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Effective Transmission Conditions for Domain

Decomposition Methods applied to the Time-Harmonic

Curl-Curl Maxwell’s equations

V. Dolean1, M.J. Gander2, S. Lanteri3, J.F. Lee4, Z. Peng5

Abstract

The time-harmonic Maxwell equations describe the propagation of electromag-
netic waves and are therefore fundamental for the simulation of many modern
devices we have become used to in everyday life. The numerical solution of these
equations is hampered by two fundamental problems: first, in the high frequency
regime, very fine meshes need to be used in order to avoid the pollution effect
well known for the Helmholtz equation, and second the large scale systems ob-
tained from the vector valued equations in three spatial dimensions need to be
solved by iterative methods, since direct factorizations are not feasible any more
at that scale. As for the Helmholtz equation, classical iterative methods applied
to discretized Maxwell equations have severe convergence problems.

We explain in this paper a family of domain decomposition methods based
on well chosen transmission conditions. We show that all transmission con-
ditions proposed so far in the literature, both for the first and second order
formulation of Maxwell’s equations, can be written and optimized in the com-
mon framework of optimized Schwarz methods, independently of the first or
second order formulation one uses, and the performance of the corresponding
algorithms is identical. We use a decomposition into transverse electric and
transverse magnetic fields to describe these algorithms, which greatly simplifies
the convergence analysis of the methods. We illustrate the performance of our
algorithms with large scale numerical simulations.
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1. Introduction

The first order time dependent Maxwell equations are

ε
∂E
∂t

−∇×H+ σE = −J , µ
∂H
∂t

+∇× E = 0, (1)

and domain decomposition methods can be directly applied in space time to
these equations, see for example [7] for Schwarz waveform relaxation methods.
The time-harmonic Maxwell equations are obtained from (1) by assuming that
the source is time periodic, J (x, t) = Re(J(x) exp(iωt)), which implies

E(x, t) = Re(E(x) exp(iωt)), H(x, t) = Re(H(x) exp(iωt)),

and leads to the first order time-harmonic Maxwell’s equations

(iωε+ σ)E−∇×H = −J, iωµH+∇×E = 0. (2)

Eliminating H in this system of equations, we obtain the second order Maxwell
equations

(−ω2ε+ iωσ)E+∇×
(
1

µ
∇×E

)
= −iωJ. (3)

Domain decomposition methods have been developed for the first order formu-
lation (2), see [13], [14], [12], [16], [17], and also for the second order formulation
(3), see [9], [3][section 4.7], [5], [1], [34], [32], [37]. Both formulations contain
the inherent difficulties of the indefinite Helmholtz equation (∆ + k2)u = f ,
namely the pollution effect [27, 28] and the difficulties iterative solvers have
with such problems [19]. The focus of this paper is the iterative solution of dis-
cretized Maxwell equations of the form (2) or (3) using domain decomposition
techniques. There is also a large body of literature for Maxwell equations with
a very different nature: if one discretizes (1) in time using some implicit scheme,
on obtains for example for the trapezoidal rule

ε
En+1 − En

∆t
−∇×

(Hn+1 +Hn

2

)
+ σ

(En+1 + En

2

)
= −J n+1 + J n

2
,

µ
Hn+1 −Hn

∆t
+∇×

(En+1 + En

2

)
= 0,

(4)
and thus has to solve at each time step a different type of Maxwell’s equation
of the form

(ε
√
η + σ)E−∇×H = −J̃, µ

√
ηH+∇×E = g, (5)

where (E,H) := (En+1,Hn+1),
√
η := 2

∆t , J̃ := Jn+1+Jn

2 − √
ηεEn + 2σEn −

∇ × Hn, and g =
√
ηµHn − ∇ × En. Here as well, one can eliminate H from

the system and obtains the second order formulation

(ε
√
η + σ)E+∇×

(
1

µ
√
η
∇×E

)
= −J̃−∇× 1

µ
√
η
g. (6)
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There are many very good solvers for this type of Maxwell’s equation of the first
order form (5) or second order form (6), since, as one can see from comparing
them with the time-harmonic formulations (2) and (3), they correspond to the
positive definite Helmholtz equation1 ηu − ∆u = f , and for such equations,
virtually all iterative methods perform well, especially multigrid and domain
decomposition. A classical overlapping Schwarz method has for example been
proposed and analyzed for (6) in [39, 40], and an optimized Schwarz method for
(5) can be found in the second part of [12]. FETI type preconditioners have been
developed for (6) with jumping coefficients in [41], and for mortar discretizations
in [35]. Primal iterative substructuring methods for the same problem have
been analyzed in [42], see also [26] for an effective preconditioner for the Schur
complement. Efficient multigrid methods for (6) have been proposed in [24], see
also [25]. In this paper, we are not interested in the Maxwell type problems of
the form (5), (6), where many very good solvers exist, but in the time-harmonic
case modeled by (2), (3).

