Shortcuts to Adiabaticity - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advances In Atomic, Molecular, and Optical Physics Année : 2013

Shortcuts to Adiabaticity

Résumé

Quantum adiabatic processes--that keep constant the populations in the instantaneous eigenbasis of a time-dependent Hamiltonian--are very useful to prepare and manipulate states, but take typically a long time. This is often problematic because decoherence and noise may spoil the desired final state, or because some applications require many repetitions. "Shortcuts to adiabaticity" are alternative fast processes which reproduce the same final populations, or even the same final state, as the adiabatic process in a finite, shorter time. Since adiabatic processes are ubiquitous, the shortcuts span a broad range of applications in atomic, molecular, and optical physics, such as fast transport of ions or neutral atoms, internal population control, and state preparation (for nuclear magnetic resonance or quantum information), cold atom expansions and other manipulations, cooling cycles, wavepacket splitting, and many-body state engineering or correlations microscopy. Shortcuts are also relevant to clarify fundamental questions such as a precise quantification of the third principle of thermodynamics and quantum speed limits. We review different theoretical techniques proposed to engineer the shortcuts, the experimental results, and the prospects.

Dates et versions

hal-00912437 , version 1 (02-12-2013)

Identifiants

Citer

E. Torrontegui, S. Ibánez, Sofia Martínez-Garaot, Michele Modugno, A. del Campo, et al.. Shortcuts to Adiabaticity. Advances In Atomic, Molecular, and Optical Physics, 2013, Advances In Atomic, Molecular, and Optical Physics, Vol. 62, 62, pp.117-169. ⟨10.1016/B978-0-12-408090-4.00002-5⟩. ⟨hal-00912437⟩
161 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More