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Third-order Complex Amplitudes Tracking Loop for Slow Flat Fading

Channel On-Line Estimation ∗

Huaqiang Shu, Laurent Ros, and Eric Pierre Simon †

Abstract—This paper deals with channel estimation in tracking
mode over a flat Rayleigh fading channel with Jakes’ Doppler
Spectrum. Many estimation algorithms exploit the time-domain
correlation of the channel by employing a Kalman filter based
on a first-order (or sometimes second-order) approximation
model of the time-varying channel. However, the nature of the
approximation model itself degrades the estimation performance
for slow to moderate varying channel scenarios. Furthermore, the
Kalman-based algorithms exhibit a certain complexity. Hence,
a different model and approach has been investigated in this
work to tackle all of these issues. A novel PLL-structured third-
order tracking loop estimator with a low complexity is proposed.
The connection between a steady-state Kalman filter based on a
random walk approximation model and the proposed estimator
is first established. Then, a sub-optimal mean-squared-error
(MSE) is given in a closed-form expression as a function of the
tracking loop parameters. The parameters that minimize this
sub-optimal MSE are also given in a closed-form expression. The
asymptotic MSE and Bit-Error-Ratio (BER) simulation results
demonstrate that the proposed estimator outperforms the first
and second order Kalman-based filters reported in literature.
The robustness of the proposed estimator is also verified by a
mismatch simulation.

Index Terms—Channel estimation, Rayleigh fading, Jakes’
spectrum, Random Walk model (RW), Phase-locked loop (PLL),
Kalman filter (KF).

I. INTRODUCTION

Channel estimation is a fundamental task for a wireless

communication receiver. This paper deals with channel path

Complex Amplitude (CA) estimators in tracking mode. The

statistical channel model assumed in this paper to describe the

wireless channel is the Rayleigh fading channel with Jakes’

Doppler spectrum model [2] (also called the Clarke Model

[3]). It is widely accepted in the literature for frequency-flat

correlated fading channels.

Many channel path CA tracking algorithms use a Kalman

filter (KF). KF-based algorithms exhibit a certain complexity

and the design of a KF requires to dispose of a linear

recursive state-space representation of the channel. However,

the exact Clarke model does not admit such a representation.

An approximation often employed in the literature consists

of approaching the fading process as Auto-Regressive (AR)

[4], in the perspective to design a KF [5]–[11]. The larger

the order of the model, the better the approximation of the

actual fading statistics, but also the larger the complexity.

∗Part of this work was presented in the conference ICT2012 [1]
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Villeneuve d’Ascq, France. L. Ros is with GIPSA-Lab, Image and Signal
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So, despite its complexity, KF-based algorithms do not ensure

optimal performance if the structure or the tuning of the ap-

proximation model are not well suited, as developed hereafter.

A widely used channel approximation model results from a

first-order Auto-Regressive model (AR1) as recommended by

[12], combined with a Correlation Matching (CM) criterion

to fix the AR1-coefficient (equal then to the standard Bessel

AR1-coefficient, J0(2πfdT ), for a given normalized Doppler

frequency fdT ). The KF channel estimator resulting from this

choice, called AR1CM -KF in this paper, was used in several

papers concerning various systems such as in Multiple-Input-

Multiple-Output (MIMO) systems [5], [6], or in Orthogonal

Frequency Division Multiplexing (OFDM) systems [7], [8],

[13], [14]. The AR1CM -KF seems to be convenient for the

very high mobility case, leading to quasi-optimal channel

estimation performance compared to lower bounds, as seen,

for example, in [13]–[15] (in these works the AR1CM -KF is

actually used to track the Basis Extension Model coefficients

of the high speed channel). But for most conventional Doppler

speeds whereby the channel variation within one symbol dura-

tion can be neglected (i.e. fdT ≤ 10−2, as in [5]–[11], [16]),

the AR1CM -KF estimator usually exploited in the literature

is far from being effective [9]. This poor performance has

been recently explained analytically in [10], mainly because

the CM criterion is shown to be inappropriate to tune the

AR1-coefficient in slow or moderate fading scenario (since

the choice of J0(2πfdT ) ≈ 1 − 1
4 (2πfdT )

2 for the AR1

coefficient is too close to the value 1 to ensure a good trade-

off between tracking ability and noise mitigation). A better

tuning of the AR1-coefficient can focus on minimizing the es-

timation variance in output of the KF as proposed in [9] (with

analytic MSE performance for a given Doppler and Signal-

to-Noise Ratio (SNR) scenario in [10]), i.e. using a minimum

asymptotic variance (MAV) criterion without imposing the CM

constraint. The resulting estimator is called AR1MAV -KF in

this paper.

On the other hand, [11] analytically shows that the MSE

performance of a KF can still be improved by switching from

the AR1 model to an integrated random walk (RW) model

(also called integrated Brownian model) for the approximation

model. Such a model was a second-order approximation model

that better takes into account the fact that the exact channel CA

continues in a given direction during several symbols for low

fdT and then exhibits a strong trend behaviour. The Kalman

estimator based on this special second-order model is called

RW2-KF in this paper.
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So far, all our discussion dealt with KF-based algorithms,

but we now wish to obtain simpler adaptive algorithms. This

can be done by deriving steady-state versions of the KF based

on a random-walk (RW) approximation model, yielding a

recursive linear filter with constant coefficients. In general,

such algorithms converge slower than the KF, but can reach the

same asymptotic performance in tracking mode. To start with,

we should bear in mind that the LMS algorithm, which is the

most popular adaptive algorithm, can be viewed as a steady-

state version of a KF based on a first-order RW approximation

model [17]. The second-order LMS was first proposed by [18]

in a channel estimation context. It was derived as the steady-

state version of a KF based on a second-order integrated RW

approximation model (RW2-KF). However, the author does

not specify how to tune the two constant coefficients of the

model. [19] proposed a method to obtain optimal coefficients,

and [16], [20] presented the CA tracking algorithm and its

optimization from a second-order phase-locked-loop (PLL)

point of view. Indeed, as it has been already shown by Driessen

[21] and Christiansen [22] in the case of the phase estimation

problem, a proportional-integral (second-order) PLL has the

same structure as the KF when considering the second-order

integrated RW model, and thereafter the closed-form Kalman

gain expression is given in [23]. The algorithm of [16], [20]

is called the second-order complex amplitude tracking loop

(RW2-CATL).