Over the last decade, a new class of overlapping Schwarz methods was de-
veloped for scalar partial differential equations, namely the optimized Schwarz
methods. These methods are based on a classical overlapping domain decom-
position, but they use more effective transmission conditions than the classical
Dirichlet conditions at the interfaces between subdomains. New transmission
conditions were originally proposed for three different reasons. First, to obtain
Schwarz algorithms that are convergent without overlap, see [30] for Robin con-
ditions. The second motivation for changing the transmission conditions was
to obtain a convergent Schwarz method for the Helmholtz equation, where the
classical overlapping Schwarz algorithm is not convergent. As a remedy, ap-
proximate radiation conditions were introduced in [8, 10]. The third motivation
was that the convergence rate of the classical Schwarz method is rather slow
and too strongly dependent on the size of the overlap. For an introduction to
optimized Schwarz methods, see [21].

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s
equations are difficult to solve by classical iterative methods. Domain decompo-
sition methods are currently the most promising solution techniques for this class
of problems. Optimized transmission conditions for the best performance of the
Schwarz algorithm in a given class of local transmission conditions were first
introduced for the Helmholtz equation in [4, 22]. Following the first provably
convergent method in [10], various optimized Schwarz methods were developed
over the last decade [4, 6, 22, 1, 12, 17]. As far as Maxwell’s equations are
concerned, there are two basic formulations: the first order formulation (2),
for which complete optimized results are known [12, 17], and the second or-
der or curl-curl formulation (3), with partial optimization results. Applications
to real life problems using a Discontinuous Galerkin method can be found in
[13, 14, 18]. For finite-element based non-overlapping and non-conforming do-

1This terminology is becoming more and more common, in order to well distinguish this
equation from the original Helmholtz equation studied by Helmholtz in [23], see also [20]
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main decomposition methods for the computation of multiscale electromagnetic
radiation and scattering problems we refer to [29, 34, 32, 37].

2. Optimized Schwarz algorithms

We consider the curl-curl problem (3) with zero conductivity σ = 0 in a
bounded domain Ω, with boundary conditions on ∂Ω such that the problem is
well posed [31]. We further assume that µ is constant, and therefore obtain

−ω̃2E+∇×∇×E = −iω̃ZJ, (7)

where ω̃ := ω
√
µε and Z :=

√
µ
ε . A general Schwarz algorithm for two sub-

domains Ω = Ω1 ∪ Ω2 then solves iteratively for n = 1, 2 . . . the subdomain
problems

−ω̃2E1,n +∇×
(
∇×E1,n

)
= −iω̃ZJ in Ω1

Tn1
(E1,n) = Tn1

(E2,n−1) on Γ12,
−ω̃2E2,n +∇×

(
∇×E2,n

)
= −iω̃ZJ in Ω2

Tn2
(E2,n) = Tn2

(E1,n−1) on Γ21,

(8)

where Γ12 = ∂Ω1 ∩ Ω2, Γ21 = ∂Ω2 ∩ Ω1, and Tnj are transmission conditions,
nj denoting the unit outward normal vector of subdomain Ωj . The classical
Schwarz method uses for example the impedance condition

Tn(E) = (∇× E × n)× n+ iω̃E× n, (9)

see [10]. This impedance condition is equivalent to using the condition

Tn(E) = (∇× E × n)− iω̃n× (E× n), (10)

which is just a rotation by 90 degrees of (9), but is more adapted to variational
formulations, see for example [2].

