
HAL Id: hal-00912359
https://hal.science/hal-00912359

Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Data Structures for Online QoS-Constrained
Data Transfer Scheduling

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Efficient Data Structures for Online QoS-Constrained Data
Transfer Scheduling. 7th IEEE International Symposium on Parallel and Distributed Computing
(ISPDC), Jul 2008, Krakow, Poland. pp.285-292, �10.1109/ISPDC.2008.36�. �hal-00912359�

https://hal.science/hal-00912359
https://hal.archives-ouvertes.fr

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

Efficient Data Structures for Online QoS-Constrained Data Transfer

Scheduling

Mugurel Ionuț Andreica, Nicolae Țăpuș

Politehnica University of Bucharest, Computer Science Department, Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract

Distributed applications and services requiring the

transfer of large amounts of data have been developed

and deployed all around the world. The best effort

behavior of the Internet cannot offer to these

applications the necessary Quality of Service (QoS)

guarantees, making the development of data transfer

scheduling techniques a necessity. In this paper we

propose novel methods of efficiently using some well-

known data structures (e.g. the segment tree and the

block partition), which can be implemented in a

resource manager (e.g. Grid job scheduler, bandwidth

broker) in order to serve quickly large numbers of

advance resource reservation and allocation requests.

Keywords-data transfer scheduling, block partitioning,

segment tree, multidimensional data structures,

algorithmic framework, range query, range update.

1. Introduction

In the context of world wide development and

deployment of distributed applications and services,

QoS guarantees are strictly necessary for achieving

good performance levels. In many situations, QoS

guarantees are offered by reserving resources in

advance. Online resource management systems (e.g.

Grid job schedulers, bandwidth brokers) have to deal

with many simultaneous reservation requests. In order

to provide a good response time, these systems need to

use efficient data structures for the management of

resource availability and resource reservations. In this

paper we present several efficient data structures which

can be used for some special classes of resources and

many types of reservation requests. The data structures

are based on the well-known segment tree and on

partitioning the dimensions into equally sized blocks.

For some restricted situations, we also present other

techniques, based on disjoint sets and balanced trees.

This paper is structured as follows. In Section 2, we

present the context of online data transfer scheduling.

In Section 3 we present efficient data structure usage

for scheduling data transfers on a single link. Section 4

considers the situation of path networks and extends

the data structures to this case. In Section 5 we present

some practical applications of the data structures we

discuss in this paper. Finally, in Section 6 we present

related work and in Section 7 we conclude.

2. Online Data Transfer Scheduling

A resource manager receives resource allocation

and reservation requests (in our case, data transfer

requests) which need to be processed in real time (as

soon as they arrive or in batches). A request contains

two types of parameters: constraint parameters and

optimization parameters. For each constraint

parameter, an acceptable range of values is provided.

The optimization parameters need to be either

maximized or minimized. Constraint parameters may

consist of an earliest start time and a latest finish time,

a fixed duration or a minimum (and maximum) amount

of resources needed (bandwidth, processors).

Optimization parameters may require the minimization

of the duration, jitter, congestion or the maximization

of the allocated bandwidth.

Many models and algorithms have been developed

for the online scheduling problem [1]. In this paper we

consider the situation in which the resource manager

needs to handle many requests simultaneously and must

provide a low response time. Because of the stringent

time constraints, the scheduler cannot afford to make

elaborate decisions. We consider a simple greedy

algorithm which handles the requests in order. For each

request, it verifies whether the QoS constraints can be

satisfied and, if so, it grants the request; otherwise, the

request is rejected. In order to speed up the algorithm,

we introduce an algorithmic framework extension for

two well-known data structures. We consider a

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

hierarchical data structure (an extended segment tree)

and a non-hierarchical one (based on block

partitioning). We will present the algorithmic

frameworks for both data structures, as well as several

query and update operations that can be supported

efficiently. We will mainly be interested in obtaining a

good worst case performance for any sequence of

queries and updates, but we will also consider the cases

of batched updates, followed by online queries, as well

as techniques which provide good performance on

average. Although the data structures are rather well

known, the algorithmic frameworks that we propose are

new and solve many problems that were previously

handled individually, as well as some new problems

that, as far as we are aware, have never been

considered before.

