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In this paper, we calculate the turn-on delay (tth) and buildup (Dt) times of a midinfrared quantum

cascade laser operating simultaneously on two laser lines having a common upper level. The

approach is based on the four-level rate equations model describing the variation of the electron

number in the states and the photon number present within the cavity. We obtain simple analytical

formulae for the turn-on delay and buildup times that determine the delay times and numerically

apply our results to both the single and bimode states of a quantum cascade laser, in addition the

effects of current injection on tth and Dt are explored. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4829914]

I. INTRODUCTION

Simultaneous multi-wavelength operation of a quantum

cascade (QC) laser1 in the mid-infrared range has attracted

much attention in recent years mainly due to potential appli-

cations in areas such as sensing of trace-gases through an

analysis based on differential absorption light detection and

ranging (LIDAR).2 Another possible application is the non-

linear mixing of two wavelengths to generate light at a third

one, for instance, terahertz radiation has been obtained by

difference frequency generation from two mid-infrared

modes by the authors of Refs. 3–5.

Up until now, various operating schemes for the multi-

wavelength QC laser have been put forward by different

authors. Among the notable designs, the following can be

mentioned: Two consecutive optical transitions between

three energy levels,6 multiple-wavelength superlattice QC

laser,7 QC laser with alternative design approach containing

five different material composition,8 QC laser with two sub-

stacks region,9–11 and QC laser with high k-space lasing.12

In a QC laser, the delay time plays an important role

that partly determines the device’s performance and has

already been investigated theoretically in the case of a single

mode system.13,14 For single mode QC lasers, the strong

decrease of the delay time with current was then attributed to

the dependence of the turn-on delay and buildup times on

current injection.

The dynamics of multimode QC lasers is much more

complex than that of single mode ones because of the modes’

competition for gain. As a case in point, in Ref. 15, we

showed on the basis of numerical calculations that for a

dual-wavelength QC laser the respective numbers of photons

for the two modes compete before the stationary regime is

reached, the total photon number in the cavity remaining

constant throughout.

The aim of this paper is to present a theoretical analysis

that accounts for the dynamics of a multi-wavelength mid-

infrared QC laser. Our approach is simple and intuitive and

based on the rate equations model. Our focus will only be on

the special case of a two-wavelength laser where the transi-

tions share the same upper level and therefore compete

against each other for gain. Moreover, optical nonlinearities

are ignored and the two modes are therefore uncoupled.

Our paper is organized as follows: Section I is a general

introduction to the subject while Sec. II describes the rate

equations model of the two modes used to derive our results.

Section III contains an analytical derivation of the turn-on

delay and buildup times for both the single and bimode

states. Finally, Sec. IV concludes our paper and highlights

our main findings.

II. RATE EQUATIONS OF A DUAL-WAVELENGTH
QC LASER

A. The structure

Our investigation will focus on a four-level QC laser

operating simultaneously on two laser lines having a common

upper level. Fig. 1 shows the energy-level diagram of one

stage of the active region in such as system. The upper and

lower states for wavelength k1 will be taken as levels 4 and 3,

respectively, while 4 and 2 will be for k2. For mode 1 of

wavelength k1, the first excited state denoted 2 and the

ground state denoted 1 are used to empty the lower state

through emission of longitudinal optical (LO) phonons. The

same ground state, through LO-phonon emission, is also used

to empty the lower state of the lasing mode 2 at wavelength

k2. We note in passing that intersubband phonon scattering

also occurs between levels 4 and 1, 4 and 2 on one hand, and

4 and 3 on the other and it has been shown to be the main

competing non-radiative process in mid-infrared QC lasers.10

An example of such a structure is the laser realized by

the authors of Ref. 10, which consists of two stacks of stages.
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In the first stack, a double phonon resonance design is in