The transmission conditions in [12] developed for the first order formulation
of Maxwell’s equations (2), and for which complete optimization results are
available, can be written for the curl-curl formulation (7) in the form

T 1
n
(E) = (I + (δ11STM + δ12STE))(∇×E× n)× n

+ iω̃(I − (δ13STM + δ14STE))(E× n).
(11)

Here STM = ∇τ∇τ ·, STE = ∇τ × ∇τ×, τ denotes the tangential direction
and δ1l , l = 1, 2, 3, 4 are parameters that can be chosen in order to obtain
fast convergence, see [12] for several optimized choices. A different form of
transmission conditions was proposed in [37] and [32],

T 2
n
(E) = (I + (δ21STM + δ22STE))(n×∇×E)

− iω̃(I − (δ23STM + δ24STE))(n× (E× n)),
(12)

for more details, see [11]. Using the TE-TM decomposition, we show in the
next section that the two general forms of transmission conditions (11) and (12)
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lead apart from a few subtleties to optimized Schwarz methods with the same
contraction factor, and therefore the complete optimization results obtained
in [12] for the first order formulation (2) can be used for all these families of
Schwarz methods for the curl-curl formulation (3) to obtain the fastest methods
in each class. Our analysis in the TE-TM decomposition also shows that one can
optimize separately for TE and TM modes, which can be of interest in certain
situations.

3. Convergence analysis using the TE-TM decomposition

In order to show the relationship between the to families of transmission
conditions (11) and (12), we use Fourier analysis, and thus assume that the
coefficients are constant, and the domain on which the original problem is posed
is Ω = R

3, in which case we need to impose the Silver-Müller radiation condition
limr→∞ r (∇× E × n+ iω̃E) = 0, where r = |x|, n = x/|x|, for the problem
to be well-posed [31]. The two subdomains Ω1 = (−∞, L) × R

2 and Ω2 =
(0,∞)× R

2 we consider are half spaces, and the interfaces are Γ12 = {L} × R
2

and Γ21 = {0} ×R
2, the overlap size being L ≥ 0. Let the Fourier transform in

y and z directions be

Ê(x,k) := (FE)(x,k) =

∫

R2

E(x, y, z)ei(kyy+kzz)dydz,

where we denote by ky and kz the Fourier variables, k = (ky, kz) and |k|2 =
k2y + k2z . We will also use the hat to denote the Fourier symbols of operators.
We first compute the local solutions of the homogeneous counterparts of (8),
which corresponds to the equation that the error satisfies at each iteration.

Lemma 1 (Local solutions). The local solutions of (8) with J = 0 are of the
form

Ê1 = eλ(x−L)

(
− i(A2kz +A4ky)

λ
,A4, A2

)T

, Ê2 = e−λx

(
i(A1kz +A3ky)

λ
,A3, A1

)T

(13)
where

λ =
√

|k|2 − ω̃2 (14)

and the coefficients A1,2,3,4 depend in general on ky, kz.

Proof. We take a Fourier transform of the curl-curl Maxwell’s equations (7) with

J = 0, and obtain with the notation Ê = (Êx, Êy, Êz)

−ω̃2Êx + iky
dÊy

dx
+ ikz

dÊz

dx
+ (k2y + k2z)Êx = 0,

−ω̃2Êy + iky
dÊx

dx
− kykzÊz −

d2Êy

dx2
+ k2zÊy = 0,

−ω̃2Êz + ikz
dÊx

dx
− kykzÊy −

d2Êz

dx2
+ k2yÊz = 0.

(15)
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The general solution of this system of ordinary differential equations is

Êx =
i(A3ky +A1kz)e

−λx

λ
− i(A4ky +A2kz)e

λx

λ
,

Êy = A3e
−λx +A4e

λx,

Êz = A1e
−λx +A2e

λx.

(16)

Using now the Silver-Müller conditions in both subdomains we obtain (13).

The local solutions in (13) suggest to use a different basis, which we call the
TE-TM decomposition.

