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Abstract 
 

Distributed applications and services requiring the 

transfer of large amounts of data have been developed 

and deployed all around the world. The best effort 

behavior of the Internet cannot offer to these 

applications the necessary Quality of Service (QoS) 

guarantees, making the development of data transfer 

scheduling techniques a necessity. In this paper we 

propose novel methods of efficiently using some well-

known data structures (e.g. the segment tree and the 

block partition), which can be implemented in a 

resource manager (e.g. Grid job scheduler, bandwidth 

broker) in order to serve quickly large numbers of 

advance resource reservation and allocation requests. 

 

Keywords-data transfer scheduling, block partitioning, 

segment tree, multidimensional data structures, 

algorithmic framework, range query, range update. 

 

1. Introduction 
 

In the context of world wide development and 

deployment of distributed applications and services, 

QoS guarantees are strictly necessary for achieving 

good performance levels. In many situations, QoS 

guarantees are offered by reserving resources in 

advance. Online resource management systems (e.g. 

Grid job schedulers, bandwidth brokers) have to deal 

with many simultaneous reservation requests. In order 

to provide a good response time, these systems need to 

use efficient data structures for the management of 

resource availability and resource reservations. In this 

paper we present several efficient data structures which 

can be used for some special classes of resources and 

many types of reservation requests. The data structures 

are based on the well-known segment tree and on 

partitioning the dimensions into equally sized blocks. 

For some restricted situations, we also present other 

techniques, based on disjoint sets and balanced trees. 

This paper is structured as follows. In Section 2, we 

present the context of online data transfer scheduling. 

In Section 3 we present efficient data structure usage 

for scheduling data transfers on a single link. Section 4 

considers the situation of path networks and extends 

the data structures to this case. In Section 5 we present 

some practical applications of the data structures we 

discuss in this paper. Finally, in Section 6 we present 

related work and in Section 7 we conclude. 

 

2. Online Data Transfer Scheduling 
 

A resource manager receives resource allocation 

and reservation requests (in our case, data transfer 

requests) which need to be processed in real time (as 

soon as they arrive or in batches). A request contains 

two types of parameters: constraint parameters and 

optimization parameters. For each constraint 

parameter, an acceptable range of values is provided. 

The optimization parameters need to be either 

maximized or minimized. Constraint parameters may 

consist of an earliest start time and a latest finish time, 

a fixed duration or a minimum (and maximum) amount 

of resources needed (bandwidth, processors). 

Optimization parameters may require the minimization 

of the duration, jitter, congestion or the maximization 

of the allocated bandwidth. 

Many models and algorithms have been developed 

for the online scheduling problem [1]. In this paper we 

consider the situation in which the resource manager 

needs to handle many requests simultaneously and must 

provide a low response time. Because of the stringent 

time constraints, the scheduler cannot afford to make 

elaborate decisions. We consider a simple greedy 

algorithm which handles the requests in order. For each 

request, it verifies whether the QoS constraints can be 

satisfied and, if so, it grants the request; otherwise, the 

request is rejected. In order to speed up the algorithm, 

we introduce an algorithmic framework extension for 

two well-known data structures. We consider a 
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hierarchical data structure (an extended segment tree) 

and a non-hierarchical one (based on block 

partitioning). We will present the algorithmic 

frameworks for both data structures, as well as several 

query and update operations that can be supported 

efficiently. We will mainly be interested in obtaining a 

good worst case performance for any sequence of 

queries and updates, but we will also consider the cases 

of batched updates, followed by online queries, as well 

as techniques which provide good performance on 

average. Although the data structures are rather well 

known, the algorithmic frameworks that we propose are 

new and solve many problems that were previously 

handled individually, as well as some new problems 

that, as far as we are aware, have never been 

considered before. 

 

3. Scheduling over Time on a Single Link 
 

In this section, we will consider a particular 

situation, in which the network is composed of only 

two nodes, connected by a single link. Data transfer 

requests are sent from both nodes to a central 

scheduler. The parameters of a request r are: the 

duration of the data transfer Dr, the earliest start time 

ESr, the latest finish time LFr (i.e. if the request is 

scheduled to begin at time t, we must have 

ESr≤t≤t+Dr≤LFr) and the minimum required bandwidth 

Br. We consider only non-preemptive data transfers 

(once started, they must not be interrupted). We will 

consider two bandwidth models for the requests. In the 

first model, each request asks for the whole bandwidth 

of the link and, thus, we can schedule at most one data 

transfer at a time. In the second model, each request 

asks for a fraction of the link’s bandwidth. The first 

model is, obviously, a particular case of the second 

model, but it can be handled more efficiently in some 

situations. We will now present several data structures 

which bring successive performance improvements. 