action16–18 and lasing takes place around a wavelength k1

at 10.5 lm. On the other hand, the second stack uses a

bound-to-continuum design18,19 with lasing occurring at a

wavelength k2 about 8.9 lm. For more technical details on

the structure, we kindly refer the reader to the published lit-

erature.3,10 In intersubband transitions, the lifetimes of the

energy levels are mostly determined by the non-radiative

scattering mechanisms such as LO-phonon, acoustic phonon,

electron–electron, interface roughness, and impurity scatter-

ing processes.20 In the mid-infrared, it is well known that the

LO-phonon scattering is the dominant process.21

B. The rate equations model

Denote by N1, N2, N3, and N4 the respective instantane-

ous numbers of electrons in each of the four levels and by

Sð1Þ and Sð2Þ the photon numbers for modes 1 of wavelength

k1 and 2 of wavelength k2, respectively. Neglecting optical

nonlinearities for the moment, the two modes decouple in

the electromagnetic sense and the system may then be

described by the six following rate equations:15

dN4

dt
¼ WL

J

e
� N4

s4

� Cð1Þ
c0rð1Þ

V
N4 � N3ð ÞSð1Þ

� Cð2Þ
c0rð2Þ

V
N4 � N2ð ÞSð2Þ; (1a)

dN3

dt
¼ N4

s43

� N3

s3

þ Cð1Þ
c0rð1Þ

V
N4 � N3ð ÞSð1Þ; (1b)

dN2

dt
¼ N4

s42

þ N3

s32

� N2

s21

þ Cð2Þ
c0rð2Þ

V
N4 � N2ð ÞSð2Þ; (1c)

dN1

dt
¼ N4

s41

þ N3

s31

þ N2

s21

� N1

sout

; (1d)

dSð1Þ

dt
¼NpC

ð1Þ c
0rð1Þ

V
N4�N3ð ÞSð1Þ �

Sð1Þ

sð1Þp

þNpb
ð1Þ N4

sð1Þsp

; (1e)

dSð2Þ

dt
¼ NpC

ð2Þ c
0rð2Þ

V
N4�N2ð ÞSð2Þ �

Sð2Þ

sð2Þp

þNpb
ð2Þ N4

sð2Þsp

: (1f)

In the above system of equations, J denotes the electron cur-

rent density that is pumped into the upper level and e is the

absolute value of the electronic charge, while W and L are

the lateral dimensions of the cavity. Denoting by Np and Lp

the number of stages and length of each one of these, the

whole volume V of the active area is then given by NpWLLp.

In addition, in the above equations, we introduced the mode

confinement factors CðiÞ for wavelengths ki (i ¼1,2), and

the average velocity of light in the system c0 given by

c0 ¼ c=nef f where c and nef f are, respectively, the speed of

light in vacuum and the effective refractive index of the cav-

ity. In our case, we ignore the difference between the effec-

tive refractive indices of the two modes. The important

parameters bðiÞ in Eqs. (1e) and (1f) define the respective

proportions of spontaneous emission when a photon is emit-

ted into the corresponding cavity mode.22 On the other hand,

rðiÞ stands for the stimulated emission cross section for the

transition corresponding to wavelengths ki. The system

dynamics is mainly determined by the six non radiative scat-

tering times denoted by s43, s42, s41, s32, s31, and s21 that are

due to LO-phonon emission and radiative spontaneous relax-

ation times sðiÞsp for the two transitions involved. Furthermore,

between two adjacent stages we model the escape of elec-

trons by a rate 1=sout, where sout stands for the electrons

escape time.23 To complete the picture, we take into consid-

eration for both modes the finite lifetimes of the photons

denoted by sðiÞp . For the sake of convenience, let us also

introduce the lifetimes s4 and s3 of the levels 4 and 3,

which we write as s4 ¼ 1=ð1=s43 þ 1=s42 þ 1=s41Þ and s3

¼ 1=ð1=s32 þ 1=s31Þ.
The radiative spontaneous emission relaxation times for

both transitions can be cast as follows:24

1

sðiÞsp

¼
8p2nef f ezðiÞ

� �2

e0�hk3
i

; i¼1; 2 ; (2)

where ezðiÞ is the dipole matrix element of the transition in

question while e0 and �h have their usual meaning.