In this paper, we propose and study a low-complexity flat

fading channel estimator based on a third-order integrated RW

model (RW3). The contributions of this paper are multi-fold

with the purpose to solve the following questions: Why could a

PLL-structured estimator asymptotically work like a traditional

one (e.g. a KF) ? What is the relationship between them ?

How much can a well-chosen third-order CATL outperform,

in terms of asymptotic MSE performance, the more complex

KF based only on first- or second-order models (e.g. AR1CM -

KF, AR1MAV -KF, or RW2-KF) ? How to tune properly and

in a simple way the coefficients of such a third-order CATL,

assuming Rayleigh-Jakes channel and a given scenario of

fdT and SNR? What is then the closed form expression

of the MSE of such a channel estimator ? How does a

distorted foreknowledge of Doppler frequency or noise power

information influence the estimator performance ?

Section II gives the system model. In section III, we propose

and analyze a third-order Complex-Amplitude-Tracking Loop,

called RW3-CATL, for the time-varying channel estimation.

Section IV describes the proposed method to correctly tune

the loop coefficients, and section V validates our model and

assumptions by means of MSE and BER simulations.

II. MODEL AND ESTIMATION OBJECTIVE

We consider the estimation of a flat Rayleigh fading channel

in a digital modulation system. The discrete-time observation

is:

r(n) = α(n) · x(n) + v(n), (1)

where n is the symbol time index; x(n) = a(n) + jb(n) with

a(n), b(n) ∈ ℜ is the transmitted phase modulated (M -PSK) or

quadrature amplitude modulation (M -QAM) symbol, the se-

quence of transmitted symbol is assumed to be zero-mean and

stationary with normalized variance : E
{∣
∣x(n)

∣
∣
2
}

= σ2
x = 1;

v(n) is a zero-mean additive white circular complex Gaussian

noise with variance σ2
v ; and α(n) is a zero-mean circular

Gaussian channel Complex Amplitude with variance σ2
α. Note

that this model can be applied to more advanced systems such

as OFDM system, where α would then represent the channel

gain to be estimated at one pilot frequency as in [7], and

x(n) could then be a known (or pilot) symbol in the channel

estimation perspective (data-aided scenario).

The normalized Doppler frequency of this channel is fdT ,

where fd is the Doppler frequency and T is the symbol period.

A Jakes’ Doppler spectrum is assumed for this channel:

Γα(f) =







σ2
α

πfd

√

1−
(

f
fd

)2
, if |f | < fd

0, if |f | ≥ fd.

(2)

The autocorrelation coefficient of the stationary CA α is then

defined for lag q by:

Rα[q] = E
{
α(n) · α(n−q)

∗} = σ2
αJ0(2πfdT · q), (3)

where J0 is the zeroth-order Bessel function of the first kind.

Given the observation model (1) and the Doppler spectrum

statistical constraint (2) for the dynamic evolution of the CA,

we look for an on-line unbiased estimation α̂(n) of α(n). The

MSE σ2
ǫ

def
= E

{∣
∣ǫ(n)

∣
∣
2
}

of the estimation error ǫ(n)
def
= α(n)−

α̂(n) will be investigated.

III. COMPLEX AMPLITUDE TRACKING LOOP

A. From steady-state KF to PLL-structured CATL

1) RW3 model and RW3-KF: similar to the method pre-

sented in [18], in the slow to moderate fading scenario, we can

firstly depict a steady-state KF [24], but based here on a RW3

model, denoted as RW3-KF. The model can be formulated in

discrete time update equations as:

α̃(n) =α̃(n−1) + δ(n−1) +
1

2
ξ(n−1), (4)

δ(n) =δ(n−1) + ξ(n−1), (5)

ξ(n) =ξ(n−1) + u(n), (6)

where u(n) is a zero mean circular complex Gaussian with

variance σ2
u. The equation (4) is the discrete version of the

Taylor series expansion of a continuous signal. So in this ap-

proximation model, the approximate process of α(n), denoted

α̃(n), is updated by a time increment of δ(n−1)+
1
2ξ(n−1) every

symbol period with δ(n) and ξ(n) respectively approximate the

first- and second-order derivative of the continuous signal. The

observation model is given by (1), which could be rewritten

in separating the parameter α(n) from the transmitted signal

as:

y(n) = α(n) + w(n), (7)

with y(n) =
r(n)

x(n)
and w(n) =

v(n)

x(n)
. Note that w(n) remains a

zero-mean additive white circular complex noise with variance

σ2
w = Kmod · σ

2
v where Kmod = E

{∣
∣
∣

1
x(n)

∣
∣
∣

2
}

is a constant
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factor, known for a given modulation scheme. For a special

case of constant-energy modulation, e.g. M -PSK, we would

have σ2
w = σ2

v and Kmod = 1. Then we reform (7) and (4)∼(6)

in matrix form as:

y(n) =Sa(n) + w(n), (8)

a(n) =Ma(n−1) + u(n), (9)

with the selection vector S =
[
1 0 0

]
, the state vec-

tor a(n)
def
=

[
α̃(n) δ(n) ξ(n)

]T
, the state noise vector

u(n) =
[
0 0 u(n)

]T
and the 3 × 3 evolution matrix M =

[
1 1 1

2 ; 0 1 1; 0 0 1
]
. The observation equation

(8) and the state evolution equation (9) compose the state-

space model of the KF. The corresponding two-stage KF

equations are then written as:

Time Update Equations

â(n|n−1) = Mâ(n−1|n−1), (10)

P(n|n−1) = MP(n−1|n−1)M
T + U, (11)

Measurement Update Equations

K(n) =
P(n|n−1)S

T

SP(n|n−1)S
T + σ2

w

, (12)

â(n|n) = â(n|n−1) + K(n)(y(n) − Sâ(n|n−1)), (13)

P(n|n) = (I − K(n)S)P(n|n−1), (14)

with â(n|n−1)
def
=

[

α̂(n|n−1) δ̂(n|n−1) ξ̂(n|n−1)

]T
the pre-

diction of state vector, â(n|n)
def
=

[

α̂(n|n) δ̂(n|n) ξ̂(n|n)
]T

the estimation of state vector, and the 3× 3 state noise matrix

is defined as U =
[
0 0 0; 0 0 0; 0 0 σ2

u

]
, K(n) is

the Kalman gain vector, P(n|n−1), P(n|n) are respectively the

covariance matrices (both 3 × 3) of the prediction error and

the estimation error. Define also the error signal as:

vǫ(n) = y(n) − Sâ(n|n−1). (15)

Note that the computation of the error signal requires the

knowledge of x(n) since y(n) is the equalized version of the

received signal r(n). Two different scenarios can then be con-

sidered : either treat x(n) as pilot symbols, or use the decisions

instead. In the decision-directed scenario,x(n) is replaced by

the a priori decision x̂(n|n−1) to compute y(n) =
r(n)

x̂(n|n−1)
,

where x̂(n|n−1) is decided from the previous estimation of

the channel. The value of x̂(n|n−1) depends on the applied

modulation schemes, e.g. in QPSK modulation, x̂(n|n−1) =√
2
2 ·sgn{Re(α̂∗

(n|n−1)·r(n))} + j
√
2
2 ·sgn{Im(α̂∗

(n|n−1)·r(n))},

with sgn{·} the sign function. In this work, we concentrate on

the performance of the channel estimator1. So the theoretical

analysis is derived assuming symbols are known (pilot-aided

scenario) or perfectly decided, and the effect of decision error

(in the decision-directed scenario) will be observed in the

simulation part.