Lemma 2 (TE-TM decomposition of local solutions). The local solutions from
(13) can be re-written as

Êj = ATM Êj,TM +ATEÊ
j,TE , j = 1, 2, (17)

where

Ê1,TE = eλ(x−L)
(
0,− kz

ky
, 1
)T

, Ê1,TM = eλ(x−L)
(
− i|k|2

kyλ
, 1, kz

ky

)T

,

Ê2,TE = e−λx
(
0,− kz

ky
, 1
)T

, Ê2,TM = e−λx
(

i|k|2
kyλ

, 1, kz

ky

)T

.
(18)

Proof. We split the solution in Ω1 from (13) into a combination of solutions
verifying A2kz + A4ky = 0, A2, A4 6= 0 called TE modes, and the orthogonal
complement called TM modes. The relation A2kz + A4ky = 0 implies that
A4 = −A2

kz

ky
, and therefore, choosing A2 = 1, a basis vector for the TE mode

in Ω1 is Ê1,TE given in (40). To find the corresponding TM mode, we need

to find a vector of the form Ê1 in (13) orthogonal to Ê1,TE . Such a vector is

orthogonal to Ê1,TE if we choose A4 := 1 and A2 := kz

ky
which leads to the

vector Ê1,TM in (40). The result for subdomain Ω2 is obtained similarly.

The action of the operators involved in the transmission conditions (11) and
(12) becomes very simple with the TE-TM decomposition.

Lemma 3 (Action of operators in T 1
n

on TE-TM modes). For the normals
n1 = (1, 0, 0) and n2 = (−1, 0, 0), the operators in T 1

n
applied to TE and TM

modes satisfy for j = 1, 2 the relations

(∇̂ × Êj,TE × nj)× nj = λ(Êj,TE × nj),

(∇̂ × Êj,TM × nj)× nj = − ω̃2

λ (Êj,TM × nj),
(19)

ŜTE((∇̂ × Êj,TE × nj)× nj) = ŜTE(Ê
j,TE × nj) = 0,

ŜTM ((∇̂ × Êj,TM × nj)× nj) = ŜTM (Êj,TM × nj) = 0,
(20)

ŜTE(Ê
j,TM × nj) = |k|2(Êj,TM × nj),

ŜTM (Êj,TE × nj) = −|k|2(Êj,TE × nj).
(21)
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Proof. We first compute ∇̂ × Êj,TE and ∇̂ × Êj,TM ,

∇̂ × Ê1,TE =




i|k|2
ky

−λ

−λ
kz
ky


 eλ(x−L), ∇̂ × Ê1,TM =




0
kzω̃

2

kyλ

− ω̃2

λ


 eλ(x−L),

∇̂ × Ê2,TE =




i|k|2
ky

λ

λ
kz
ky


 e−λx, ∇̂ × Ê2,TM =




0

−kzω̃
2

kyλ
ω̃2

λ


 e−λx.

(22)

We now use the fact that for any vector field U = (Ux, Uy, Uz) we have the
relations

n1 ×U =




0
−Uz

Uy


 , n2 ×U =




0
Uz

−Uy


 , nj × (U× nj) =




0
Uy

Uz


 , j = 1, 2.

(23)

Applying the first two relations of (23) to the quantities Êj,TE and Êj,TM and
the last relation of (23) to their curl, and using the symbols

ŜTE =

[
k2z −kykz

−kykz k2y

]
, ŜTM =

[
−k2y −kykz
−kykz −k2z

]
, (24)

we find after a short calculation the relations (19), (20), (21).

Lemma 4 (Action of operators in T 2
n

on TE-TM modes). Similarly, the oper-
ators in T 2

n
applied to TE and TM modes satisfy for j = 1, 2 the relations

nj × ∇̂ × Êj,TE = −λ(nj × (Êj,TE × nj)),

nj × ∇̂ × Êj,TM = ω̃2

λ (nj × (Êj,TM × nj)).
(25)

ŜTE(nj × ∇̂ × Êj,TM ) = ŜTE(nj × (Êj,TM × nj)) = 0,

ŜTM (nj × ∇̂ × Êj,TE) = ŜTM (nj × (Êj,TE × nj)) = 0.
(26)

ŜTE(nj × (Êj,TE × nj)) = |k|2(nj × (Êj,TE × nj)),

ŜTM (nj × (Êj,TM × nj)) = −|k|2(nj × (Êj,TM × nj)).
(27)

Proof. We proceed as in the proof of Lemma 3 except that we apply the last
relation of (23) to the quantities Êj,TE and Êj,TM and the first two relations
of (23) to their curl.

