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Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A
typical example is a conformational change in myosin II responsible for the power-stroke in skeletal
muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest
purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone.
We show that in this analytically transparent model, characterized by a rugged energy landscape,
the ground states are always highly coherent, single-phase configurations. We argue that such
cooperative behavior, ensuring collective conformational change, is due to the dominance of long-
range interactions making the system non-additive. The detailed predictions of our model are in
agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles
loaded in soft and hard devices. Some features displayed by the model are also recognizable in
the behavior of other biological systems with passive multi-stability and long-range interactions
including detaching adhesive binders and pulled RNA/DNA hairpins.

I. INTRODUCTION

Recently, considerable attention has been focussed on
the study of mechanical behavior of cells and tissues.
These living systems are viewed as prototypes of new bi-
ologically inspired materials that can actively generate
stresses and modify their rheological properties. They
can also accommodate loading through active remodel-
ing and growth. This intriguing mechanical behavior is
associated with dominant hierarchical structures encom-
passing broad ranges of scales that are linked by complex
energy cascades [1–3]. In contrast to conventional mate-
rials, distributed biological systems are driven intrinsi-
cally and incorporate mechanisms that produce energy
and maintain disequilibrium [4, 5].
While the challenge of finding sufficiently general prin-

ciples governing the mechanical behavior of active sys-
tems remains elusive, our understanding of specific bi-
ological regimes and mechanisms has been considerably
improved in recent years. An important example of a
living system, whose functioning is reasonably well un-
derstood on both anatomical and bio-chemical levels, is
a skeletal (striated) muscle [6, 7]. A narrow functionality
of this system is behind its relatively simple, almost crys-
talline geometry which suggests the study of a single rep-
resentative unit (half-sarcomere). The fact that this unit
has a quasi-one-dimensional structure makes it a natu-
ral choice for a systematic mechanical modeling. Among
many functional regimes involving this unit, the first can-
didate for a detailed study is the fast force re-generation
after abrupt shortening. The implied force recovery is a
passive phenomenon that is not ATP driven and can be
therefore studied in a purely mechanical framework.
From structural reconstructions we know that behind
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the fast force recovery is the power-stroke: a mechani-
cally induced folding of myosin cross-bridges attached to
actin filaments. Similar mechanism are responsible for a
variety of biological phenomena from unzipping of single
bio-molecules to contraction of cytoskeleton.

In this paper, we study the athermal mechanics
of the load-induced muscle power-stroke triggered by
force/length increments. An elementary contractile unit
(half-sarcomere) is represented by a parallel bundle of
myosin cross-bridges attached to a common rigid “back-
bone”. We reassess the classical Huxley and Simmons
(HS) model of fast force recovery in skeletal muscles by
assuming that each cross-bridge is a hard spin unit cou-
pled to a harmonic spring and propose a regularized ver-
sion of this model were hard spins are replaced by soft
spins exhibiting continuous conformational change. We
then deviate from the HS scheme and incorporate fila-
ment elasticity in the form of a crucial mean-field inter-
action between individual cross-bridges. The ensuing me-
chanical system is characterized by a rugged energy land-
scape with multiple metastable states describing mixed
pre- and post-power-stroke configurations. The ground
states, however, are always associated with coherent, sin-
gle phase configurations. We show that the implied coop-
erative behavior is due to the dominance of long-range in-
teractions making the system non-additive and prevent-
ing the formation of mixed configurations. As we discuss
at the end of the paper, in view of the prototypical nature
of the model, these general conclusions pertain to a va-
riety of other biological systems with elastic interactions
mediated by effective “backbones”.

Below we discuss in more details the motivation and
the main results of this work and the two accompanying
papers [8, 9].
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A. Experimental background

Skeletal muscle is formed by a hierarchical system of
fibers. At the micrometer scale individual myofibrils
can be viewed as a periodic arrangement of contrac-
tile units called sarcomeres, however, the actual mech-
anism of muscle contraction resides in nano-scale inter-
actions between actin and myosin filaments, see Fig. 1(a).
More precisely, each sarcomere contains a sub-structure
of (thin) actin filaments interacting with a complimen-
tary sub-structure of (thick) myosin filaments. Myosin
filaments are tight bundles of the joined tails of myosin
II molecules which terminate with protruding nanometer-
sized heads. The heads contain motor domains that
can actively cross-link myosin and actin filamental sub-
structures by forming intermittently stable cross-bridges,
see Fig. 1(a). An elementary contractile unit is formed by
∼ 100 cross-bridges connected in parallel, see the insert
in Fig. 1(b).
According to the leading “sliding filament” hypothe-

sis [10], attached cross-bridges generate force through a
rapid conformational change known as the power-stroke.
In order to recharge the power-stroke mechanisms the
myosin heads must detach from actin binding sites and
this can be accomplished only in the presence of ATP.
The re-cocked cross-bridges reattach and the power-
stroke mechanism strikes again. The collective cyclic
action of the cross-bridges induces continuous relative
sliding of actin and myosin filaments. This leads to the
shortening of individual sarcomeres inducing macroscopic
contraction [11, 12].
The attachment-detachment process is inseparable

from the power-stroke in the acto-myosin autocatalytic
cycle [13]. The individual kinetic steps, however, have
vastly different characteristic times [14]. The power-
stroke, taking place at a ∼1ms time scale, is the fastest
step and it is commonly believed to be independent of
the ATP activity which takes place on a 30ms time scale
[14, 15]. In view of this separation of time scales, the pas-
sive folding-unfolding of the myosin heads can be studied
under the assumption that the cross-bridges remain at-
tached. To this end, special experimental protocols have
been designed which involve abrupt loading targeting the
millisecond time scale [16].
The fast response of a tetanized muscle fiber to an

abrupt length change imposed in a hard device (displace-
ment clamp, isometric test) was first systematically stud-
ied in the pioneering paper of Huxley and Simmons [17].
The relaxation process was shown to be comprised of two
phases; see Fig. 2 (a). The first phase corresponds to an
elastic shortening during which the muscle tension drops
in proportion to the applied length step to a level usually
denoted by T1. During the second phase, taking place at
constant length and known as the fast force recovery, ten-
sion raises to a higher level usually denoted by T2 > T1.
The value of T2 is still strictly lower than the original ten-
sion T2 < T0, see Fig. 2(a). The full recovery of the force
takes place during the third phase at a much longer time

scale (∼ 100 ms). This phase engages an active process
driven by ATP hydrolysis which places this phenomenon
outside a theory of passive behavior.

Similar experiments have been also performed in a soft
device (load clamp, isotonic test) [20–22]. The initial re-
sponse to a sudden force drop was shown to exhibit the
same two phases, with sequential shortening first to the
level δz1 interpreted as an instantaneous elastic deforma-
tion, and then to the level δz2 with the second process
taking place at a fixed load, see Fig. 2 (b). At longer time
scales, muscle subjected to fixed load enters a regime of
isotonic shortening which is an active process laying again
outside the scope of this study.

Denote by δz the applied displacement increment in
the isometric test (hard device). Then, the function
T1(δz) describes the force-elongation relation associated
with instantaneous elastic deformation at a frozen con-
formational degrees of freedom, while the function T2(δz)
can be interpreted as characterizing phase equilibrium of
the attached cross-bridges, namely an internal redistri-
bution of the myosin heads between the pre- and post-
power-stroke conformations. Similarly, if T−T0 is a force
increment applied in an isotonic test (soft device), we as-
sume that the function δz1(T ) represents a frozen elastic
response while the function δz2(T ) describes the subse-
quent phase equilibration.

The force-elongation relations associated with both
frozen and annealed responses have been thoroughly
studied, see Fig. 3 (a). As we see, the relations T1(δz)
and δz1(T ) fully overlap, which means that the (almost
linear) elastic response is identical in soft and hard de-
vices. The equilibrium responses, characterized by the
functions T2(δz) and δz2(T ), also overlap except for a
strip marked in gray in Fig. 3 (a) where the response
observed in a hard device could not be reproduced in a
soft device forming a distinct gap in the equilibrium data.
Instead, damped coherent oscillations (hopping) with a
period of about 30 ms were reported [21, 23–26].

We notice that the force-elongation relation recorded
for the gap parameters in the hard device experiments
is highly nonlinear exhibiting an extended plateau where
equilibrium force is practically independent of the elonga-
tion. Such plateau is biologically advantageous because
the system is able to quickly accommodate small external
length perturbations while maintaining the same level of
force. The overall two-stage mechanical response to the
abrupt loading observed in both types of experiments
is reminiscent of Maxwell visco-elasticity, however, it is
clear that it cannot be reproduced by a standard linear
visco-elastic model.

The non-equivalence of the equilibrium responses in
isotonic and isometric experiments suggests that the un-
derlying distributed (multi-element) mechanical system
behaves differently in soft and hard devices. The dis-
parity between the data obtained in these types of tests
becomes even more pronounced if we also consider ki-
netics. Thus, our Fig. 3 (b) shows that the rate of fast
force (length) recovery, interpreted as the inverse of the



3

(a)

M line
(B)

half-sarcomere
(hs)

Z disk
(A)

cross-bridge
(cb)

myosin actin

(b)

(cb)

A
B

A

(hs)

FIG. 1. (a) anatomical structure of a myofibril segment of periodicity showing force generating half-sarcomeres (hs) connected
(passively cross-linked) by Z disks (A) and M lines (B). Each half-sarcomere includes an actin (thin) filament interacting with
a myosin (thick) filament through a parallel bundle of attaching and detaching cross-bridges (cb); (b) topological structure of
the same myofibril emphasizing dominance of long-range interactions. The inset shows the basic mechanical structure of an
individual cross-bridge.
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FIG. 2. Quick recovery experiments. (a) hard device where the average half-sarcomere (hs) length z is controlled. Upper
trace, elongation step applied to the sample; bottom trace, tension response where t1 and t2 at the end of phase 1 and phase
2, respectively, are indicated. (b) soft device where the average half-sarcomere (hs) tension t is controlled. Upper trace, force
step applied to the sample; bottom trace, elongation response with indicated shortening δz1 and δz2 at the end of phase 1 and
phase 2, respectively. Data from [18] for (a) and from [19] for (b).

time separating the elastic and equilibrium phases of the
response, is considerably lower in a soft device than in a
hard device. This peculiarity of the passive behavior of
skeletal muscles, implying that the response in soft device
may be of a two-stage type with the formation of inter-
mediate long living quasi-equilibrium states, was noticed
experimentally [19, 22, 27], but remained unexplained.

B. Theoretical approaches

Our theoretical understanding of active force gener-
ation in skeletal muscles is mostly based on chemo-
mechanical models involving fitting functions [10, 14, 33–
37]. These phenomenological models have been recently
complemented by the mechanistic descriptions interpret-
ing muscle contraction as continuous stochastic dynam-
ics in a complex energy landscape [38–41]. In this paper,
we adopt the mechanistic approach and extend it to the
study of the puzzling aspects of passive responses dis-
played by skeletal muscles exposed to abrupt loading.