In the steady state, all the time derivatives in the rate equa-

tions given above vanish, the normalized intersubband popula-

tion inversions D ~N
ð1Þ

and D ~N
ð2Þ

as functions of the normalized

photon numbers ~S
ð1Þ

and ~S
ð2Þ

can then be written as15

D ~N
ðiÞ ¼

pðiÞ 1þ di
~S
ðjÞ

� �
1þ ~S

ð1Þ þ ~S
ð2Þ þ h~S

ð1Þ ~S
ð2Þ i; j ¼ 1; 2; ði 6¼ jÞ ; (3)

where

d1 ¼
1

s4

s21

þ s4s3

s43s31

þ s4

s41

� � ; (4a)

d2 ¼
s3 1� s21

s32

� s21

s42

� �

s4 1� s3s21

s43s32

� s21

s42

� �
1þ s3

s42

þ s3

s41

� � ; (4b)

h ¼

s3

s4

1þ s21

s31

þ s21

s41

� �

1þ s3

s42

þ s3

s41

� �
1þ s3s21

s43s31

þ s21

s41

� � ; (4c)

FIG. 1. Four-level-model system of the bound-to-continuum stage in a dual-

wavelength QC laser as used in our work. Lasing takes place simultaneously

through transitions from 4 onto 3 on one hand and from 4 onto 2 on the other.
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pðiÞ ¼ J

J
ðiÞ
th

; D ~N
ðiÞ ¼ DNðiÞ

DN
ðiÞ
th

; ~S
ðiÞ ¼ SðiÞ

S
ðiÞ
sat

; i ¼ 1; 2 (4d)

where the intersubband threshold population inversions in

total absence of photons DN
ð1Þ
th and DN

ð2Þ
th and the photon sat-

uration numbers for both modes are defined as15

DN
ð1Þ
th ¼ WL

J
ð1Þ
th

e
s4 1� s3

s43

� �
; (5a)

DN
ð2Þ
th ¼ WL

J
ð2Þ
th

e
s4 1� s3s21

s43s32

� s21

s42

� �
; (5b)

S
ð1Þ
sat ¼

1

s4 1þ s3

s42

þ s3

s41

� �
Cð1Þ

c0rð1Þ

V

; (5c)

S
ð2Þ
sat ¼

1

s4 1þ s3s21

s43s31

þ s21

s41

� �
Cð2Þ

c0rð2Þ

V

: (5d)

In Eqs. (5a) and (5b), the threshold current density J
ð1Þ
th and

J
ð2Þ
th are expressed as15

J
ð1Þ
th

e
¼

Lp

Cð1Þc0rð1Þs4s
ð1Þ
p

1

1� s
3

s
43

� � ; (6a)

J
ð2Þ
th

e
¼

Lp

Cð2Þc0rð2Þs4s
ð2Þ
p

1

1� s3s21

s43s32

� s21

s42

� � : (6b)

Note that the expression for J
ð2Þ
th given by Eq. (6b) is the

threshold current density in absence of any optical field in

the cavity and is to be distinguished from the physical thresh-

old ~J
ð2Þ
th ; both these currents are however related to one

another by15 ~J
ð2Þ
th ¼ 1þ 1

d2

J
ð2Þ
th

J
ð1Þ
th

� 1

� �� �
J
ð1Þ
th .

We note in passing that the threshold current density for

wavelength k1 is lower than that for wavelength k2.10

The only non trivial stable photon numbers can then be

obtained as15

(i) single mode state

Sð1Þ ¼ S
ð1Þ
sat ðpð1Þ � 1Þ; (7a)

Sð2Þ ¼ 0; (7b)

for

1hpð1Þh1þ 1

d2

J
ð2Þ
th

J
ð1Þ
th

� 1

 !
¼ p

ð1Þ
2;th; (8)

(ii) bimode state

Sð1Þ ¼ S
ð1Þ
sat

�a1 þ a2
1 � 4a0

� �1=2

2
; (9a)

Sð2Þ ¼ S
ð2Þ
sat

pð2Þ � 1þ pð2Þd2 � 1
� �

~S
ð1Þ

1þ h~S
ð1Þ ; (9b)

for

pð1Þipð1Þ2;th; (9c)

where

a1 ¼
d1

d2h
� 1

d2

� �
J
ð2Þ
th

J
ð1Þ
th

þ 1

d2

þ 1

h
� pð1Þ

d1

h
; (10a)

a0 ¼ �
1� d1ð Þ
d2h

J
ð2Þ
th

J
ð1Þ
th

þ 1

d2h
� pð1Þ

d1

d2h
; (10b)

and

pð2Þ ¼ J
ð1Þ
th

J
ð2Þ
th

pð1Þ: (10c)

It is important to note that the quantity p
ð1Þ
2;th displayed in Eq.

