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Third-order Kalman Filter : tuning and steady-state

performance
Huaqiang Shu, Eric Pierre Simon, and Laurent Ros

Abstract—This letter deals with the Kalman filter (KF) based
on a third-order integrated random walk model (RW3). The
resulting filter, noted as RW3-KF, is well suited to track slow
time-varying parameters with strong trend behaviour. We first
prove that the RW3-KF in steady-state admits an equivalent
structure to the third-order digital phase-locked loops (DPLL).
The approximate asymptotic mean-squared-error (MSE) is ob-
tained by solving the Riccati equations, which is given in a closed-
form expression as a function of the RW3 model parameter:
the state noise variance. Then, the closed-form expression of
the optimum state noise variance is derived to minimize the
asymptotic MSE. Simulation results are given for the particular
case where the parameter to be estimated is a Rayleigh channel
coefficient with Jakes’ Doppler spectrum.

Index Terms—Random Walk model (RW), Kalman filter (KF).

I. INTRODUCTION

Kalman filters (KF) are commonly used to track time-

varying parameters. The applications of KF cover a various

range of systems, like GPS systems [1], Multi-carrier systems

[2], MIMO systems [3], etc. The design of KF requires a linear

recursive state-space representation of the parameter to be

observed. The most used approximation model, especially for

channel estimation problems, is the first-order Auto-Regressive

model (AR1), combined with either a correlation matching

(CM) criterion for the fast time-varying scenario [2] [4], or

a minimum asymptotic variance (MAV) criterion for the slow

varying scenario [5], to fix the AR coefficient. However, in

certain systems, the parameter to be estimated exhibits strong

trend behaviour, and the use of second-order or higher-order

models is more suitable than a first-order model. For example

in a satellite receiver, third-order KF as well as third-order

DPLLs are often used to tackle the problem of phase tracking

in the presence of time-varying Doppler frequency offset [1].

However, the tuning and performance of these estimators are

most often obtained from simulation or empirical results.

In this paper, we provide analytic results about the optimal

tuning and the steady-state performance of a KF based on a

RW3 model. For that, we first prove that this third-order KF

has the same structure in a steady-state mode as a specific

equal-order DPLL, hence extending the results of [6] [7]

obtained for a second-order KF.

Section II gives the approximation model and the formulae

of RW3-KF. In section III, we analyze and optimize the
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asymptotic MSE of RW3-KF. Section IV validates the analysis

and assumptions by means of MSE and BER (bit error rate)

simulations, the first-order AR model-based KFs (combined

with CM and MAV criterion, respectively noted as AR1CM -

KF and AR1MAV -KF) are selected as references.

II. STATE-SPACE MODEL AND KALMAN FILTER

Assume the parameter to be estimated α is a zero-mean

circular complex process with variance σ2
α. The variable α is

supposed to be a narrow-band stationary process, with a Power

Spectrum Density (PSD) Γα(f) with a support limited within

±fd. We consider the RW3 model as an approximation of the

time-variation of α:

α̃(n) = α̃(n−1) + δ(n−1) +
1

2
ξ(n−1), (1)

δ(n) = δ(n−1) + ξ(n−1), (2)

ξ(n) = ξ(n−1) + u(n), (3)

where u(n) is the state noise, a zero mean complex state noise

with variance σ2
u. The model is updated at sample rate. The

time interval between each sample, T , represents a unit delay.

A simplistic observation model is used 1:

y(n) = α(n) + w(n), (4)

where w(n) is a zero-mean additive white noise with vari-

ance σ2
w. The dynamic evolution equations (1)-(3) and the

observation equation (4) compose the state-space model of

α(n). The on-line unbiased estimation α̂(n) can be carried out

by KF. The MSE σ2
ǫ

def
= E

{∣
∣ǫ(n)

∣
∣
2
}

of the estimation error

ǫ(n)
def
= α(n) − α̂(n) will be investigated.