The interpretation of fast force recovery as an equi-
libration of two bound conformational states of myosin
motors, representing pre- and post-power-stroke config-
urations, goes back to Huxley and Simmons [17]. They
developed a mechanistic model (HS model) where the
two conformations were described as discrete chemical
species. These spin-type states were then extended as one
dimensional manifolds parameterized by the stretch of a
series elastic spring. In this paper we interpret this model
as a spin system coupled to an elastic element which is a
rather typical physical situations with applications rang-
ing from Jahn-Teller effect and ripples in graphene sheets
to unzipping of biological macromolecules [42–44]. Hux-
ley and Simmons computed equilibrium properties of this
system at finite temperature and approximated kinetics
by a Kramers type reaction equation built on some nat-
ural phenomenological assumptions regarding the force
dependence of the energy barrier separating the two con-
formational states. In about the same time somewhat
similar ideas were developed in the closely related theory
of bi-stable adhesion clusters [45].
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FIG. 3. Results of fast force (length) recovery experiments collected from different references. (a) tension and elongation at
the end of phase 1 (cross and stars) and phase 2 (shaped symbols) with soft device shortening indicated by filled symbols; (b)
rate of the quick recovery process in a hard (open symbols) and in a soft (filled symbols) device: we juxtapose the kinetics of
the systems following the two different pathways between the same initial and final states, namely T = T0, δz = 0 (A), and
T = T2 (B2), δz = δz2 (C2). The gray region shows the gap domain where the quick recovery is not observed in a soft device.
Origin of the data: from [17], from [28], from [29], from [19], from [30].

The HS model was later extended as a more general
chemo-mechanical model by Hill [46, 47] and this theo-
retical approach to the description of both passive and
active responses of skeletal muscles has become broadly
accepted [14, 36, 37, 41, 48]. Based on important insight
from [49] the hard spin model was later generalized as
a soft spin model [50, 51]. This allowed the authors to
replace jump processes by a continuous stochastic dy-
namics in a landscape with clearly specified barriers and
to bring closer the chemo-mechanical modeling and the
description in terms of Brownian ratchets. None of the
above papers, however, addressed the observed peculiar-
ities of passive response including the non-equivalence of
fast recovery in hard and soft devices. In particular, nei-
ther the gap in the equilibrium isotonic data nor the dif-
ference of kinetics in isotonic and isometric protocols has
been previously rationalized.

In this series of papers we provide a compelling evi-
dence that the difference between the passive responses
of skeletal muscles in hard and soft devices is a result of
the dominance of long-range interactions in muscle ar-
chitecture. A quick look at the topological structure of
the muscle acto-myosin network, see Fig. 1 (b), clearly
shows that parallel mechanical connections are present
at different scales. This special structure, where interac-
tions are transmitted through a system of “backbones”,
makes muscle tissue mechanically different from the con-
ventional materials where the dominant interactions are
of short range nature.

The peculiar mechanical behavior of muscle cells is
shared by generic elastically bound hierarchical biological
structures/networks with unfolding passive cross-linkers
[52–55]. In order to explain this behavior one needs to ac-
count for the cooperative folding-unfolding of individual
multi-stable units and we show that such cooperativity
is already recognizable in the simplest athermal setting
ignoring the presence of ATP. A study of such minimal
models may be the best way to make explicit the link be-

tween the coherent response and the dominance of mul-
tiple shared links. This internal architecture leads to a
mean-field type feedback which has been long known as
the source of cooperative behavior not only in biological
but also in social systems [56, 57].

C. Summary of the results

As we have already mentioned, we base our conclusions
on the study of a prototypical model. The starting point
is a representation of a half-sarcomere as a set of N cross-
bridges connected in parallel. This is the simplest archi-
tecture compatible with the idea of a mean-field coupling.
If we interpret a single cross-bridge as a spin unit linked
to a series spring, we obtain the HS model [17]. Huxley
and Simmons studied the behavior of their model only
in a hard device and at finite temperature they did not
observe any cooperative effects. Our analysis shows that
the HS model is degenerate in a hard device and explains
why at finite temperature the collective behavior in the
HS setting can be expected only in a soft device.
To obtain a broader picture we regularize the HS model

in two important ways. First, following [50] we replace
the discrete chemical states (hard spin model) by a con-
tinuous double-well potential with a finite energy barrier
(soft spin model). This regularization, however, turns out
to be insufficient to capture the collective behavior in a
hard device and one also needs to take into consideration
the elastic interaction between individual cross-bridges
due to filament elasticity [58–60]. The simplest way to
capture such interaction is to load the parallel bundle of
the attached cross-bridges through a series spring which
can be then viewed as a lump description of filament
elasticity. This additional regularization introduces the
desired mean-field coupling in a hard device and opens
the way towards obtaining not only qualitative but also
quantitative agreement with experimental data obtained
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in both isometric and isotonic loading conditions. Our
systematic comparison of the mechanical behavior dis-
played by the HS and the RHS (regularized HS) models
shows that the proposed additions to the HS model are
irreducible.

The present paper (referred in the sequel as Paper I)
is the first in a series of three communications. In Paper
I we compare the equilibrium responses of the HS and
the RHS models at zero temperature. In Paper II [9] we
extend the analysis to finite temperatures. Paper III [8]
deals with kinetic (transient) response of the RHS model,
contains parameter fitting and offers a detailed quanti-
tative comparison with available experimental data on
skeletal muscles.

More specifically, in Paper I we show that a salient fea-
ture of the purely mechanical (zero temperature) energy
landscape for both HS and RHS models is the association
of the ground states exclusively with the macroscopic en-
ergy wells corresponding to coherent configurations. In
those states the cross-bridges are all either in pre- or in
post-power-stroke states. An explicit construction also
shows that in both models the coherent states are sepa-
rated by a rugged energy landscape describing multiple
metastable configurations. In the continuum (thermody-
namic) limit the set of metastable states becomes dense
allowing for a hysteretic behavior.

We show, however, that in the HS model the cooper-
ative power-stroke is robust only in a soft device while
in a hard device it can be qualified as “fragile”. By this
we imply that the height of the energy barrier between
the coherent states is finite in a soft device, where the
cross-bridges do interact, and is equal to zero in the de-
generate case of a hard device, where the cross-bridges do
not interact. As a result, in the isometric zero temper-
ature tests, one can expect to see incoherent unfolding
of individual cross-bridges while in similar isotonic con-
ditions the unfolding must be necessarily collective. It
is then not surprising that at finite temperatures the co-
herent states in the HS model completely disappear when
the loading is isometric and while persisting when it is
isotonic, see [8].

In the RHS model the collective behavior is robust in
both types of tests, however, the energy barriers separat-
ing the coherent states are markedly higher in a soft de-
vice than in a hard device which is fully compatible with
kinetic data. More specifically, the computed difference
in height of the energy barriers explains the retarded re-
laxation in isotonic experiments and justifies the recorded
gap in equilibrium data. The analytical transparency of
the model at zero temperature allowed us to trace the ori-
gin of this unusual kinetic behavior directly to mean-field
interactions imposed by a common backbone.

Another manifestation of the non-equivalence of soft
and hard devices, which for both HS and RHS models
persists even in the continuum limit, is that the homog-
enized stiffness can become negative in the hard but not
in a soft device. In other words, the relaxed potential,
representing the global minimum of the energy, is always

convex in a soft device but is only convex-concave in a
hard device. The non-convexity of the ground state en-
ergy in a hard device means that the system cannot be
relaxed by creating configurations with both folded and
unfolded units because of the high elastic energy of the
mixing. Such meta-material response [61], contradicts
the conventional intuition about the material behavior in
systems with short-range interactions. We show that this
behavior is a direct result of the dominance of mean-field
elastic coupling and the ensuing non-additivity of the en-
ergy. Interestingly, the fact that long-range interactions
can lead to negative equilibrium susceptibility has been
long known, for instance, in the theory of self-gravitating
systems [62].
In view of the prototypical nature of the proposed

model, the approach developed in this paper can be
used in the study of other biological systems with long-
range interactions. In particular, it describes the passive
behavior of adhesive binders where individual elements
also interact through a common elastic background and
therefore exhibit cooperative de-bonding [63–66]. Simi-
lar mechanical behavior is also associated with the me-
chanical denaturation of RNA and DNA hairpins exposed
to various types of applied mechanical loadings imposed
through elastic “handles”. Here the effective backbone
is present due to the prevalence of stem-loop structures
and the macroscopic bi-stability manifests itself through
a cooperative hopping between folded and unfolded con-
figurations [42, 44, 67]. Further examples of molecular
systems exhibiting similar collective folding-unfolding be-
havior associated with the dominance of long-range elas-
tic interactions are provided by protein β-hairpins [68]
and coiled coils [69].
The paper is organized as follows. In Section II, we

study the equilibrium mechanical behavior in the clas-
sical HS setting and show that already in this minimal
model the behavior in soft and hard devices is different.
The RHS model is introduced in Section III where we
demonstrate how it removes the degeneracies of the HS
model and effectively interpolates between the soft and
hard device behaviors. The last Section IV contains the
discussion of the results and our conclusions.
Some preliminary results of this work have been briefly

announced in [70]

II. THE HS MODEL

Consider the behavior of an elementary contractile unit
of a striated muscle, a half-sarcomere, containing one
actin filament and one myosin filament cross-linked by N
cross-bridges. In the HS model [17] each cross-bridge is
represented by a bistable potential connected to a series
spring. The potential representing two folding configura-
tions of the head domain bound to the actin filament was
assumed to have infinitely narrow energy wells represent-
ing two chemical states. This is essentially a spin-based
description where each spin unit is coupled with a har-
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FIG. 4. Our interpretation of the HS model of a half-
sarcomere [17]. (a) energy landscape of the head; (b)
schematic of a half-sarcomere containing N cross-bridges in a
soft device.

monic elastic element (oscillator), see Fig. 4.
The potential describing a single spin units can be writ-

ten in the form

uHS (x) =

{

v0 if x = 0,

0 if x = −a.
(1)

Here the spin variable x takes two values associated with
two chemical states, namely 0 and −a which corresponds
to the pre- and the post-power-stroke, respectively. By
a we denoted the “reference” size of the power-stroke in-
terpreted as the distance between two infinitely localized
energy wells with the pre-power-stroke state we associate
an energy level v0 while the post-power-stroke is consid-
ered a ground state with zero energy. The potential (1)
is shown schematically in Fig. 4(a).
In addition to a spin unit with energy (1) each cross-

bridge contains a linear shear spring with stiffness κ; see
Fig. 4(b). The energy of the elastic spring is

u(x) =
κ

2
x2

and the energy of the whole cross-bridge is

ucb = uHS(x) + u(z − x). (2)

Without loss of generality, we can assume that the rest
length of the linear spring is already incorporated into
the definition of the elongation z so that z is the total
elongation relative to the rest length. The variable z is
then an external continuous degree of freedom while the
variables x is a discrete internal degree of freedom.
The behavior of a mechanical system with energy (2)

is non-trivial in the sense that it has a multi-stable re-
sponse. Indeed, consider an individual cross-bridge in a
hard device (at a given elongation z). The equilibrium
state is obtained by solving the equation u′

HS
(x) = z− x.