(8) is actually the physical threshold current density normal-

ized by the threshold current density for mode 1, i.e.,
~J
ð2Þ
th =J

ð1Þ
th and is known as the second QC laser threshold.

Next using the theory developed above, we estimate

numerically sð1Þsp , sð2Þsp , J
ð2Þ
th =J

ð1Þ
th , p

ð1Þ
2;th, and for the single mode

state compute ~S
ð1Þ

while for the bimode state we compute ~S
ð1Þ

and ~S
ð2Þ

for two pumping strengths pð1Þ ¼ 1:45 and

pð1Þ ¼ 2:5. Our computation use the following calculated QC

laser parameters at room temperature as reported in Refs. 10,

15, and 22: s4 ¼ 1 ps, s43 ¼ 12:5 ps, s42 ¼ 2:3 ps, s41

¼ 2:1 ps, s3 ¼ 0:13 ps, s32 ¼ 3 ps, s31 ¼ 0:15 ps, s21

¼ 0:18 ps, nef f ¼ 3:27, bð1Þ ¼bð2Þ ¼2�10�3, zð1Þ ¼1:57 nm,

and zð2Þ ¼1:8 nm. Our results are as follows: sð1Þsp ¼66 ns,

sð2Þsp ¼30 ns, J
ð2Þ
th =J

ð1Þ
th �1:06, p

ð1Þ
2;th¼1:55, ~S

ð1Þ ¼0:45 for the

single mode state, and ~S
ð1Þ ¼1:17 and ~S

ð2Þ ¼0:38 for the

bimode one.

III. DERIVATION OF THE TURN-ON DELAY AND
BUILDUP TIMES

To compute the delay time td that elapses between

the moment the bias is applied and the time the photon

number reaches 10% of its stationary value we write

td ¼ tth þ Dt, where tth is the turn-on delay time needed

for the population inversion DN to reach its threshold

value DNth while Dt is the buildup time. During this

interval of time Dt, the number of photons is growing

but is still very small, so that we may assume that the

population inversion remains constant.

In order to get the explicit turn-on delay time equation

for a dual-wavelength QC laser, it is convenient to determine

the population inversion in terms of the QC laser parameters

in the total absence of photons. We first derive the turn-on

delay time for wavelength k1 and follow with that of wave-

length k2, we then derive the buildup times for wavelengths

203102-3 Hamadou, Lamari, and Thobel J. Appl. Phys. 114, 203102 (2013)



k1 and k2, respectively. Our results are applied on the two

modes of QC laser: Single mode and bimode states.

A. Turn-on delay time for wavelength k1

Using the same procedure as that used in Ref. 13, we

can compute the turn-on delay time t
ð1Þ
th for wavelength k1.

With the initial condition N4ðt ¼ 0Þ ¼ 0, Eq. (1a) can

directly be solved yielding

N4 tð Þ ¼ WL
J

e
s4 1� e

� t
s4

� �
: (11)

For N3 tð Þ, we use Eq. (1b) and write the solution as

N3ðtÞ ¼ uðtÞvðtÞ: (12)

Substituting Eq. (12) back into Eq. (1b) in the absence of

any light fields and differentiating, we get

uðtÞ dvðtÞ
dt
þ v

s3

 !
þ vðtÞ duðtÞ

dt
¼ N4

s43

: (13)

The solution being unique, we first get rid of the first term in

Eq. (13) by choosing v(t) as

vðtÞ ¼ e
� t

s3 ; (14)

and then the remaining terms are easily handled and give for

u(t) the following expression:

uðtÞ ¼ WL
J

e

s4

s43

s3e
t

s
3 þ 1

1

s4

� 1

s3

e
� 1

s4
� 1

s3
ð Þt

0
B@

1
CAþWL

J

e

s4

s43

c1;

(15)

where c1 is a constant to be determined below by the initial

conditions.

