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This paper deals with channel estimation in tracking mode over a flat Rayleigh fading channel with Jakes' Doppler Spectrum. Many estimation algorithms exploit the time-domain correlation of the channel by employing a Kalman filter based on a first-order (or sometimes second-order) approximation model of the time-varying channel. However, the nature of the approximation model itself degrades the estimation performance for slow to moderate varying channel scenarios. Furthermore, the Kalman-based algorithms exhibit a certain complexity. Hence, a different model and approach has been investigated in this work to tackle all of these issues. A novel PLL-structured thirdorder tracking loop estimator with a low complexity is proposed. The connection between a steady-state Kalman filter based on a random walk approximation model and the proposed estimator is first established. Then, a sub-optimal mean-squared-error (MSE) is given in a closed-form expression as a function of the tracking loop parameters. The parameters that minimize this sub-optimal MSE are also given in a closed-form expression. The asymptotic MSE and Bit-Error-Ratio (BER) simulation results demonstrate that the proposed estimator outperforms the first and second order Kalman-based filters reported in literature. The robustness of the proposed estimator is also verified by a mismatch simulation.

I. INTRODUCTION

Channel estimation is a fundamental task for a wireless communication receiver. This paper deals with channel path Complex Amplitude (CA) estimators in tracking mode. The statistical channel model assumed in this paper to describe the wireless channel is the Rayleigh fading channel with Jakes' Doppler spectrum model [START_REF] Jakes | Microwave Mobile Communications[END_REF] (also called the Clarke Model [START_REF] Clarke | A statistical theory of mobile radio reception[END_REF]). It is widely accepted in the literature for frequency-flat correlated fading channels.

Many channel path CA tracking algorithms use a Kalman filter (KF). KF-based algorithms exhibit a certain complexity and the design of a KF requires to dispose of a linear recursive state-space representation of the channel. However, the exact Clarke model does not admit such a representation. An approximation often employed in the literature consists of approaching the fading process as Auto-Regressive (AR) [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF], in the perspective to design a KF [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF]- [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF]. The larger the order of the model, the better the approximation of the actual fading statistics, but also the larger the complexity. So, despite its complexity, KF-based algorithms do not ensure optimal performance if the structure or the tuning of the approximation model are not well suited, as developed hereafter. A widely used channel approximation model results from a first-order Auto-Regressive model (AR1) as recommended by [START_REF] Wang | On veryfying the first-order Markovian assumption for a Rayleigh fading channel model[END_REF], combined with a Correlation Matching (CM) criterion to fix the AR1-coefficient (equal then to the standard Bessel AR1-coefficient, J 0 (2πf d T ), for a given normalized Doppler frequency f d T ). The KF channel estimator resulting from this choice, called AR1 CM -KF in this paper, was used in several papers concerning various systems such as in Multiple-Input-Multiple-Output (MIMO) systems [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF], [START_REF] Liu | Space-time coding and Kalman filtering for time-selective fading channels[END_REF], or in Orthogonal Frequency Division Multiplexing (OFDM) systems [START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF], [START_REF] Al-Naffouri | An EM-Based Forward-Backward Kalman Filter for the Estimation of Time-Variant Channels in OFDM[END_REF], [START_REF] Hijazi | Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[END_REF], [START_REF] Simon | Joint Carrier Frequency Offset and Channel Estimation for OFDM Systems via the EM Algorithm in the Presence of Very High Mobility[END_REF]. The AR1 CM -KF seems to be convenient for the very high mobility case, leading to quasi-optimal channel estimation performance compared to lower bounds, as seen, for example, in [START_REF] Hijazi | Joint data QR-detection and Kalman estimation for OFDM time-varying Rayleigh channel complex gains[END_REF]- [START_REF] Tugnait | Doubly selective channel estimation using exponential basis models and subblock tracking[END_REF] (in these works the AR1 CM -KF is actually used to track the Basis Extension Model coefficients of the high speed channel). But for most conventional Doppler speeds whereby the channel variation within one symbol duration can be neglected (i.e. f d T ≤ 10 -2 , as in [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF]- [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF], [START_REF] Ros | Paths complex gain tracking algorithms for ofdm receiver in slowly-varying channels[END_REF]), the AR1 CM -KF estimator usually exploited in the literature is far from being effective [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF]. This poor performance has been recently explained analytically in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF], mainly because the CM criterion is shown to be inappropriate to tune the AR1-coefficient in slow or moderate fading scenario (since the choice of J 0 (2πf d T ) ≈ 1 -1 4 (2πf d T ) 2 for the AR1 coefficient is too close to the value 1 to ensure a good tradeoff between tracking ability and noise mitigation). A better tuning of the AR1-coefficient can focus on minimizing the estimation variance in output of the KF as proposed in [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF] (with analytic MSE performance for a given Doppler and Signalto-Noise Ratio (SNR) scenario in [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]), i.e. using a minimum asymptotic variance (MAV) criterion without imposing the CM constraint. The resulting estimator is called AR1 M AV -KF in this paper.

On the other hand, [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] analytically shows that the MSE performance of a KF can still be improved by switching from the AR1 model to an integrated random walk (RW) model (also called integrated Brownian model) for the approximation model. Such a model was a second-order approximation model that better takes into account the fact that the exact channel CA continues in a given direction during several symbols for low f d T and then exhibits a strong trend behaviour. The Kalman estimator based on this special second-order model is called RW2-KF in this paper.

So far, all our discussion dealt with KF-based algorithms, but we now wish to obtain simpler adaptive algorithms. This can be done by deriving steady-state versions of the KF based on a random-walk (RW) approximation model, yielding a recursive linear filter with constant coefficients. In general, such algorithms converge slower than the KF, but can reach the same asymptotic performance in tracking mode. To start with, we should bear in mind that the LMS algorithm, which is the most popular adaptive algorithm, can be viewed as a steadystate version of a KF based on a first-order RW approximation model [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. the wiener lms algorithm[END_REF]. The second-order LMS was first proposed by [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF] in a channel estimation context. It was derived as the steadystate version of a KF based on a second-order integrated RW approximation model (RW2-KF). However, the author does not specify how to tune the two constant coefficients of the model. [START_REF] Xue | Second-order LMS based wireless channel tracking: implementation under imperfect carrier synchronization[END_REF] proposed a method to obtain optimal coefficients, and [START_REF] Ros | Paths complex gain tracking algorithms for ofdm receiver in slowly-varying channels[END_REF], [START_REF] Ros | Complex amplitudes tracking loop for multipath slow fading channel estimation in OFDM systems[END_REF] presented the CA tracking algorithm and its optimization from a second-order phase-locked-loop (PLL) point of view. Indeed, as it has been already shown by Driessen [START_REF] Driessen | DPLL bit synchronizer with rapid acquisition using adaptive Kalman filtering techniques[END_REF] and Christiansen [START_REF] Christiansen | Modeling of PRML timing loop as a Kalman filter[END_REF] in the case of the phase estimation problem, a proportional-integral (second-order) PLL has the same structure as the KF when considering the second-order integrated RW model, and thereafter the closed-form Kalman gain expression is given in [START_REF] Patapoutian | On phase-locked loops and Kalman filters[END_REF]. The algorithm of [START_REF] Ros | Paths complex gain tracking algorithms for ofdm receiver in slowly-varying channels[END_REF], [START_REF] Ros | Complex amplitudes tracking loop for multipath slow fading channel estimation in OFDM systems[END_REF] is called the second-order complex amplitude tracking loop (RW2-CATL).