 

3.1. The Time Slot Array 
 

We will first consider the first bandwidth model (i.e. 

each data transfer uses the full bandwidth of the link). 

A common approach is to divide the time horizon into 

m equally-sized time slots and build a time slot array 

[11] over these slots. For each time slot t (1≤t≤m), the 

array ts contains an entry ts[t], which can be either 0 

(no transfer is scheduled during this time slot) or 1 (a 

transfer was scheduled during this time slot). Using the 

time slot division, each transfer is started only at the 

beginning of a time slot and lasts for an integer number 

of consecutive time slots (even if the last time slot is 

not fully occupied, it is still marked as being fully 

occupied). In order to obtain a good performance, the 

time horizon must be divided into a large number of 

time slots (a fine-grained time resolution). In this 

situation, however, an important aspect to consider is 

the time it takes to traverse the time slot array for each 

request. We consider two operations to be performed 

on the array: a query and an update. A query verifies if 

a request can be granted and an update sets all the time 

slot entries of a data transfer to the same value (1, when 

scheduling a transfer; 0, when canceling a transfer). 

The pseudocode of these operations is described below 

(the time parameters are converted into time slots): 

TSAQuery(ES, LF, D): 
nfree=0 

for t=ES to LF do // t=ES, ES+1, …, LF-1, LF 

if (ts[t]=0) then { 

  nfree=nfree+1 

  if (nfree=D) then return [t-D+1, t] } 

else nfree=0 

return “no interval found” 

TSAUpdate(tstart, D, value): 
for t=tstart to tstart+D-1 do ts[t]=value // or ts[t]+=value 

The time complexity of each operations is O(m). 

The time slot array can be easily enhanced in order to 

support the second bandwidth model. In this case, it is 

possible for multiple transfers to be scheduled 

simultaneously, as long as the maximum bandwidth of 

the link is not exceeded. The entry ts[t] of a time slot 

represents, in this case, the available bandwidth during 

that time slot. The update and query functions can be 

modified in order to run in O(m) time. The other data 

structures will improve the time slot array and maintain 

the notations and the time slot division model. 

 

3.2. Disjoint Sets for Non-cancelable 

Reservations 
 

Using the first bandwidth model and if the data 

transfer reservations cannot be canceled, we can use a 

disjoint sets data structure [12] in order to maintain the 

maximal intervals of time slots with an entry equal to 1 

in the time slot array. This data structure provides two 

operations: Find(t), which returns the representative of 

the disjoint set containing element t and Union(a,b), 

which combines the sets of the elements a and b into 

one set (if they are not already in the same set). For 

each set representative sr we maintain two values: 

left[sr] and right[sr], the left and right endpoints of the 

interval of time slots represented by the set. Within the 

Union procedure we compute the set representatives of 

the elements a and b, sra and srb (sra=Find(a) and 

srb=Find(b)). Then, using some of the well-known 
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heuristic criteria (like union by rank or union by size), 

one of the two representatives (call it sru) will be 

selected as the representative of the combined set. We 

will set left[sru] = min{left[sra], left[srb]} and 

right[sru]=max{right[sra], right[srb]}. 

DSQuery(ES, LF, D): 
nfree=0; t=ES 

while (t≤LF) do  

if (ts[t]=0) then { 

  nfree=nfree+1 

  if (nfree=D) then return [t-D+1, t] 

  else t=t+1 } 

else { nfree=0; t=right[Find(t)]+1 } 

return “no interval found” 

DSUpdate(tstart, D, value=1): 
for t=tstart to tstart+D-1 do { 

ts[t]=value 

if ((t>1) and (ts[t-1]=value)) then Union(t-1, t) } 

if ((tstart+D≤m) and (ts[tstart+D]=value)) then 

  Union(tstart+D-1, tstart+D) 

The total time complexity of the updates is O(m· 

log*(m)) and the query time is reduced, because we can 

jump over large intervals of occupied time slots. 