At each value of z there are two solutions, x1 = −1 and
x0 = 0, and as a consequence, the system can exhibit
two different tension levels. The mechanical behavior an
individual cross-bridge is illustrated in Fig. 5 where the
arrows show a schematic response to sudden shortening
including a frozen elastic phase (A → B1) and a subse-
quent phase equilibration (B1 → B2).

Consider now N attached cross-bridges. Their geo-
metric configuration in a half-sarcomere is such that in
the absence of filament elasticity these elements can be
viewed as arranged in parallel, see Fig. 1(b). By making
here an assumption that the backbone is rigid we ne-
glected the inhomogeneities in the filaments and an ad-
ditional coupling between the cross-bridges [58, 71] which
will play an important role in the RHS model.
To non-dimensionalize the resulting model, which we

associate with the names of Huxley and Simmons (HS
model) even though they never considered such parallel
connection explicitly (for this representation, see [50]),
we choose a as a characteristic distance, associate the
characteristic energy scale with κa2 and normalize forces
by κa. Then the only remaining dimensionless parameter
of the model isN ∼ 100 and we can write the total energy
of the system (per cross-bridge) in the form

v(x; z) =
1

N

N
∑

i=1

[

(1 + xi) v0 +
1

2
(z − xi)

2

]

. (3)

Here, for convenience, we dropped the signs identifying
non-dimensional quantities.
Assume first that the system is placed in a hard device

where the total elongation z is prescribed. In this setting
each cross-bridge is exposed to the same total elongation
z while individual units are independent. This is the
reason why Huxley and Simmons, who only dealt in their
classical paper [17] only with isometric loading, did not
have to consider the parallel bundling explicitly and could
perform their analysis while dealing only with one cross-
bridge. As we are going to see later, the price of this
simplification is the omission of the important collective
effects.
In a soft device, which was not considered in the orig-

inal paper of Huxley and Simmons [17], the prescribed
control parameter is the total tension T . Then the en-
ergy per cross-bridge characterizing such system can be
written as

w(x, z; t) =
1

N

N
∑

i=1

[

(1 + xi) v0 +
1

2
(z − xi)

2

]

− tz, (4)

where t = T/N is the force per cross-bridge. Now for
each cross-bridge both xi and z are internal degrees of
freedom and the individual units can no longer be con-
sidered as independent. Indeed, if we minimize out the
global continuous variable z, we see that the energy de-

pends quadratically on
∑N

i=1 xi. This introduces a mean-
field interaction of infinitely long-range type among cross-
bridges which is ultimately responsible for the coopera-
tive behavior. Similar abstract system involving a mean-
field interaction of Ising spins with a linear spring has
been recently considered in [44] who suggested interesting
applications of such models to force induced unzipping of
biological macromolecules.
In the next two subsections we consider more systemat-

ically the mechanical behavior of N parallel cross-bridges
in hard and soft devices.
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FIG. 5. Properties of a single power-stroke element with the HS model. (a) equilibrium positions for various z; (b) corresponding
tension levels. Solid lines, metastable states; bold line, global minimum. Parameters are κ = 1 and v0 = 0.

A. Hard device

To find the equilibrium response of the HS model in
a hard device we need to solve the following system of
equilibrium equations

∂

∂xi

∣

∣

∣

∣

z,{xj 6=i}

v = 0 for all 1 ≤ i ≤ N. (5)

Since the cross-bridges do not interact, each one can be
considered separately and therefore, as we have already
seen, Eq. 5 has two solutions for each i independently
of the loading z; x̂0 = 0, corresponding to the pre-
power-stroke conformation and x̂1 = −1, corresponding
to the post-power-stroke conformation. A given equilib-
rium state is then characterized by the distribution of
the N cross-bridges between these two spin configura-
tions. Due to the permutational invariance of the prob-
lem, each equilibrium state is fully characterized by a
discrete “order parameter”

p =
1

N

N
∑

i=1

αi,

where αi = 1 if xi = x̂1 = −1 and αi = 0 if xi =
x̂0 = 0. It represents the fraction of cross-bridges in
the post-power-stroke state and becomes a continuous
internal variable defined on [0, 1] in the thermodynamic
(continuous) limit N → ∞.

In A we show that all solutions of (5) are metastable
equilibria in the sense that they represent local minima
of the energy (3). At a given value of the order parameter
p, the energies of the corresponding metastable states are
the same and are equal to

v̂(z, p) = p
1

2
(z + 1)

2
+ (1− p)

(1

2
z2 + v0

)

. (6)

We observe that this energy is a simple linear combina-
tion of the energies of two limiting configurations, one
with p = 1 and the energy 1

2
(z + 1)2 and the other one

with p = 0, and the energy 1
2
z2 + v0. The absence of

mixing is a manifestation of the fact that the two co-
existing populations of cross-bridges, of pre- and post-
power-stroke kind, do not interact in the case of a hard
device loading.
The tension-elongation relations along metastable

branches parameterized by p can be obtained from Eq. 6
by differentiation with respect to the loading parameter,

t̂(z, p) =
∂

∂z
v̂(z, p) = p (z + 1) + (1− p)z = z + p. (7)

One can see that at fixed p, the tension-elongation rela-
tions are equidistant parallel straight lines.
In the thermodynamic limitN → ∞, we obtain a dense

set of metastable configurations. They are infinitely close
to each other and are separated by infinitely small barri-
ers, see our Fig. 14(b). This is a typical situation when
a mechanical system exhibits macroscopic hysteretic be-
havior with the most prominent examples in the theories
of friction, plasticity and shape memory behavior [72]. A
peculiar feature of the HS model is that the domain of
hysteretic behavior extends indefinitely because the spin
system does not have any stress thresholds.
To find the global minimum of the energy we need

to perform at each value of z an additional minimizing
over the discrete variable p. Since the energy is a linear
function of p the global minimum is always located on the
boundary of the admissible domain, either at p = 0 or p =
1. This means that the states with a mixed population
of cross-bridges in pre- and post-power-stroke states are
never globally stable. More specifically, if we compute
the derivative

∂

∂p
v̂(z, p) = z +

1

2
− v0.

we obtain that the configuration with the minimal en-
ergy is in fully in the pre-power-stroke state for z > z∗
and is in fully post-power-stroke state for z < z∗ where
z∗ = v0− 1/2. Although such response can be character-
ized as highly synchronized, we shall see in what follows
that such coherent states are “fragile” artifacts of the de-
generate HS setting that immediately disappear in both
regularized and thermal models.
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FIG. 6. Mechanical response of the HS model in a hard device with N = 5. (a) Energy levels of the metastable states
(p = 0, 1

5
, . . . , 1) for different applied elongations. (b) corresponding tension-elongation relations. (c) and (d) are details of (a)

and (b) with an illustrated response path to fast loading experiment including the frozen elastic phase (A → B1) followed by
the subsequent phase equilibration (B1 → B2). Thick lines, global minimum corresponding to p = 0 (resp. p = 1) for z > z∗
(resp. z < z∗) . Parameters are, v0 = 1 and N = 5.

To illustrate this general picture, we show in Fig. 6(a,b)
the energy of the metastable states and the corresponding
tension-elongation relations for the system with N = 5.
In Fig. 6(c,d) we show the blow up near the initial
state with T = T0 (see A) where the arrows illustrate
a schematic response of the system to sudden shorten-
ing including the frozen elastic phase with the initial
value of the order parameter p fixed (A → B1) followed
by the subsequent phase equilibration when the discrete
variable p assumes the value corresponding to the global
minimum of the energy (B1 → B2). In the continuum
limit N → ∞ the system would look similar with the
global minimum branches remaining unaffected and the
set of local minima filling smoothly the whole domain of
hysteretic behavior. The global minimum energy profile
exhibits a characteristic kink near the crossing (folding)
point. Similar kinks associated with unfolding of hair-
pins and other folding patterns have been observed in the
energy profiles reconstructed from single molecule force
spectroscopy measurements of proteins and nucleic acids
[43].

One feature of the emerging picture is unusual given
our experience with systems exhibiting mostly short
range interactions. First, we notice that the relaxed en-
ergy corresponding to the path of global minimization is
nonconvex independently of the number of units. This
means that the energy is not getting convexified by the
formation of mixtures as in systems with short range in-

teractions (see, for instance, [73]) because the system is
non-additive and all mixed states are energetically unfa-
vorable due to high cost of mixing. This situation, how-
ever, is reminiscent of the one in the theory of elastic
phase transitions where the relaxed energy is also non-
convex in the general case (it is only quasi-convex) which
is again the consequence of long-range interactions exem-
plified in elasticity by the gradient constraint on the order
parameter (see, for instance, [74]).

An interesting consequence of the energy nonconvexity
is the non-monotonicity of the force-elongation relation
associated with the global minimum path. In particular,
as we see in Fig. 6b, it has a negative stiffness at the
point where all cross-bridges collectively flip from pre-
to post-power-stroke state. The fact that the force can
drop down when the system is stretched or jump up when
it is shortened is rather unusual from the point of view
of a conventional material behavior. Similar mechani-
cal behavior has been recently artificially engineered in
meta-materials by drawing on the Braess paradox for de-
centralized globally connected networks [61, 75]. As in
our case, the mean-field type coupling in such materials
is achieved via parallel connections with multiple shared
links. Another biological example of a mechanical system
exhibiting negative stiffness is provided by unzipping of
RNA and DNA hairpins [67, 76]. In this case the finite
temperature is an important part of the physical picture
and instead of a localized jump in response to a gradual
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loading in a hard device we observe an interval of co-
herent hopping between two coherent states. In partially
folded bio-molecules the long-range interactions originate
from the ubiquity of the hairpin structures formed by
based-paired segments. Such behavior at finite tempera-
tures, also induced by long-range interactions, has been
of course anticipated by the general statistical theory of
such systems [62, 77, 78].