In this paper, we propose and study a low-complexity flat fading channel estimator based on a third-order integrated RW model (RW3). The contributions of this paper are multi-fold with the purpose to solve the following questions: Why could a PLL-structured estimator asymptotically work like a traditional one (e.g. a KF) ? What is the relationship between them ? How much can a well-chosen third-order CATL outperform, in terms of asymptotic MSE performance, the more complex KF based only on first-or second-order models (e.g. AR1 CM -KF, AR1 M AV -KF, or RW2-KF) ? How to tune properly and in a simple way the coefficients of such a third-order CATL, assuming Rayleigh-Jakes channel and a given scenario of f d T and SNR? What is then the closed form expression of the MSE of such a channel estimator ? How does a distorted foreknowledge of Doppler frequency or noise power information influence the estimator performance ?

Section II gives the system model. In section III, we propose and analyze a third-order Complex-Amplitude-Tracking Loop, called RW3-CATL, for the time-varying channel estimation. Section IV describes the proposed method to correctly tune the loop coefficients, and section V validates our model and assumptions by means of MSE and BER simulations.

II. MODEL AND ESTIMATION OBJECTIVE

We consider the estimation of a flat Rayleigh fading channel in a digital modulation system. The discrete-time observation is:

r (n) = α (n) • x (n) + v (n) , ( 1 
)
where n is the symbol time index;

x (n) = a (n) + jb (n) with a (n) , b (n) ∈ ℜ is the transmitted phase modulated (M -PSK) or
quadrature amplitude modulation (M -QAM) symbol, the sequence of transmitted symbol is assumed to be zero-mean and stationary with normalized variance : E x (n) 2 = σ 2 x = 1; v (n) is a zero-mean additive white circular complex Gaussian noise with variance σ 2 v ; and α (n) is a zero-mean circular Gaussian channel Complex Amplitude with variance σ 2 α . Note that this model can be applied to more advanced systems such as OFDM system, where α would then represent the channel gain to be estimated at one pilot frequency as in [START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF], and x (n) could then be a known (or pilot) symbol in the channel estimation perspective (data-aided scenario).

The normalized Doppler frequency of this channel is f d T , where f d is the Doppler frequency and T is the symbol period. A Jakes' Doppler spectrum is assumed for this channel:

Γ α (f ) =    σ 2 α πf d 1-f f d 2 , if |f | < f d 0, if |f | ≥ f d . (2) 
The autocorrelation coefficient of the stationary CA α is then defined for lag q by: R α

[q] = E α (n) • α (n-q) * = σ 2 α J 0 (2πf d T • q), (3 
) where J 0 is the zeroth-order Bessel function of the first kind. Given the observation model (1) and the Doppler spectrum statistical constraint (2) for the dynamic evolution of the CA, we look for an on-line unbiased estimation α(n

) of α (n) . The MSE σ 2 ǫ def = E ǫ (n) 2 of the estimation error ǫ (n) def = α (n) - α(n) will be investigated.

III. COMPLEX AMPLITUDE TRACKING LOOP

A. From steady-state KF to PLL-structured CATL 1) RW3 model and RW3-KF: similar to the method presented in [START_REF] Gazor | Prediction in LMS-type adaptive algorithms for smoothly time varying environments[END_REF], in the slow to moderate fading scenario, we can firstly depict a steady-state KF [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF], but based here on a RW3 model, denoted as RW3-KF. The model can be formulated in discrete time update equations as:

α(n) =α (n-1) + δ (n-1) + 1 2 ξ (n-1) , (4) 
δ (n) =δ (n-1) + ξ (n-1) , (5) ξ (n) =ξ (n-1) + u (n) , (6) 
where u (n) is a zero mean circular complex Gaussian with variance σ 2 u . The equation ( 4) is the discrete version of the Taylor series expansion of a continuous signal. So in this approximation model, the approximate process of α (n) , denoted α(n) , is updated by a time increment of δ (n-1) + 1 2 ξ (n-1) every symbol period with δ (n) and ξ (n) respectively approximate the first-and second-order derivative of the continuous signal. The observation model is given by (1), which could be rewritten in separating the parameter α (n) from the transmitted signal as:

y (n) = α (n) + w (n) , (7) 
with

y (n) = r (n) x (n) and w (n) = v (n)
x (n) . Note that w (n) remains a zero-mean additive white circular complex noise with variance

σ 2 w = K mod • σ 2 v where K mod = E 1 x (n)
2 is a constant factor, known for a given modulation scheme. For a special case of constant-energy modulation, e.g. M -PSK, we would have σ 2 w = σ 2 v and K mod = 1. Then we reform [START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF] and ( 4)∼(6) in matrix form as:

y (n) =Sa (n) + w (n) , (8) 
a (n) =Ma (n-1) + u (n) , (9) 
with the selection vector S = 1 0 0 , the state vector a (n)

def = α(n) δ (n) ξ (n)
T , the state noise vector

u (n) = 0 0 u (n)
T and the 3 × 3 evolution matrix M = 1 11 2 ; 0 1 1; 0 0 1 . The observation equation ( 8) and the state evolution equation ( 9) compose the statespace model of the KF. The corresponding two-stage KF equations are then written as:

Time Update Equations â(n|n-1) = Mâ (n-1|n-1) , (10) 
P (n|n-1) = MP (n-1|n-1) M T + U, (11) 
Measurement Update Equations

K (n) = P (n|n-1) S T SP (n|n-1) S T + σ 2 w , (12) 
â(n|n) = â(n|n-1) + K (n) (y (n) -Sâ (n|n-1) ), (13) 
P (n|n) = (I -K (n) S)P (n|n-1) , (14) 
with â(n|n-1) def = α(n|n-1) δ(n|n-1) ξ(n|n-1)

T the prediction of state vector, â(n|n) def = α(n|n) δ(n|n) ξ(n|n)

T the estimation of state vector, and the 3 × 3 state noise matrix is defined as U = 0 0 0; 0 0 0; 0 0 σ 2 u , K (n) is the Kalman gain vector, P (n|n-1) , P (n|n) are respectively the covariance matrices (both 3 × 3) of the prediction error and the estimation error. Define also the error signal as:

v ǫ(n) = y (n) -Sâ (n|n-1) . ( 15 
)
Note that the computation of the error signal requires the knowledge of x (n) since y (n) is the equalized version of the received signal r (n) . Two different scenarios can then be considered : either treat x (n) as pilot symbols, or use the decisions instead. In the decision-directed scenario,x (n) is replaced by the a priori decision x(n|n-1) to compute

y (n) = r (n)
x(n|n-1) , where x(n|n-1) is decided from the previous estimation of the channel. The value of x(n|n-1) depends on the applied modulation schemes, e.g. in QPSK modulation,

x(n|n-1) = √ 2 2 •sgn{Re(α * (n|n-1) •r (n) )} + j √ 2 2 •sgn{Im(α * (n|n-1) •r (n) )
}, with sgn{•} the sign function. In this work, we concentrate on the performance of the channel estimator 1 . So the theoretical analysis is derived assuming symbols are known (pilot-aided scenario) or perfectly decided, and the effect of decision error (in the decision-directed scenario) will be observed in the simulation part.