3. Scheduling over Time on a Single Link

In this section, we will consider a particular

situation, in which the network is composed of only

two nodes, connected by a single link. Data transfer

requests are sent from both nodes to a central

scheduler. The parameters of a request r are: the

duration of the data transfer Dr, the earliest start time

ESr, the latest finish time LFr (i.e. if the request is

scheduled to begin at time t, we must have

ESr≤t≤t+Dr≤LFr) and the minimum required bandwidth

Br. We consider only non-preemptive data transfers

(once started, they must not be interrupted). We will

consider two bandwidth models for the requests. In the

first model, each request asks for the whole bandwidth

of the link and, thus, we can schedule at most one data

transfer at a time. In the second model, each request

asks for a fraction of the link’s bandwidth. The first

model is, obviously, a particular case of the second

model, but it can be handled more efficiently in some

situations. We will now present several data structures

which bring successive performance improvements.

3.1. The Time Slot Array

We will first consider the first bandwidth model (i.e.

each data transfer uses the full bandwidth of the link).

A common approach is to divide the time horizon into

m equally-sized time slots and build a time slot array

[11] over these slots. For each time slot t (1≤t≤m), the

array ts contains an entry ts[t], which can be either 0

(no transfer is scheduled during this time slot) or 1 (a

transfer was scheduled during this time slot). Using the

time slot division, each transfer is started only at the

beginning of a time slot and lasts for an integer number

of consecutive time slots (even if the last time slot is

not fully occupied, it is still marked as being fully

occupied). In order to obtain a good performance, the

time horizon must be divided into a large number of

time slots (a fine-grained time resolution). In this

situation, however, an important aspect to consider is

the time it takes to traverse the time slot array for each

request. We consider two operations to be performed

on the array: a query and an update. A query verifies if

a request can be granted and an update sets all the time

slot entries of a data transfer to the same value (1, when

scheduling a transfer; 0, when canceling a transfer).

The pseudocode of these operations is described below

(the time parameters are converted into time slots):

TSAQuery(ES, LF, D):
nfree=0

for t=ES to LF do // t=ES, ES+1, …, LF-1, LF

if (ts[t]=0) then {

 nfree=nfree+1

 if (nfree=D) then return [t-D+1, t] }

else nfree=0

return “no interval found”

TSAUpdate(tstart, D, value):
for t=tstart to tstart+D-1 do ts[t]=value // or ts[t]+=value

The time complexity of each operations is O(m).

The time slot array can be easily enhanced in order to

support the second bandwidth model. In this case, it is

possible for multiple transfers to be scheduled

simultaneously, as long as the maximum bandwidth of

the link is not exceeded. The entry ts[t] of a time slot

represents, in this case, the available bandwidth during

that time slot. The update and query functions can be

modified in order to run in O(m) time. The other data

structures will improve the time slot array and maintain

the notations and the time slot division model.

3.2. Disjoint Sets for Non-cancelable

Reservations

Using the first bandwidth model and if the data

transfer reservations cannot be canceled, we can use a

disjoint sets data structure [12] in order to maintain the

maximal intervals of time slots with an entry equal to 1

in the time slot array. This data structure provides two

operations: Find(t), which returns the representative of

the disjoint set containing element t and Union(a,b),

which combines the sets of the elements a and b into

one set (if they are not already in the same set). For

each set representative sr we maintain two values:

left[sr] and right[sr], the left and right endpoints of the

interval of time slots represented by the set. Within the

Union procedure we compute the set representatives of

the elements a and b, sra and srb (sra=Find(a) and

srb=Find(b)). Then, using some of the well-known

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

heuristic criteria (like union by rank or union by size),

one of the two representatives (call it sru) will be

selected as the representative of the combined set. We

will set left[sru] = min{left[sra], left[srb]} and

right[sru]=max{right[sra], right[srb]}.

DSQuery(ES, LF, D):
nfree=0; t=ES

while (t≤LF) do

if (ts[t]=0) then {

 nfree=nfree+1

 if (nfree=D) then return [t-D+1, t]

 else t=t+1 }

else { nfree=0; t=right[Find(t)]+1 }

return “no interval found”

DSUpdate(tstart, D, value=1):
for t=tstart to tstart+D-1 do {

ts[t]=value

if ((t>1) and (ts[t-1]=value)) then Union(t-1, t) }

if ((tstart+D≤m) and (ts[tstart+D]=value)) then

 Union(tstart+D-1, tstart+D)

The total time complexity of the updates is O(m·

log*(m)) and the query time is reduced, because we can

jump over large intervals of occupied time slots.

3.3. Using Balanced Trees

We will now present a further improvement for the

first bandwidth model, based on maintaining a

balanced tree T of maximal intervals of time slots. A

maximal interval is a set of consecutive time slots t, for

which all the entries ts[t] are equal (to 0 or to 1); if

they are equal to 0, it is a 0-interval (and its color is 0),

otherwise, it is a 1-interval (and its color is 1). The set

of time slots 1,…,m always has a unique decomposition

into maximal intervals. The tree T provides three

functions: insertInterval(a, b, c), which inserts the

interval [a,b] having color c into T, removeInterval(a,

b), which removes from T the interval [a,b], and

getIntervalContaining(t), which returns the interval

(and its color) containing the time slot t. We present the

pseudocode of the query and update operations below.