B. Soft device

Consider now the HS model loaded in a soft device.
Equilibrium states can be found as solutions of the fol-
lowing equations























∂w

∂xi

∣

∣

∣

∣

t,{xj 6=i}

= 0 for all 1 ≤ i ≤ N

∂w

∂z

∣

∣

∣

∣

t,{xi}

= 0

Here t is the control parameter while z and xi are internal
variables. As in the hard device case, the cross-bridges
are fully interchangeable and an equilibrium state is fully
characterized by the fraction of cross-bridges in the post-
power-stroke state p. Each value of the order parameter
p defines a branch of local minimizers of the energy (4)
parameterized by t, see A. The set of force-elongation
relations, characterizing the multitude of these branches,
coincide in the cases of soft and hard devices.
At a given value of p, the energy of a metastable state

reads

ŵ(t, p) = −
1

2
t2 + pt+

1

2
p(1− p) + (1− p)v0. (9)

In contrast to the case of a hard device, here there is a
nontrivial coupling term p(1 − p) describing the energy
of mixing. The presence of this term is a signature of
a mean-field interaction among individual cross-bridges
which, as we have seen, exists in the HS model only in
a soft device. The physical mechanism of such interac-
tion can be easily understood. In a soft device the total
tension borne by an assembly of cross-bridges has to bal-
ance the applied loading t and if one element changes
its configuration, its contribution to the common tension
changes accordingly and the other elements must adjust
to maintain the force balance. Instead, in a hard de-
vice, a change of total tension caused by one of the cross-
bridges changing its conformational state does not affect
other cross-bridges because the common elongation z re-
mains the same. This is the reason why one can expect
cooperative behavior in a soft device but not in a hard
device.
The tension-elongation relation associated with a set

of metastable states sharing the same value of the pa-
rameter p can be written in the form

ẑ(t, p) = −
∂

∂t
ŵ(t, p) = t− p.

As we have already mentioned, at a given value of p this
relation is identical with its counterpart in a hard device,
see Eq.7.

The globally stable states can be found by minimizing
(9) over p. Since ∂2ŵ/∂p2 = −1, this function is concave
in p, and therefore, as in the case of a hard device, the
global minimum is again attained either at p = 1 or p =
0. The energies of these coherent configurations coincide
when t = t∗ = v0 and therefore for t > t∗ the global
minimum is achieved when all cross-bridges are in the
pre-power-stroke state (p = 0) and for t < t∗ when they
are all in the post-power-stroke state ( p = 1).

In Fig. 7(a,b) we illustrate the structure of the energy-
tension and the tension-elongation relations correspond-
ing to different values of p for the system with N = 5. In
Fig. 7(c,d) we zoom into domain near t = t∗ and show
schematically the response of the system to sudden appli-
cation of a load increment with an elastic phase (A → C1)
followed by the power-stroke phase C1 → C2.

Notice that in contrast to the case of a hard device, the
force-elongation relation characterizing the global mini-
mum in a soft device exhibits a plateau signaling a dis-
continuity in elongation as the cross-bridges switch col-
lectively at t = t∗ from pre- to post-power-stroke con-
formation. This plateau replaces the region of negative
stiffness detected in the hard device case and the force-
elongation relation becomes monotone.

This difference between the globally stable behaviors
in soft and hard devices survives in the limit N → ∞.
This suggests that even in the continuum limit the sta-
ble “material” responses of our system in hard and soft
devices are not equivalent. Such behavior would be com-
pletely unexpected from the perspective of classical con-
tinuum mechanics, however, it is characteristic of sys-
tems with domineering long-range interactions [79]. For
instance, similar behavior would be exhibited by the sys-
tem proposed in [44] as a model of unzipping for biolog-
ical macromolecules. The actual experiments on RNA
discussed in [42] show a slightly different behavior with a
tilted plateau because the loading device was of a mixed
type.

Another interesting manifestation of the presence of
long-range interactions in both soft and hard devices is
that a mixture state always has higher energy than at
least one of the “pure” states and therefore heteroge-
neous configurations are energetically suboptimal. No-
tice, however, that in a hard device the mixture states
at the transition point (z = z∗) have exactly the same
energy as the pure state which suggests the preference of
the coherent configurations is “fragile”, see Fig. 6(a). In-
stead, in a soft device there is always a finite energy gap
between the pure and mixed states showing that the en-
ergetic advantage of the former is robust; see Fig. 12(a).
This seemingly trivial observation is behind the funda-
mental difference in kinetic behavior of muscles in soft
and hard devices. It will be further deepened in the
study of the regularized HS model in the next section
and will resurface again during the analysis of the finite
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FIG. 7. Mechanical response of the HS model in a soft device. (a) Energy levels of the metastable states (p = 0, 1

5
, . . . , 1)

for different applied forces. (b) corresponding tension-elongation relations. (c)/(d) show details of (a)/(b) with an illustrated
response path to fast loading experiment. Thick lines, global minimum corresponding to p = 0 / p = 1 for t > t∗ / t < t∗.
Parameters are, v0 = 1 and N = 5.

temperature effects in paper II [8].

C. Energy barriers

In anticipation of the detailed study of kinetics of the
power-stroke in Paper III [9] we can already now pose the
question about the size of the energy barrier separating
the two conformational states for a parallel bundle of N
cross-bridges in soft and hard devices. The corresponding
transition state defines the activation energy which play
a crucial role in the setting of the rate of the thermally
driven transition process.

As we have already seen, in the HS model the transition
between the pre- and post-power-stroke states along the
global energy minimum path is both abrupt and collec-
tive independently of the type of the loading device. This
means that the change from a configuration with p = 0 to
a configuration with p = 1 takes place at a single value of
the loading parameter and that all cross-bridges undergo
the configurational transition simultaneously. However,
the implied global minimization does not see the energy
barriers separating the corresponding “pure” states and
these barriers turn out to be drastically different for our
two loading protocols.

We recall that the collective transitions take place at
z = z∗ in a hard device and t = t∗ in a soft device.
To access the energy barriers and to find the transition
states (saddle points of the energy) we need to study the

energy dependence on p at these values of parameters.
For general values of the loading parameters this depen-
dence was found to be linear in a hard device, indicating
that there is no conventional barrier, and concave in a
soft device which means that there is a barrier. The dif-
ference between the corresponding energy landscapes at
the threshold values of parameters is illustrated in Fig. 8
(a) for N = 5. For the ease of comparison the energy
minima are shifted to zero in both loading conditions.

One can see that in a hard device the (excess) energy
of all mixture states is identically equal to zero which
means that the (discrete) activation energy is equal to
zero, see the solid line. Instead, in a soft device the
(excess) energies of the same configurations are always
larger than zero with the transition state corresponding
to some 0 < p < 1, see the dashed line. This observation
shows that a switch from pre to post-power-stroke con-
figuration in a soft device carries an energetic cost so the
coexisting pure states are robust while in a hard device
the transition is cost-free and the coexisting pure states
are “fragile”. This is in agreement with experimental ob-
servations showing much slower power-stroke kinetics in
the case of a soft device, see Fig. 3.

To understand the origin of this disparity it is suf-
ficient to consider the minimal HS system with only 2
cross-bridges (N = 2); see Fig. 8 (b). Here for simplicity
we assumed that v0 = 0 implying t∗ = 0 and z∗ = −1/2.
The two “pure” configurations are labeled as A (p = 0)
and C (p = 1) at t = t∗ = 0 and as D (p = 0) and B
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FIG. 8. (a) Energy landscape at the global minimum transition for the HS model. Solid lines, hard device at z = z∗; Dashed
lines, soft device at t = t∗. Dots represent the energy of the different configurations for a system with N = 5; lines correspond
to the limit N → ∞. Parameters are v0 = 1 and N = 5. (b) Representation of the behavior of a system with two cross-bridges
with v=0 imposing t∗ = 0 and z∗ = −1/2, the transition of the global minimum tension-elongation curve (thick) occurring
in a stress-free configuration. Dashed lines, metastable states p = 0 and p = 1. The intermediate stress free configuration is
obtained either by mixing the two geometrically compatible states B and D in a hard device which results in a B+D structure
without additional internal stress or by mixing the two geometrically incompatible states A and C in a soft device which results
in a A+ C structure with internal residual stress.

(p = 1) at z = z∗ = −1/2. In a hard device, where the
two elements do not interact, the transition from state D
to state B at a given z = z∗ goes through the configura-
tion B+D which has the same energy as configurationsD
and B. Indeed, the cross-bridges in pre- and post-power-
stroke states are geometrically perfectly compatible and
their mixing requires no additional energy. Instead, in
a soft device, where individual elements interact, a tran-
sition from state A to state C taking place at a given
t = 0 requires passing through the transition state A+C
which has a nonzero residual stress. The reason is that
the individual cross-bridges in this mixture state come
with different values of z and therefore the energy of the
stressed “mixed” configuration A + C is larger than the
energies of the “pure” unstressed states A and C.

To summarize, the barrier in a soft device is higher
than in a hard device because because in a soft device a
transition is a genuinely cooperative effect requiring es-
sential interaction of individual elements. Instead, in a
hard device the conformational change in different cross-
bridges takes place independently without any collective
interaction. This point will become more clear in the
presence of finite temperature (see Paper II, [8]) which
breaks the permutational symmetry of the system and
spreads the transition along a finite range of loadings.
Then the HS model in a hard device does not exhibit a
collective phase transition and behaves as paramagnetic
system of non-interacting spins. Instead, the behavior
of the same system a soft device is ferromagnetic due to
the presence of mean-field interactions between individ-
ual spins.

It is appropriate to mention here that our description
of the barriers in the HS model at finite N is naturally in-
complete as in any spin model because of the assumption

that the microscopic energy wells are infinitely narrow.
This is in fact the reason why the original HS model
was not fully mechanical and required a phenomenologi-
cal closure. The identified deficiency will be addressed in
the next section where we show that the microscopic bar-
riers revealed by the regularized model disappear in the
continuum limit while the macroscopic barriers, studied
in the present section, end up controlling the transition
rate between the two homogenous states. We can then
conclude that despite its prototypical nature the classi-
cal HS model provides the simplest mechanical explana-
tion of the “mysterious” difference between kinetics of
the power-stroke in hard and soft devices.

