 2 (0), and,

0 ≤ |x 0 | ≤ |x 1 | ≤ . . . ≤ |x m | ≤ 1/3
We denote by G the Green function of the lapalcian on the unit ball. We use the Green representation formula for u i , we obtain:

u i (y i ) = max Ω u i = B1(0) G(y i , y)V i e ui(y) dy + ∂B1(0) ∂ ν G(y i , s)u i ds
We can use the fact that (Brezis-Merle) u i → -∞ on Ω -∪ m k=1 B(x k , r k ), to have:

B1(0) G(y i , y)V i e ui(y) dy = m k=1 B(x k ,r k ) G(y i , y)V i e ui(y) dy+ Ω-∪ m k=1 B(x k ,r k ) G(x i , y)V i e ui(y) dy = = m k=1 B(x k ,r k ) G(y i , y)V i e ui(y) dy + o(1),
Without loss of generality, we can assume that y i → x 0 . Thus, for k = 0, G(y i , y) → β k > 0 for y ∈ B(x k , r k ). We are concerned by the case y ∈ B(x 0 , r 0 ). In this case, we can write:

B(x0,r0) G(y i , y)V i e ui(y) dy ≤ B(yi,r0+ǫ) G(y i , y)V i e ui(y) dy = B(yi,r0+ǫ) 1 2π log |1 -ȳi y| |y i -y| V i e ui(y) dy But, |1 -ȳi y| → β 0 > 0, y ∈ B(x 0 , r 0 ), Thus, B(yi,r0+ǫ) G(y i , y)V i e ui(y) dy ≤ C(β, b, C)+ B(yi,r0+ǫ) - 1 2π log |y i -y|V i e ui(y) dy
We do a blow-up around y i , we write

y = y i + xe -ui(yi)/2 , ũi (x) = u i (y i + xe -ui(yi)/2 ) -u i (y i ),
and,

Ṽi (x) = V i (y i + xe -ui(yi)/2 ).
We have,

B(yi,r0+ǫ) - 1 2π log |y i -y|V i e ui(y) dy = u i (y i ) 4π B(0,(r0+ǫ)e u i (y i )/2 ) Ṽi e ũi dx+ + B(0,(r0+ǫ)e u i (y i )/2 ) - 1 2π log |x| Ṽi e ũi dx,
The fact that e ũi ≤ 1 and -log |x| ≤ 0 for |x| ≥ 1, we can write:

B(0,(r0+ǫ)e u i (y i )/2 ) - 1 2π log |x| Ṽi e ũi dx ≤ C,
Also, we can see that, in the case V i → V in C 0 (Ω), by the result of YY.Li and I. Shafrir, we have:

B(0,(r0+ǫ)e u i (y i )/2 )
Ṽi e ũi dx = B(yi,r0+ǫ)

V i e ui dy → 8πm ≤ bC, m ∈ N * Finaly, we can write:

u i (y i ) ≤ (2m + ǫ)u i (y i ) + sup ∂B1(0) u i + C 1 , Thus, C 2 (bC) sup Ω u i + sup ∂B1(0) u i ≥ -C 3 , But, sup ∂B1(0) u i → -∞,
Thus, by the classical Harnack inequality, we can have:

sup ∂B1(0) u i ≤ C 4 inf ∂B1(0) u i + C 5 ,
Finaly, for all compact set K, there are two positive constants

C ′ 1 = C ′ 1 (dist(K, ∂Ω), b, C) and C ′ 2 = C ′ 2 (K, Ω, b, C) such that: sup Ω u i + C ′ 1 inf K u i ≥ -C ′ 2 ,
In general, the condition V i → V in C 0 (Ω) can be removed and replaced by the Brezis-Merle consequence of blow-up phenomenon.

B(0,(r0+ǫ)e u i (y i )/2 ) Ṽi e ũi dx = B(yi,r0+ǫ)

V i e ui dy → 4π α0 ≤ bC, α0 ≥ 1.