A query finds an unoccupied interval of at least D slots.

BTQuery(ES, LF, D):
t=ES

while (t≤LF) do {

(left, right, color)=T.getIntervalContaining(t)

left1=max{left, ES}; right1=min{right,LF}

if ((color=0) and (right1-left1+1≥D)) then

 return [left1, left1+D-1]

else t=right+1 }

return “no interval found”

BTUpdate(tstart, D, value):
t=tstart

while (t≤tstart+D-1) do {

(left, right, color)=T.getIntervalContaining(t)

left1=max{left, tstart}; right1=min{right, tstart+D-1}

T.removeInterval(left, right)

if (left<left1) then T.insertInterval(left, left1-1, color)

if (right1<right) then

 T.insertInterval(right1+1, right, color)

t=right+1 }

T.insertInterval(tstart, tstart+D-1, value)

An update fully colors the interval [tstart, tstart+D-

1] with the color value. We cannot offer any

guarantees regarding the running time of the query

operation. Obviously, it could be O(m·log(m)), but, in

practical settings, it will run much faster, because it

jumps over whole maximal intervals of the same color.

The time complexity of the update operation is

O(log(m)), because the time slot interval [tstart,

tstart+D-1] intersects only one interval in T. However,

the implementation of the operation is more general

and allows for the interval [tstart, tstart+D-1] to

intersect multiple other intervals – the maximal interval

decomposition is properly maintained in this case, too.

When all the queries have ES=1 and LF=m (i.e.

there are no constraints regarding the earliest start time

and latest finish time), we can provide stronger

guarantees for the running time of the update operation,

by maintaining a max-heap (priority queue) with the

lengths of the 0-intervals. Thus, the interval with the

maximum length can be obtained in O(1) time, because

it is located at the top of the heap. Then, by comparing

the length of this interval with the required length D,

we can decide if an appropriate interval of length D

exists. Using a max-heap slightly complicates the

update function. The easiest way to introduce the max-

heap is to modify the definitions of the functions

removeInterval and insertInterval of the balanced tree

T. When a 0-interval is removed from T, we also

remove it from the heap; when a 0-interval is inserted

in T, we also insert its length in the heap. This way, the

time complexity of the query operations becomes O(1)

and that of the update becomes O(log(m)).

3.4. Using the Block Partitioning Method

We can divide the m time slots into m/k blocks of k

slots each (the last group may contain fewer time slots).

Then, we can use the block partitioning framework

introduced in [9]. For the first bandwidth model, an

update operation will consists of a range set operation

(setting all the time slots in a range to the same value)

and a query operation will consists of a range

maximum sum segment query. To be more specific, we

associate a value vt to each time slot t. This value will

always be either 1 or -∞. An update with the parameter

value=0 sets the values of all the time slots in the

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

interval [tstart, tstart+D-1] to 1. An update with

value=1, sets the slots in the same interval to -∞. A

query consists of the maximum sum segment query

contained in the interval [ES, LF]. Such a segment will

never contain a value vt=-∞ (unless no value equal to 1

exists in that range). Thus, the returned interval is, in

fact, the longest interval of free consecutive time slots

and its length can be compared to the parameter D.

With the framework in [9], we obtain a time

complexity of O(k+m/k) for each query and update (i.e.

O(sqrt(m)) for k=sqrt(m)). For LF-ES+1=D and

considering the second bandwidth model, we can use

the same framework. In this case, the operations used

are: range addition update and range minimum query.

3.5. Using an Extended Segment Tree

The segment tree [2] is a binary tree structure used

for performing operations on an array v with m cells.

Each cell i (1≤i≤m) contains a value vi. Each node p of

the tree has an associated interval [p.left, p.right],

corresponding to an interval of cells. If the node p is

not a leaf, then it has two sons: the left son (p.lson) and

the right son (p.rson). The interval of the left son is

[p.left, mid] and the right son’s interval is [mid+1,

p.right], where mid=floor((p.left+p.right)/2).

The leaves are those nodes whose associated

interval contains only one cell. The interval of the root

node is [1,m]. The height of the segment tree is

O(log(m)). The tree can be built in O(m) time. Query

operations consist of computing a function on the

values of a range of cells [a,b] (range query).

Range Query(a, b): compute),...,,(1 baa vvvqFunc
+

.