2) Time-domain equations of the steady-state RW3-KF:

Since the linear model ((9)(8)) is observable and controllable [START_REF] Chui | Kalman Filtering with real-time applications[END_REF], an asymptotic regime is quickly reached [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. In other words, K (n) converges to a constant when n is large enough, i.e.

K (n) = K (n+1) = K (∞) def = k 1 k 2 k 3 T . ( 16 
)
By combining ( 10) and ( 13), we obtain the measurement update equations of α with the steady-state RW3-KF:

α(n|n) = α(n-1|n-1) + δ(n-1|n-1) + 1 2 ξ(n-1|n-1) + k 1 v ǫ(n) , (17) δ 
(n|n) = δ(n-1|n-1) + ξ(n-1|n-1) + k 2 v ǫ(n) (18) ξ(n|n) = ξ(n-1|n-1) + k 3 v ǫ(n) , (19) 
with v ǫ(n) defined by [START_REF] Tugnait | Doubly selective channel estimation using exponential basis models and subblock tracking[END_REF].

3) The steady-state RW3-KF as an RW3-CATL: Note that k 2 and k 3 are embedded in the derivatives of the CA in [START_REF] Lindbom | Tracking of time-varying mobile radio channels .1. the wiener lms algorithm[END_REF], this makes it difficult to control directly the estimator through the use of the gains. It is however interesting to note that if we study these equations in Z-domain, the gains can be separated from the variables, and this allows us to analyse the estimator as a PLL-structured tracking loop with a PII filter (or Proportional-double-Integral filter). The expression of (17)(18) [START_REF] Xue | Second-order LMS based wireless channel tracking: implementation under imperfect carrier synchronization[END_REF] in Z-domain are:

α(z)(1 -z -1 ) = δ(z)z -1 + 1 2 ξ(z)z -1 + k 1 v ǫ (z), (20) 
δ(z)(1 -z -1 ) = ξ(z)z -1 + k 2 v ǫ (z), (21) ξ 
(z)(1 -z -1 ) = k 3 v ǫ (z). (22) 
Substituting ( 21) [START_REF] Christiansen | Modeling of PRML timing loop as a Kalman filter[END_REF] in [START_REF] Ros | Complex amplitudes tracking loop for multipath slow fading channel estimation in OFDM systems[END_REF], we have:

α(z)(1-z -1 ) = k 1 + (k 2 + 1 2 k 3 )z -1 1 -z -1 + k 3 z -2 (1 -z -1 ) 2 v ǫ (z), (23) 
The equation [START_REF] Patapoutian | On phase-locked loops and Kalman filters[END_REF] shows the final estimate α as a filtered version of the error signal v ǫ , as in a PLL. Let us define:

µ 1 = k 1 , (24) 
µ 2 = k 2 + 1 2 k 3 , (25) 
µ 3 = k 3 , (26) 
and

v Lag1 (z) = v ǫ (z) 1 -z -1 , ( 27 
) v Lag2 (z) = v ǫ (z) (1 -z -1 ) 2 , (28) 
(23) can then be rewritten as:

α(z)(1 -z -1 ) = µ 1 v ǫ (z) + µ 2 v Lag1 (z)z -1 + µ 3 v Lag2 (z)z -2 , ( 29 
) or equivalently in discrete-time domain:

α(n|n) = α(n-1|n-1) + µ 1 v ǫ(n) + µ 2 v Lag1(n-1) + µ 3 v Lag2(n-2) .
(30) From ( 13), we have:

α(n|n) = α(n|n-1) + k 1 v ǫ(n) . ( 31 
)
Fig. 1: Equivalent structure of the RW3-CATL By combining ( 30), ( 31) and ( 24), we get the prediction equation:

α(n+1|n) = α(n|n) + µ 2 v Lag1(n) + µ 3 v Lag2(n-1) . ( 32 
)
These equations, derived from the steady-state RW3-KF, can be slightly rearranged to resemble the most traditional form of a PLL-like structure, as shown in the next subsection.

4) Final time-domain equations of the RW3-CATL:

We can now easily sum up the equations of the proposed third-order Complex Amplitude Tracking Loop (CATL), as:

Error signal: v ǫ(n) = y (n) -α(n|n-1) , ( 33 
)
Loop Filter:

v Lag1(n) = v Lag1(n-1) + v ǫ(n) , (34) v Lag2(n) = v Lag2(n-1) + v Lag1(n) , (35) v c(n) = µ 1 v ǫ(n) + µ 2 v Lag1(n) + µ 3 v Lag2(n-1) , (36) 
Numerically Controlled Generator:

α(n+1|n) = α(n|n-1) + v c(n) , (37) 
Final estimate:

α(n|n) = α(n|n-1) + µ 1 v ǫ(n) . (38) 
Here (33) is from ( 15), ( 38) is obtained from (31) using ( 24), (34) and ( 35) are respectively a result of ( 27) and ( 28), and finally (36) and (37) are derived from (32) using (38). The structure of our PLL-like estimator based on the discrete-time equations (33)∼(37) is shown in Fig. 1. As in a digital PLL, the RW3-CATL is composed of an error detector, a loop filter and a numerically controlled generator.