 

3.3. Using Balanced Trees 
 

We will now present a further improvement for the 

first bandwidth model, based on maintaining a 

balanced tree T of maximal intervals of time slots. A 

maximal interval is a set of consecutive time slots t, for 

which all the entries ts[t] are equal (to 0 or to 1); if 

they are equal to 0, it is a 0-interval (and its color is 0), 

otherwise, it is a 1-interval (and its color is 1). The set 

of time slots 1,…,m always has a unique decomposition 

into maximal intervals. The tree T provides three 

functions: insertInterval(a, b, c), which inserts the 

interval [a,b] having color c into T, removeInterval(a, 

b), which removes from T the interval [a,b], and 

getIntervalContaining(t), which returns the interval 

(and its color) containing the time slot t. We present the 

pseudocode of the query and update operations below. 

A query finds an unoccupied interval of at least D slots. 

BTQuery(ES, LF, D): 
t=ES 

while (t≤LF) do { 

(left, right, color)=T.getIntervalContaining(t) 

left1=max{left, ES}; right1=min{right,LF} 

if ((color=0) and (right1-left1+1≥D)) then 

    return [left1, left1+D-1] 

else t=right+1 } 

return “no interval found” 

BTUpdate(tstart, D, value): 
t=tstart 

while (t≤tstart+D-1) do { 

(left, right, color)=T.getIntervalContaining(t) 

left1=max{left, tstart}; right1=min{right, tstart+D-1} 

T.removeInterval(left, right) 

if (left<left1) then T.insertInterval(left, left1-1, color) 

if (right1<right) then 

  T.insertInterval(right1+1, right, color) 

t=right+1 } 

T.insertInterval(tstart, tstart+D-1, value) 

An update fully colors the interval [tstart, tstart+D-

1] with the color value. We cannot offer any 

guarantees regarding the running time of the query 

operation. Obviously, it could be O(m·log(m)), but, in 

practical settings, it will run much faster, because it 

jumps over whole maximal intervals of the same color. 

The time complexity of the update operation is 

O(log(m)), because the time slot interval [tstart, 

tstart+D-1] intersects only one interval in T. However, 

the implementation of the operation is more general 

and allows for the interval [tstart, tstart+D-1] to 

intersect multiple other intervals – the maximal interval 

decomposition is properly maintained in this case, too. 

When all the queries have ES=1 and LF=m (i.e. 

there are no constraints regarding the earliest start time 

and latest finish time), we can provide stronger 

guarantees for the running time of the update operation, 

by maintaining a max-heap (priority queue) with the 

lengths of the 0-intervals. Thus, the interval with the 

maximum length can be obtained in O(1) time, because 

it is located at the top of the heap. Then, by comparing 

the length of this interval with the required length D, 

we can decide if an appropriate interval of length D 

exists. Using a max-heap slightly complicates the 

update function. The easiest way to introduce the max-

heap is to modify the definitions of the functions 

removeInterval and insertInterval of the balanced tree 

T. When a 0-interval is removed from T, we also 

remove it from the heap; when a 0-interval is inserted 

in T, we also insert its length in the heap. This way, the 

time complexity of the query operations becomes O(1) 

and that of the update becomes O(log(m)). 

 

3.4. Using the Block Partitioning Method 
 

We can divide the m time slots into m/k blocks of k 

slots each (the last group may contain fewer time slots). 

Then, we can use the block partitioning framework 

introduced in [9]. For the first bandwidth model, an 

update operation will consists of a range set operation 

(setting all the time slots in a range to the same value) 

and a query operation will consists of a range 

maximum sum segment query. To be more specific, we 

associate a value vt to each time slot t. This value will 

always be either 1 or -∞. An update with the parameter 

value=0 sets the values of all the time slots in the 
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interval [tstart, tstart+D-1] to 1. An update with 

value=1, sets the slots in the same interval to -∞. A 

query consists of the maximum sum segment query 

contained in the interval [ES, LF]. Such a segment will 

never contain a value vt=-∞ (unless no value equal to 1 

exists in that range). Thus, the returned interval is, in 

fact, the longest interval of free consecutive time slots 

and its length can be compared to the parameter D. 

With the framework in [9], we obtain a time 

complexity of O(k+m/k) for each query and update (i.e. 

O(sqrt(m)) for k=sqrt(m)). For LF-ES+1=D and 

considering the second bandwidth model, we can use 

the same framework. In this case, the operations used 

are: range addition update and range minimum query. 

 

3.5. Using an Extended Segment Tree 
 

The segment tree [2] is a binary tree structure used 

for performing operations on an array v with m cells. 