1Note that in practice, our channel estimator can easily be coupled with an
efficient detector in order to perform joint channel estimation and decision
tasks, for example via the Expectation-Maximization algorithm framework
(see [8]). In another already mentioned context, it can simply also be used to
track the channel gain at pilot frequencies in an OFDM system as in [7].

2) Time-domain equations of the steady-state RW3-KF:

Since the linear model ((9)(8)) is observable and controllable

[25], an asymptotic regime is quickly reached [24]. In other

words, K(n) converges to a constant when n is large enough,

i.e.

K(n) = K(n+1) = K(∞)
def
=

[
k1 k2 k3

]T
. (16)

By combining (10) and (13), we obtain the measurement

update equations of α̂ with the steady-state RW3-KF:

α̂(n|n) = α̂(n−1|n−1) + δ̂(n−1|n−1) +
1

2
ξ̂(n−1|n−1)

+ k1vǫ(n), (17)

δ̂(n|n) = δ̂(n−1|n−1) + ξ̂(n−1|n−1) + k2vǫ(n) (18)

ξ̂(n|n) = ξ̂(n−1|n−1) + k3vǫ(n), (19)

with vǫ(n) defined by (15).

3) The steady-state RW3-KF as an RW3-CATL: Note that

k2 and k3 are embedded in the derivatives of the CA in (17),

this makes it difficult to control directly the estimator through

the use of the gains. It is however interesting to note that

if we study these equations in Z-domain, the gains can be

separated from the variables, and this allows us to analyse

the estimator as a PLL-structured tracking loop with a PII

filter (or Proportional-double-Integral filter). The expression

of (17)(18)(19) in Z-domain are:

α̂(z)(1− z−1) = δ̂(z)z−1 +
1

2
ξ̂(z)z−1 + k1vǫ(z), (20)

δ̂(z)(1− z−1) = ξ̂(z)z−1 + k2vǫ(z), (21)

ξ̂(z)(1− z−1) = k3vǫ(z). (22)

Substituting (21)(22) in (20), we have:

α̂(z)(1−z−1) =

[

k1 +
(k2 +

1
2k3)z

−1

1− z−1
+

k3z
−2

(1− z−1)2

]

vǫ(z),

(23)

The equation (23) shows the final estimate α̂ as a filtered

version of the error signal vǫ, as in a PLL. Let us define:

µ1 = k1, (24)

µ2 = k2 +
1

2
k3, (25)

µ3 = k3, (26)

and

vLag1(z) =
vǫ(z)

1− z−1
, (27)

vLag2(z) =
vǫ(z)

(1− z−1)2
, (28)

(23) can then be rewritten as:

α̂(z)(1− z−1) = µ1vǫ(z) + µ2vLag1(z)z
−1 + µ3vLag2(z)z

−2,

(29)

or equivalently in discrete-time domain:

α̂(n|n) = α̂(n−1|n−1) + µ1vǫ(n) + µ2vLag1(n−1) + µ3vLag2(n−2).

(30)

From (13), we have:

α̂(n|n) = α̂(n|n−1) + k1vǫ(n). (31)
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Fig. 1: Equivalent structure of the RW3-CATL

By combining (30), (31) and (24), we get the prediction

equation:

α̂(n+1|n) = α̂(n|n) + µ2vLag1(n) + µ3vLag2(n−1). (32)

These equations, derived from the steady-state RW3-KF, can

be slightly rearranged to resemble the most traditional form

of a PLL-like structure, as shown in the next subsection.

4) Final time-domain equations of the RW3-CATL: We can

now easily sum up the equations of the proposed third-order

Complex Amplitude Tracking Loop (CATL), as:

Error signal:

vǫ(n) = y(n) − α̂(n|n−1), (33)

Loop Filter:

vLag1(n) = vLag1(n−1) + vǫ(n), (34)

vLag2(n) = vLag2(n−1) + vLag1(n), (35)

vc(n) = µ1vǫ(n) + µ2vLag1(n) + µ3vLag2(n−1), (36)

Numerically Controlled Generator:

α̂(n+1|n) = α̂(n|n−1) + vc(n), (37)

Final estimate:

α̂(n|n) = α̂(n|n−1) + µ1vǫ(n). (38)

Here (33) is from (15), (38) is obtained from (31) using (24),

(34) and (35) are respectively a result of (27) and (28), and

finally (36) and (37) are derived from (32) using (38).

The structure of our PLL-like estimator based on the

discrete-time equations (33)∼(37) is shown in Fig.1. As in a

digital PLL, the RW3-CATL is composed of an error detector,

a loop filter and a numerically controlled generator.

The error detector compares firstly the received signal with

a reference signal equal to the previous prediction of the

parameter, α̂(n|n−1). It delivers the error signal vǫ(n) to the

proportional-double-integral filter FPII(z) = µ1 + µ2

1−z−1 +
µ3z

−1

(1−z−1)2 which is controlled by the three filter coefficients µ1,

µ2 and µ3. As the steady-state Kalman gains are real positive

(this can be proved by solving the Ricatti equations), the loop

filter coefficients µ1, µ2, µ3 are also real positive values. The

signals vLag1(n), vLag2(n) defined in (34) and (35) are respectively

the first-order and the second-order digital integrations (or

accumulations) of the error signal vǫ(n). The loop filter output

vc(n) is then used as a command by the numerically controlled

generator to generate the next prediction α̂(n+1|n) from the

previous one α̂(n|n−1), according to the integration process

(37).

This structure is similar to the one presented in [1]2, which

is deduced from a standard third-order DPLL [26]. We will

also demonstrate the equivalence between the RW3-CATL

and the standard third-order DPLL in the following analysis.