Theorem 1 (Convergence factors). The convergence factor of the Schwarz al-
gorithm (8) with transmission conditions (11) and overlap L ≥ 0 is given by

ρ1 =
∣∣∣λ−iω̃
λ+iω̃

∣∣∣max
{∣∣∣ 1−(λ+iω̃)(δ11λ+iω̃δ13)

1−(λ−iω̃)(δ1
1
λ−iω̃δ1

3
)

∣∣∣ ,
∣∣∣ 1−(λ+iω̃)(λδ14+iω̃δ12)

1−(λ−iω̃)(λδ1
4
−iω̃δ1

2
)

∣∣∣
}
|e−λL|, (28)
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where λ =
√
|k|2 − ω̃2, see (14), and ω̃ = ω

√
εµ. With transmission conditions

(12), the convergence factor is

ρ2 =
∣∣∣λ−iω̃
λ+iω̃

∣∣∣max
{∣∣∣ 1+(λ+iω̃)(δ22λ+iω̃δ24)

1+(λ−iω̃)(δ2
2
λ−iω̃δ2

4
)

∣∣∣ ,
∣∣∣ 1+(λ+iω̃)(λδ23+iω̃δ21)

1+(λ−iω̃)(λδ2
3
−iω̃δ2

1
)

∣∣∣
}
|e−λL|. (29)

Therefore if we choose δ22 = −δ11, δ24 = −δ13, δ21 = −δ12, δ23 = −δ14, the two
Schwarz algorithms are completely equivalent.

Proof. We first compute the action of the interface operators from (11). We
obtain

T̂ 1
nj
(Êj) = Aj

TE

[
(1 + (δ11ŜTM + δ12ŜTE))(∇× Êj,TE × nj)× nj

+ iω̃(1− (δ13ŜTM + δ14ŜTE))(Ê
j,TE × nj)

]

+ Aj
TM

[
(1 + (δ11ŜTM + δ12ŜTE))(∇× Êj,TM × nj)× nj

+ iω̃(1− (δ13ŜTM + δ14ŜTE))(Ê
j,TM × nj)

]
.

(30)

By using now properties (19) and (20) from Lemma 3 this simplifies to

T̂ 1
nj
(Êj) = Aj

TE

[
(1 + δ11ŜTM )λ± iω̃(1− δ13ŜTM )

]
(Êj,TE × nj)

+ Aj
TM

[
(1 + δ12ŜTE)(− ω̃2

λ )± iω̃(1− δ14ŜTE)
]
(Êj,TM × nj).

(31)
where the upper signs of ± and ∓ correspond to j = 1 and the lower signs to
j = 2. Using now (21) and the relation |k|2 = (λ− iω̃)(λ+ iω̃) leads to

T̂ 1
nj
(Êj) = (λ± iω̃)

[
Aj

TE(1− (λ∓ iω̃)(δ11λ∓ iω̃δ13))(Ê
j,TE × nj)

+ Aj
TM (± iω̃

λ + (λ∓ iω̃)(−δ12
ω̃2

λ ∓ iω̃δ14))(Ê
j,TM × nj)

]

= (λ± iω̃)

[
Aj

TE(1− (λ∓ iω̃)(δ11λ∓ iω̃δ13))

( ±1

± kz

ky

)

+ Aj
TM (± iω̃

λ + (λ∓ iω̃)(−δ12
ω̃2

λ ∓ iω̃δ14))

( ± kz

ky

∓1

)]
,

(32)

where we used the expressions of the TE and TM modes (40) from Lemma 2.
We thus obtain

T̂ 1
nj
(Êj) = Bj

[
Aj

TE

Aj
TM

]
, (33)

and the matrices

Bj :=

[
±(1− (λ∓ iω̃)(δ11λ∓ iω̃δ13)) ± kz

ky
(± iω̃

λ + (λ∓ iω̃)(−δ12
ω̃2

λ ∓ iω̃δ14))

± kz

ky
(1− (λ∓ iω̃)(δ11λ∓ iω̃δ13)) ∓(1− (λ∓ iω̃)(δ11λ∓ iω̃δ13)

]
.

(34)
can be re-written as

B1 = (λ+ iω̃)

[
α kz

ky
β

kz

ky
α −β

]
, B2 = (λ− iω̃)

[
−α̃ − kz

ky
β̃

− kz

ky
α̃ β̃

]
, (35)
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with
α = 1− (λ− iω̃)(δ11λ− iω̃δ13),
α̃ = 1− (λ+ iω̃)(δ11λ+ iω̃δ13),
β = iω̃

λ (1− (λ− iω̃)(λδ14 − iω̃δ12)),

β̃ = − iω̃
λ (1− (λ+ iω̃)(λδ14 + iω̃δ12)).