Each cell i (1≤i≤m) contains a value vi. Each node p of 

the tree has an associated interval [p.left, p.right], 

corresponding to an interval of cells. If the node p is 

not a leaf, then it has two sons: the left son (p.lson) and 

the right son (p.rson). The interval of the left son is 

[p.left, mid] and the right son’s interval is [mid+1, 

p.right], where mid=floor((p.left+p.right)/2). 

The leaves are those nodes whose associated 

interval contains only one cell. The interval of the root 

node is [1,m]. The height of the segment tree is 

O(log(m)). The tree can be built in O(m) time. Query 

operations consist of computing a function on the 

values of a range of cells [a,b] (range query). 

Range Query(a, b): compute ),...,,( 1 baa vvvqFunc
+

. 

Analogously, we have range updates: 

Range Update(u, a, b): vi=uFunc(u, vi), a≤i≤b. 

The functions qFunc (query function) and uFunc 

(update function) must be at least binary and 

associative. In order to perform an update we call the 

function STrangeUpdate with the segment tree root as 

its node argument and the appropriate update 

parameter. In order to query the segment tree, we call 

the function STrangeQuery, with the segment tree root 

as its node argument and the left and right cells of the 

query range. A query/update range is decomposed into 

O(log(m)) intervals, corresponding to O(log(m)) 

“covering nodes” of the tree (the query/update call 

stops at these nodes and does not go further down the 

tree). Besides the covering nodes, all the nodes on the 

path from the root to each covering node are visited 

(O(log(m)) nodes overall). We would like to use the 

segment tree in order to perform the same operations as 

in the previous subsection, i.e. range set update and 

range maximum sum segment query. An easy-to-use 

segment tree algorithmic framework was introduced in 

[10]. Each node of the segment tree maintains two 

values: uagg and qagg. uagg is the aggregate of all the 

update parameters of the update calls which “stopped” 

at that node. qagg is the query answer for the interval 

of cells corresponding to the current node, ignoring all 

the update calls which “stopped” further up in the tree 

(an update call which “stopped” at one of the current 

node’s ancestors affects the interval of cells of the 

current node, but its effects are not considered in the 

qagg field of the current node). However, this 

framework cannot support the kind of range queries 

and updates we are interested in. The problem lies in 

the very fact that, for the particular type of queries and 

updates we are interested in, the updates are not 

“visible” further down in the tree. Because of this, we 

augment the segment tree framework with an extra 

function, called STpushUpdates. Basically, the 

framework is the same, except that update aggregates 

are pushed down to the two sons (and then cleared) on 

every update and query call. We would, in fact, like to 

push these updates all the way towards the leaves, but 

doing this on every update would take O(m) time. 

Instead, we “piggy-back” future update calls and push 

the update aggregates “on demand”, without affecting 

the O(log(m)) complexity of the update/query function 

calls. We also use a multiplication operator mop, which 

estimates the effects of an update on a range of cells. 

STpushUpdates(node): 
if (node.left<node.right) then { 

STrangeUpdateNodeFit(node.lson, node.uagg) 

STrangeUpdateNodeFit(node.rson, node.uagg) 

node.uagg=uninitialized } 

STrangeUpdate(node, u, a, b): 
STpushUpdates(node) 

if ((a=node.left) and (node.right=b)) then 

  STrangeUpdateNodeFit(node, u)  

else { 

  lson, rson = left and right son of the current tree node 

  if ((a≤lson.right) and (lson.left≤b)) then 

   STrangeUpdate(lson,u,max(a,lson.left),min(b, lson.right)) 

  if ((a≤rson.right) and (rson.left≤b)) then 

   STrangeUpdate(rson,u,max(a,rson.left),min(b,rson.right)) 

  STrangeUpdateNodeIncl(node, u, a, b) } 

STrangeUpdateNodeFit(node, u): 
node.uagg=uFunc(u, node.uagg) 

node.qagg=uFunc(mop(u,node.left,node.right),node.qagg) 

STrangeUpdateNodeIncl(node, u, a, b): 
node.qagg=uFunc(mop(node.uagg, node.left, node.right), 

qFunc(node.lson.qagg, node.rson.qagg)) 

STrangeQuery(node, a, b): 
STpushUpdates(node) 

if (a=node.left and node.right=b) then 

  return STrangeQueryNodeFit(node) 
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else { 

q=uninitialized 

  if ((a≤node.lson.right) and (node.lson.left≤b)) then 

    q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson. 