III. THE RHS MODEL

A great advantage of the HS model is that it can cap-
ture the main effects associated with fast force recov-
ery, including the non-equivalence of hard and soft load-
ings, while being analytically transparent. However, such
minimal description has its limitations. The main draw-
back is that the use of hard spins (chemical states), pre-
vents one from recovering the whole energy landscape
and modeling dynamics as a continuous stochastic evo-
lution. In particular, as we have seen in the previous
section, the HS model remains ambiguous regarding the
actual size of the microscopic energy barriers. Another
problem is that in the hard device setting the HS model is
degenerate because individual cross-bridges do not inter-
act and configurations with different values of the order
parameter become equivalent. This suggests infinitely
fast kinetics which contradicts observations.
To deal with these problems we regularize the HS
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FIG. 9. RHS model of a half-sarcomere. (a) dimensional en-
ergy landscape of the head. (b) schematic of a half-sarcomere
containing N cross-bridges in a hard device.

model by adding two additional physical mechanisms.
The goal is to obtain a minimal model of the next level
which is free of the above drawbacks but is still relatively
transparent analytically.
First, following [50] we replace hard spins by soft spins,

so that x becomes a continuous variable. For simplicity
we assume that the corresponding double-well potential
can be represented as a minimum of two parabolas (see
Fig. 9(a)) and the comparison with the reconstructed po-
tentials for unfolding biological macro-molecules shows
that this approximation may be in fact very good [43].
By using non-dimensional variables we can then write

uRHS(x) =

{

1
2
k0(x)

2 + v0 if x > l
1
2
k1(x+ 1)2 if x ≤ l

Here l is the dimensionless position of the energy barrier,
v0 is the dimensionless energy bias of the post power-
stroke state and κ1,0 = κ1,0/κ, are dimensionless elas-
tic moduli of the pre-power-stroke and post-power-stroke
states, respectively. In the sequel we drop bars identify-
ing non-dimensional variable for convenience. In the new
model the bottoms of the energy wells remain the same
as in the HS model but now the barrier separating the
two conformational states is well defined, see Fig. 9. It is
clear that the bi-quadratic model is too rigid to dissociate
the height of the barrier from the transformation strain
and the curvatures of the wells so it should be viewed
only as a first step.
The mechanical response of a single “soft-spin type”

cross-bridge with potential (III) and an attached series
spring is governed by the dimensionless energy

ucb = uRHS(x) +
1

2
(y − x)2

where y is the total elongation of a cross-bridge. Equilib-
rium values of the internal degree of freedom x1 and x0

are obtained as two solutions of the equation u′
RHS

(x) =
y − x, which now depend on the total elongation, see
Fig. 10(a). The presence of a finite energy barrier in
this modification of the HS model reduces the domain of
multi-valuedness of the equilibrium response to a finite
interval of y, see Fig 10. Notice the multi-valuedness of
the mechanical coupling between the variables x and y

and the appearance of the spinodal branch x∗ that con-
nects the two stable branches x1(y) and x0(y). In the
same figure we show the response of this element to a
sudden shortening with an elastic unloading in a pre-
power-stroke state (A → B1) followed by the conforma-
tional change to a post power-stroke state (B1 → B2).
To avoid complete mechanical independence of the

cross-bridges in a hard device we should also take into
account the finite stiffness of actin and myosin filaments
[59, 60]. The induced elastic interaction of individual
cross-bridges creates an additional mechanism of self-
organization which has been singled out as a possible
source of collective oscillations observed in tetanized mus-
cles near the stall force conditions [80, 81]. It is also im-
portant that the presence of filament elasticity makes the
soft and hard devices less disparate than in the HS model
and can create new effects associated with the mixed na-
ture of the loading [58, 71, 82].
Since the detailed account of filament elasticity in the

nonlinear mechanical model destroys the transparency of
the simplest HS setting we, following [80], use a lump
description of filament elasticity by introducing an addi-
tional elastic spring with stiffness λf = κf/(Nκ) and the
energy

uf (x) = N
λf

2
(x)2.

To mimic the mixed loading device we attach this spring
in series with our parallel bundle of cross-bridges whose
common backbone is now characterized by the internal
variable y, see Fig. 9(b). While this approximate way of
describing filament elasticity grossly misrepresents short
range interactions [58, 83], it allows us to maintain the
analytical transparency of the model.
Denoting by z the total elongation, we can write the

total energy of the system per cross-bridge in the form

v(x, y; z) =
1

N

N
∑

i=1

[

uRHS(xi) +
1

2
(y − xi)

2

]

+
λf

2
(z−y)2.

(10)
In the hard device case z is the control parameter, xi

are the continuous microscopic internal variables gener-
alizing the spin variables in the HS model and y is a new
continuous mesoscopic internal variable. Notice that now
even in a hard device the individual cross-bridges are not
independent; the implicit mean-field interaction becomes
obvious if the variable y is adiabatically eliminated (min-
imized out). The resulting RHS model (regularized HS
model) can then be expected to exhibit in a hard device
some features that were characteristic of the behavior of
the HS model only in a soft device.
Moreover, the general HS model can be viewed as an

asymptotic limit of the RHS model in a hard device. To
obtain the hard device case (in HS setting) we need to
perform the following double asymtotics: κ1,0 → ∞ and
λf → ∞. The first of these limits ensures that x becomes
a spin variable while the second guarantees that y = z.
To obtain the soft device case we need to consider the
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triple limit: κ1,0 → ∞, λf → 0 and z → ∞ where the
last two limits must be linked in the sense that λfz → t
ensuring that the force per cross-bridge t remains finite.

In a soft device, the total energy per cross-bridge in
the RHS model can be written as

w(x, y, z; t) =
1

N

N
∑

i=1

[

uRHS(xi) +
1

2
(y − xi)

2

]

+
λf

2
(z − y)2 − tz,

where t = T/N is again the applied force per cross-
bridge. Here the control variable is t while the internal
variables are now all three: xi, y and z. In terms of the
structure of internal interactions, this model is not fun-
damentally different from the HS model in a soft device,
however, it contains an important new non-dimensional
parameter λf allowing one to vary the strength of the
interactions between individual cross-bridges.
In the next two subsections, we study more systemati-

cally the mechanical response of the RHS model in hard
and soft devices.

A. Hard device

To find equilibria of the RHS model in a hard device
we need to solve the following system of equations
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∂xi

∣
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∣

z,y,{xj 6=i}

= 0 for all 1 ≤ i ≤ N

∂v
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∣

∣

∣

∣
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(11a)

(11b)

Equations Eq.11a have up to 3 solutions that can be pa-
rameterized by y,











x1 (y) = (1− λ1) (y)− λ1, if x1 < l

x0 (y) = (1− λ0) (y) , if x0 > l

x∗ = l.

(12)

Here we have redefined our dimensionless parameters

λ0 =
κ0

1 + κ0

, λ1 =
κ1

1 + κ1

.

By using Eq.11b we can explicitly express the mesoscopic
variable y through the microscopic variables xi,

y(x; z) =
1

1 + λf

(

λfz +
1

N

N
∑

i=1

xi

)

. (13)

Because of the permutational invariance the equilibrium

solution of (11) is fully characterized by p = 1
N

∑N

i=1 αi,
the fraction of cross-bridges in the post-power-stroke con-

formation, an r = 1
N

∑N

i=1(1− αi), the fraction of cross-
bridges in the pre-power-stroke conformation. Here we
defined an auxiliary spin variable

αi =

{

1 if xi = x1

0 if x0 = x0

The fraction of cross-bridges at the “spinodal” point x∗

can be now written as q = 1− p− r.
By using (13), we can eliminate the variable y and ob-

tain an explicit representation of the microconfiguration
in terms of (p, q, r)

ŷ (z, p, q, r) =
λf

λf + Λ(p, q, r)

(

z −
pλ1 − ql

λf

)

(14)

x̂1 (z, p, q, r) =
1− λ1

λf + Λ(p, q, r)
(λfz − pλ1 + ql)− λ1

(15)

x̂0 (z, p, q, r) =
1− λ0

λf + Λ(p, q, r)
(λfz − pλ1 + ql) (16)

Here Λ(p, q, r) = pλ1 + q+ rλ0, represents the equivalent
stiffness of the parallel bundle of cross-bridges in a mixed
configuration parameterized by (p, q, r).
The energies of the equilibrium configurations can be
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FIG. 11. Mechanical response of the RHS model in a hard device. (a) Energy levels of all the (p, q, r) configurations for the
case N = 3 for different applied elongations. The insert in (a) shows the details in the dashed square. (b) corresponding
tension-elongation relations. Solid lines, metastable states with p = 0, 1/3, 2/3, 1 and r = 1 − p, q = 0; dotted lines, unstable
state with q 6= 0; thick lines, global minimum corresponding to p = 0, r = 1, for z > z∗, and to p = 1, r = 0, for / z < z∗. (c,d)
blow-up of (a,b) illustrating the response of the system to abrupt shortening with an elastic unloading (A → B1) followed by
a massive conformational change in isometric conditions (B1 → B2). Parameters are, λ1 = 0.4, λ0 = 0.7, l = −0.3, λf = 1 and
N = 3.

now computed explicitly. For a given (p, q, r) we obtain

v̂(z, p, q, r) =
1

2

[

λf

[

pλ1(z + 1)2 + q(z − l)2 + rλ0z
2
]

λf + Λ(p, q, r)

+
pλ1 [rλ0 + q(1 + 2l)]− ql2(q + λf )

λf + Λ(p, q, r)

+
ql2

1− λ0

+ 2(q + r)v0

]

. (17)

The corresponding tension-elongation curves can be writ-
ten as

t̂ (z, p, q, r) =
∂

∂z
v̂(z, p, q, r)

=
λfΛ(p, q, r)

λf + Λ(p, q, r)

(

z +
pλ1 − ql

Λ(p, q, r)

)

.

Each discrete set of parameters (p, q, r) defines an equi-
librium branch which extends between the two limits
[zinf , zsup] induced by the inequalities x̂1 < l and x̂0 > l.

These limits can be computed explicitly

zinf(p, q, r) =
l(λf + Λ(p, q, r)) + (1− λ0)(pλ1 − ql)

λf (1− λ0)
,

zsup(p, q, r) =
(l + λ1)

(

λf + Λ(p, q, r)
)

λf (1− λ1)

+
(1− λ1)(pλ1 − ql)

λf (1− λ1)
.

The compactness of the equilibrium branches associated
with the finiteness of the energy barriers is a major differ-
ence between the RHS model and the HS model where
each equilibrium branch could be extended for all val-
ues of the loading parameter. Notice also that in the
case (λf = ∞) studied in [50] when the filament elas-
ticity is absent and the cross-bridges do not interact,
these boundaries become independent of the configura-
tion: zinf = l/(1− λ0) and zsup = (l + λ1)/(1− λ1).
To identify local minima (metastable states) among

the equilibrium states we need to compute the Hessian of
the function v(xi, y). The analysis presented in A shows
that all equilibria are stable except for the ones with
q 6= 0 that are unstable. Therefore, as in the HS model,
the metastable configurations can be parameterized by a
single parameter p.
The obtained results are illustrated in Fig. 11(a,b)

where we show the complete set of equilibria for the RHS
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model in a hard device with N = 3. The metastable
branches are indicated by solid lines and the unstable
ones - by dotted lines. In Fig 11(c,d) we show a blow up
illustrating the response of the system to abrupt short-
ening with an elastic unloading (A → B1) followed by
a massive conformational change in isometric conditions
(B1 → B2).

Notice that the global minimum of the energy, shown
by a bold line, is again achieved exclusively on homoge-
neous configurations configurations (1, 0, 0) and (0, 0, 1).
To show this analytically, we assume that r = 0, q = 1−p
and compute the second derivatives of v in (17) while in-
terpreting p as a continuous variable

∂2

∂p2
v̂ (z, p) = −

1

2

[λfλ1 (z + 1) + λ0 (λ1 − zλf )]
2

[pλ1 + (1− p)λ0 + λf ]
3

≤ 0.