Remark: an example of the situation 1 of the theorem 2:

Let's consider the following sequence of functions, on Ω = B 1 (0);

u ǫ (r) = log 1 (µ 2 ǫ + r 2 ) 2 with µ ǫ → +∞ Then, for K = B k (0) with 0 < k < 1, we have: -∆u ǫ = e uǫ and, sup K u ǫ → -∞, sup Ω u ǫ + inf K u ǫ → -∞
Questions: 1) a) Can we have the following sharp inequality:

sup Ω u i + inf K u i ≥ C 1 = C 1 (b, C, K, Ω) ?
We look to the following example of I. Shafrir, see [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF]:

u(r) =        2 log 2βr β-1 1 + r 2β if r > 1 2 log β + 2 log 2 1 + r 2 if r ≤ 1.
We take u i (r) = u(ir) + 2 log i. Then, if we take β > 1, we have:

-∆u i =    2e ui if r > 1/i 2 β 2 e ui if r ≤ 1/i. u i (0) → +∞, ∀ 0 < k ≤ 1, u i (k) → -∞, ∀ 0 < k ≤ 1, u i (0) + u i (k) → -∞.
b) Perhaps with more regularity on V i ? With the previous example, we can use the example of Brezis-Li-Sahfrir, see [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], to construct two sequences of functions (u i ) i and (V i ) i ( 1 < β = β i ց 1), such that:

-∆u i = V i e ui in B 1 (0), C 1 (B 1 (0)) ∋ V i → V ≡ 2 in C 0 (B 1 (0)), u i (0) → +∞, ∀ 0 < k ≤ 1, u i (k) → -∞,
and we have:

∀ 0 < k ≤ 1, u i (0) + u i (k) → -∞.
c) Perhaps, if we consider the solutions to the following equation:

-∆u i = e ui in Ω
Consider the situation of X.Chen, see [START_REF] Chen | Remarks on the existence of branch bubbles on the blowup analysis of equation -∆u = e 2u in dimension two[END_REF]. First we can have a blowing-up sequence ũi , with two blow-up points, for example z 0 = 0 and z 1 = 1 and associeted radii r i → +∞, such that:

e ũi → 1 k=0 8πδ z k , ,

and,

ũi → -∞, on each compact set of B ri -{0, 1}.

Br i e ũi dx → 16π.
It is clear that we can choose the radius r i such that :

r i << ũi (0).
Now, in the situation of the paper of X.Chen, we take the following sequence:

u i (y) = ũi (r i y) + 2 log r i .
In this case, we have one exterior blow-up point 0 and two interior blow-up points 0 and z i = 1/(r i ), in the unit ball, and, e ui → 16πδ 0 , Let's consider the Green function of the unit ball, G:

G(x, y) = 1 2π log |1 -xy| |x -y| ,
We write:

u i (0) = B1 (0) 
G(0, y)e ui dy +

∂B1(0) ∂ ν G(0, σ)u i (σ)dσ, hence, u i (0) ≥ B l 0 i r 0 i (0) - 1 2π log |y|e ui dy + B l 1 i r 1 i (zi) - 1 2π log |y|e ui dy + inf ∂B1(0) u i ,
where, r 0 i = e -ui(0)/2 , r 1 i = e -ui(zi)/2 , and,

l 0 i r 0 i ≤ 1 2 |z i |, l 1 i r 1 i ≤ 1 2 |z i |,
we can choose l 0 i as in the paper of CC.Chen and C.S Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF] (see also the formulation of Li-Shafrir, [START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF]), to obtain the following estimates:

B l 0 i r 0 i (0) - 1 2π log |y|e ui dy = u i (0) 4π B l 0 i e vi dt + B l 0 i - 1 2π log |t|e vi dt, with, B l 0 i e vi dt ≥ 8π - C L s i - C u i (0)
, and,

B l 0 i 1 2π log |t|e vi dt ≤ C,
where, v i is the blow-up function around 0:

v i (t) = u i (e -ui(0)/2 t) -u i (0).
With, (L i ) s = ((1/2)|z i |e ui(0)/2 ) s = ((1/2r i )r i e ũi(0)/2 ) s = (1/2) s e sũi(0)/2 >> ũi (0)+2 log r i = u i (0).