(36)

Therefore, the Schwarz iteration (8) with transmission conditions (11) can be
re-written as

B1

[
A1,n

TE

A1,n
TM

]
= B2

[
A2,n−1

TE

A2,n−1
TM

]
e−λL, B1

[
A2,n

TE

A2,n
TM

]
= B2

[
A1,n−1

TE

A1,n−1
TM

]
e−λL.

The convergence factor is given by the spectral radius of the iteration matrix
B := B−1

1 B2e
−λL, see for example [12], and this matrix is diagonal:

B =
λ− iω̃

λ+ iω̃

[
α̃
α 0

0 − β̃
β

]
e−λL. (37)

Hence the spectral radius of B is the convergence factor given in (28).
The results for (12) can be obtained similarly: we get

B1 = (λ+ iω̃)

[
− kz

ky
α β

α kz

ky
β

]
, B2 = (λ− iω̃)

[
− kz

ky
α̃ −β̃

α̃ − kz

ky
β̃

]
, (38)

with
α = −1− (λ− iω̃)(δ22λ− iω̃δ24),
α̃ = 1 + (λ+ iω̃)(δ22λ+ iω̃δ24),
β = − iω̃

λ (1 + (λ− iω̃)(λδ23 − iω̃δ21)),

β̃ = iω̃
λ (1 + (λ+ iω̃)(λδ23 + iω̃δ21)).

(39)

Even though the iteration matrices B1,2 from (35) and (38) are different, the
iteration matrix B := B−1

1 B2e
−λL is of the same form shown in (37). One only

has to take the coefficients α, α̃, β, β̃ from (36) for the algorithm using trans-
mission conditions (11), and from (39) for the algorithms using transmission
conditions (12).

4. Optimization

The parameters δjl , j = 1, 2, l = 1, 2, 3, 4 can be chosen to obtain rapidly
converging algorithms. The following corollary is useful, since it leads to a
further simplification of the convergence factor.

Corollary 1. If we denote by ν := 1
|k|2−2ω̃2+iω̃(ste+stm) , and we choose in the

transmission condition (11)

δ11 = ν, δ12 = ν
iω̃ + ste

iω̃ + stm
, δ13 = ν

iω̃ + stm

iω̃ + ste
, δ14 = ν,

9



or in the transmission conditions (12) the corresponding negative values in (29),
the convergence factor simplifies to

ρ(|k|, ω̃, stm, ste) =
∣∣∣λ−iω̃
λ+iω̃

∣∣∣max
{∣∣∣λ−ste

λ+ste

∣∣∣ ,
∣∣∣λ−stm

λ+stm

∣∣∣
}
|e−λL|, (40)

where λ =
√

|k|2 − ω̃2 and ω̃ = ω
√
εµ.

Proof. This result can be obtained by a direct calculation.

Several choices of ste and stm for optimized performance are possible: in
[12, case 3, section 3.5], the authors suggest a choice depending on the use of
overlap (L > 0) or not (L = 0):

stm = ste =

{
(1 + i)

(k2
+−ω̃2)1/3

2(Ch)1/3
L = Ch > 0,

(1 + i)
√
kmax(k2+ − ω̃2)1/4/

√
2 L = 0,

(41)

where kmax = πp
h , p is the order of polynomial used in the trial functions, h is the

local mesh size at the interface, and k+ is an estimate of the closest numerical
frequency just above ω̃, see [12] for more details. This choice is minimizing the
convergence factor (40) uniformly for all TE-TM modes in the case with overlap,
and in a bounded range (0, kmax) in the case without overlap, and leads to a
uniformly bounded contraction factor

ρ .

{
1− 2C1/3(k2+ − ω̃2)1/6h1/3 L = Ch > 0,

1−
√
2(k2

+−ω̃2)1/4√
kmax

L = 0.
(42)

It is even possible to obtain weaker dependence on the mesh parameter, namely
1−O(h1/4) without overlap and 1−O(h1/5) with overlap if the two subdomains
do not use the same parameter, see [12, case 5, section 3.5].