The error detector compares firstly the received signal with a reference signal equal to the previous prediction of the parameter, α(n|n-1) . It delivers the error signal v ǫ(n) to the proportional-double-integral filter

F P II (z) = µ 1 + µ2 1-z -1 + µ3z -1
(1-z -1 ) 2 which is controlled by the three filter coefficients µ 1 , µ 2 and µ 3 . As the steady-state Kalman gains are real positive (this can be proved by solving the Ricatti equations), the loop filter coefficients µ 1 , µ 2 , µ 3 are also real positive values. The 34) and ( 35) are respectively the first-order and the second-order digital integrations (or accumulations) of the error signal v ǫ(n) . The loop filter output v c(n) is then used as a command by the numerically controlled generator to generate the next prediction α(n+1|n) from the previous one α(n|n-1) , according to the integration process (37). This structure is similar to the one presented in [1]2 , which is deduced from a standard third-order DPLL [START_REF] Lindsey | A survey of digital phase-locked loops[END_REF]. We will also demonstrate the equivalence between the RW3-CATL and the standard third-order DPLL in the following analysis. However, unlike the conventional PLL, the final output of the CATL is not the prediction (or a priori estimate) α(n|n-1) but the final (or a posteriori) estimate of the complex amplitude α(n|n) , according to equation (38), as in the KF principle. Thus an additional correction branch is added, represented by the dashed line in Fig. 1. The RW3-CATL is a time-invariant filter, it hence does not need to update its coefficients. On the contrary, the RW3-KF has to update its coefficients (the Kalman gain and the error variances) every symbol period.

signals v Lag1(n) , v Lag2(n) defined in (
Note that, thanks to the second integration in v Lag2(n) , this digital third-order loop does not exhibit acceleration-dependent steady-state error in the case of second-order variations of the CAs. In other words, the RW3-CATL characterizes the variation of the channel parameter by taking into account its slope and its curvature, while second-order loops only consider the slope.

B. General properties 1) Closed-loop transfer function of RW3-CATL:

By combining [START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF] and [START_REF] Tugnait | Doubly selective channel estimation using exponential basis models and subblock tracking[END_REF], we have:

v ǫ(n) = α (n) -α(n|n-1) + w (n) . ( 39 
)
The error signal is thus a combination of the prediction error (α (n) -α(n|n-1) ) and the channel noise. By combining (38) and (39), we obtain the error signal -estimation error relation:

v ǫ(n) = 1 1 -µ 1 • (α (n) -α(n|n) ) + 1 1 -µ 1 • w (n) . (40) 
Transform (40) to the Z-domain:

v ǫ (z) = 1 1 -µ 1 • (α(z) -α(z)) + 1 1 -µ 1 • w(z). ( 41 
)
By combining (27)(28)(29), we get:

α(z)(1 -z -1 ) = [µ 1 + µ 2 • z -1 1 -z -1 + µ 3 • z -2 (1 -z -1 ) 2 ] • v ǫ (z). (42)
Then substituting (41) in (42) leads to:

α(z) = L(z) • α(z) + L(z) • w(z), (43) 
where L(z) is the Z-domain transfer function of the 3rd-order CATL defined by (44) with

F (z) = µ 1 + µ2•z -1 1-z -1 + µ3•z -2 (1-z -1 ) 2 . L(z) = F (z) (1 -µ 1 )(1 -z -1 ) + F (z) = (µ 1 -µ 2 + µ 3 )(1 -z -1 ) 2 + (µ 2 -2µ 3 )(1 -z -1 ) + µ 3 (1 -µ 1 )(1 -z -1 ) 3 + [(µ 1 -µ 2 + µ 3 )(1 -z -1 ) 2 + (µ 2 -2µ 3 )(1 -z -1 ) + µ 3 ] (44) L(z) = (m + 2)ζω n T • (1 -z -1 ) 2 + (1 + 2mζ 2 )(ω n T ) 2 • (1 -z -1 ) + mζ(ω n T ) 3 (1 -z -1 ) 3 + (m + 2)ζω n T • (1 -z -1 ) 2 + (1 + 2mζ 2 )(ω n T ) 2 • (1 -z -1 ) + mζ(ω n T ) 3 (45) 
In order to be able to compare with a classic analog thirdorder PLL, L(z) can be rewritten in a more interpretable form3 in (45) as a function of the natural pulsation ω n = 2πf n with f n the natural frequency, the damping factor ζ and the capacitance ratio m, where:

(m + 2) • ζω n T = µ 1 -µ 2 + µ 3 1 -µ 1 , (46) 
(1 + 2mζ 2 ) • (ω n T ) 2 = µ 2 -2µ 3 1 -µ 1 , ( 47 
) mζ • (ω n T ) 3 = µ 3 1 -µ 1 . ( 48 
)
The capacitance ratio m is an additional factor for thirdorder PLL used to adjust the step response character [START_REF] Hu | Principle of Automatic Control (4th edition)[END_REF]. By comparing (44) and ( 45), (µ 1 , µ 2 , µ 3 ) can be expressed by (ω n , ζ, m) as:

µ 1 = (m + 2)ζω n T + (1 + 2mζ 2 )(ω n T ) 2 + mζ(ω n T ) 3 1 + (m + 2)ζω n T + (1 + 2mζ 2 )(ω n T ) 2 + mζ(ω n T ) 3 , ( 49 
)
µ 2 = (1 + 2mζ 2 )(ω n T ) 2 + 2mζ(ω n T ) 3 1 + (m + 2)ζω n T + (1 + 2mζ 2 )(ω n T ) 2 + mζ(ω n T ) 3 , ( 50 
)
µ 3 = mζ(ω n T ) 3 1 + (m + 2)ζω n T + (1 + 2mζ 2 )(ω n T ) 2 + mζ(ω n T ) 3 .
(51) 2) Stability: The condition of stability of the causal rational system L(z) is obtained when all the roots of the denominator polynomial are inside the unit circle. In view of the complexity of the third-order transfer function, we resort to a simplified Jury-Marden method [START_REF] Antoniou | Digital Signal Processing[END_REF].

The third-order denominator polynomial of L(z) in ( 44) is

D(z) = a 0 z 3 +a 1 z 2 +a 2 z+a 3 , with a 0 = 1, a 1 = µ 1 +µ 2 -3, a 2 = 3 -2µ 1 -µ 2 + µ 3 , a 3 = µ 1 -1,
the criterion of stability are given by:

• D(1) > 0; • D(-1) < 0; • a 0 > |a 3 |, |c 0 | > |c 2 |, with c 0 = a 0 a 3 a 3 a 0 , c 2 = a 2 a 3 a 1 a 0 .
After some manipulations, we obtain the condition of stability of the RW3-CATL, i.e., L(z) is stable if and only if:

0 < µ 1 < 2, ( 52 
)
0 < µ 3 < µ 1 µ 2 , ( 53 
)
4µ 1 + 2µ 2 + µ 3 < 8. (54) 
We can rewrite L(z) in the frequency-domain, by setting z = e pT , with p = jω = j2πf . Assuming slow reaction of the loop during one symbol time T (i.e. f n T ≪ 1), the digital loop transfer function is close (approximation z -1 ≈ 1 -pT ) to the usual third-order low-pass transfer function in analog PLL ( [START_REF] Shan | Design and Implementation of Bandwidth Adaptable Third-Order All Digital Phase-Locked Loops[END_REF], eq.( 2)(4)):

L(e pT ) ≈ (m + 2)ζω n • p 2 + (1 + 2mζ 2 )ω 2 n • p + mζω 3 n p 3 + (m + 2)ζω n • p 2 + (1 + 2mζ 2 )ω 2 n • p + mζω 3 n .
(55) Fig. 2 shows the magnitude-frequency graph of the RW3-CATL transfer function and the third-order analog PLL transfer function, respectively given by ( 45) and (55) with different parameters. We can see that in the low-frequency domain (f T ≪ 1) and for loops with slow reaction (f n T ≪ 1), the two transfer functions match very well, and then the analog version gives a good approximation of the RW3-CATL transfer function.