Analogously, we have range updates:

Range Update(u, a, b): vi=uFunc(u, vi), a≤i≤b.

The functions qFunc (query function) and uFunc

(update function) must be at least binary and

associative. In order to perform an update we call the

function STrangeUpdate with the segment tree root as

its node argument and the appropriate update

parameter. In order to query the segment tree, we call

the function STrangeQuery, with the segment tree root

as its node argument and the left and right cells of the

query range. A query/update range is decomposed into

O(log(m)) intervals, corresponding to O(log(m))

“covering nodes” of the tree (the query/update call

stops at these nodes and does not go further down the

tree). Besides the covering nodes, all the nodes on the

path from the root to each covering node are visited

(O(log(m)) nodes overall). We would like to use the

segment tree in order to perform the same operations as

in the previous subsection, i.e. range set update and

range maximum sum segment query. An easy-to-use

segment tree algorithmic framework was introduced in

[10]. Each node of the segment tree maintains two

values: uagg and qagg. uagg is the aggregate of all the

update parameters of the update calls which “stopped”

at that node. qagg is the query answer for the interval

of cells corresponding to the current node, ignoring all

the update calls which “stopped” further up in the tree

(an update call which “stopped” at one of the current

node’s ancestors affects the interval of cells of the

current node, but its effects are not considered in the

qagg field of the current node). However, this

framework cannot support the kind of range queries

and updates we are interested in. The problem lies in

the very fact that, for the particular type of queries and

updates we are interested in, the updates are not

“visible” further down in the tree. Because of this, we

augment the segment tree framework with an extra

function, called STpushUpdates. Basically, the

framework is the same, except that update aggregates

are pushed down to the two sons (and then cleared) on

every update and query call. We would, in fact, like to

push these updates all the way towards the leaves, but

doing this on every update would take O(m) time.

Instead, we “piggy-back” future update calls and push

the update aggregates “on demand”, without affecting

the O(log(m)) complexity of the update/query function

calls. We also use a multiplication operator mop, which

estimates the effects of an update on a range of cells.

STpushUpdates(node):
if (node.left<node.right) then {

STrangeUpdateNodeFit(node.lson, node.uagg)

STrangeUpdateNodeFit(node.rson, node.uagg)

node.uagg=uninitialized }

STrangeUpdate(node, u, a, b):
STpushUpdates(node)

if ((a=node.left) and (node.right=b)) then

 STrangeUpdateNodeFit(node, u)

else {

 lson, rson = left and right son of the current tree node

 if ((a≤lson.right) and (lson.left≤b)) then

 STrangeUpdate(lson,u,max(a,lson.left),min(b, lson.right))

 if ((a≤rson.right) and (rson.left≤b)) then

 STrangeUpdate(rson,u,max(a,rson.left),min(b,rson.right))

 STrangeUpdateNodeIncl(node, u, a, b) }

STrangeUpdateNodeFit(node, u):
node.uagg=uFunc(u, node.uagg)

node.qagg=uFunc(mop(u,node.left,node.right),node.qagg)

STrangeUpdateNodeIncl(node, u, a, b):
node.qagg=uFunc(mop(node.uagg, node.left, node.right),

qFunc(node.lson.qagg, node.rson.qagg))

STrangeQuery(node, a, b):
STpushUpdates(node)

if (a=node.left and node.right=b) then

 return STrangeQueryNodeFit(node)

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

else {

q=uninitialized

 if ((a≤node.lson.right) and (node.lson.left≤b)) then

 q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson.

left), min(b, node.lson.right))

 if ((a≤node.rson.right) and (node.rson.left≤b)) then

 q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson.

left), min(b, node.rson.right))

 return uFunc(STrangeQueryNodeIncl(node, a, b), q) }

STrangeQueryNodeFit(node):
return node.qagg

STrangeQueryNodeIncl(node, a, b):
return mop(node.uagg, a, b)

With this framework we can support many types of

pairs of updates and queries, like all those mentioned in

[9] and [10] (e.g. uFunc(x,y)=qFunc(x,y)=(x+y) or

uFunc(x,y)=qFunc(x,y)=((x+y) modulo M)). We will

focus now on range set updates. In order to perform a

range set update, we need to consider tuples of values.