(18)
The obtained inequality shows that the energy is con-
cave, which means that the global minimum is reached
on fully synchronized configurations. The switch between
the two homogeneous states takes place at the z = z∗
which solves v̂(z, 0, 0, 1) = v̂(z, 1, 0, 0). While the global
minimum path in the RHS model has the same structure
as in the HS model, we see that in the transition point
z = z∗ the energies of the mixture states are strictly
higher than the energies of the coexisting pure states,
see the insert in Fig. 11. This shows that in RHS the co-
herent states in a hard device are no longer ”fragile” and
the synchronization is robust. This is of course an effect
of the mean-field interaction between individual cross-
bridges which is induced by the account of filament elas-
ticity and which disappears in the HS limit λf → ∞.

The computed force-elongation relations are shown in
Fig. 11(b). The basic structure of the global minimum
path is the same as in the HS model with a finite jump
at z = z∗. The difference is that now similar jump
can occurs if the system occupying one of the mixed
metastable configurations is driven beyond the limit of
stability of the corresponding inhomogeneous state. In-
stead, in the HS model such stability limits are absent
and the metastable branches extend to infinity.

One can see, however, that the singular meta-material
behavior exhibited by the HS model was not regularized
in the RHS model where the stiffness corresponding to
the globally stable response is still equal to −∞ at a sin-
gle point and the picture remains the same in the limit
N → ∞. To account appropriately for the the capacity
of the system to develop a gradual “tension” increment
under shortening and a gradual “compression” increment
under lengthening, the lump description of filament elas-
ticity is not sufficient and a process of the wave type
propagation of the power-stroke transition along the fil-
ament must be taken into consideration.

B. Soft device

As we have already mentioned, the behavior of the
RHS model in a soft device is not fundamentally differ-
ent from the behavior of the HS model except for the
finiteness of the equilibrium branches. Both models ac-
count adequately for the mean-field interaction among
the cross-bridges and describe similarly robust coopera-
tive effects.
More specifically, to find equilibrium states in the RHS

model loaded in a soft device we need to solve the follow-
ing system
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As in the hard device case, each cross-bridge can be in
three states and the equilibrium branches can be param-
eterized by the triplet (p, q, r)

ŷ(t, p, q, r) =
1

Λ(p, q, r)
t−

pλ1 − ql

Λ(p, q, r)

x̂1(t, p, q, r) =
(1− λ1)

Λ(p, q, r)
(t− pλ1 + ql)− λ1,

x̂0(t, p, q, r) =
(1− λ0)

Λ(p, q, r)
(t− pλ1 + ql).

The energy of a configuration (p, q, r) can be again com-
puted explicitly

ŵ(t, p, q, r) = −
1

2

[

1

Λ(p, q, r)
(t− pλ1 + ql)2 +

t2

λf

−2(q + r)v0 − q
l2

1− λ0

− pλ1

]

.

The corresponding tension-elongation relations read

ẑ (t, p, q, r) = −
∂

∂t
ŵ(t, p, q, r)

=

(

1

λf

+
1

Λ(p, q, r)

)

t−
pλ1 − ql

Λ(p, q, r)
.

Finally, we can write the expressions for the lower and
upper boundaries of a branch labeled by (p, q, r)

tsup(p, q, r) =
l + λ1

1− λ1

Λ(p, q, r) + pλ1 − ql,

tinf(p, q, r) =
l

1− λ0

Λ(p, q, r) + pλ1 − ql.

The stability analysis shows again – see A– that con-
figurations with q 6= 0 are unstable and therefore all
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FIG. 12. Mechanical response of the RHS model in a soft device. (a) Energy levels of all the (p, q, r) configurations for the
case N = 3 for different applied tensions. (b) corresponding tension-elongation relations. Solid lines, metastable states with
p = 0, 1/3, 2/3, 1 and r = 1 − p, q = 0; dotted lines, unstable state with r 6= 0; thick lines, global minimum corresponding to
p = 0, r = 1 for t > t∗ and to p = 1, r = 0, for / t < t∗. (c,d) blow-up of (a,b) illustrating the response of the system to
abrupt shortening with an elastic unloading (A → B1) followed by a massive conformational change in isometric conditions
(B1 → B2). Parameters are as in Fig. 11.

metastable states can be parameterized by a single pa-
rameter p. Since

∂2

∂p2
ŵ (t, p) = −

[

(λ1 − λ0)
2
(t− pλ1)

2

(pλ1 + (1− p)λ0)
3

+

λ2
1

pλ1 + (1− p)λ0

]

≤ 0,

the global minimum is again attained either at p = 1
or p = 0 and these pure states are robust. The switch
between them, signaling a collective power-stroke, takes
place at t = t∗ satisfying ŵ(t, 1, 0, 0) = ŵ(t, 0, 0, 1).
The equilibrium response of the RHS model in a soft

device is illustrated in Fig. 12 where we show the en-
ergies of all equilibrium branches and the correspond-
ing tension-elongation curves; metastable branches are
shown by solid lines, unstable branches by dotted lines
and the global minimum path is presented by a bold line.
The individual t(δz) curves for metastable equilibria are
the same in soft and hard devices and the difference be-
tween the two protocols can be again seen only if we con-
sider the global minimum path. As in the case of the HS
model, here we do not observe any jumps in stress that
can be interpreted as a negative stiffness behavior. In-
stead, the globally stable response contains an extended
plateau at t = t∗, see Fig. 12b.

Although we illustrated the obtained explicit formulas
for the case N = 3, it is clear that the constitutive be-
havior of the system remains quantitatively the same in
the continuum limit N → ∞. While the distribution of
branches in the metastability domain becomes dense, the
global minimum force-elongation relation remains mono-
tone. This suggests that in hard and soft device load-
ings the RHS model generates fundamentally different
globally stable responses and that this difference persists
even in the continuum/thermodynamic limit. We reit-
erate that this nontrivial effect of the domineering long-
range interactions can be already captured at the basic
level by the classical HS model.

C. Energy barriers

We now turn to the analysis of energy barriers ulti-
mately controlling the kinetics of fast force recovery. We
recall that in the HS model individual microscopic spin
states were not connected and the transitions between
them had to be interpreted as jumps. Instead, in the
RHS model the energy landscape is continuous and the
barriers can be characterized exhaustively.
Consider first the case of a hard device and assume

that at a chosen value of z we have two homogeneous
equilibria with p = 0 and p = 1 with one of them being
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globally stable. The energy minimizing “reaction path”
connecting these homogeneous states goes through a set
of inhomogeneous metastable states with 0 < p < 1.
The energies of these states can be obtained by putting
q = 0, r = 1− p in (17)

v̂(z, p) =
1

2

[

λf

(

pλ1(z + 1)2 + (1− p)λ0z
2
)

λf + Λ[p, 0, (1− p)]

+
pλ1(1− p)λ0

λf + Λ[p, 0, (1− p)]
+ 2(1− p)v0

]

.

We know that for λf < ∞ the function v̂(z, p) is concave
in p, see Eq. 18. If p was a continuous variable the max-
imum of this function at 0 < p < 1 would characterize
the “transition state”. However, at finite N the vari-
able p is discrete and to characterize the transition state
we need to described the microscopic barriers separating
configurations with different values of p. These barriers,
associated with the conformational changes in individual
cross-bridges, were essentially infinite in the HS model.
The fine structure of the energy barriers can be re-

constructed in the RHS model. To this end, consider
a metastable configuration with N0 cross-bridges in the
pre power-stroke state and N1 = N −N0 cross-bridges in
the post-power-stroke state. We have shown before that
this configuration is fully characterized by the parame-
ter p = N1/N . Suppose that now that a single cross-
bridge switches from pre to post-power-stroke state. To
find the barrier which the system has to overcome, we
need to choose a microscopic “reaction path” separating
the initial configuration characterized by p and the final
configuration characterized by p + 1/N . It is natural to
assume that the “reaction coordinate” is the strain xi in
the cross-bridge with index i undergoing the conforma-
tional change. Due to permutational invariance (mean-
field type interaction) the transforming element may be
chosen arbitrarily among the N0 elements that are ini-
tially in the pre power-stroke state and without loss of
generality we assume that i = N . To find the energy
variation along this reaction path we need to minimize
out the rest of the internal variables x1, . . . , xN−1, y. We
obtain

v(p, z, xN ) = p
λ1

2
[y(p, z) + ǫ(p, xN ) + 1]

2

+ (1− p)

(

λ0

2
[y(p, z) + ǫ(p, xN )]

2
+ v0

)

+
1

N

(

uRHS(x) +
1

2
[y(p, z) + ǫ(p, xN )− xN ]

2

)

+
λf

2
[z − y(p, z)− ǫ(p, xN )]

2
(19)

where

y(p, z) =
1

λf + 1/N + pλ1 + (1− p)λ0

(λfz − pλ1)

ǫ(p, xN ) =
xN

N (λf + 1/N + pλ1 + (1− p)λ0)
.

For convenience we map the reaction coordinate to the
interval [p, p + 1/N ] by replacing xN with a stretched
variable ξ defined by

ξ = p+
1

N

xN − x̂0(p, z)

x̂1(p+ 1/N, z)− x̂0(p, z)
.

where x̂0 and x̂1 are the locations of the bottoms of the
energy wells defined by Eqs.15 and 16. The values ξ = p
and ξ = p+1/N are associated with the metastable states
v̂(p, q = 0, r) and v̂(p+1/N, q = 0, r−1/N), respectively,
see Eq. 6. At ξ = p + (1/N)(l − x̂0)/(x̂1 − x̂0), we have
xN = l and the energy has a local maximum, namely
v̂(p, q = 1/N, r− 1/N), corresponding the the configura-
tion with exactly one spring in the spinodal state. These
states belong to the unstable equilibrium branches char-
acterized by q > 0 and shown in Fig. 11 by dotted lines.
It is clear that now the same variable ξ can be used to de-
scribe transitions between successive pairs of neighboring
metastable states at different values of p.

To facilitate comparison with the HS model we shall
again limit our attention to the barriers associated with
the transition between the two globally stable coherent
states taking place at z = z∗. The combined energy
landscape v(ξ) at z = z∗ is shown in Fig. 13(a) where
we compare two cases, N = 5 and N → ∞. At finite N
we observe a macroscopic barrier, not captured by the
HS model, with a superimposed set of microscopic barri-
ers representing the “lattice pinning”. These microscopic
barriers are due to the discreetness of the problem and
they disappear in the continuum/thermodynamic limit
N = ∞ where ξ → p; see the dashed line.