left), min(b, node.lson.right)) 

  if ((a≤node.rson.right) and (node.rson.left≤b)) then 

    q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson. 

left), min(b, node.rson.right)) 

  return uFunc(STrangeQueryNodeIncl(node, a, b), q) } 

STrangeQueryNodeFit(node): 
return node.qagg 

STrangeQueryNodeIncl(node, a, b): 
return mop(node.uagg, a, b) 

With this framework we can support many types of 

pairs of updates and queries, like all those mentioned in 

[9] and [10] (e.g. uFunc(x,y)=qFunc(x,y)=(x+y) or 

uFunc(x,y)=qFunc(x,y)=((x+y) modulo M)). We will 

focus now on range set updates. In order to perform a 

range set update, we need to consider tuples of values. 

For instance, if we want to perform range 

sum/minimum/maximum queries, each value of a cell 

is, in fact a pair (value, time_stamp). Successive update 

parameters obtain increasing time stamps. The uFunc 

and qFunc functions which are used by the framework 

are defined below: 

uFunc((wx, tx), (wy, ty)): 
if (tx>ty) then return (wx, tx) else return (wy, ty) 

qFunc((wx, tx), (wy, ty)): 
res=wx+wy // or min{wx,wy} or max{wx,wy} 

return (res, max{tx,ty}) 

For the range sum query, the multiplication operator 

is mop((w,t),a,b)=((b-a+1)·w,t); for the range min/max 

query, the operator is mop((w,t),a,b)=(w,t). For the 

maximum sum segment query, each cell’s value (and 

update parameter) is a tuple composed of 5 fields: 

(totalsum, maxlsum, maxrsum, maxsum, time_stamp). 

If the value corresponds to an interval of cells [c,d], 

then the first four fields of tuple are defined as follows: 

∑
=

=

d

cp

pvtotalsum  
∑

=
≤≤

=

q

cp

p
dqc

vmaxmaxlsum  

∑
=

≤≤

=

d

qp

p
dqc

vmaxmaxrsum  
∑

=
≤≤≤

=

r

qp

p
drqc

vmaxmaxsum  

An update parameter tuple is interpreted as 

corresponding to a one-cell interval whose value is 

totalsum (thus, the fields maxlsum, maxrsum and 

maxsum are either equal to totalsum, if totalsum>0, or 

to 0, if totalsum≤0). The update and query functions, as 

well as the multiplication operator, are shown below. 

All of these (range update, range query) combinations 

are also supported by the block partitioning framework 

in [9] (although not explicitly stated in the paper). With 

the extended segment tree framework, we can support 

every update and query operation on a range of time 

slots in O(log(m)) time. 

uFunc((tsx, mlx, mrx, mx, tx), (tsy, mly, mry, my, ty)): 
if (tx>ty) then return (tslx, mlx, mrx, mx, tx) 

else return (tsy, mly, mry, my, ty) 

qFunc((tsx, mlx, mrx, mx, tx), (tsy, mly, mry, my, ty)): 
return (tsx+tsy , max{mlx , tsx+mly}, max{mry , tsy+mrx}, 

max{mx, my , mrx+mly}, max{tx, ty}) 

mop((tsx, mlx, mrx, mx, tx), a, b): 
return ((b-a+1)·tsx, (b-a+1)·mlx, (b-a+1)·mrx, (b-a+1)·mx, tx) 

 

3.6. Batched Range Updates and Queries 
 

In some situations, the updates and the queries occur 

in stages (they are batched). In this case and for some 

update functions which are reversible, it is possible to 

obtain a better performance than using the data 

structures presented previously. An update function is 

reversible if it is either invertible (each value has an 

inverse value) or if the effects of an update operation 

on a single value wi can be reversed without 

reconsidering all the other update operations. 

We will maintain a separate array uops with m+1 

locations. Each location consists of a list of entries, 

initially empty.  For each rangeUpdate(u, a, b), we add 

a (Start, u, id) entry to the list uops[a] and a (Finish, u, 

id) entry to the uops[b+1] list. id is a unique identifier 

of the update operation. Thus, each update is processed 

in O(1) time. The algorithm is showed below: 

BatchedUpdates(): 
for uop in UpdateOperationsSet do { 

uops[auop].add((Start, uuop, idu)) 

uops[buop+1].add((Finish, uuop, iduop)) } 

ds=empty 

for pos=1 to m do 

for (posType, u, id) in uops[pos] do 

  if (posType=Start) then ds.add((u, id)) 

    else ds.remove((u, id)) 

wpos=ds.computeValue() 