For instance, if we want to perform range

sum/minimum/maximum queries, each value of a cell

is, in fact a pair (value, time_stamp). Successive update

parameters obtain increasing time stamps. The uFunc

and qFunc functions which are used by the framework

are defined below:

uFunc((wx, tx), (wy, ty)):
if (tx>ty) then return (wx, tx) else return (wy, ty)

qFunc((wx, tx), (wy, ty)):
res=wx+wy // or min{wx,wy} or max{wx,wy}

return (res, max{tx,ty})

For the range sum query, the multiplication operator

is mop((w,t),a,b)=((b-a+1)·w,t); for the range min/max

query, the operator is mop((w,t),a,b)=(w,t). For the

maximum sum segment query, each cell’s value (and

update parameter) is a tuple composed of 5 fields:

(totalsum, maxlsum, maxrsum, maxsum, time_stamp).

If the value corresponds to an interval of cells [c,d],

then the first four fields of tuple are defined as follows:

∑
=

=

d

cp

pvtotalsum
∑

=
≤≤

=

q

cp

p
dqc

vmaxmaxlsum

∑
=

≤≤

=

d

qp

p
dqc

vmaxmaxrsum
∑

=
≤≤≤

=

r

qp

p
drqc

vmaxmaxsum

An update parameter tuple is interpreted as

corresponding to a one-cell interval whose value is

totalsum (thus, the fields maxlsum, maxrsum and

maxsum are either equal to totalsum, if totalsum>0, or

to 0, if totalsum≤0). The update and query functions, as

well as the multiplication operator, are shown below.

All of these (range update, range query) combinations

are also supported by the block partitioning framework

in [9] (although not explicitly stated in the paper). With

the extended segment tree framework, we can support

every update and query operation on a range of time

slots in O(log(m)) time.

uFunc((tsx, mlx, mrx, mx, tx), (tsy, mly, mry, my, ty)):
if (tx>ty) then return (tslx, mlx, mrx, mx, tx)

else return (tsy, mly, mry, my, ty)

qFunc((tsx, mlx, mrx, mx, tx), (tsy, mly, mry, my, ty)):
return (tsx+tsy , max{mlx , tsx+mly}, max{mry , tsy+mrx},

max{mx, my , mrx+mly}, max{tx, ty})

mop((tsx, mlx, mrx, mx, tx), a, b):
return ((b-a+1)·tsx, (b-a+1)·mlx, (b-a+1)·mrx, (b-a+1)·mx, tx)

3.6. Batched Range Updates and Queries

In some situations, the updates and the queries occur

in stages (they are batched). In this case and for some

update functions which are reversible, it is possible to

obtain a better performance than using the data

structures presented previously. An update function is

reversible if it is either invertible (each value has an

inverse value) or if the effects of an update operation

on a single value wi can be reversed without

reconsidering all the other update operations.

We will maintain a separate array uops with m+1

locations. Each location consists of a list of entries,

initially empty. For each rangeUpdate(u, a, b), we add

a (Start, u, id) entry to the list uops[a] and a (Finish, u,

id) entry to the uops[b+1] list. id is a unique identifier

of the update operation. Thus, each update is processed

in O(1) time. The algorithm is showed below:

BatchedUpdates():
for uop in UpdateOperationsSet do {

uops[auop].add((Start, uuop, idu))

uops[buop+1].add((Finish, uuop, iduop)) }

ds=empty

for pos=1 to m do

for (posType, u, id) in uops[pos] do

 if (posType=Start) then ds.add((u, id))

 else ds.remove((u, id))

wpos=ds.computeValue()

In the case of the range set update function, we will

maintain a max-heap data structure, where the elements

are compared according to their time stamp. The

computeValue function returns the value corresponding

to the largest time stamp in the max-heap. The time

complexity for processing n range updates is

O(n·log(n)). In the case of range addition, the situation

is simpler. The data structure maintains the sum of all

the update parameters. When calling ds.add((u, id)),

the sum is incremented by u and when calling

ds.remove((u, id)), the sum is decremented by u.

ds.computeValue() simply returns the sum. The time

complexity for processing n range updates is O(n). For

other invertible functions (like xor, multiplication and

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

others), we obtain the same time complexity (the

inverse of xor is also xor and the inverse of

multiplication is division). After computing all the

values in the array w, this array can be processed for

answering different types of range queries [8].

4. Scheduling over Time on a Path

We now consider the particular situation when the

network is a path composed of n nodes v1, v2, …, vn

(and there is a link between every two consecutive

vertices in this order). A data transfer request contains,

besides the parameters considered in the previous

section, the identifiers of the source and the destination

nodes. We could maintain a separate data structure for

each network link and, for a data transfer request

between two nodes i and j, we could query (and then

update) the data structures of all the O(n) links in-

between i and j. In many situations, this approach is

good enough. However, we can do better than this, by

using multidimensional data structures (for instance,

two-dimensional structures, where the first dimension

corresponds to the network links and the second

dimension corresponds to the time slots).