C. Asymptotic mean squared error analysis

From (43) we know that the estimation error is zero-mean, thus the RW3-CATL is an unbiased estimator. By using the definition ǫ(z) = α(z) -α(z), (43) can be re-written as:

ǫ(z) = (1 -L(z)) • α(z) -L(z) • w (n) . ( 56 
)
The variance of estimation error is therefore divided into two parts. One comes from the variation of the parameter α and the other comes from the loop noise w:

σ 2 ǫ = E{ǫ (n) • ǫ * (n) } = σ 2 ǫα + σ 2 ǫw . ( 57 
)
The component σ 2 ǫα (dynamic error variance) results from the high-pass filtering (1 -L(z)) of the input CAs α (n) , so we have: where Γ α (f ) is the power spectral density (PSD) of α given by [START_REF] Jakes | Microwave Mobile Communications[END_REF]. And the component σ 2 ǫw (static error variance) results from the low-pass filtering L(z) of the input loop noise w (n) :

σ 2 ǫα = + 1 2T -1 2T Γ α (f ) • |1 -L(e j2πf T )| 2 df , (58) 
σ 2 ǫw = + 1 2T -1 2T Γ w (f ) • |L(e j2πf T )| 2 df . ( 59 
)
1) Static error variance σ 2 ǫw : Since the noise is assumed white, the PSD of noise Γ w (f ) = σ 2 w T is constant all over the system bandwidth. Thus (59) can be rewritten as:

σ 2 ǫw = σ 2 w • T + 1 2T -1 2T |L(e j2πf T )| 2 df B L , ( 60 
)
where B L is the so-called equivalent noise bandwidth (doublesided normalized). B L can be derived (i.e. to evaluate the two-sided complex integral) by using the method presented in [START_REF] Winkelstein | Closed form evaluation of symmetric two-sided complex integrals[END_REF]. For a third-order system, B L is a sixth-degree algebraic expression of ω n T (see appendix A). But with the condition f n T ≪ 1 in our case, the higher order terms than ω n T are negligible, so that B L can be finally approximated as:

BL ≈ 2πfnT • (2m 3 ζ 4 + 12m 2 ζ 4 + 8mζ 4 + 6mζ 2 + 4ζ 2 + 1) 4m 2 ζ 3 + 8mζ 3 + 4ζ B . ( 61 
)
2) Dynamic error variance σ 2 ǫα : The expression for σ 2 ǫα is given by (58) in an integral form. To obtain an analytical expression of σ 2 ǫα , the general assumptions f d ≤ f n ≪ 1/T is helpful which allows us to do some approximations. By using this assumption, we could approach the term |1 -L(e j2πf T )| 2 by two asymptotes (see appendix B for derivation):

|1 -L(e j2πf T )| 2 ≈ f 6 (mζ) 2 f 6 n if f ≪ f n , 1 if f ≫ f n . ( 62 
)
and for the special point f = f n , we have:

|1 -L(e j2πfnT )| 2 ≈ f 6 n (mζ) 2 f 6 n + [m 2 (4ζ 2 -1) + 4].f 6 n .
(63) The two straight asymptotes of the log magnitude in (62) are also evidently shown in Fig. 2. Note that the case of f ≫ f n needs not to be taken into account for the integral computation (58), because for the Rayleigh-Jakes model, the spectrum of α, Γ α , has a bounded support, i.e. |f | ≤ f d , and for a good tracking of α, we assume f n greater or equal to f d . So we use the low frequency asymptote for our approximation, yielding:

|1 -L(e j2πf T )| 2 ≈ f 6 (mζ) 2 f 6 n , if f ≤ f n . ( 64 
)
And to obtain an acceptable approximation around f n , we impose that the function |1 -L(e j2πf T )| 2 crosses the low frequency asymptote at f = f n , yielding the following constraint (see (63)):

m 2 (4ζ 2 -1) + 4 = 0. (65) 
We can see in Fig. 2 that the linear approximation (64) is quite good, especially when the constraint (65) is applied. Thus the dynamic error variance σ 2 ǫα becomes4 :

σ 2 ǫα ≈ 1 (mζ) 2 +f d -f d Γ α (f ) • f f n 6 • df . ( 66 
)
Further more, with the hypothesis that f ≤ f n , a variable change cos(θ) = (f /f d ) permits us to compute an exact analytical solution of the integral (66) as:

σ 2 ǫα ≈ 5 16 • 1 (mζ) 2 • f d f n 6 • σ 2 α . (67) 
IV. COMPUTATION OF THE RW3-CATL PARAMETERS

The MSE of the RW3-CATL σ 2 ǫ (57) is minimized for a set of optimal parameters (m, ζ, f n ) obtained through a threedimension optimization. A closed-form analytical expression for this problem can be obtained if we impose the constraint (65), leading to a sub-optimal solution. This constraint minimization is solved with the method of Lagrange multipliers. In section V, we show that the sub-optimal solution yields a performance very close to that of the optimal solution.

By combining (60) and (67), we have now the closed-form expression of the global MSE of the RW3-CATL:

σ 2 ǫ (m, ζ, f n ) = 5 16 • 1 (mζ) 2 • f d f n 6 • σ 2 α + σ 2 w • B L . ( 68 
)
For the optimization of (68) over m, ζ and f n with constraint (65), the auxiliary function to be minimized is given by:

J = 5 16 •σ 2 α • 1 (mζ) 2 • f d f n 6 +σ 2 w •B L +λ• m 2 (4ζ 2 -1) + 4 , ( 69 
)
where λ is the Lagrange multiplier. The detailed computation is given in appendix C, yielding the following sub-optimal parameter values. m is the root of: m 11 +2m 10 -16m 9 -12m 8 +112m 7 -176m 6 -512m5 +... , is given by:

( f n f d )(Jakes) = 5 64 • 1 πf d T • σ 2 α σ 2 w • Q 1 7 , (71) 
with

Q = 1 m 3 ζ 4 D m + ζ 3 D ζ , ( 72 
)
where D m given by ( 85) and D ζ given by ( 86) are functions of m and ζ, as defined in Appendix C. Note that the sub-optimal f n varies as the 7th root of SNR.