With more information about the frequency content of the TE and TM
modes, one can also optimize separately. For example if the high frequency
cutoff kmax is different for TE and TM modes, we can use in the non-overlapping
case

ste = (1 + i)
√
kmax,te(k2+ − ω̃2)1/4/

√
2,

stm = (1 + i)
√
kmax,tm(k2+ − ω̃2)1/4/

√
2,

(43)

and a good heuristic choice for non-conforming Nedelec element discretizations,
see [36, Section 4.5.1], is kmax,te = kmax, kmax,tm = 2

3k
max.

5. Transmission conditions rewritten for easy implementation

With the choice ν := 1
|k|2−2ω̃2+iω̃(ste+stm) in Corollary 1, the parameters δjl

are not constants, since they contain also the Fourier parameters |k|2, and thus
the implementation of the corresponding transmission conditions (11) and (12)
seems not immediate. We show here for the case of the transmission conditions
(12), which are well suited for variational implementations, how they can be

10



discretized. The case of transmission conditions (11) is similar. The idea is
to multiply both sides of the transmission conditions in Fourier by the symbol
|k|2 − 2ω̃2 + iω̃(ste + stm), and then to discretize the modified transmission
conditions after taking the inverse Fourier transform of the resulting relations.
This leads to the additional term −∆τ − 2ω̃2 + iω̃(ste + stm) and the modified,
but equivalent transmission conditions

T̃ 2
n
(E) = (−∆τ − 2ω̃2 + iω̃(ste + stm))(n× (∇×E)− iω̃(n× (E× n)))

+ (δ̃21STM − STE)(n× (∇×E)) + iω̃(−STM + δ̃24STE)(n× (E× n)),
(44)

where δ̃2l = νδ2l , l = 1, 2, 3, 4, and we have used already the choice of Corollary

1 that leads to δ̃22 = δ̃23 = −1. Using now the fact that −∆τI = −STM + STE

we can further simplify to obtain

T̃ 2
n
(E) = (−2ω̃2 + iω̃(ste + stm))(n× (∇×E)− iω̃(n× (E× n)))

+ (−STM + STE)(n× (∇×E)− iω̃(n× (E× n)))
+ (δ21STM − STE)(n× (∇×E)) + iω̃(−STM + δ24STE)(n× (E× n))
= (−2ω̃2 + iω̃(ste + stm))(n× (∇×E)− iω̃(n× (E× n)))
+ (δ21 − 1)STM (n× (∇×E)) + iω̃(δ24 − 1)STE(n× (E× n)).

(45)
If we divide further by the constant −2ω̃2 + iω̃(ste + stm), the proposed trans-
mission condition can be rewritten as

T̃ 2
n
(E) = n× (∇×E)− iω̃(n× (E× n))

+ 1
ω̃2−iω̃stmSTM (n× (∇×E)) + i

ω̃−isteSTE(n× (E× n)).
(46)

We see that the optimized transmission conditions (46) contain, as a first part,
the classical impedance conditions (10), and then, as a second part, a pertur-
bation term using the operators STM and STE . These two second order differ-
ential operators can be implemented using integration by parts in a variational
framework, see for example [33], where also the discretization of cross points is
discussed. Before closing this section, we remark that the parameters used in
the proposed transmission conditions are derived by minimizing the convergence
factor for all TE-TM modes. We denote this class of transmission conditions
by optimized Schwarz Methods (OSM) conditions. They leads to much faster
convergence in general comparing to the ones suggested in [33] and [37], as we
will see in the numerical experiments in the next section.

6. Numerical results

We study now the performance of the optimized Schwarz algorithms via
numerical experiments. We start by introducing the notation for the domain
decomposition (DD) and discretization. We then test the effectiveness of the
proposed OSM transmission conditions both by examining the eigenspectrum
of the DD matrix, and by numerical convergence and scalability experiments
with respect to several parameters of interest. We conclude with a convergence
comparison for the COBRA cavity, an important large-scale electromagnetic
problem, where the new OSM transmission conditions lead to significant savings.

11



6.1. Domain decomposition and discretization

We decompose the computational domain Ω ⊂ R
3 into M non-overlapping

subdomains such that Ω = Ω1 ∪ Ω2 · · · ∪ ΩM . We mesh each subdomain in-
dependently with a tetrahedral mesh T h

m with characteristic mesh size h. On
each subdomain, we define discrete trial and test functions uh

m,vh
m ∈ Xh

m ⊂
H (curl; Ωm), and for all our experiments Xh

m is the space of mixed order curl-
conforming vector basis functions defined in [38], with order p = 2 (with 20
vector basis functions within each tetrahedron).