4.1. The d-dimensional Segment Tree

An extended d-dimensional segment tree (d≥2) is

composed of a segment tree for the first dimension in

which every node contains two (d-1) dimensional

segment trees Tcovering and Ttotal (instead of the uagg and

qagg, which are stored only in the 1-dimensional

segment trees). Considering that each dimension has

O(m) elements, then the number of nodes in a d-

dimensional segment tree is O(m
d
). Each tree node will

maintain an attribute dim, representing the

corresponding dimension (the nodes with dim=1

contain actual values; the other nodes only contain

multidimensional data structures). Using the proposed

algorithmic framework, we only need to redefine

several functions (and add an extra parameter dr to

STrangeUpdate and STrangeQuery). A range

query/update consists of d intervals (one for each

dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd].

STrangeUpdateNodeFit(node, u, dr):
if (node.dim>1) then {

STrangeUpdate(node.Tcovering, u, lnode.dim-1, hnode.dim-1, dr)

STrangeUpdate(node.Ttotal, mop(u, node.left, node,right),

lnode.dim-1, hnode.dim-1, dr) }

else use the 1D STrangeUpdateNodeFit function

STrangeUpdateNodeIncl(node, u, a, b, dr):
if (node.dim>1) then STrangeUpdate(node.Ttotal,

 mop(u,a,b), lnode.dim-1, hnode.dim-1, dr)

else use the 1D STrangeUpdateNodeIncl function

STrangeQueryNodeIncl(node, a, b, dr):
if (node.dim>1) then return mop(STrangeQuery

 (node.Tcovering, lnode.dim-1, hnode.dim-1), a, b, dr)

else use the 1D STrangeQueryNodeIncl function

STrangeQueryNodeFit(node, dr):
if (node.dim>1) then

 return STrangeQuery(node.Ttotal, lnode.dim-1, hnode.dim-1, dr)

else use the 1D STrangeQueryNodeFit function

A range update modifies the values of O(log(m))

intervals (tree nodes) in dimension d. For each tree

node p in dimension d, the update function is called on

the p.Ttotal (and/or p.Tcovering) (d-1)-dimensional

extended segment trees. Thus, O(log
d
(m)) tree nodes

are visited. A range query aggregates the values of

O(log(m)) covering nodes in dimension d. For each

covering node, the query function is called on the

p.Ttotal (and/or p.Tcovering) (d-1)-dimensional extended

segment tree, thus taking O(log
d
(m)) time overall.

We can easily support any combination of range

updates and range queries, as long as the range of every

query (or every update) consists of only one cell (point

query/update). However, supporting both range queries

and range updates with an extended segment tree seems

to be possible only for a few types of query and update

functions (e.g. range addition updates and range sum

queries, with mop(u,a,b)=(b-a+1)·u). We were unable

to extend the 1D update aggregates pushing technique

to multiple dimensions (as this would require pushing

and merging multidimensional structures, instead of 0-

dimensional structures, i.e. numerical values or tuples

with a constant number of fields).

4.2. The d-dimensional Block Partition

The block partitioning technique is extended by

splitting each dimension into m/k k-sized blocks. In one

dimension, the block division requires (k+1)·m/k

memory locations. In d dimensions, the memory size

increases to ((k+1)·m/k)
d
. Extending range queries with

point updates (and range updates with point queries) to

multiple dimensions is rather easy. We only need to

redefine some of the framework’s functions. Range

queries and updates can be supported when using the

block division in time O(3
d
·m

d/2
), when choosing

k=m
1/2

 (a range query/update has time complexity

O(3·m
1/2

) in one dimension). Each d-dimensional

partition into blocks consists of an array dp, where

dp[i] is a (d-1)-dimensional block partition,

corresponding to the i
th

 cell of the d
th

 dimension, and

two arrays, Totalp and Covp, where each entry of the

arrays is a (d-1)-dimensional block partition,

corresponding to a block in the d
th

 dimension. As

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

before, each block partition has a field dim,

corresponding to its dimension (dim=1 corresponds to

a normal, one-dimensional block partition). Just like in

the case of the multidimensional segment tree, a range

query/update consists of d intervals (one for each

dimension): dr=[l1,h1] x [l2,h2] x … x [ld,hd]. We

assume the existence of two functions:

BPrangeUpdate(u, a, b, bpart, dr) and

BPrangeQuery(a, b, bpart, dr), similar to the functions

introduced in [9]. bpart is a block partition (with

dimension bpart.dim) and [a,b] is the range in the

dimension bpart.dim.