Rewrite the state-space model in the matrix form:

a(n) = Ma(n−1) + u(n), (5)

y(n) = Sa(n) + w(n), (6)

with the state vector a(n) =
[
α̃(n) δ(n) ξ(n)

]T
, the state

noise vector u(n) =
[
0 0 u(n)

]T
, the selection vector S =

[
1 0 0

]
and the evolution matrix M =





1 1 1
2

0 1 1
0 0 1



, the

RW3-KF could then described by two-stage equations:

Time Update Equations

â(n|n−1) = Mâ(n−1|n−1), (7)

P(n|n−1) = MP(n−1|n−1)M
T + U, (8)

1This model is adequate for many applications, e.g. it could be a flat
fading channel model, α is then the complex amplitude of channel; or in
the vehicle tracking problem, α could be in matrix form, composed by the
position coordinates and velocities of vehicle. etc.
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Measurement Update Equations

K(n) =
P(n|n−1)S

T

SP(n|n−1)S
T + σ2

w

, (9)

â(n|n) = â(n|n−1) + K(n)(y(n) − Sâ(n|n−1)), (10)

P(n|n) = (I − K(n)S)P(n|n−1), (11)

with the Kalman gain K(n) =
[
k1(n) k2(n) k3(n)

]T
, the

state noise variance matrix U =





0 0 0
0 0 0
0 0 σ2

u



, P(n|n−1)

and P(n|n) are respectively the covariance matrices of the

prediction error and the estimation error.

III. ASYMPTOTIC MSE ANALYSIS

A. Steady-state RW3-KF

Since the linear model ((5),(6)) is observable and control-

lable, an asymptotic regime is quickly reached ( [8] Ch. 13.3).

In other words, P(n|n),P(n|n−1) and K(n) converge to constant

values when n is large enough, i.e.,

K(n) = K(n+1) = K(∞)
def
=

[
k1 k2 k3

]T
, (12)

P(n|n) = P(n+1|n+1) = P(∞)
def
=





P11 P12 P13

P21 P22 P23

P31 P32 P33



 , (13)

P(n|n−1) = P(n+1|n) = P
′

(∞)
def
=





P
′

11 P
′

12 P
′

13

P
′

21 P
′

22 P
′

23

P
′

31 P
′

32 P
′

33



 . (14)

Note that P(∞) and P
′

(∞) are real symmetric matrices. This

can be easily verified from (8), (9), (11) if the KF starts with

a real-valued matrix P(0|−1). K(∞) is also a real vector. In

the steady state, from (7) and (10), the recursive equations of

RW3-KF can be reduced to a time-invariant filter:

α̂(n|n) = α̂(n−1|n−1) + δ̂(n−1|n−1) +
1

2
ξ̂(n−1|n−1) + k1vǫ(n),

(15)

δ̂(n|n) = δ̂(n−1|n−1) + ξ̂(n−1|n−1) + k2vǫ(n), (16)

ξ̂(n|n) = ξ̂(n−1|n−1) + k3vǫ(n), (17)

with

vǫ(n) = y(n)−(α̂(n−1|n−1)+δ̂(n−1|n−1)+
1

2
ξ̂(n−1|n−1)). (18)

Transforming (15), (16), (17) to Z-domain and substituting δ̂
and ξ̂ yield:

α̂(z)(1−z−1) =

[

k1 +
(k2 +

1
2k3)z

−1

1− z−1
+

k3z
−2

(1− z−1)2

]

vǫ(z).