However, unlike the conventional PLL, the final output of the

CATL is not the prediction (or a priori estimate) α̂(n|n−1) but

the final (or a posteriori) estimate of the complex amplitude

α̂(n|n), according to equation (38), as in the KF principle.

Thus an additional correction branch is added, represented by

the dashed line in Fig.1. The RW3-CATL is a time-invariant

filter, it hence does not need to update its coefficients. On

the contrary, the RW3-KF has to update its coefficients (the

Kalman gain and the error variances) every symbol period.

Note that, thanks to the second integration in vLag2(n), this

digital third-order loop does not exhibit acceleration-dependent

steady-state error in the case of second-order variations of

the CAs. In other words, the RW3-CATL characterizes the

variation of the channel parameter by taking into account its

slope and its curvature, while second-order loops only consider

the slope.

B. General properties

1) Closed-loop transfer function of RW3-CATL: By com-

bining (7) and (15), we have:

vǫ(n) = α(n) − α̂(n|n−1) + w(n). (39)

The error signal is thus a combination of the prediction error

(α(n) − α̂(n|n−1)) and the channel noise. By combining (38)

and (39), we obtain the error signal - estimation error relation:

vǫ(n) =
1

1− µ1
· (α(n) − α̂(n|n)) +

1

1− µ1
· w(n). (40)

Transform (40) to the Z-domain:

vǫ(z) =
1

1− µ1
· (α(z)− α̂(z)) +

1

1− µ1
· w(z). (41)

By combining (27)(28)(29), we get:

α̂(z)(1− z−1) = [µ1 +
µ2 · z

−1

1− z−1
+

µ3 · z
−2

(1− z−1)2
] · vǫ(z). (42)

Then substituting (41) in (42) leads to:

α̂(z) = L(z) · α(z) + L(z) · w(z), (43)

where L(z) is the Z-domain transfer function of the 3rd-order

CATL defined by (44) with F (z) = µ1 +
µ2·z−1

1−z−1 + µ3·z−2

(1−z−1)2 .

2The proposed estimator (denoted Or3-CATL) in [1] is similar to the one
of this paper, but they stem from different structures, the Or3-CATL is given
directly from the third-order DPLL while the RW3-CATL is deduced from
a RW3-KF; Comparing with the structure of Or3-CATL (Fig.1 of [1]), we
could also find a difference between the loop filters.
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L(z) =
F (z)

(1− µ1)(1− z−1) + F (z)

=

[
(µ1 − µ2 + µ3)(1− z−1)2 + (µ2 − 2µ3)(1− z−1) + µ3

]

(1− µ1)(1− z−1)3 + [(µ1 − µ2 + µ3)(1− z−1)2 + (µ2 − 2µ3)(1− z−1) + µ3]
(44)

L(z) =
(m+ 2)ζωnT · (1− z−1)2 + (1 + 2mζ2)(ωnT )

2 · (1− z−1) +mζ(ωnT )
3

(1− z−1)3 + (m+ 2)ζωnT · (1− z−1)2 + (1 + 2mζ2)(ωnT )2 · (1− z−1) +mζ(ωnT )3
(45)

In order to be able to compare with a classic analog third-

order PLL, L(z) can be rewritten in a more interpretable form
3 in (45) as a function of the natural pulsation ωn = 2πfn
with fn the natural frequency, the damping factor ζ and the

capacitance ratio m, where:

(m+ 2) · ζωnT =
µ1 − µ2 + µ3

1− µ1
, (46)

(1 + 2mζ2) · (ωnT )
2 =

µ2 − 2µ3

1− µ1
, (47)

mζ · (ωnT )
3 =

µ3

1− µ1
. (48)

The capacitance ratio m is an additional factor for third-

order PLL used to adjust the step response character [27].

By comparing (44) and (45), (µ1, µ2, µ3) can be expressed by

(ωn, ζ,m) as:

µ1 =
(m+ 2)ζωnT + (1 + 2mζ2)(ωnT )

2 +mζ(ωnT )
3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
,

(49)

µ2 =
(1 + 2mζ2)(ωnT )

2 + 2mζ(ωnT )
3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
,

(50)

µ3 =
mζ(ωnT )

3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
.

(51)

2) Stability: The condition of stability of the causal rational

system L(z) is obtained when all the roots of the denominator

polynomial are inside the unit circle. In view of the complexity

of the third-order transfer function, we resort to a simplified

Jury-Marden method [28].

The third-order denominator polynomial of L(z) in (44) is

D(z) = a0z
3+a1z

2+a2z+a3, with a0 = 1, a1 = µ1+µ2−3,

a2 = 3−2µ1−µ2+µ3, a3 = µ1−1, the criterion of stability

are given by:

• D(1) > 0;

• D(−1) < 0;

• a0 > |a3|, |c0| > |c2|,

with

c0 =

∣
∣
∣
∣

a0 a3
a3 a0

∣
∣
∣
∣
, c2 =

∣
∣
∣
∣

a2 a3
a1 a0

∣
∣
∣
∣
.

3The transfer function L(z) w.r.t. ωn, ζ and m in (45) is same as the one of
Or3-CATL in [1], but the relationships between (µ1, µ2, µ3) and (ωn, ζ,m)
are different since the loop filter derived in this paper is different from the
one used in [1] (see footnote 2).

After some manipulations, we obtain the condition of stability

of the RW3-CATL, i.e., L(z) is stable if and only if:

0 < µ1 < 2, (52)

0 < µ3 < µ1µ2, (53)

4µ1 + 2µ2 + µ3 < 8. (54)

We can rewrite L(z) in the frequency-domain, by setting

z = epT , with p = jω = j2πf . Assuming slow reaction of

the loop during one symbol time T (i.e. fnT ≪ 1), the digital

loop transfer function is close (approximation z−1 ≈ 1− pT )

to the usual third-order low-pass transfer function in analog

PLL ( [29], eq.(2)(4)):

L(epT ) ≈
(m+ 2)ζωn · p2 + (1 + 2mζ2)ω2

n · p+mζω3
n

p3 + (m+ 2)ζωn · p2 + (1 + 2mζ2)ω2
n · p+mζω3

n

.

(55)

Fig. 2 shows the magnitude-frequency graph of the RW3-

CATL transfer function and the third-order analog PLL trans-

fer function, respectively given by (45) and (55) with different

parameters. We can see that in the low-frequency domain

(fT ≪ 1) and for loops with slow reaction (fnT ≪ 1), the

two transfer functions match very well, and then the analog

version gives a good approximation of the RW3-CATL transfer

function.