Then the sub-optimal MSE can be calculated by:

σ 2 ǫ (Jakes) = C • (σ 2 α ) 1 7 • (σ 2 w • f d T ) 6 7 , ( 73 
)
with

C = 2 (mζ) 2 • ( 1 Q ) 6 7 + BQ 1 7 • 10π 6 1 7 . ( 74 
)
V. SIMULATION

In this section, the performance of the RW3-CATL in terms of MSE and BER is assessed through simulations, and is compared to that of reference algorithms based on KF. For all our simulations the channel autocorrelation function is assumed to be given by the widely accepted Jakes' model, as stated in Section II. Except for Fig. 9, all the results are given in Data-aided mode (with then known pilot symbols).

A. Validation of the theoretical analysis

In the previous section, a method to solve the minimization has been provided, yielding sub-optimal parameters. Now, it remains to check that the MSE obtained with these suboptimal parameters is close to that obtained with the optimal parameters. We recall that the optimal solution is obtained without taking into account the constraint whereas the suboptimal solution is obtained with the constraint (65). Note that the optimal solution can be found only by means of numerical optimization. The optimal solution is obtained as follows.

First, we define a domain for m and ζ corresponding to typical practical values for these parameters: {0 < m 20, 0.05 < ζ < 0.5}. For each point of this domain, we calculate by means of a one-dimension numerical optimization the f n value that minimizes the MSE, and we keep then the value of this minimum MSE. Since f n depends on SNR and f d T , this numerical computation procedure can be done for various SNR and f d T . As a result, Fig. 3 shows the MSE as a function of m, ζ, computed for SNR = 0 dB and f d T = 10 -3 . It is noteworthy that there exists a valley-belt in which the lowest MSE values are located. To obtain the set of optimal parameters, it remains to find the global minimum by means of a numerical search. The global minimum is shown in Fig. 3 by a star point. The sub-optimal parameters are also plotted (triangle point). We recall that the sub-optimal parameter values are m = 3.19, ζ = 0.39, and for this SNR scenario f n /f d = 2.0 (f n is computed with (71)). Note that the sub-optimal point is exactly located on the cross point of the constraint line and the valley-bottom line. The MSE value for the sub-optimal parameters is very closed to that for the optimal parameters, which validates our sub-optimal solution. Fig. 4 compares the simulated and theoretical MSE versus f n for f d T = 10 -3 , and SNR = 0, 20, 40 dB. The suboptimal loop parameters (m = 3.19, ζ = 0.39) are considered (see section IV). The theoretical dynamic and static error variances (dashed lines) σ 2 ǫα and σ 2 ǫw are obtained by numerical integration of (58) and (59), respectively. The approximated error variances (square points) computed by the approximated formulae ((60) with (61) and (67)) are also plotted. It is observed that the approximated MSEs match very well the theoretical MSEs. On the other hand, we can also observe that the component σ 2 ǫα is the main contribution of σ 2 ǫ for small f n , whereas the component σ 2 ǫw dominates when f n increases. This is understood from (67) and (61) since σ 2 ǫα is inversely proportional to f6 n , while σ 2 ǫw is proportional to f n . Simulated MSEs have also been plotted. The simulated dynamic error variance σ 2 ǫα was obtained by forcing the noise w (n) to zero, whereas the simulated static error variance Fig. 3: MSE (57) versus (m, ζ) computed by numerical integration of ( 58) and ( 59) with SNR = 0 dB, the constraint line is given by (65) ǫw was obtained by maintaining the CA to a constant. We can observe that all the theoretical curves are very close to the simulated ones too, which validates our theoretical analysis and the approximations. Therefore, the abscissa of the minimum of the simulated MSE σ 2 ǫ also matches very well with the (theoretical closed-form (92)) optimal natural frequency (such that f n /f d (Jakes) = 2, 3.9, 7.3 respectively for SNR = 0, 20, 40 dB).

B. Comparison with Kalman estimators in literature

Fig. 5 compares the asymptotic MSE (i.e. in tracking mode) of the RW3-CATL with that of the AR1 CM -KF [START_REF] Komninakis | Multi-input multi-output fading channel tracking and equalization using Kalman estimation[END_REF]- [START_REF] Al-Naffouri | An EM-Based Forward-Backward Kalman Filter for the Estimation of Time-Variant Channels in OFDM[END_REF], the AR1 M AV -KF [START_REF] Barbieri | On the ARMA approximation for fading channels described by the Clarke model with applications to Kalman-based receivers[END_REF] [10] and the RW2-KF [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] by means of Monte-Carlo simulations 6 for f d T = 10 -4 and f d T = 10 -3 . Note that our proposed RW3-CATL algorithm assumes the on-line Bayesian Cramer-Rao bound (BCRB) as reference [START_REF] Hijazi | Bayesian Cramer-Rao Bounds for complex gain parameters estimation of slowly varying Rayleigh channel in OFDM systems[END_REF]. It is observed that the asymptotic MSE performance of the AR1 CM -KF is very poor. This result corroborates the works cited in the introduction, which point out that the AR1 CM -KF is convenient for high mobility (f d T >> 10 -2 ), but exhibits poor performance at f d T ≤ 10 -2 as proved by [START_REF] Ghandour-Haidar | On the use of first-order autoregressive modeling for Rayleigh flat fading channel estimation with Kalman filter[END_REF]. As expected, the RW2-KF performs better than AR1 CM -KF and AR1 M AV -KF. Finally, the asymptotic MSE of the RW3-CATL with the loop parameters properly chosen (see section IV) is the closest to the BCRB (which could be concluded from the MSE expressions of the 4 estimators). This result shows that it is preferable to use a well-chosen thirdorder algorithm based on simple CATL to a KF when the later is based only on first-or second-order models. According to (73), the theoretical asymptotic MSE of the RW3-CATL is proportional to the 6 7 power of the noise variance σ 2 w (note that SNR = σ 2 α σ 2 w with here σ 2 α = 1 and σ 2 w < 1), versus to the 4 5 and 2 3 power for the RW2-KF [START_REF] Ros | Second-order modeling for Rayleigh flat fading channel estimation with Kalman Filter[END_REF] and AR1 M AV -KF [10] respectively, which is validated by Fig. 5.

Fig. 6 shows the MSE of different systems versus f d T . The gain in performance of the RW3-CATL is greater for small values of f d T . When f d T increases, the MSEs of the AR1 M AV -KF, RW2-KF and RW3-CATL systems seem to converge to the MSE of the AR1 CM -KF. This is again understood from (73) that the theoretical asymptotic MSE of the RW3-CATL is proportional to the 6 7 power of the f d T .

C. Mismatched design

According to the analysis in section IV, we know that the knowledge of the SNR and f d is required to design the RW3-CATL parameter f n . And (68) shows that f d and the SNR are the two key factors that directly impact the estimation MSE. In this section, we thus depict the sensitivity to imperfect knowledge of SNR and 

f ′ d -f d f d = ±10%, ±20%, ±50%
) and SNR fixed at 20 dB, the corresponding theoretical values are also attached. We also find that, the RW3-CATL can sustain a certain f d error, for example, within ±20%, there is no evident mismatch between the simulation MSE and the optimal MSE. Besides, an underestimated f d will cause more severe degradation than a same level overestimated f d , as shown by the 1.5f d (+50%) and 0.5f d (-50%) lines in Fig. 8.