In the case of the range set update function, we will 

maintain a max-heap data structure, where the elements 

are compared according to their time stamp. The 

computeValue function returns the value corresponding 

to the largest time stamp in the max-heap. The time 

complexity for processing n range updates is 

O(n·log(n)). In the case of range addition, the situation 

is simpler. The data structure maintains the sum of all 

the update parameters. When calling ds.add((u, id)), 

the sum is incremented by u and when calling 

ds.remove((u, id)), the sum is decremented by u. 

ds.computeValue() simply returns the sum. The time 

complexity for processing n range updates is O(n). For 

other invertible functions (like xor, multiplication and 
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others), we obtain the same time complexity (the 

inverse of xor is also xor and the inverse of 

multiplication is division). After computing all the 

values in the array w, this array can be processed for 

answering different types of range queries [8]. 

 

4. Scheduling over Time on a Path 
 

We now consider the particular situation when the 

network is a path composed of n nodes v1, v2, …, vn 

(and there is a link between every two consecutive 

vertices in this order). A data transfer request contains, 

besides the parameters considered in the previous 

section, the identifiers of the source and the destination 

nodes. We could maintain a separate data structure for 

each network link and, for a data transfer request 

between two nodes i and j, we could query (and then 

update) the data structures of all the O(n) links in-

between i and j. In many situations, this approach is 

good enough. However, we can do better than this, by 

using multidimensional data structures (for instance, 

two-dimensional structures, where the first dimension 

corresponds to the network links and the second 

dimension corresponds to the time slots). 

 

4.1. The d-dimensional Segment Tree 
 

An extended d-dimensional segment tree (d≥2) is 

composed of a segment tree for the first dimension in 

which every node contains two (d-1) dimensional 

segment trees Tcovering and Ttotal (instead of the uagg and 

qagg, which are stored only in the 1-dimensional 

segment trees). Considering that each dimension has 

O(m) elements, then the number of nodes in a d-

dimensional segment tree is O(m
d
). Each tree node will 

maintain an attribute dim, representing the 

corresponding dimension (the nodes with dim=1 

contain actual values; the other nodes only contain 

multidimensional data structures). Using the proposed 

algorithmic framework, we only need to redefine 

several functions (and add an extra parameter dr to 

STrangeUpdate and STrangeQuery). A range 

query/update consists of d intervals (one for each 

dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd]. 

STrangeUpdateNodeFit(node, u, dr): 
if (node.dim>1) then { 

STrangeUpdate(node.Tcovering, u, lnode.dim-1, hnode.dim-1, dr) 

STrangeUpdate(node.Ttotal, mop(u, node.left, node,right), 

lnode.dim-1, hnode.dim-1, dr) } 

else use the 1D STrangeUpdateNodeFit function 

STrangeUpdateNodeIncl(node, u, a, b, dr): 
if (node.dim>1) then STrangeUpdate(node.Ttotal, 

                                       mop(u,a,b), lnode.dim-1, hnode.dim-1, dr) 

else use the 1D STrangeUpdateNodeIncl function 

STrangeQueryNodeIncl(node, a, b, dr): 
if (node.dim>1) then return mop(STrangeQuery   

                         (node.Tcovering, lnode.dim-1, hnode.dim-1), a, b, dr) 

else use the 1D STrangeQueryNodeIncl function 

STrangeQueryNodeFit(node, dr): 
if (node.dim>1) then 

  return STrangeQuery(node.Ttotal, lnode.dim-1, hnode.dim-1, dr) 

else use the 1D STrangeQueryNodeFit function 

A range update modifies the values of O(log(m)) 

intervals (tree nodes) in dimension d. For each tree 

node p in dimension d, the update function is called on 

the p.Ttotal (and/or p.Tcovering) (d-1)-dimensional 

extended segment trees. Thus, O(log
d
(m)) tree nodes 

are visited. A range query aggregates the values of 

O(log(m)) covering nodes in dimension d. For each 

covering node, the query function is called on the 

p.Ttotal (and/or p.Tcovering) (d-1)-dimensional extended 

segment tree, thus taking O(log
d
(m)) time overall. 