C. Asymptotic mean squared error analysis

From (43) we know that the estimation error is zero-mean,

thus the RW3-CATL is an unbiased estimator. By using the

definition ǫ(z) = α(z)− α̂(z), (43) can be re-written as:

ǫ(z) = (1− L(z)) · α(z)− L(z) · w(n). (56)

The variance of estimation error is therefore divided into

two parts. One comes from the variation of the parameter α
and the other comes from the loop noise w:

σ2
ǫ = E{ǫ(n) · ǫ

∗
(n)} = σ2

ǫα + σ2
ǫw. (57)

The component σ2
ǫα (dynamic error variance) results from the

high-pass filtering (1 − L(z)) of the input CAs α(n), so we

have:

σ2
ǫα =

∫ + 1
2T

− 1
2T

Γα(f) · |1− L(ej2πfT )|2df , (58)
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Fig. 2: Transfer functions |L| of RW3-CATL (45) (the three

blue continuous curves) and of the corresponding 3rd-order

analog PLL (55) (blue dashed curves) versus fT , with fixed

natural frequency fnT = 10−3, while varying the parameters

(m, ζ) respectively in (a) and (b). Red continuous curves

represent the corresponding high-pass transfer function |1−L|
and the green dot-dashed lines are the linear approximation

defined in (64), the parameters marked by a star (⋆) are those

satisfying the constraint (65)

where Γα(f) is the power spectral density (PSD) of α given

by (2). And the component σ2
ǫw (static error variance) results

from the low-pass filtering L(z) of the input loop noise w(n):

σ2
ǫw =

∫ + 1
2T

− 1
2T

Γw(f) · |L(e
j2πfT )|2df . (59)

1) Static error variance σ2
ǫw: Since the noise is assumed

white, the PSD of noise Γw(f) = σ2
wT is constant all over the

system bandwidth. Thus (59) can be rewritten as:

σ2
ǫw = σ2

w · T

∫ + 1
2T

− 1
2T

|L(ej2πfT )|2df

︸ ︷︷ ︸

BL

, (60)

where BL is the so-called equivalent noise bandwidth (double-
sided normalized). BL can be derived (i.e. to evaluate the
two-sided complex integral) by using the method presented in
[30]. For a third-order system, BL is a sixth-degree algebraic
expression of ωnT (see appendix A). But with the condition
fnT ≪ 1 in our case, the higher order terms than ωnT are
negligible, so that BL can be finally approximated as:

BL ≈ 2πfnT ·

(2m3ζ4 + 12m2ζ4 + 8mζ4 + 6mζ2 + 4ζ2 + 1)

4m2ζ3 + 8mζ3 + 4ζ
︸ ︷︷ ︸

B

.

(61)

2) Dynamic error variance σ2
ǫα: The expression for σ2

ǫα

is given by (58) in an integral form. To obtain an analytical

expression of σ2
ǫα, the general assumptions fd ≤ fn ≪ 1/T is

helpful which allows us to do some approximations. By using

this assumption, we could approach the term |1−L(ej2πfT )|2

by two asymptotes (see appendix B for derivation):

|1− L(ej2πfT )|2 ≈

{
f6

(mζ)2f6
n

if f ≪ fn,

1 if f ≫ fn.
(62)

and for the special point f = fn, we have:

|1− L(ej2πfnT )|2 ≈
f6
n

(mζ)2f6
n + [m2(4ζ2 − 1) + 4].f6

n

.

(63)

The two straight asymptotes of the log magnitude in (62) are

also evidently shown in Fig.2. Note that the case of f ≫ fn
needs not to be taken into account for the integral computation

(58), because for the Rayleigh-Jakes model, the spectrum of

α, Γα, has a bounded support, i.e. |f | ≤ fd, and for a good

tracking of α, we assume fn greater or equal to fd. So we use

the low frequency asymptote for our approximation, yielding:

|1− L(ej2πfT )|2 ≈
f6

(mζ)2f6
n

, if f ≤ fn. (64)

And to obtain an acceptable approximation around fn, we

impose that the function |1 − L(ej2πfT )|2 crosses the low

frequency asymptote at f = fn, yielding the following

constraint (see (63)):

m2(4ζ2 − 1) + 4 = 0. (65)

We can see in Fig. 2 that the linear approximation (64) is quite

good, especially when the constraint (65) is applied.

Thus the dynamic error variance σ2
ǫα becomes4:

σ2
ǫα ≈

1

(mζ)2

∫ +fd

−fd

Γα(f) ·

(
f

fn

)6

· df . (66)

Further more, with the hypothesis that f ≤ fn, a variable

change cos(θ) = (f/fd) permits us to compute an exact

analytical solution of the integral (66) as:

σ2
ǫα ≈

5

16
·

1

(mζ)2
·

(
fd
fn

)6

· σ2
α. (67)

4This formula can be applied in different channel models by changing the
complex gain spectrum, e.g., for a 3-D scattering model [31], Γα(f) becomes
a constant which yields a much simpler result
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IV. COMPUTATION OF THE RW3-CATL PARAMETERS

The MSE of the RW3-CATL σ2
ǫ (57) is minimized for a

set of optimal parameters (m, ζ, fn) obtained through a three-

dimension optimization. A closed-form analytical expression

for this problem can be obtained if we impose the constraint

(65), leading to a sub-optimal solution. This constraint mini-

mization is solved with the method of Lagrange multipliers.

In section V, we show that the sub-optimal solution yields a

performance very close to that of the optimal solution.

By combining (60) and (67), we have now the closed-form

expression of the global MSE of the RW3-CATL:

σ2
ǫ (m, ζ, fn) =

5

16
·

1

(mζ)2
·

(
fd
fn

)6

· σ2
α + σ2

w ·BL. (68)

For the optimization of (68) over m, ζ and fn with

constraint (65), the auxiliary function to be minimized is given

by:

J =
5

16
·σ2

α ·
1

(mζ)2
·

(
fd
fn

)6

+σ2
w ·BL+λ·

[
m2(4ζ2 − 1) + 4

]
,

(69)

where λ is the Lagrange multiplier. The detailed computation

is given in appendix C, yielding the following sub-optimal

parameter values. m is the root of:

m11+2m10−16m9−12m8+112m7−176m6−512m5+...