BPrangeUpdateFullBlock(blk, u, bpart, dr):
if (bpart.dim>1) then {

 BPrangeUpdate(u,lbpart.dim-1,hbpart.dim-1,bpart.Covp[blk], dr)

BPrangeUpdate(mop(u, bpart.left[blk], bpart.right[blk]),

 lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr) }

else { bpart.uagg[blk]=uFunc(u, bpart.uagg[blk])

 bpart.qagg[blk]=uFunc(mop(u, bpart.left[blk],

 bpart.right[blk]), bpart.qagg[blk]) }

BPrangeUpdatePartialBlock(blk, u, a, b, bpart, dr):
if (bpart.dim>1) then BPrangeUpdate(mop(u, a, b),

 lbpart.dim-1, hbpart.dim-1, bpart.Totalp[blk], dr)

else bpart.qagg[blk]=uFunc(mop(u, a, b), bpart.qagg[blk])

for i=a to b do

if (bpart.dim>1) then BPrangeUpdate(u, l bpart.dim-1,

 hbpart.dim-1, bpart.dp[i], dr)

else bpart.vi=uFunc(u, bpart.vi)

BPrangeQueryFullBlock(blk, bpart, dr):
if (bpart.dim>1) then return BPrangeQuery(lbpart.dim-1,

 hbpart.dim-1, bpart.Totalp[blk], dr)

else return bpart.qagg[blk]

BPrangeQueryPartialBlock(blk, a, b, bpart, dr):
if (bpart.dim>1) then qres=mop(BPrangeQuery(lbpart.dim-1,

 hbpart.dim-1, bpart.Covp[blk], dr), a, b)

else qres=mop(bpart.uagg[blk], a, b)

for i=a to b do

if (bpart.dim>1) then qres=qFunc(qres, BPrangeQuery

 (lbpart.dim-1, hbpart.dim-1, bpart.dp[i], dr))

 else qres=qFunc(qres, bpart.vi)

return qres

4.3. d-dimensional Batched Range Updates

and Queries

Batched range update techniques can also be

extended to multiple dimensions. uops becomes a d-

dimensional array. For each update operation, there

will be 2
d-1

 (Start, u, id) and 2
d-1

 (Finish, u, id) entries.

The coordinates where these entries are inserted belong

to the set LH={l1, h1+1}x{l2,h2+1} x … x {ld,hd+1}. For

a cell (c1,…,cd) belonging to LH, we denote by cnt the

number of positions i where ci=li. If cnt has the same

parity as the number of dimensions d, then a Start entry

is inserted for that position; otherwise, we will insert a

Finish entry. Afterwards, we traverse the cells in

increasing order of the dimension i (i=1,…,d) and for

each i, from 1 to m. For each cell, we consider all the

Start and Finish entries inserted there and then we

compute the cell’s value, just like in the 1D case.

5. Practical applications

In this section we discuss the practical applicability

of the data structures presented in the previous

sections. We will present several scenarios, in which

using their capabilities will be beneficial.

In the first scenario, the data transfer scheduler

receives requests which ask for a fixed amount of

bandwidth B during a fixed time interval [t1,t2]. By

dividing the time horizon into equally sized time slots,

this problem has two components:

• find the minimum available bandwidth among all

the time slots in the interval [s1,s2], where s1 and s2

are the time slots in which t1 and t2 are located.

• decrease the available bandwidth with the same

value B for each time slot in [s1,s2].

These two operations are equivalent to a range

addition update and a range minimum query and can be

efficiently handled by the proposed data structures.

In the second scenario, clients need to send

multimedia data at a minimum rate R in a wireless

network. The scheduler manages a set of N frequencies,

numbered consecutively from 1 to N. For each

frequency i, the scheduler keeps track of the maximum

rate ri at which data can be sent on that frequency. We

can consider the values ri<R as negative and the others

positive (by setting ri=ri-R). A request asks for an

allocation of consecutive frequency numbers

completely located inside an interval [fmin, fmax], such

that the sum of the transfer rates on the frequency

interval is maximum. Occasionally, the values ri may

need to be updated. This problem is the range

maximum segment sum that we presented.

In the third scenario, the scheduler manages two

resources: frequency numbers and time. For each pair

(i,j), the available bandwidth Bi,j for frequency i during

time slot j is known. Clients need to send as much data

as possible during a fixed time slot interval [s1,s2] and

using a fixed interval of frequency numbers [f1,f2]. The

total amount of data that can be sent is

∑∑
= =

⋅

2

1

2

1

, _
s

si

f

fj

ji durationslotB , where slot_duration is the

duration of a time slot. A client may want to query

several time and frequency intervals until it finds

enough available bandwidth. Occasionally, the values

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

Bi,j need to be updated. This problem can be handled

efficiently by a multidimensional data structure.