We can easily support any combination of range 

updates and range queries, as long as the range of every 

query (or every update) consists of only one cell (point 

query/update). However, supporting both range queries 

and range updates with an extended segment tree seems 

to be possible only for a few types of query and update 

functions (e.g. range addition updates and range sum 

queries, with mop(u,a,b)=(b-a+1)·u). We were unable 

to extend the 1D update aggregates pushing technique 

to multiple dimensions (as this would require pushing 

and merging multidimensional structures, instead of 0-

dimensional structures, i.e. numerical values or tuples 

with a constant number of fields). 

 

4.2. The d-dimensional Block Partition 
 

The block partitioning technique is extended by 

splitting each dimension into m/k k-sized blocks. In one 

dimension, the block division requires (k+1)·m/k 

memory locations. In d dimensions, the memory size 

increases to ((k+1)·m/k)
d
. Extending range queries with 

point updates (and range updates with point queries) to 

multiple dimensions is rather easy. We only need to 

redefine some of the framework’s functions. Range 

queries and updates can be supported when using the 

block division in time O(3
d
·m

d/2
), when choosing 

k=m
1/2

 (a range query/update has time complexity 

O(3·m
1/2

) in one dimension). Each d-dimensional 

partition into blocks consists of an array dp, where 

dp[i] is a (d-1)-dimensional block partition, 

corresponding to the i
th

 cell of the d
th

 dimension, and 

two arrays, Totalp and Covp, where each entry of the 

arrays is a (d-1)-dimensional block partition, 

corresponding to a block in the d
th

 dimension. As 
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before, each block partition has a field dim, 

corresponding to its dimension (dim=1 corresponds to 

a normal, one-dimensional block partition). Just like in 

the case of the multidimensional segment tree, a range 

query/update consists of d intervals (one for each 

dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd]. We 

assume the existence of two functions: 

BPrangeUpdate(u, a, b, bpart, dr) and 

BPrangeQuery(a, b, bpart, dr), similar to the functions 

introduced in [9]. bpart is a block partition (with 

dimension bpart.dim) and [a,b] is the range in the 

dimension bpart.dim. 

BPrangeUpdateFullBlock(blk, u, bpart, dr): 
if (bpart.dim>1) then { 

  BPrangeUpdate(u,lbpart.dim-1,hbpart.dim-1,bpart.Covp[blk], dr) 

BPrangeUpdate(mop(u, bpart.left[blk], bpart.right[blk]),   

                     lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr) } 

else { bpart.uagg[blk]=uFunc(u, bpart.uagg[blk]) 

         bpart.qagg[blk]=uFunc(mop(u, bpart.left[blk], 

                              bpart.right[blk]), bpart.qagg[blk])  } 

BPrangeUpdatePartialBlock(blk, u, a, b, bpart, dr): 
if (bpart.dim>1) then BPrangeUpdate(mop(u, a, b),  

                          lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr) 

else bpart.qagg[blk]=uFunc(mop(u, a, b), bpart.qagg[blk]) 

for i=a to b do 

if (bpart.dim>1) then BPrangeUpdate(u, l bpart.dim-1, 

                                      hbpart.dim-1, bpart.dp[i], dr) 

else bpart.vi=uFunc(u, bpart.vi) 

BPrangeQueryFullBlock(blk, bpart, dr): 
if (bpart.dim>1) then return BPrangeQuery(lbpart.dim-1, 

                                       hbpart.dim-1, bpart.Totalp[blk], dr) 

else return bpart.qagg[blk] 

BPrangeQueryPartialBlock(blk, a, b, bpart, dr): 
if (bpart.dim>1) then qres=mop(BPrangeQuery(lbpart.dim-1, 

                                     hbpart.dim-1, bpart.Covp[blk], dr), a, b) 

else qres=mop(bpart.uagg[blk], a, b) 

for i=a to b do 

if (bpart.dim>1) then qres=qFunc(qres, BPrangeQuery 

                              (lbpart.dim-1, hbpart.dim-1, bpart.dp[i], dr)) 

  else qres=qFunc(qres, bpart.vi) 

return qres 

 

4.3. d-dimensional Batched Range Updates 

and Queries 

 
Batched range update techniques can also be 

extended to multiple dimensions. uops becomes a d-

dimensional array. For each update operation, there 

will be 2
d-1

 (Start, u, id) and 2
d-1

 (Finish, u, id) entries. 

The coordinates where these entries are inserted belong 

to the set LH={l1, h1+1}x{l2,h2+1} x … x {ld,hd+1}. For 

a cell (c1,…,cd) belonging to LH, we denote by cnt the 

number of positions i where ci=li. If cnt has the same 

parity as the number of dimensions d, then a Start entry 

is inserted for that position; otherwise, we will insert a 

Finish entry. Afterwards, we traverse the cells in 

increasing order of the dimension i (i=1,…,d) and for 

each i, from 1 to m. For each cell, we consider all the 

Start and Finish entries inserted there and then we 

compute the cell’s value, just like in the 1D case. 