Combining Eqs. (12), (14), and (15), we get the follow-

ing expression for N3:

N3ðtÞ¼WL
J

e
s4

1

s43

s3þ
1

1

s4

� 1

s3

e
� t

s4

0
B@

1
CAþ 1

s43

c1e
� t

s3

0
B@

1
CA: (16)

The initial condition N3ðt ¼ 0Þ ¼ 0 is fulfilled if we set

c1 ¼ � s3 þ 1
1
s4
� 1

s3

� �
and the solution then becomes

N3ðtÞ ¼ WL
J

e

s4s3

s43

s3

s4

1� e
� t

s3

� �
� 1þ e

� t
s4

s3

s4

� 1

2
664

3
775: (17)

From Eqs. (11) and (17) we deduce the population inversion

between levels 4 and 3 for the single mode at wavelength

k1 as:

DNð1ÞðtÞ¼WL
J

e
s4 1�e

� t
s4

� �
n1�WL

J

e
s4 1�e

� t
s3

� �
n2; (18)

where the coefficients n1 and n2 are defined as

n1 ¼ 1þ s3

s43

1
s3

s4

� 1
; (19a)

n2 ¼ �
s3

s43

s3

s4

1
s3

s4

� 1
: (19b)

The threshold condition DNð1Þ ¼ DN
ð1Þ
th is reached after a

time t
ð1Þ
th solution of the equation that results by combining

Eqs. (5a), (6a), and (18), i.e.,

n1 exp � t
ð1Þ
th

s4

 !
þ n2 exp � t

ð1Þ
th

s3

 !

n1 þ n2

¼ 1� 1

pð1Þ
: (20)

Note that Eq. (20) is valid for any value of pð1Þ.

B. Turn-on delay time for wavelength k2

Using the same procedure as for wavelength k1, we can

now compute the turn-on delay time t
ð2Þ
th for wavelength k2.

Let us introduce for convenience the function hðtÞ given

by

h tð Þ ¼ N4 tð Þ
s42

þ N3 tð Þ
s32

: (21)

Using Eqs. (11) and (17) for N4 and N3, we have

h tð Þ ¼ WL
J

e
s4 n3 1� e

� t
s4

� �
þ n4 1� e�t=s3

� �� 	
; (22)

where

n3 ¼
1

s42

� 1

s43

s3

s32

1
s3

s4

� 1
; (23a)

n4 ¼
1

s43

s3

s32

s3

s4

1
s3

s4

� 1
: (23b)

Then, Eq. (1c) becomes

dN2 tð Þ
dt
¼ h tð Þ � N2 tð Þ

s21

: (24)

Using the same procedure as that used for the wavelength k1,

we get the following expression for N2:

N2 tð Þ ¼WL
J

e
s4 n3þ n4ð Þs21�

n3e
� t

s4

1

s21

� 1

s4

� n4e
� t

s3

1

s21

� 1

s3

2
64

� n3þ n4ð Þs21�
n3

1

s21

� 1

s4

� n4

1

s21

� 1

s3

0
B@

1
CAe
� t

s21

3
7775: (25)
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From Eqs. (11) and (25), we deduce the population inversion

DNð2Þ for wavelength k2 between levels 4 and 2 as

DNð2Þ ¼WL
J

e
s4 1� n3þn4ð Þs21þK1e

� t
s
4þK2e

� t
s
3þK3e

� t
s
21

h i
;

(26)

where the coefficients K1, K2, and K3 are defined through

K1 ¼
n3

1

s21

� 1

s4

� �� 1; (27a)

K2 ¼
n4

1

s21

� 1

s3

� � ; (27b)

K3 ¼ n3 þ n4ð Þs21 �
n3

1

s21

� 1

s4

� �� n4

1

s21

� 1

s3

� � : (27c)

The threshold condition DNð2Þ ¼ DN
ð2Þ
th is reached after a

time t
ð2Þ
th solution of the following equation that results by

combining Eqs. (5b), (6b), and (26), i.e.:

K1 exp � t
ð2Þ
th

s4

 !
þ K2 exp � t

ð2Þ
th

s3

 !
þ K3 exp � t

ð2Þ
th

s21

 !