D. BER performance

A BER simulation is carried out to evaluate the actual performance of the RW3-CATL estimator. The transmitted symbols are QPSK modulated. The data frame is composed of 200 continuous pilot symbols and then 1800 unknown symbols. In this context, the channel estimation is in halfblind mode (alternatively by pilots and decisions). Note that the a priori decision x(n|n-1) is used to compute the error signal [START_REF] Tugnait | Doubly selective channel estimation using exponential basis models and subblock tracking[END_REF], but the final decision is computed as:

x(n) = √ 2 2 • sgn{Re( α * (n) • r (n) )} + j √ 2 2 • sgn{Im(α * (n) • r (n) )}.
Fig. 9 shows that the BER of RW3-CATL remains close to the perfect line (BER with perfect acknowledge of channel) for all SNRs, while the BER of other estimators are further away from the perfect line as SNR increases. We notice also that the classical Kalman estimator based on AR1-model leads to poor BER performance due to the mismatch of AR-1 model, and that this BER can be dramatically reduced in using the integrated-RW-model-based estimators (RW2-KF and RW3-CATL). The third-order estimator performs even much better than the second-order one.

VI. CONCLUSION

In this paper, a channel path complex amplitude estimator over slow to moderate flat fading channels has been proposed. The proposed estimator is based on a third-order tracking loop, which is proved equivalent to a steady-state KF based on a same order integrated random walk (RW) model. The connection between a steady-state KF based on a RW model and the proposed PLL-like estimator is established. This explains the fact that the RW3-CATL can reach in tracking mode the same asymptotic performance as that of a steady-state RW3-KF, even though the former converges slower than the KF. The complete theoretical MSE analysis has been provided. A closed-form formula of the asymptotic MSE as a function of Doppler frequency and SNR is given. We have demonstrated that, by fixing the capacitance ratio to 3.19, the damping factor to 0.39, and by computing the natural frequency with a given expression depending on the Doppler frequency and SNR, it is possible to achieve near-optimal performance in terms of asymptotic MSE. Simulation results (MSE and BER) show that, with these well-chosen parameters, the proposed algorithm outperforms the KF of the literature (based on firstor second-order models), as long as the mobility is moderate (i.e. f d T < 10 -2 ), which is a very common scenario. The mismatch simulation shows the robustness of the RW3-CATL in harsh environment test, where the mobility (in terms of f d ) or the background noise power (in terms of SNR) information is distorted. In addition, our proposed algorithm is a computationally less demanding technique than these KFbased algorithms, since it does not require to compute the coefficients at each time period. The simple case of a flat fading channel was considered in this article, but the results can be applied or generalized to more complex systems, such as wireless OFDM systems.

APPENDIX A EQUIVALENT NOISE BANDWIDTH OF RW3-CATL

Using the result of [START_REF] Winkelstein | Closed form evaluation of symmetric two-sided complex integrals[END_REF], the two-sided complex integral in the form of (60) could be evaluated by the solution of a closed matrix equation. The matrices are composed by the coefficients of numerator and denominator of the integrand. The transfer function of a third-order system:

L(z) = b 0 z 3 + b 1 z 2 + b 2 z + b 3 a 0 z 3 + a 1 z 2 + a 2 z + a 3 , (75) 
then the corresponding matrix equation is given by:

    a 0 a 1 a 2 a 3 a 1 a 0 + a 2 a 1 + a 3 a 0 a 2 a 3 a 0 a 1 a 3 0 0 a 0         a 0 B L M 1 M 2 M 3     =     b 2 0 + b 2 1 + b 2 2 + b 2 3 2(b 0 b 1 + b 1 b 2 + b 2 b 3 ) 2(b 0 b 2 + b 1 b 3 ) 2b 0 b 3     . ( 76 
)
In our case, we have from (44

) that b 0 = µ 1 , b 1 = -2µ 1 + µ 2 + µ 3 , b 2 = µ 1 -µ 2 , b 3 = 0, a 0 = 1, a 1 = µ 1 + µ 2 + µ 3 -3, a 2 = 3 -2µ 1 -µ 2 , a 3 = µ 1 -1.
Combining with (49), ( 50), (51) leads to (77), where: Under the general assumption f n ≪ 1/T , the squared modulus of the high pass-filter 1 -L can be written from (55) as:

A = m 3 ζ 3 , B = 8m 3 ζ 4 + 4m 2 ζ 2 , C = 20m 3 ζ 5 + 5m 3 ζ 3 + 30m 2 ζ 3 + 5mζ, D = 16m 3 ζ 6 + 22m 3 ζ 4 + 68m 2 ζ 4 + 16m 2 ζ 2 + 34mζ 2 + 2, E = 24m 3 ζ 5 + 4m 3 ζ 3 + 48m 2 ζ 5 + 56m 2 ζ 3 + 64mζ 3 + 14mζ + 12ζ, F = 8m 3 ζ 4 + 48m 2 ζ 4 + 32mζ 4 + 24mζ 2 + 16ζ 2 + 4, G = 16m 3 ζ 6 + 22m 3 ζ 4 + 68m 2 ζ 4 + 18m 2 ζ 2 + 34mζ 2 + 2, H = 24m
|1 -L(e j2πf T )| 2 (for |f | ≪ 1/T ) = f 6 / m 2 ζ 2 f 6 n + [(m + 2) 2 ζ 2 -2(1 + 2mζ 2 )]f 2 n f 4 + • • • [(1 + 2mζ 2 ) 2 -2(m 2 + 2m)ζ 2 ]f 4 n f 2 + f 6 . ( 78 
)
The red curves in Fig. 2 shows the magnitude of |1 -L(e j2πf T )| 2 as a function of f for different values of m and ζ and for f n T = 10 -3 . Note that with the form in (78), the integral (60) is too tedious to derive. In order to obtain an For that purpose, let us consider the asymptotic behaviour of the log magnitude as a function of frequency. At low frequencies, i.e. f ≪ f n , we get f 2 n f 4 ≪ f 6 n and f 6 ≪ f 6 n , yielding:

m 2 ζ 2 f 6 n + [(m + 2) 2 ζ 2 -2(1 + 2mζ 2 )]f 2 n f 4 + ... [(1 + 2mζ 2 ) 2 -2(m 2 + 2m)ζ 2 ]f 4 n f 2 + f 6 ≈ (mζ) 2 f 6 n . ( 79 
)
At high frequencies, i.e. f ≫ f n , we get:

m 2 ζ 2 f 6 n + [(m + 2) 2 ζ 2 -2(1 + 2mζ 2 )]f 2 n f 4 + ... [(1 + 2mζ 2 ) 2 -2(m 2 + 2m)ζ 2 ]f 4 n f 2 + f 6 ≈ f 6 . ( 80 
)
By combining (79) and (80), we obtain thus (62). Then, by using f = f n , (63) is found directly from (78).