(19)

Combining (18), (15) and (4), and after Z-transform we have:

vǫ(z) =
1

1− k1
· (α(z)− α̂(z) + w(z)), (20)

then substitute (20) into (19), we obtain the input-output

equation:

α̂(z) = L(z) · α(z) + L(z) · w(z), (21)

with L(z) the transfer function of steady-state RW3-KF given

in (22).
In the slow fading scenario (fdT ≪ 1), we are interested in

the low frequency domain part of L(z) (fT ≪ 1), using the
approximation 1 − z−1 ≈ pT , with z = epT and p = j2πf .
With such an approximation, the steady state transfer function
of the RW3-KF L(ej2πf ) is equivalent to the typical transfer
function of the third-order analog PLL ( [9], eqn. (2), (4) and
[10] eqn. (22)):

L(epT ) ≈
(m+ 2)ζωn · p2 + (1 + 2mζ2)ω2

n · p+mζω3

n

p3 + (m+ 2)ζωn · p2 + (1 + 2mζ2)ω2
n · p+mζω3

n

(23)
with

k1 =
(m+ 2)ζωnT + (1 + 2mζ2)(ωnT )

2 +mζ(ωnT )
3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
,

(24)

k2 =
(1 + 2mζ2)(ωnT )

2 + 3

2
mζ(ωnT )

3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
,

(25)

k3 =
mζ(ωnT )

3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
,

(26)

and with m the capacitance ratio, ζ the damping factor,

ωn = 2πfn the natural radian frequency of the loop. They

are real positive physical parameters, and ωnT ≪ 1 when

assuming a slow reaction of the filter. A useful inequality could

be obtained with

0 < k3 ≪ k2 ≪ k1 < 1. (27)

This inequality is obtained by comparing the numerators of

(24), (25), (26), using ωnT ≪ 1.

We aim to find the relation between the Kalman gains k1,

k2, k3, and the state noise variance σ2
u, in order to optimize

the estimation error σ2
ǫ with respect to σ2

u. From (9),

k1 =
P

′

11

P
′

11 + σ2
w

, k2 =
P

′

21

P
′

11 + σ2
w

, k3 =
P

′

31

P
′

11 + σ2
w

. (28)

From (11), (8) and by using the symmetry of P(∞) and P
′

(∞),

we have:




P11 P12 P13

P12 P22 P23

P13 P23 P33





=





(1− k1)P
′

11 (1− k1)P
′

12 (1− k1)P
′

13

P
′

12 − k2P
′

11 P
′

22 − k2P
′

12 P
′

23 − k2P
′

13

P
′

13 − k3P
′

11 P
′

23 − k3P
′

12 P
′

33 − k3P
′

13



 , (29)

with P
′

11 = P11+2P12+P13+P22+P23+
1
4P33; P

′

12 = P12+

P22 +
3
2P23 +P13 +

1
2P33; P

′

22 = P22 +2P23 +P33; P
′

13 =

P13 + P23 +
1
2P33; P

′

23 = P23 + P33; P
′

33 = P33 + σ2
u. The

equations (28), (29) compose the so called Riccati equations.

L(z) =
(k1 − k2 +

k3

2 )(1− z−1)2 + (k2 −
k3

2 )(1− z−1) + k3

(1− k1)(1− z−1)3 + (k1 − k2 +
k3

2 )(1− z−1)2 + (k2 −
k3

2 )(1− z−1) + k3
. (22)
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By solving these equations, we could find the expressions of

the elements of P
′

(∞) as a function of k1, k2, k3, and σ2
u. To

this end, after some manipulations on (29), we first find:

P
′

13 = P
′

31 =
σ2
u

k3
, (30)

which enables us to find after some manipulations:

P
′

11 =
8k2 + k3(6k1 + 3k2 + k3)

2k23(2k1 + 2k2 + k3)
σ2
u. (31)

Then, a relation between k1, k2 and k3 is found:

k22 = 2k1k3. (32)

In the sequel, it is assumed that P
′

11 ≪ σ2
w, which means

that the Kalman gain is low k1 ≪ 1, according to (28). Then

we deduce k1 from (28), k3 from (28) and (30) and k2 from

(32) respectively, that is:

k1 ≈
P

′

11

σ2
w

, k3 =
σu

√

P
′

11 + σ2
w

≈
σu

σw

, k2 ≈

√

2P
′

11σu

σ3
w

. (33)