448m4 + 1024m3 + 1024m2 − 3072 = 0, (70)

yielding m ≈ 3.19. ζ is then computed with (65), yielding

ζ ≈ 0.39, which are slightly different from the values used in

[1]5. Then fn, which depends on fd and the SNR =
σ2
α

σ2
w

, is

given by:

(
fn
fd

)(Jakes) =

(
5

64
·

1

πfdT
·
σ2
α

σ2
w

·Q

) 1
7

, (71)

with

Q =
1

m3ζ4Dm + ζ3Dζ

, (72)

where Dm given by (85) and Dζ given by (86) are functions of

m and ζ, as defined in Appendix C. Note that the sub-optimal

fn varies as the 7th root of SNR.

Then the sub-optimal MSE can be calculated by:

σ2
ǫ (Jakes) = C · (σ2

α)
1
7 · (σ2

w · fdT )
6
7 , (73)

with

C =

[
2

(mζ)2
· (

1

Q
)

6
7 + BQ

1
7

]

·
(
10π6

) 1
7 . (74)

5Note that in [1], we have used m = 3, ζ = 0.37 as a sub-optimal set,
which is obtained from the numerical optimization, and then we proceeded
a one-dimension optimization on the natural frequency fn. Obviously, the
Lagrange multiplier approach used here is more accurate because it is a 3-
dimension optimization.

V. SIMULATION

In this section, the performance of the RW3-CATL in terms

of MSE and BER is assessed through simulations, and is

compared to that of reference algorithms based on KF. For

all our simulations the channel autocorrelation function is

assumed to be given by the widely accepted Jakes’ model,

as stated in Section II. Except for Fig. 9, all the results are

given in Data-aided mode (with then known pilot symbols).

A. Validation of the theoretical analysis

In the previous section, a method to solve the minimization

has been provided, yielding sub-optimal parameters. Now,

it remains to check that the MSE obtained with these sub-

optimal parameters is close to that obtained with the optimal

parameters. We recall that the optimal solution is obtained

without taking into account the constraint whereas the sub-

optimal solution is obtained with the constraint (65). Note that

the optimal solution can be found only by means of numerical

optimization. The optimal solution is obtained as follows.

First, we define a domain for m and ζ corresponding to

typical practical values for these parameters: {0 < m 6

20, 0.05 < ζ < 0.5}. For each point of this domain, we

calculate by means of a one-dimension numerical optimization

the fn value that minimizes the MSE, and we keep then

the value of this minimum MSE. Since fn depends on SNR

and fdT , this numerical computation procedure can be done

for various SNR and fdT . As a result, Fig. 3 shows the

MSE as a function of m, ζ, computed for SNR = 0 dB and

fdT = 10−3. It is noteworthy that there exists a valley-belt in

which the lowest MSE values are located. To obtain the set of

optimal parameters, it remains to find the global minimum by

means of a numerical search. The global minimum is shown

in Fig. 3 by a star point. The sub-optimal parameters are

also plotted (triangle point). We recall that the sub-optimal

parameter values are m = 3.19, ζ = 0.39, and for this SNR

scenario fn/fd = 2.0 (fn is computed with (71)). Note that

the sub-optimal point is exactly located on the cross point of

the constraint line and the valley-bottom line. The MSE value

for the sub-optimal parameters is very closed to that for the

optimal parameters, which validates our sub-optimal solution.

Fig. 4 compares the simulated and theoretical MSE versus

fn for fdT = 10−3, and SNR = 0, 20, 40 dB. The sub-

optimal loop parameters (m = 3.19, ζ = 0.39) are considered

(see section IV). The theoretical dynamic and static error

variances (dashed lines) σ2
ǫα and σ2

ǫw are obtained by numerical

integration of (58) and (59), respectively. The approximated

error variances (square points) computed by the approximated

formulae ((60) with (61) and (67)) are also plotted. It is

observed that the approximated MSEs match very well the

theoretical MSEs. On the other hand, we can also observe that

the component σ2
ǫα is the main contribution of σ2

ǫ for small

fn, whereas the component σ2
ǫw dominates when fn increases.

This is understood from (67) and (61) since σ2
ǫα is inversely

proportional to f6
n, while σ2

ǫw is proportional to fn.

Simulated MSEs have also been plotted. The simulated

dynamic error variance σ2
ǫα was obtained by forcing the noise

w(n) to zero, whereas the simulated static error variance
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Fig. 3: MSE (57) versus (m, ζ) computed by numerical

integration of (58) and (59) with SNR = 0 dB, the constraint

line is given by (65)
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Fig. 4: Theoretical and simulated MSEs versus fn/fd (RW3-

CATL with m = 3.19, ζ = 0.39, SNR = 0, 20, 40 dB, fdT =
10−3)

σ2
ǫw was obtained by maintaining the CA to a constant. We

can observe that all the theoretical curves are very close

to the simulated ones too, which validates our theoretical

analysis and the approximations. Therefore, the abscissa of

the minimum of the simulated MSE σ2
ǫ also matches very

well with the (theoretical closed-form (92)) optimal natural

frequency (such that fn/fd (Jakes) = 2, 3.9, 7.3 respectively

for SNR = 0, 20, 40 dB).

B. Comparison with Kalman estimators in literature

Fig. 5 compares the asymptotic MSE (i.e. in tracking mode)

of the RW3-CATL with that of the AR1CM -KF [5]–[8], the

AR1MAV -KF [9] [10] and the RW2-KF [11] by means of

Monte-Carlo simulations 6 for fdT = 10−4 and fdT = 10−3.

Note that our proposed RW3-CATL algorithm assumes the

6In this simulation, the results of RW3-KF is not illustrated basically
because the steady-state RW3-KF is equivalent to the RW3-CATL, as long as
the state noise variance σ2

u is well tuned, according to Section III-A.
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Fig. 5: MSE versus SNR of the RW3-CATL compared to

reference estimators, (a) fdT = 10−4 (b) fdT = 10−3
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Fig. 6: MSE versus fdT , SNR = 20 dB

same a priori knowledge as that required for the KF (Jakes

model, noise variance, Doppler frequency). We also plot the
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Fig. 7: Effect of a mismatch on the knowledge of SNR : MSE

versus SNR, SNR′ (used to tune the RW3-CATL) fixed at 15,

20, 25 dB and fdT = 10−3

on-line Bayesian Cramer-Rao bound (BCRB) as reference

[32]. It is observed that the asymptotic MSE performance

of the AR1CM -KF is very poor. This result corroborates the

works cited in the introduction, which point out that the

AR1CM -KF is convenient for high mobility (fdT >> 10−2),

but exhibits poor performance at fdT ≤ 10−2 as proved by

[10]. As expected, the RW2-KF performs better than AR1CM -

KF and AR1MAV -KF. Finally, the asymptotic MSE of the

RW3-CATL with the loop parameters properly chosen (see

section IV) is the closest to the BCRB (which could be

concluded from the MSE expressions of the 4 estimators). This

result shows that it is preferable to use a well-chosen third-

order algorithm based on simple CATL to a KF when the later

is based only on first- or second-order models. According to

(73), the theoretical asymptotic MSE of the RW3-CATL is

proportional to the 6
7 power of the noise variance σ2

w (note

that SNR =
σ2
α

σ2
w

with here σ2
α = 1 and σ2

w < 1), versus to the
4
5 and 2

3 power for the RW2-KF [11] and AR1MAV -KF [10]

respectively, which is validated by Fig. 5.