APPENDIX C MINIMIZATION OF ASYMPTOTIC MSE WITH LAGRANGE MULTIPLIERS METHOD

We apply the method of Lagrange multipliers to minimize (68) with constraint (65). Given the auxiliary function, the problem reduces to solve the following system of equations: Since m and ζ are real positive parameters, from (84) we have:

                                 ∂J ∂f n = 2πσ 2 w T B -
ζ = (m 2 -4) 2m , ( 87 
)
which indicates that m > 2. Replace all the ζ in (81), the system of equations becomes: .

                       C 1 B ′ - 6C 2 f 7 n • m 2 -4 4 = 0, (88) 
C 1 D ′ m f n - 2C 2 f 6 n • m(m 2 -4) 4 - 8λ m = 0, (89) 
C 1 D ′ ζ f n • (m 2 -4) 2m - 2C 2 f 6 n • m 2 -4
(92) Finally, by using (92), we do some manipulations with (88), the system of equations reduces to (70), this equation has 11 roots that we can obtain by Computer-aided calculation. The condition of m (real positive and m > 2) returns a unique available value, that is m = 3.19. We obtained then ζ = 0.39 by (87), and also f n by (92).
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 2 Fig. 2: Transfer functions |L| of RW3-CATL (45) (the three blue continuous curves) and of the corresponding 3rd-order analog PLL (55) (blue dashed curves) versus f T , with fixed natural frequency f n T = 10 -3 , while varying the parameters (m, ζ) respectively in (a) and (b). Red continuous curves represent the corresponding high-pass transfer function |1-L| and the green dot-dashed lines are the linear approximation defined in (64), the parameters marked by a star (⋆) are those satisfying the constraint (65)
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 4 1024m 3 + 1024m 2 -3072 = 0, (70) yielding m ≈ 3.19. ζ is then computed with (65), yielding ζ ≈ 0.39, which are slightly different from the values used in [1] 5 . Then f n , which depends on f d and the SNR =
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 4 Fig. 4: Theoretical and simulated MSEs versus f n /f d (RW3-CATL with m = 3.19, ζ = 0.39, SNR = 0, 20, 40 dB, f d T = 10 -3 )
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 3567 Fig. 5: MSE versus SNR of the RW3-CATL compared to reference estimators, (a) f d T = 10 -4 (b) f d T = 10 -3
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 8 Fig. 8: Effect of a mismatch on the knowledge of f d : MSE versus f d T , f d T ′ (used to tune the RW3-CATL) shifted 10%, 20%, 50% from the true value and SNR = 20 dB
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 9 Fig. 9: BER versus SNR for QPSK modulation, f d T = 10 -3

3 ζ 5

 5 + 4m 3 ζ 3 + 48m 2 ζ 5 + 68m 2 ζ 3 + 64mζ 3 + 20mζ + 12ζ, I = 8m 3 ζ 4 + 64m 2 ζ 4 + 8m 2 ζ 2 + 32mζ 4 + 56mζ 2 + 16ζ 2 + 8, J = 16m 2 ζ 3 + 32mζ 3 + 16ζ. APPENDIX B ASYMPTOTE APPROXIMATION OF |1 -L(e j2πf T )| 2

  B L = A(ω n T ) 6 + B(ω n T ) 5 + C(ω n T ) 4 + D(ω n T ) 3 + E(ω n T ) 2 + F (ω n T ) A(ω n T ) 6 + B(ω n T ) 5 + C(ω n T ) 4 + G(ω n T ) 3 + H(ω n T ) 2 + I(ω n T ) + J (77)analytical expression of the integral, it is necessary to simplify the expression of |1 -L(e j2πf T )| 2 .
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4 +ζ 3 C 1

 431 2λ(m 2 -4) = 0, (90) with C 1 = 2πσ 2 w T and C 2 = 5 16 • f 6 d • σ 2 α . The terms B ′ , are respectively obtained from B (61), D m (85) and D ζ (86) where ζ is replaced by (87). Then by combining (89) and (90), λ and f n can be expressed as a function of m as follows: (m 2 -4) D ′ m m 2 (m 2 -4) + 2D

  • • • + 20m 2 ζ 4 -3m 2 ζ 2 + 16mζ 4 + 4ζ 2 -1 . (86)

Note that in practice, our channel estimator can easily be coupled with an efficient detector in order to perform joint channel estimation and decision tasks, for example via the Expectation-Maximization algorithm framework (see[START_REF] Al-Naffouri | An EM-Based Forward-Backward Kalman Filter for the Estimation of Time-Variant Channels in OFDM[END_REF]). In another already mentioned context, it can simply also be used to track the channel gain at pilot frequencies in an OFDM system as in[START_REF] Chen | Kalman-filter channel estimator for OFDM systems in time and frequency-selective fading environment[END_REF].

The proposed estimator (denoted Or3-CATL) in[START_REF] Shu | Third-order complex amplitudes tracking loop for slow fading channel estimation[END_REF] is similar to the one of this paper, but they stem from different structures, the Or3-CATL is given directly from the third-order DPLL while the RW3-CATL is deduced from a RW3-KF; Comparing with the structure of Or3-CATL (Fig.1of[START_REF] Shu | Third-order complex amplitudes tracking loop for slow fading channel estimation[END_REF]), we could also find a difference between the loop filters.

The transfer function L(z) w.r.t. ωn, ζ and m in (45) is same as the one of Or3-CATL in[START_REF] Shu | Third-order complex amplitudes tracking loop for slow fading channel estimation[END_REF], but the relationships between (µ 1 , µ 2 , µ 3 ) and (ωn, ζ, m) are different since the loop filter derived in this paper is different from the one used in[START_REF] Shu | Third-order complex amplitudes tracking loop for slow fading channel estimation[END_REF] (see footnote 2).

This formula can be applied in different channel models by changing the complex gain spectrum, e.g., for a 3-D scattering model[START_REF] Clarke | 3-D mobile radio channel statistics[END_REF], Γα(f ) becomes a constant which yields a much simpler result

Note that in[START_REF] Shu | Third-order complex amplitudes tracking loop for slow fading channel estimation[END_REF], we have used m = 3, ζ = 0.37 as a sub-optimal set, which is obtained from the numerical optimization, and then we proceeded a one-dimension optimization on the natural frequency fn. Obviously, the Lagrange multiplier approach used here is more accurate because it is a 3dimension optimization.

In this simulation, the results of RW3-KF is not illustrated basically because the steady-state RW3-KF is equivalent to the RW3-CATL, as long as the state noise variance σ 2 u is well tuned, according to Section III-A.