To summarize, we identified here two new effects vis-
à-vis the HS model. First, in a hard device at z = z∗
the HS models predicted that the macroscopic barrier
is absent. The presence of a nonzero macroscopic bar-
rier in the RHS model is due to the account of the fila-
ment elasticity which brings a mean-field coupling which
robustly favors synchronized states. The second effect
is related to the ruggedness of the energy landscape at
the microscale which was not resolved at all in the HS
model. This fine structure of the energy has nothing to
do with filament elasticity and is fully determined by the
bi-quadratic potential describing the power-stroke in a
single myosin head. One can see that both new elements
distinguishing the RHS model from the HS model are
essential.

Similar structure of the energy along the reaction path
connecting two coherent states can be reconstructed for
the RHS system in a soft device. In this case the partially
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FIG. 13. Energy landscape at the global minimum transition for the RHS model with N = 5. (a) hard device; (b), soft device.
Solid lines, successive barriers obtained from Eqs. 19 (a) and 20 (b); Dashed lines, continuum limit, N → ∞. Energy minima
are arbitrarily set to 0 for comparison. Here, λf = 1 and other parameters are as in Fig. 11.

equilibrated energy at fixed t, p and xN has the form

w(p, t, xN ) = p
λ1

2
[y(p, t) + ǫ(p, xN ) + 1]

2

+ (1− p)

[

λ0

2
[y(p, t) + ǫ(p, xN )]

2
+ v0

]

+
1

N

(

uRHS(xN ) +
1

2
[y(p, t) + ǫ(p, xN )− xN ]

2

)

+
λf

2
[z(p, t)− y(p, t)− ǫ(p, xN )]

2
− tz(p, t) (20)

where

y(p, t) =
1

1/N + pλ1 + (1− p)λ0

(t− pλ1)

z(p, t) = y(p, t) + t/λf

ǫ(p, xN ) =
x

N (1/N + pλ1 + (1− p)λ0)
.

By using this expression for the energy it is now easy to
reconstruct the energy landscape w(ξ), where the vari-
able ξ has the same meaning as in a hard device.
The fine structure of the typical energy landscape is

illustrated in Fig. 13(b) for t = t∗. At finite N we see
again the same two-scale structure, however, the overall
barrier is markedly higher in a soft than in a hard device.
The macroscopic barrier can be adequately captured by
studying the case N = ∞ while the recovery of the mi-
croscopic structure of the energy landscape requires the
account of the discreetness.
To see the relation between the HS model and the RHS

models at finite N more clearly we present in Fig. 14(a)
the dependence of the energy landscape for the system
in a hard device at the transition point z = z∗ on the
parameter λf characterizing filament elasticity. To sim-
plify the comparison we adjusted the parameter z = z∗
at each value of λf so that the coherent states with p = 0
and p = 1 have the energy equal to zero. As we know,
the RHS model converges to the HS model as λf → ∞
and we see in Fig. 14(a) that the “macroscopic barrier”

disappears in this limit. The microscopic barriers remain
and that is what distinguishes the model proposed in [50]
from the HS model. Of course, in the continuum limit
N → ∞ illustrated in Fig. 14(b) we lose the microscopic
barriers and recover the interpolated predictions of the
classical HS model.

Another interesting case shown in the same figure is the
limit λf → 0 when z∗ → ∞. In this case we recover in the
hard device setting the predictions of the system loaded
in a soft device with t → t∗. Indeed, one can see that the
energy landscape at N = 5 corresponding to λf = 0 in
Fig. 14 is exactly the same as the energy landscape shown
in Fig. 13(b). Once again, in the continuum limitN → ∞
the microscopic barriers disappear and we recover the
basic picture predicted by the HS model.

The analysis of the structure of the energy barriers
along a particular path in the configurational space re-
veals the global complexity of the underlying energy
landscape. In the language of chemo-mechanical mod-
els the individual local minima of this landscape, repre-
senting various metastable configurations, can be inter-
preted as distinct discrete chemical states and the kinet-
ics of unfolding can modeled as set of jump transitions
between these states. However, the exponentially growth
of the number of such states in the thermodynamic limit
suggests that a description in terms of individual en-
ergy wells is hardly productive. Instead, the description
in terms of macro-wells, corresponding to synchronized
configurations, appears to be more appropriate and can
lead to an adequate quasi-chemical representation of the
loading-induced folding process. In a larger scale depic-
tion of muscle machinery, incorporating several layers of
structure, the coherent energy wells, describing synchro-
nized states at particular scales, are most probably hi-
erarchically structured as in protein-folding problem and
the description of such mechanical system in terms of
chemical pathways presents a formidable challenge.
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FIG. 14. Energy landscape at the global minimum transition for the RHS model in a hard device at different values of the
coupling parameter λf . (a) with N = 5; (b), with N = 20. Solid lines, hard device with λf → ∞; dashed lines, hard device
with λf = 1; dotted lines, soft device limit as the hard device case where λf → 0. Energy minima are arbitrarily set to 0 for
comparison. Other parameters are as in Fig. 11.

IV. DISCUSSION

In contrast to inert matter, distributed biological sys-
tems are characterized by structurally complex network
architecture with domineering long-range interactions.
This leads, even in the absence of ATP driving, to a
highly unusual passive mechanical behavior in both stat-
ics and dynamics. In this paper we identified the simplest
system of this type representing a muscle half-sarcomere
and systematically studied its peculiar response to fast
loading when the ATP activity can be neglected. We
showed that the implied anomalies of the mechanical be-
havior are indeed due to the dominance of long-range in-
teractions and that they can be adequately represented
already at zero temperature by a simple prototypical
model.

Our starting point was the classical HS model which
deals with a parallel bundle of bi-stable elements, see
[17]. In this model the two states, describing pre- and
post-power-stroke configurations, are represented as hard
spin states. Over the years the HS model was studied
exclusively in the hard device loading conditions which
concealed the important role of cooperative effects. The
original HS paper also offered an insight regarding the
possibility of stable negative stiffness, which is now inter-
preted as a meta-material behavior, however, this subtle
message remained largely unnoticed or undermined.

Our mechanical reevaluation of the HS model showed
that it behaves superficially similarly in soft and hard de-
vices exhibiting always highly cooperative globally stable
behavior with all cross-bridges striking at the same mo-
ment. However, our analysis also showed that in a hard
device the cooperative behavior is “fragile” because the
macroscopic energy wells, describing coherent states, are
not separated by any barrier. As a result at any nonzero
temperature the system can be expected to lose the co-
herency and indeed, as Huxley and Simmons showed in
their classical paper, the finite temperature behavior in
a hard device is completely de-synchronized. Our con-

tribution to this problem is the demonstration that the
same HS model would behave rather differently in a soft
device. In particular, we showed that in a soft device
the macroscopic wells of HS model become robust in the
sense that the separating barrier is now finite. The co-
operative behavior in a soft device setting can then be
expected to survive at least for small temperatures.

In [50] the hard spins constituting the essence of the HS
approach were replaced by soft spins. This allowed the
authors to achieve better quantitative agreement with
experiment, in particular, to explain the stress depen-
dence of the power-stroke. Such augmentation has also
led to the specification of the energy barriers between mi-
croscopic configurations that remained ambiguous in the
original HS setting. In the present paper, we made the
next step and developed a regularized RHS model con-
taining a crucial new element. By introducing the sim-
plest lump description of filament elasticity we relaxed
the hard device constraint of the HS model opening the
possibility for individual cross-bridges to interact and to
self-organize into macroscopically coherent states. We
showed that a low propensity towards the formation of
such highly synchronized states is the main factor be-
hind the anomalously fast force recovery in a hard de-
vices comparing to the same experiments in a soft de-
vice. Drastically different kinetic responses in these two
loading conditions have been previously experimentally
identified but remained unexplained.

As a result of our regularization of the HS model, we
were able to trace the gradual enhancement of the collec-
tive effects as the system is progressively converted from
hard to soft device. More specifically we have shown
that in the presence of mean-field interactions induced
by the coupling through a common backbone, the transi-
tion between the two conformations of the attached cross-
bridges cannot be perceived as a sequence of consecutive
switching events because of the high energy cost involved
in such transitions. Instead, the identified optimal “re-
action path” is associated with a collective power-stroke.
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This observation explains the accelerated kinetics in the
case of a hard device where the long-range interactions
are much weaker than in a soft device.

More generally, we observed that the mechanical be-
havior of HS and RHS models is different in soft and
hard device and showed that this disparity persists even
in the continuum limit. Such systematic non-equivalence
of the loading “ensembles” is also a manifestation of long-
range interactions leading to non-additivity of the total
energy of the system [62, 84]. In such systems where
each element is linked with almost equal strength with
all other elements, parts interact in a non-simple way
and the whole is not a sum of the parts. Our paper
presents an interesting example of such behavior in the
realm of purely mechanical systems where the continuum
limit was traditionally perceived as ensemble indepen-
dent [85].

An interesting feature of the proposed model is the pos-
sibility of negative stiffness. The mechanical intuition,
based on the study of materials with short range inter-
actions, suggests that in a stable continuum system the
relaxed energy must must be convex (at least in 1D) and
that the corresponding stiffness must be positive. This
conclusion is based on the idea that the energy can be al-
ways convexified by mixing states with different energies.
As our paper shows, in systems with long-range interac-
tions mixing does not necessarily lower the energy and
the highly coherent “pure” states may always have the
lowest energy. Although the possibility of sign reversal
of equilibrium susceptibilities in systems with long-range
interactions, for instance, in self-gravitating systems [62],
has been previously known, the biological application of
this idea appears to be new.

The RHS model is further developed in the companion
Paper II [8], where we study the effects of finite temper-
ature and replace the energy minimization by the com-
putation of statistical sums. It is not surprising that due
to the minimal nature of our model (piece-wise quadratic
potential, simplified account of filament elasticity, etc.)
a transparent semi-analytical description is available also
at finite temperatures. An important new feature of the
thermo-mechanical model is the appearance of a critical
point separating the correlated behavior at low temper-
atures from the uncorrelated behavior at high tempera-
tures. It is quite remarkable that actual skeletal muscles
appear to be functioning very close to this critical point.
To corroborate this statement we developed in the third
paper of this series, Paper III [9], a consistent method
of extracting realistic values of parameters from experi-
mental data. Based on these data we developed in Paper
III a comprehensive thermo-mechanical model of muscle
behavior showing that the RHS model can match quan-
titatively both equilibrium and kinetic observations.