For the term:

B l 1 i r 1 i (zi) - 1 2π log |y|e ui dy,
We take,

w i (t) = u i (e -ui(zi)/2 t + z i ) -u i (z i ),
we have:

B l 1 i r 1 i (zi) - 1 2π log |y|e ui dy = B l 1 i (0) - 1 2π log |tr 1 i + z i |e wi dt,
which we can write as:

B l 1 i (0) - 1 2π log |tr 1 i +z i |e wi dt = - 1 2π log |z i | B l 1 i (0) e wi dt+ B l 1 i (0) - 1 2π log | tr 1 i z i +1|e wi dt, but, l 1 i r 1 i ≤ 1 2 |z i |,
Thus the term log | tr 1 i z i + 1| is bounded. And we have:

B l 1 i r 1 i (zi) - 1 2π log |y|e ui dy ≥ - 1 2π log |z i | B l 1 i (0) 
e wi dt -C, because:

B l 1 i (0) 
e wi dt → 8π.

Finally, we obtain the following inequality:

u i (0) ≥ 2u i (0) + inf ∂B1(0) u i -(4 -ǫ) log |z i | -C,
which we can write as:

u i (0) + inf ∂B1(0) u i ≤ (4 -ǫ) log |z i | + C → -∞,

Thus,

sup

Ω u i + inf B1(0) u i = u i (0) + inf ∂B1(0) u i → -∞.
Here, we have choosen the Green function of the unit ball. The same argument may be applied to a ball of radius 1 ≥ r > 0, to have:

sup Ω u i + inf Br (0) u i = u i (0) + inf ∂Br (0) u i → -∞.
Thus, we have an example of blowing-up sequence with finite volume (conformal volume) and the sup + inf is not bounded below by a constant.

2) What's happen if we remove the condition ( * * ) of the problem: Ω e ui dx ≤ C ? Here, we can use the example:

u(r) =        2 log 2βr β-1 1 + r 2β if r > 1 2 log β + 2 log 2 1 + r 2 if r ≤ 1.
We take u i (r) = u(ir) + 2 log i. Then, if we replace β by i, we have:

-∆u i =    2e ui if r > 1/i 2 i 2 e ui if r ≤ 1/i. u i (0) → +∞, ∀ 0 < k ≤ 1, u i (k) → -∞,

3) Can we replace it, as in the paper of Brezis-Merle, by the following condition:

Here, we can use the example:

We have:

Case when the sup + inf inequality holds:

Consider on the unit ball, the radial solutions to the previous equation with the following condition:

Then we have:

This means:

All the conditions of the paper of YY.Li, see [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], (on riemannian surfaces) are satisfied and thus, we have:

For the general case when we assume that the prescribed scalar curvature V i uniformly lipschitzian, it is sufficient to prove the YY.Li condition:

Note that, in the case of compact riemannian surfaces without boundary, the last condition hold and then, the sup + inf inequality hold.

Now, assume we are on a compact riemannian surface without boundary. Assmue that the sequence blow-up and we have the following inequality:

Then, we have a sup + inf inequality. (For the 2-sphere, we have another proof of this fact). Now, assume that, on a compact surface without boundary, we have:

If we use YY.Li condition, we can extend this result to the unit ball B 1 (0) ⊂ R 2 . According to the proof of theorem 2, if we assume for a blowing-up sequence, that:

V i e ui dx ≤ 8π, and, sup

Then, the sup + inf inequality hold. We have exactly:

The last case correspond to the case of one blow-up point.

4) Is it possible to have C 1 independant of the compact K ? This is the case if we suppose the YY.Li condition satisfied.

For example, on a compact riemannian surface M without boundary, if we consider the following equation:

with, V i such that:

we have after integration of the equation that:

Also, we have:

Thus, we are in the case of theorem 2 and the point 1) of this theorem is not possible. We have the following: Corollary 2.1 Let (u i ) and (V i ) two sequences of functions solutions to the previous problem on a riemannian surface M , such that, we have only the following condition:

then, there are two positive constants

Question: Note that in the previous paper, by using the maximum principle, we have proved that if we consider on compact riemannian surface without boundary the following equation:

with, V i such that:

Then we have an inequality of type:

Can we try to find this result with the previous argument of the theorem 2 ?

We have,

We can say that, after using the proof of theorem 2 and the YY.Li inequality around the maximum of u i :

Corollary 2.2 Let (u i ) and (V i ) two sequences of functions solutions to the previous problem on a riemannian surface M without boundary, such that, we have only the following condition:

then, there is a positive constant C 1 = C 1 (b, M ) such that:

This is the wellknown inequality in a previous paper. To see this, we have assumed in a previous paper that: R ≡ k ∈ R * + , and V olume(M ) = 1, thus, the inequality is :