 

5. Practical applications 
 

In this section we discuss the practical applicability 

of the data structures presented in the previous 

sections. We will present several scenarios, in which 

using their capabilities will be beneficial. 

In the first scenario, the data transfer scheduler 

receives requests which ask for a fixed amount of 

bandwidth B during a fixed time interval [t1,t2]. By 

dividing the time horizon into equally sized time slots, 

this problem has two components: 

• find the minimum available bandwidth among all 

the time slots in the interval [s1,s2], where s1 and s2 

are the time slots in which t1 and t2 are located. 

• decrease the available bandwidth with the same 

value B for each time slot in [s1,s2]. 

These two operations are equivalent to a range 

addition update and a range minimum query and can be 

efficiently handled by the proposed data structures. 

In the second scenario, clients need to send 

multimedia data at a minimum rate R in a wireless 

network. The scheduler manages a set of N frequencies, 

numbered consecutively from 1 to N. For each 

frequency i, the scheduler keeps track of the maximum 

rate ri at which data can be sent on that frequency. We 

can consider the values ri<R as negative  and the others 

positive (by setting ri=ri-R). A request asks for an 

allocation of consecutive frequency numbers 

completely located inside an interval [fmin, fmax], such 

that the sum of the transfer rates on the frequency 

interval is maximum. Occasionally, the values ri may 

need to be updated. This problem is the range 

maximum segment sum that we presented. 

In the third scenario, the scheduler manages two 

resources: frequency numbers and time. For each pair 

(i,j), the available bandwidth Bi,j for frequency i during 

time slot j is known. Clients need to send as much data 

as possible during a fixed time slot interval [s1,s2] and 

using a fixed interval of frequency numbers [f1,f2]. The 

total amount of data that can be sent is 

∑∑
= =

⋅

2

1

2

1

, _
s

si

f

fj

ji durationslotB , where slot_duration is the 

duration of a time slot. A client may want to query 

several time and frequency intervals until it finds 

enough available bandwidth. Occasionally, the values 
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Bi,j need to be updated. This problem can be handled 

efficiently by a multidimensional data structure. 

 

6. Related Work 
 

The segment tree [2] and the partitioning of a range 

of cells into equally sized blocks have been known for 

quite some time. Extended variants of these structures 

have been used in many fields, like computational 

geometry [6], machine vision, data management in 

OLAP applications [3,4,5] and advance resource 

reservations [13]. Usually, they only solve particular 

problems, for only one type of update and query, or 

even just for the static case (without any updates) [7]. 

Moreover, the most commonly studied case 

corresponds to range queries and point updates. The 

more general case of range queries and range updates is 

rarely discussed. We are not aware of other attempts to 

put together the capabilities of the two data structures 

into a comprehensive, easy to use algorithmic 

framework, except [9, 10]. We are also not aware of 

any extensive analysis of the data structures, from the 

point of view of the types of problems they can solve.  

 

7. Conclusions and Future Work 
 

In this paper we considered the situation in which a 

resource manager has to serve quickly and efficiently 

data transfer requests for a single network link or path. 

The requests contain hard QoS constraints (which 

cannot be violated). For this situation, we presented the 

use of some standard data structures (time slot array, 

disjoint sets, balanced trees) and we developed new 

extensions and algorithmic frameworks for two well-

known data structures: a hierarchical one (the segment 

tree) and one which is based on block partitioning, thus 

continuing the work in [9] and [10]. The data structures 

are capable of handling several non-trivial variants of 

range queries and updates. We also extended the data 

structures to multiple dimensions, but the efficiency 

decreases with the increase in dimension. We were 

unable to make the extended segment tree support all 

the pairs of range queries and updates that can be 

supported in one dimension. The use of the framework 

was presented by concrete examples, like the range 

maximum sum segment query and the range set update, 

which were not considered anywhere else in this form 

(as far as we are aware). The batched update case for 

one dimension and range sum addition appears to be 

part of the algorithmic folklore, but we are not aware of 

its extensions to other update operations. In the end, we 

also showed how the data structures can be used in the 

process of resource allocation and reservation, by 

presenting motivating scenarios. 
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