The conclusions drawn from the analysis of our pro-
totypical model can be used in the study various other
systems with multi-stable or breakable elements interact-
ing through a network of effective backbones that are able
to transmit long-range interactions. Our study empha-

sizes the fundamental difference in the response of such
system under isotonic or isometric loadings and explains
the origin of their cooperative behavior.
An important example of such systems is provided

by adhesive clusters, where the long-range mechanical
coupling of individual binders through quasi-rigid pads
also leads to synchronization [63, 86–88]. In this frame-
work an idea of a prototypical “parallel cluster” has
emerged which is quite similar to our model of a half-
sarcomere [53]. The main difference is that our approach
is purely mechanical implying continuous stochastic dy-
namics, while the evolution in the models of adhesive
binders is discrete and the long-range interaction is in-
troduced through the force dependence of kinetic con-
stants. Therefore, these models are closer to the HS
model than to RHS model. Similar ideas of force de-
pendent chemistry were also applied to muscle contrac-
tion, however, the resultant cooperative behavior was
previously thought as inseparable from the ATP activ-
ity breaking the detailed balance [40, 80, 89].
Other examples of synchronized folding-unfolding phe-

nomena can be found in the studies of mechanically
loaded biological macromolecules, where the hairpins and
partially folded intermediates are usually supported by
effective backbones. It is then not surprising that in these
systems the cooperative hopping (or flip-flopping) be-
tween unfolded and refolded states was found to be ubiq-
uitous [42, 44, 67, 76]. A related effect is that the force ex-
tension curves for folding and unfolding macromolecules,
obtained from single molecule force spectroscopy mea-
surements, exhibit characteristic plateaus/jumps. The
individual steps on these curves are usually associated
with synchronized unfolding at a particular scale and
the corresponding discrete force/elongation increments
are sometimes interpreted as “fracture” avalanches [90].
The importance of the topology of interconnections

among the bonds has been also emphasized in the studies
of protein folding where the link between the cooperativ-
ity of unfolding and the dominance of parallel bonding
was noticed [54]. It is also known that proteins and nu-
cleic acids behave differently in isometric and isotonic
conditions and that these mechanical systems can ex-
hibit negative stiffness [55, 69, 91]. However, various ob-
servations of this type have not been previously linked
together. Therefore, by emphasizing the crucial role of
the force transmitting backbones in all these observa-
tions, our study bridges an important gap and provides
a prototypical description of this class of phenomena in
a framework of a simple paradigmatic system. Moreover,
the transparent mechanical nature of our model suggests
an explicit path towards designing bio-mimetic materials
and molecular nano-machines whose functioning depends
essentially on long-range feedback between multi-stable
units [92].
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Appendix A

The analysis of stability is similar in the HS and RHS
models. A small technical complication is that in both
cases the bistable potentials uHS and uRHS are both singu-
lar. Thus, in the HS model the energy wells are infinitely
narrow and the energy barrier is formally infinite. In
the RHS model the energy wells have a finite curvature
however the spinodal region is reduced to a single point.
To study stability, we first remove these singularities by
considering smoother potentials and then perform the
appropriate limiting transition.
We start with the more general RHS model and reg-

ularize the bistable potential uRHS by introducing an ex-
tended spinodal interval [l − ǫ; l + ǫ] where the new po-
tential ũRHS is concave. Assume that outside this interval
the potential ũRHS coincides with uRHS and is therefore
convex. In a hard device the new RHS energy can be
written in the form

v(x, y; z) =
1

N

N
∑

i=1

[

ũRHS(xi) +
1

2
(y − xi)

2

]

+
λf

2
(z−y)2.

(A1)
We now analyze stability of the system described by

energy (A1). At a given z, the equilibrium equations can
be written as

∂v

∂xi

= ũ′
RHS

(xi) + (x− ŷ) = 0, i = 1, . . . , N, (A2)

where ŷ(z, p, q, r) is the equilibrium value of y for a
given configuration (p, q, r) given by Eq. 14. Assume
that within the spinodal region there is an interval
where ũ′′

RHS
(x)′ < −1. Then each of the equations (A2)

has up to 3 solutions. We denote these solution by
x̂1(z, p, q, r), x̂0(z, p, q, r) and x̂⋆(z, p, q, r). The first two
solutions x̂1 and x̂0 correspond to the two convex wells
of the potential ũRHS(x) so that x̂1 < l− ǫ and x̂0 > l+ ǫ.
The third solution x̂⋆ describes the cross-bridge in the
spinodal region and therefore l − ǫ ≤ x̂∗ ≤ l + ǫ for all
ǫ > 0. We can now compute

∂2v(x, y, z)

∂x2
i

∣

∣

∣

∣

p,q,r,xi=x̂1,y=ŷ,xj 6=i=x̂j

= κ1 + 1 ≡ h1 > 0,

∂2v(x, y, z)

∂x2
i

∣

∣

∣

∣

p,q,r,xi=x̂∗,y=y,xj 6=i=x̂j

= ũ′′
RHS

(x̂∗) + 1

≡ h∗(z, p, q, r) < 0,

∂2v(x, y, z)

∂x2
i

∣

∣

∣

∣

p,q,r,xi=x̂0,y=ŷ,xj 6=i=x̂j

= κ0 + 1 ≡ h0 > 0.

Here h∗ is negative because the corresponding cross-
bridge is the spinodal state. The other second derivatives

of the energy can be computed explicitly

∂2v(x, y, z)

∂xi∂xj

∣

∣

∣

∣

p,q,r,xi=x̂i,xj=x̂j ,xk 6=i,j=x̂k,y=ŷ

= 0 for i 6= j,

∂2v(x, y, z)

∂xi∂y

∣

∣

∣

∣

p,q,r,xi=x̂i,xj 6=i=x̂j ,y=ŷ

= −1, i = 1, . . . , N,

(A3)

∂2v(x, y, z)

∂y2

∣

∣

∣

∣

p,q,r,xi=x̂i,y=ŷ

= 1 + λf .

To write the expression for the Hessian matrix
H(z, p, q, r), it is convenient to introduce the following
auxiliary quantities

Hi(z, p, q, r) =
∂2v(x, y, z)

∂x2
i

∣

∣

∣

∣

p,q,r,xi=x̂i,y=ŷ,xj 6=i=x̂j

.

Each of the variables Hi can take three values: h1, h0

and h⋆. Now we can write

H(z, p, q, r) =

















H1 0 · · · 0 −1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 HN −1
−1 . . . . . . . −1 1 + λf

















. (A4)

To obtain a similar Hessian matrix for the HS model,
we need to perform the limit κ1,0(z) → ∞ which means
h1 → ∞, h0 → ∞ and h∗ → −∞, and to drop in (A4)
the last line and the last column.
From the form of the matrix H, one can see that as

soon as one of the terms Hi is equal to h⋆(z), which
means that q > 0, at least one of the principal minors
of H becomes negative. This means that the absence
of cross-bridges in the spinodal region is mandatory for
stability at ǫ > 0.
We can now consider the limit ǫ → 0. The value of the

equilibrium strain in the spinodal region x̂∗ remains be-
tween l− ǫ and l+ ǫ and thus converges to l, when ǫ → 0.
Therefore, if q 6= 0, the configuration (p, q, r) is necessary
unstable and we know that such configurations are nec-
essarily singular. Hence, in our RHS model, among the
(N + 1) (N + 2) /2 equilibrium branches, N (N + 1) /2
singular branches are unstable which leaves N + 1 non-
singular branches describing local minima of the energy.
Since in the HS model the spinodal states are absent, all
configurations are automatically metastable.
In the soft device case, the tension t is fixed while z be-

comes an additional degree of freedom. Then the energy
of the nonsingular RHS system reads

w(x, y, z; t) =
1

N

N
∑

i=1

[

ũRHS(xi) +
1

2
(y − xi)

2

]

+
λf

2
(z − y)2 − tz. (A5)
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The analysis of the equilibrium states remains the same
and we can similarly define the diagonal terms of the
Hessian matrix for the energy w(x, y, z; t),

Hi(t, p, q, r) =
∂2w(x, y, z, t)

∂x2
i

∣

∣

∣

∣

p,q,r,xi=x̂i,y=ŷ,z=ẑ,xj 6=i=x̂j

.

Here each term can take the following three values h1 =
κ1 + 1 > 0, h0(p, q, r, t) = κ0 + 1 > 0 or h⋆(p, q, r, t) < 0.
The other entries are the same as in the hard device case,
see Eq. A3 except that now we have one additional row
and one additional column,

∂2w(x, y, z, t)

∂xi∂z

∣

∣

∣

∣

p,q,r,xi=x̂i,xj 6=i=x̂j ,y=ŷ,z= ˆt,p,q,r

= 0,

for i = 1, . . . , N

∂2w(x, y, z, t)

∂y∂z

∣

∣

∣

∣

p,q,r,xi=x̂i,xj 6=i=x̂j ,y=ŷ,z=ẑ

= −λf ,

∂2w(x, y, z, t)

∂z2

∣

∣

∣

∣

p,q,r,xi=x̂i,xj 6=i=x̂j ,y=ŷ,z=ẑ

= λf .

By bringing all these second derivatives together we can
write the Hessian matrix for the RHS model in a soft

device

H(z, p, q, r) =





















H1 0 · · · 0 −1 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · 0 HN −1 0
−1 . . . . . . . −1 (1 + λf ) −λf

0 . . . . . . . 0 −λf λf





















.

A straightforward adaptation of the above analysis shows
that, as in a hard device, the system in a soft device is
unstable only when q 6= 0, i.e. when at least one cross-
bridge is in the spinodal state.
Finally, to obtain the Hessian matrix for the HS system

we need to drop the last row and the last column and
consider the limit κ1,0(z) → ∞ which means h1 → ∞,
h0 → ∞ and h∗ → −∞. We also require that λf → 0.
Then, the Hessian reads

HHS(z, p, q, r) =

















H1 0 · · · 0 −1

0
. . .

. . .
...

...
...

. . .
. . . 0

...
0 · · · 0 HN −1
−1 . . . . . . . −1 1

















.

The analysis here is similar to the case of a hard device
and the conclusion is that again all equilibrium configu-
rations are metastable.
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[69] T. Bornschlögl and M. Rief, Physical Review Letters
(2006).

[70] M. Caruel, J. M. Allain, and L. Truskinovsky, Phys. Rev.
Lett. 110, 248103 (2013).

[71] P.-G. de Gennes, C.R. Acad. Sci. IV-Phys. 2, 1505 (2001).
[72] G. Puglisi and L. Truskinovsky, J. Mech. Phys. Solids

(2005).
[73] G. Puglisi and L. Truskinovsky, J. Mech. Phys. Solids 48,

1 (2000).
[74] J. M. Ball, Geometry, Mechanics, and Dynamics , 3

(2002).
[75] J. E. Cohen and P. Horowitz, Nature 352, 699 (1991).
[76] M. T. Woodside, C. Garcia-Garcia, and S. M. Block,

Curr. Opin. Chem. Biol. 12, 640 (2008).
[77] A. Campa, S. Ruffo, and H. Touchette, Physica A 385,

233 (2007).
[78] R. S. Ellis, J. Stat. Phys. 101, 999 (2000).
[79] T. Dauxois, S. Lepri, and S. Ruffo, Commun. Nonlinear

Sci. Numer. Simul. 8, 375 (2003).
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