K1 þ K2 þ K3

¼ 1� 1

pð2Þ
: (28)

Figure 2 shows the turn-on delay time as a function of nor-

malized current injection pð1Þ, which we vary in the interval

½1; pð1Þ2;th�. When the current injection is close to the first

threshold (pð1Þ � 1), the turn-on delay time is high, which

means that the laser is slow in reaching its operating regime;

in contrast, the situation reverses when current injection is

significantly above the threshold.

In Fig 3, we show the variation of the turn-on delay times

for the bimode state of the QC laser as a function of the nor-

malized current density which we vary from the second QC

laser threshold p
ð1Þ
2;th to 7 i.e., p

ð1Þ
2;thhpð1Þh7. The blue solid line

and red dashed one are for modes at wavelengths k1 and k2,

respectively. It is worthwhile to stress the strong decrease of

tth as the injected current increases from its minimal value

upward. In addition, far from the second QC laser threshold,

for both modes the turn-on delay times are very close.

C. Buildup time for wavelength k1 and k2

In order to determine the evolution of the photon num-

ber in the time interval where the oscillation of population

inversion develops linearly, one can replace the dynamic

variables DNðiÞ (i ¼ 1; 2) and N4 by their respective values

DN
ðiÞ
0 (i ¼ 1; 2) and N4;0 when the number of photons in the

cavity is still very small,15 and retains the equations which

results from it for the SðiÞ (i ¼ 1; 2) variables only.

From Eqs. (1a), (3), and (5), we obtain for N4;0, DN
ð1Þ
0 ,

and DN
ð2Þ
0

N4;0 ¼ WL
J

e
s4; (29a)

DN
ð1Þ
0 ¼ WL

J

e
s4 1� s3

s43

� �
; (29b)

DN
ð2Þ
0 ¼ WL

J

e
s4 1� s3s21

s43s32

� s21

s42

� �
: (29c)

Substituting these into Eq. (1e) and taking into account

Eq. (5), we obtain the following linear first order differential

equation for the photon number for wavelength k1:

dSð1Þ

dt
¼ 1

sð1Þp

ðpð1Þ � 1ÞSð1Þ þWL
J

e
s4

Npb
ð1Þ

sð1Þsp

: (30)

FIG. 2. Turn-on delay time t
ð1Þ
th variation for the single mode state of wave-

length k1 as a function of the normalized current density pð1Þ for 1hpð1Þhpð1Þ2;th.

FIG. 3. Variation of the turn-on delay times t
ð1Þ
th and t

ð2Þ
th for the bimode state

as a function of normalized current density pð1Þ in the interval p
ð1Þ
2;thhpð1Þh7,

blue solid line and red dashed one are for modes 1 and 2, respectively.
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We use the following initial conditions for the intra-cavity pho-

ton number Sð1Þ ¼ 0. Then, Eq. (30) can be directly solved; thus,

Sð1Þ tð Þ ¼ sð1Þp

pð1Þ � 1
� �WL

J

e
s4

Npb
ð1Þ

sð1Þsp

e
pð1Þ�1ð Þ t

s
ð1Þ
p � 1

� �
: (31)