Fig. 6 shows the MSE of different systems versus fdT .

The gain in performance of the RW3-CATL is greater for

small values of fdT . When fdT increases, the MSEs of

the AR1MAV -KF, RW2-KF and RW3-CATL systems seem

to converge to the MSE of the AR1CM -KF. This is again

understood from (73) that the theoretical asymptotic MSE of

the RW3-CATL is proportional to the 6
7 power of the fdT .

C. Mismatched design

According to the analysis in section IV, we know that

the knowledge of the SNR and fd is required to design

the RW3-CATL parameter fn. And (68) shows that fd and

the SNR are the two key factors that directly impact the

estimation MSE. In this section, we thus depict the sensitivity

to imperfect knowledge of SNR and fd in order to show

the robustness of the RW3-CATL. The notation SNR′ and

f ′
d denote the values of SNR and fd used to tune the RW3-

CATL (not necessarily the correct values). Fig. 7 plots the
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Fig. 8: Effect of a mismatch on the knowledge of fd : MSE

versus fdT , fdT
′

(used to tune the RW3-CATL) shifted 10%,

20%, 50% from the true value and SNR = 20 dB
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Fig. 9: BER versus SNR for QPSK modulation, fdT = 10−3

MSE versus the true SNR for SNR′ = 15 dB, 20 dB, 25

dB and perfect knowledge of fdT = 10−3 (i.e. f ′
d = fd),

as well as the corresponding theoretical results. It is seen

that both overestimation and underestimation of SNR cause

performance degradation, and underestimation shows more

severe influence. Fig. 8 shows the MSE results of using f ′
d

with different deviations (
f ′
d−fd
fd

= ±10%,±20%,±50%) and

SNR fixed at 20 dB, the corresponding theoretical values

are also attached. We also find that, the RW3-CATL can

sustain a certain fd error, for example, within ±20%, there

is no evident mismatch between the simulation MSE and the

optimal MSE. Besides, an underestimated fd will cause more

severe degradation than a same level overestimated fd, as

shown by the 1.5fd(+50%) and 0.5fd(−50%) lines in Fig.

8.

D. BER performance

A BER simulation is carried out to evaluate the actual

performance of the RW3-CATL estimator. The transmitted
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symbols are QPSK modulated. The data frame is composed

of 200 continuous pilot symbols and then 1800 unknown

symbols. In this context, the channel estimation is in half-

blind mode (alternatively by pilots and decisions). Note that

the a priori decision x̂(n|n−1) is used to compute the error

signal (15), but the final decision is computed as: x̂(n) =√
2
2 · sgn{Re(α̂∗

(n) · r(n))} + j
√
2
2 · sgn{Im(α̂∗

(n) · r(n))}. Fig.

9 shows that the BER of RW3-CATL remains close to the

perfect line (BER with perfect acknowledge of channel) for

all SNRs, while the BER of other estimators are further away

from the perfect line as SNR increases. We notice also that

the classical Kalman estimator based on AR1-model leads to

poor BER performance due to the mismatch of AR-1 model,

and that this BER can be dramatically reduced in using the

integrated-RW-model-based estimators (RW2-KF and RW3-

CATL). The third-order estimator performs even much better

than the second-order one.

VI. CONCLUSION

In this paper, a channel path complex amplitude estimator

over slow to moderate flat fading channels has been proposed.

The proposed estimator is based on a third-order tracking loop,

which is proved equivalent to a steady-state KF based on a

same order integrated random walk (RW) model. The connec-

tion between a steady-state KF based on a RW model and

the proposed PLL-like estimator is established. This explains

the fact that the RW3-CATL can reach in tracking mode the

same asymptotic performance as that of a steady-state RW3-

KF, even though the former converges slower than the KF.

The complete theoretical MSE analysis has been provided. A

closed-form formula of the asymptotic MSE as a function of

Doppler frequency and SNR is given. We have demonstrated

that, by fixing the capacitance ratio to 3.19, the damping

factor to 0.39, and by computing the natural frequency with

a given expression depending on the Doppler frequency and

SNR, it is possible to achieve near-optimal performance in

terms of asymptotic MSE. Simulation results (MSE and BER)

show that, with these well-chosen parameters, the proposed

algorithm outperforms the KF of the literature (based on first-

or second-order models), as long as the mobility is moderate

(i.e. fdT < 10−2), which is a very common scenario.

The mismatch simulation shows the robustness of the RW3-

CATL in harsh environment test, where the mobility (in terms

of fd) or the background noise power (in terms of SNR)

information is distorted. In addition, our proposed algorithm

is a computationally less demanding technique than these KF-

based algorithms, since it does not require to compute the

coefficients at each time period. The simple case of a flat

fading channel was considered in this article, but the results

can be applied or generalized to more complex systems, such

as wireless OFDM systems.

APPENDIX A

EQUIVALENT NOISE BANDWIDTH OF RW3-CATL

Using the result of [30], the two-sided complex integral in

the form of (60) could be evaluated by the solution of a closed

matrix equation. The matrices are composed by the coefficients

of numerator and denominator of the integrand. The transfer

function of a third-order system:

L(z) =
b0z

3 + b1z
2 + b2z + b3

a0z3 + a1z2 + a2z + a3
, (75)

then the corresponding matrix equation is given by:







a0 a1 a2 a3
a1 a0 + a2 a1 + a3 a0
a2 a3 a0 a1
a3 0 0 a0













a0BL

M1

M2

M3







=







b20 + b21 + b22 + b23
2(b0b1 + b1b2 + b2b3)

2(b0b2 + b1b3)
2b0b3







. (76)

In our case, we have from (44) that b0 = µ1, b1 = −2µ1 +
µ2+µ3, b2 = µ1−µ2, b3 = 0, a0 = 1, a1 = µ1+µ2+µ3−3,
a2 = 3− 2µ1 − µ2, a3 = µ1 − 1. Combining with (49), (50),
(51) leads to (77), where:

A = m3ζ3,

B = 8m3ζ4 + 4m2ζ2,

C = 20m3ζ5 + 5m3ζ3 + 30m2ζ3 + 5mζ,

D = 16m3ζ6 + 22m3ζ4 + 68m2ζ4 + 16m2ζ2 + 34mζ2 + 2,

E = 24m3ζ5 + 4m3ζ3 + 48m2ζ5 + 56m2ζ3 + 64mζ3 + 14mζ + 12ζ,

F = 8m3ζ4 + 48m2ζ4 + 32mζ4 + 24mζ2 + 16ζ2 + 4,

G = 16m3ζ6 + 22m3ζ4 + 68m2ζ4 + 18m2ζ2 + 34mζ2 + 2,

H = 24m3ζ5 + 4m3ζ3 + 48m2ζ5 + 68m2ζ3 + 64mζ3 + 20mζ + 12ζ,

I = 8m3ζ4 + 64m2ζ4 + 8m2ζ2 + 32mζ4 + 56mζ2 + 16ζ2 + 8,

J = 16m2ζ3 + 32mζ3 + 16ζ.

APPENDIX B

ASYMPTOTE APPROXIMATION OF |1− L(ej2πfT )|2

Under the general assumption fn ≪ 1/T , the squared

modulus of the high pass-filter 1 − L can be written from

(55) as:

|1− L(ej2πfT )|2 (for |f | ≪ 1/T )

= f6/
{
m2ζ2f6

n + [(m+ 2)2ζ2 − 2(1 + 2mζ2)]f2
nf

4+ · · ·

[(1 + 2mζ2)2 − 2(m2 + 2m)ζ2]f4
nf

2 + f6
}

. (78)

The red curves in Fig. 2 shows the magnitude of |1 −
L(ej2πfT )|2 as a function of f for different values of m and

ζ and for fnT = 10−3. Note that with the form in (78), the

integral (60) is too tedious to derive. In order to obtain an

BL =
A(ωnT )

6 +B(ωnT )
5 + C(ωnT )

4 +D(ωnT )
3 + E(ωnT )

2 + F (ωnT )

A(ωnT )6 +B(ωnT )5 + C(ωnT )4 +G(ωnT )3 +H(ωnT )2 + I(ωnT ) + J
(77)
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analytical expression of the integral, it is necessary to simplify

the expression of |1− L(ej2πfT )|2.

For that purpose, let us consider the asymptotic behaviour

of the log magnitude as a function of frequency. At low

frequencies, i.e. f ≪ fn, we get f2
nf

4 ≪ f6
n and f6 ≪ f6

n,

yielding:

m2ζ2f6
n + [(m+ 2)2ζ2 − 2(1 + 2mζ2)]f2

nf
4 + ...

[(1 + 2mζ2)2 − 2(m2 + 2m)ζ2]f4
nf

2 + f6

≈ (mζ)2f6
n. (79)

At high frequencies, i.e. f ≫ fn, we get:

m2ζ2f6
n + [(m+ 2)2ζ2 − 2(1 + 2mζ2)]f2

nf
4 + ...

[(1 + 2mζ2)2 − 2(m2 + 2m)ζ2]f4
nf

2 + f6

≈ f6. (80)

By combining (79) and (80), we obtain thus (62). Then, by

using f = fn, (63) is found directly from (78).

APPENDIX C

MINIMIZATION OF ASYMPTOTIC MSE WITH LAGRANGE

MULTIPLIERS METHOD

We apply the method of Lagrange multipliers to minimize

(68) with constraint (65). Given the auxiliary function, the

problem reduces to solve the following system of equations:







∂J

∂fn
= 2πσ2

wTB −
15

8
·

1

(mζ)2
· σ2

α ·
f6
d

f7
n

= 0, (81)

∂J

∂m
= 2πσ2

wTfnDm −
5

8
· σ2

α ·

(
fd
fn

)6

·
1

ζ2m3

+ 2λ(4ζ2 − 1)m = 0, (82)

∂J

∂ζ
= 2πσ2

wTfnDζ −
5

8
· σ2

α ·

(
fd
fn

)6

·
1

m2ζ3

+ 8λm2ζ = 0, (83)

m2(4ζ2 − 1) + 4 = 0, (84)

with

Dm =
∂B

∂m

=
m4ζ5 + 4m3ζ5 + 8m2ζ5 + 8mζ3 −mζ + 2ζ

2m4ζ4 + 8m3ζ4 + 8m2ζ4 + 4m2ζ2 + 8mζ2 + 2
, (85)

Dζ =
∂B

∂ζ

=
2m5ζ6 + 16m4ζ6 + 32m3ζ6 + 16m2ζ6 + · · ·

4m4ζ6 + 16m3ζ6 + 16m2ζ6 + 8m2ζ4 + 16mζ4 + 4ζ2

· · ·+ 20m2ζ4 − 3m2ζ2 + 16mζ4 + 4ζ2 − 1
. (86)

Since m and ζ are real positive parameters, from (84) we

have:

ζ =

√

(m2 − 4)

2m
, (87)

which indicates that m > 2. Replace all the ζ in (81), the

system of equations becomes:






C1B
′

−
6C2

f7
n · m2−4

4

= 0, (88)

C1D
′

mfn −
2C2

f6
n · m(m2−4)

4

−
8λ

m
= 0, (89)

C1D
′

ζfn ·

√

(m2 − 4)

2m
−

2C2

f6
n · m2−4

4

+ 2λ(m2 − 4) = 0, (90)

with C1 = 2πσ2
wT and C2 = 5

16 · f6
d · σ2

α. The terms B
′

, D
′

m

and D
′

ζ are respectively obtained from B (61), Dm (85) and

Dζ (86) where ζ is replaced by (87). Then by combining (89)

and (90), λ and fn can be expressed as a function of m as

follows:

λ =
1

8
C1D

′

mfnm−
C2

f6
n · (m2 − 4)

, (91)

fn =




8C2m

3

C1(m2 − 4)
[

D
′

mm2(m2 − 4) + 2D
′

ζ

√

(m2 − 4)
]





1
7

.

(92)

Finally, by using (92), we do some manipulations with (88),

the system of equations reduces to (70), this equation has 11

roots that we can obtain by Computer-aided calculation. The

condition of m (real positive and m > 2) returns a unique

available value, that is m = 3.19. We obtained then ζ = 0.39
by (87), and also fn by (92).
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