6. Related Work

The segment tree [2] and the partitioning of a range

of cells into equally sized blocks have been known for

quite some time. Extended variants of these structures

have been used in many fields, like computational

geometry [6], machine vision, data management in

OLAP applications [3,4,5] and advance resource

reservations [13]. Usually, they only solve particular

problems, for only one type of update and query, or

even just for the static case (without any updates) [7].

Moreover, the most commonly studied case

corresponds to range queries and point updates. The

more general case of range queries and range updates is

rarely discussed. We are not aware of other attempts to

put together the capabilities of the two data structures

into a comprehensive, easy to use algorithmic

framework, except [9, 10]. We are also not aware of

any extensive analysis of the data structures, from the

point of view of the types of problems they can solve.

7. Conclusions and Future Work

In this paper we considered the situation in which a

resource manager has to serve quickly and efficiently

data transfer requests for a single network link or path.

The requests contain hard QoS constraints (which

cannot be violated). For this situation, we presented the

use of some standard data structures (time slot array,

disjoint sets, balanced trees) and we developed new

extensions and algorithmic frameworks for two well-

known data structures: a hierarchical one (the segment

tree) and one which is based on block partitioning, thus

continuing the work in [9] and [10]. The data structures

are capable of handling several non-trivial variants of

range queries and updates. We also extended the data

structures to multiple dimensions, but the efficiency

decreases with the increase in dimension. We were

unable to make the extended segment tree support all

the pairs of range queries and updates that can be

supported in one dimension. The use of the framework

was presented by concrete examples, like the range

maximum sum segment query and the range set update,

which were not considered anywhere else in this form

(as far as we are aware). The batched update case for

one dimension and range sum addition appears to be

part of the algorithmic folklore, but we are not aware of

its extensions to other update operations. In the end, we

also showed how the data structures can be used in the

process of resource allocation and reservation, by

presenting motivating scenarios.

8. References

[1] K. Pruhs, J. Sgall, and E. Torng, Online Scheduling, CRC

Press, 2004.

[2] K. Mehlhorn, Data Structures and Algorithms 3: Multi-

dimensional Searching and Computational Geometry,

Springer-Verlag, Berlin, 1984.

[3] S.-J. Chun, C.-W. Chung, J.-H. Lee and S.-L. Lee,

“Dynamic Update Cube for Range-Sum Queries,”

Proceedings of the 27th International Conference on Very

Large Data Bases, pp. 521-530, 2001.

[4] C. K. Poon, “Dynamic Orthogonal Range Queries in

OLAP,” Theoretical Computer Science, vol. 296 (3), 2003.

[5] H.-G. Li, T. W. Ling, S. Y. Lee, and Z. X. Loh, “Range

Sum Queries in Dynamic OLAP Data Cubes,” Proc. of the 3rd

Intl. Symposium on Cooperative Database Systems for

Advanced Applications (CODAS), pp. 74-81, 2001.

[6] J. L. Bentley, “Multidimensional divide-and-conquer,”

Communications of the ACM, vol. 23 (4), pp. 214-229, 1980.

[7] K.-Y. Chen, and K.M. Chao, “On the Range Maximum-

Sum Segment Query Problem,” Discrete Applied

Mathematics, vol. 155 (16), pp. 2043-2052, 2007.

[8] M. A. Bender, and M. Farach-Colton, “The LCA Problem

revisited,” Proc. of the 4th Latin American Symposium on

Theoretical Informatics, LNCS, vol. 1776, pp. 88-94, 2000.

[9] M. I. Andreica, “Optimal Scheduling of File Transfers

with Divisible Sizes on Multiple Disjoint Paths,” Proc. of the

IEEE Romania Intl. Conf. “Communications”, pp. 155-158,

2008.

[10] M. I. Andreica, and N. Tapus, “Optimal TCP Sender

Buffer Management Strategy,” Proc. of the IEEE/IARIA Intl.

Conf. on Communication Theory, Reliability and Quality of

Service, pp. 41-46, 2008.

[11] L.-O. Burchard, “Analysis of Data Structures for

Admission Control of Advance Reservation Requests”, IEEE

Transactions on Knowledge and Data Engineering, vol. 17

(3), pp. 413-424, IEEE Press, 2005.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction to Algorithms, MIT Press and McGraw-Hill,

2001.

[13] A. Brodnik, A. Nilsson, “An Efficient Data Structure for

Advance Bandwidth Reservations on the Internet”, Proc. of

the 3
rd

 Conference on Comp. Sci. and Electrical Eng., 2002.