Now, to compute the buildup time Dt10%, i.e., the time

necessary for the laser to reach 10% of its stationary pho-

ton number, we invert Eq. (31) to get for the single mode

state

Dt10% ¼
sð1Þp

pð1Þ � 1
ln 1þ 1

10

pð1Þ � 1
� �2

pð1Þ
sð1Þsp

bð1Þ

1� s3

s43

� �

s4 1þ s3

s42

þ s3

s41

� �
0
BBB@

1
CCCA: (32)

Using the same procedure as that used above, we can compute the buildup time for wavelengths bimode state at k1 and k2,

respectively,

Dt
ð1Þ
10%
¼ sð1Þp

pð1Þ � 1
ln 1þ 1

10

pð1Þ � 1

pð1Þ

 !
~S
ð1Þ s

ð1Þ
sp

bð1Þ

1� s3

s43

� �

s4 1þ s3

s42

þ s3

s41

� �
0
BBB@

1
CCCA; (33)

Dt
ð2Þ
10%
¼ sð2Þp

pð2Þ � 1
ln 1þ 1

10

pð2Þ � 1

pð2Þ

 !
~S
ð2Þ s

ð2Þ
sp

bð2Þ

1� s3s21

s43s32

� s21

s42

� �

s4 1þ s3s21

s43s31

þ s21

s41

� �
0
BBB@

1
CCCA: (34)

In Fig. 4, the buildup time for the single mode state is plotted

versus normalized current injection, which we vary from the

first QC laser threshold pð1Þ ¼ 1 to pð1Þ ¼ p
ð1Þ
2;th. We find that

the buildup time is almost inversely proportional to the nor-

malized current density.

In Fig 5, we show the variation of the buildup times for

the bimode state as a function of the normalized current den-

sity which we vary from the second QC laser threshold

pð1Þ ¼ p
ð1Þ
2;th to pð1Þ ¼ 6. The blue solid line and red dashed

one are for modes 1 and 2, respectively. When the current

injection is close to the second QC laser threshold, the

buildup time for wavelength k1 is large meaning that mode 1

is slow whereas for wavelength k2 the buildup time increases

quickly meaning that the onset of mode 2 is fast but then

becomes slow. When the current injection is significantly

above the second QC laser threshold, the buildup times for

both modes are small, which mean that both modes are fast.

FIG. 4. Buildup time variation for the single mode state as a function of nor-

malized current density for 1hpð1Þhpð1Þ2;th and for sð1Þp ¼ 9:5 ps.

FIG. 5. Variation of the buildup times for the bimode state as a function of

the normalized current density pð1Þfor pð1Þipð1Þ2;th. Blue solid line and red

dashed one are for modes 1 and 2, respectively, and for sð1Þp ¼ 9:5 ps and

sð2Þp ¼ 9:3 ps.
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In addition, far from threshold, the buildup times for both

wavelengths are very close. Moreover, the rates of decay for

wavelengths k1 and k2 depend on the dual-wavelength QC

laser parameters.

The derivation of our results assumes the different relax-

ation times entering our rate equations to be independent of

the injected current density J.

While this is a very reasonable assumption, it would be

an interesting question to explore to see what happens when

the current J is very strong or is time dependent.

IV. CONCLUSION

Using a simple and intuitive rate equations model, we

developed an analytical scheme to derive the dynamical

characteristics such as turn-on delay and buildup times as

functions of current and the different scattering times of the

system of a dual-wavelength midinfrared QC laser. First, for

the single mode state, we find as expected that the turn-on

delay time decreases from as high a value as 7 ps at threshold

to as low as 1.12 ps as we sweep the injection current from

J
ð1Þ
th to 1.55 J

ð1Þ
th . As we increase the injection current further

we reach the second threshold at 1.55 J
ð1Þ
th , beyond which the

system switches to the bimode state. For values of the injec-

tion current 1:55 � J=J
ð1Þ
th � 1:59 the turn-on delay times for

both modes are in the picosecond range but as the current is

increased further this parameter falls in the sub-picosecond

ball park.

As for the buildup time, in the single mode state this im-

portant parameter decreases with current strength from a

high value of 10 nanoseconds (ns) at threshold to 0.23 ns for

J ¼ 1:55J
ð1Þ
th . Beyond this value the system operates in the

bimode state where the buildup time for mode 2 exhibits

overshoot behavior for values of J slightly larger than ~J
ð2Þ
th .

For both wavelengths, the trend is decreasing and values as

low as 30 ps are obtained for a value of J ¼ 6J
ð1Þ
th .
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