To further simplify the calculation, we apply the approxima-

tion (27) on (31), yielding:

P
′

11 ≈
2k2
k1k23

σ2
u. (34)

By combining (33), (34), P
′

11 can be expressed as a function

of σu and σw:

P
′

11 ≈ 2σ
1

3

u σ
5

3

w = 2σ2
w(

σu

σw

)
1

3 , (35)

and finally,

k1 ≈ 2(
σu

σw

)
1

3 , k2 ≈ 2(
σu

σw

)
2

3 =
k21
2

, k3 ≈
σu

σw

=
k31
8

. (36)

Using the approximated Kalman gain relation 0 < k3 ≪
k2 ≪ k1 ≪ 1, the transfer function of RW3-KF (22) can

be simplified as:

L(z) ≈
k1(1− z−1)2 + k2(1− z−1) + k3

(1− z−1)3 + k1(1− z−1)2 + k2(1− z−1) + k3
.

(37)

Comparing (37) and (23), we get k1 ≈ (m + 2)ζωnT ,

k2 ≈ (1 + 2mζ2)(ωnT )
2, k3 ≈ mζ(ωnT )

3. Then by using

(36), we obtain m = 2, ζ = 0.5, while its natural radian

frequency ωnT can be tuned as k1

2 , or eventually (σu

σw
)

1

3 . Thus,

we can conclude that the RW3-KF is equivalent in steady-state

mode and slow-tracking scenario to the third-order DPLL with

fixed given parameters (m = 2, ζ = 0.5). This conclusion

generalizes to the third-order the connection between DPLL

and KF established in [6] [7] for the second-order.

B. Mean Squared Error Analysis

The (unbiased) estimation error is defined by:

ǫ(z) = α(z)− α̂(z) = (1− L(z)) · α(z)− L(z) · w(z) (38)

and the mean squared error is thus composed by two parts:

σ2
ǫ = E{ǫ · ǫ∗} = σ2

ǫα + σ2
ǫw, (39)

σ2
ǫw is the static error variance which results from the channel

noise w, whereas σ2
ǫα is the dynamic error variance, which

results from the parameter α variations.

The static error variance is developed as:

σ2
ǫw = σ2

w · T

∫ + 1

2T

− 1

2T

|L(ej2πfT )|2df

︸ ︷︷ ︸

BL

=
5
2k1 −

1
4k

2
1 −

5
8k

3
1 −

5
64k

4
1

3− 9
8k

2
1 −

9
32k

3
1 −

3
64k

4
1

σ2
w ≈

5

3
k

1

3

3 σ
2
w, (40)

where the integral term BL is the equivalent noise bandwidth.

It can be calculated by the method presented in [11]. Note

that we have applied the condition 0 < k1 ≪ 1 for the

approximation. The dynamic error variance is developed as:

σ2
ǫα =

∫ + 1

2T

− 1

2T

Γα(f) · |1− L(ej2πfT )|2df

≈

∫ + 1

2T

− 1

2T

Γα(f) ·
(2πfT )6

k23
df =

(2π)6

k23
Sα, (41)

where Sα =
∫ + 1

2T

− 1

2T

Γα(f)(fT )
6df is the term which con-

tains the PSD of α. For the reason of simplicity, we apply

e−j2πfT ≈ 1− j2πfT as well as 2πfdT ≪ k
1

3

3 ≈ ωnT ≪ 1
to calculate |1 − L(ej2πfT )|2 in the slow variation channel

case. The global MSE is then obtained by combining (40)

and (41). After substituting the approximation (36) for k3, the

objective function to optimize is given by:

σ2
ǫ =

5

3
σ

5

3

wσ
1

3

u + (2π)6Sα

σ2
w

σ2
u

. (42)

The minimization can be done by imposing the partial deriva-

tive of global MSE σ2
ǫ equal to 0, yielding:

σ2
u opt =

[

(2π)36 · (
18

5
Sα)

6 · σ2
w

] 1

7

, (43)

and the corresponding minimized MSE is:

σ2
ǫ min = 7 ·

(
5

9
π · σ2

w

) 6

7

· S
1

7

α . (44)

C. An application to the estimation of Rayleigh channel with

Jakes’ Doppler spectrum

From (43) and (44), we note that the optimum parameter

and the corresponding minimized MSE could be computed

whatever the channel PSD is. Now we take the estimation of

Rayleigh channel with Jakes’ Doppler spectrum as an example.

The PSD of α is defined as:

Γα(f) =







σ2

α

πfd

√

1−
(

f
fd

)

2
, for |f | < fd,

0, for |f | ≥ fd.

(45)

A variable change cosθ = f
fd

is applied to calculate the

integral Sα and we have:

Sα =

∫ +fd

−fd

(fT )6 · σ2
α

πfd

√

1−
(

f
fd

)2
df =

5

16
(fdT )

6 · σ2
α. (46)

The optimal σ2
u and the corresponding minimized MSE are

then obtained directly:

σ2
u opt =

[
312

218
· (σ2

α)
6 · σ2

w · (2πfdT )
36

] 1

7

, (47)

σ2
ǫ min =

35

16
· (

16

9
πfdT · σ2

w)
6

7 · (σ2
α)

1

7 . (48)
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IV. SIMULATION RESULTS AND CONCLUSION

The MSE analysis is verified by Monte-Carlo simulations

over a Rayleigh flat fading channel. Fig. 1 shows the MSE

of AR1CM -KF [2] [3] [4], AR1MAV -KF [5] and RW3-KF as

a function of SNR, with fdT = 10−3. The theoretical MSE

of RW3-KF as well as the online BCRB (Bayesian Cramer-

Rao Bound) [12] are used as references. Fig. 2 shows the

MSE of these estimators as a function of fdT with fixed

SNR=20dB. From Fig. 1 and 2, we find that the theoretical

and the simulation lines of RW3-KF approximately coincide.

The MSE of RW3-KF is proportional to the 6
7 power of noise

variance σ2
w (thus inversely proportional to the SNR), and is

also proportional to the 6
7 power of fdT . On the other hand,

compared to the AR1CM -KF, the AR1MAV -KF has a much

improved asymptotic performance, which means that the MAV

criterion is a better choice for computing the AR1 coefficient.

However it is still far from the lower bound due to the low-

order filtering that causes the loss of dynamic information.

Meanwhile, the RW3 model fits the real channel much better

than the AR models in the slow fading case. Moreover, the

MSE of RW3-KF is very close to the online BCRB.

For the BER simulation, we use QPSK transmitted symbols.

The estimation is in semi-blind mode, that is, the data block

is composed of 20 pilot symbols followed by 180 unknown

symbols (for which the KF is in decision-directed mode). Fig.3

shows the simulation result, where we can observe that with

the optimized σ2
u opt, the RW3-KF attains a performance close

to the one with perfect channel knowledge.

To conclude, we have discussed in this letter the third-

order modeling of the Kalman Filter for parameter estimation

problems, where an application to Rayleigh fading channel

with Jakes’ spectrum was also introduced. The explicit for-

mulae of the optimum parameter and the asymptotic MSE

of the RW3-KF were given, assuming the knowledge of the

channel statistics. A connection between the steady-state RW3-

KF and the typical third-order DPLL was established. We

also conclude that, for KF-based estimators, the well-tuned

third-order random walk model is more adequate compared

with the first-order AR model in the low-variation context,

with the resulting estimator performance very close to the

BCRB. Possible future directions are to extend this work to

the vectorial case for multi-path channel and/or multi-carrier

modulation scenarios. Also, MSE performance of the other

components of the RW3 model could be investigated.
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