The matrix equation resulting from the finite dimensional discretization can
be written in compact form, for example for two subdomains, M = 2, as

[
A1 C12
C21 A2

] [
u1

u2

]
=

[
y1

y2

]
, (47)

where the matrices A1 and A2 are subdomain matrices and C12 and C21 are
interface coupling matrices. More details on the submatrices and right-hand-
sides can be found in [33]. We solve the linear system (47) iteratively using a
preconditioned Krylov subspace method. The OSM methods correspond then
to a block-Jacobi preconditioner inverting only the subdomain matrices, leading
to the preconditioned linear system

[
I A−1

1 C12
A−1

2 C21 I

] [
u1

u2

]
=

[
A−1

1 y1

A−1
2 y2

]
. (48)

6.2. Eigenspectrum

Our convergence analysis predicts the eigenvalue distribution of the pre-
conditioned DD matrix in (48). In this subection, we investigate numerically
the eigenvalue distributions that results from the OSM transmission conditions.
We study the concrete example of a 0.025m segment of a WR-75 rectangu-
lar waveguide. The waveguide name WR stands for Waveguide Rectangular
and the frequency band of operation is X-Ku band. The dimensions of the
cross-section are 0.01905m × 0.009595m. We partition the waveguide by a
transverse plane into two equally sized subdomains, and use quasi-uniform
meshes with mesh size h = 0.005m. The dimensions of the subdomains are
0.01905m× 0.009595m× 0.0125m.

For comparison purposes, we also show results for the transmission condi-
tions proposed in [33] and [37], which we call here “Rawat− Peng − Lee” (RPL)
transmission conditions, see also [11]. The convergence factor of the RPL con-
ditions is given by

ρRPL(|k|, ω̃, k̃te, k̃tm) =

∣∣∣∣
√

|k|2−ω̃2−iω̃√
|k|2−ω̃2+iω̃

∣∣∣∣·max

(∣∣∣∣
√

|k|2−ω̃2−ik̃te

√
|k|2−ω̃2+ik̃te

∣∣∣∣ ,
∣∣∣∣
√

|k|2−ω̃2−ik̃tm

√
|k|2−ω̃2+ik̃tm

∣∣∣∣
)
,

(49)
where k̃tm and k̃te are pure imaginary parameters to be chosen. The authors in
[33] recommended to use

k̃te = −i

√(
1
2 (k

max,te + ω̃)
)2 − ω̃2, k̃tm = −i

√(
1
2 (k

max,tm + ω̃)
)2 − ω̃2,

(50)
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(a) RPL condition (b) OSM condition

Figure 1: Eigenspectra for a WR-75 waveguide, f=12 GHz.

(a) RPL condition (b) OSM condition

Figure 2: EIgenspectra for a WR-75 waveguide, f=16 GHz.

see the last paragraph in Section 4 for more information on estimates for kmax,te

and kmax,tm.
We first operate the waveguide above cutoff for only the TE10 mode, at

f = 12 GHz. We show in Figure 1 the eigenvalue distributions of the DD
matrices for OSM and RPL transmission conditions. We see that both spectra
will lead to good convergence properties, since all the eigenvalues are within
the shifted-unit-circle around 1, but the spectrum for the OSM transmission
conditions is more clustered than the one for the RPL transmission conditions.
This is because the OSM conditions are based on minimizing the convergence
factor, which implies ρmax

OSM < ρmax
RPL, and thus a better clustering around one of

the spectrum.
Next, we use the same discretization, h = 0.005m and p=2, and increase the

frequency to f = 16 GHz. At this operating frequency, both the TE10 and TE20

modes propagate. This is reflected in Figure 2 where we see that the spectral
radii increased slightly in both cases. Again, we notice that the OSM conditions
lead to a smaller spectral radius and eigenvalues more clustered around one.

We finally repeat the numerical analysis at frequency f = 9 GHz, see Fig-
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(a) RPL condition (b) OSM condition

Figure 3: EIgenspectra for a WR-75 waveguide, f=9 GHz.

ure 3. This results in more evanescent modes in the eigenspectrum, and again
we observe the better clustering of the OSM conditions around one, as before,
which confirms our analysis for all these regimes. We can therefore expect that
the OSM transmission conditions will lead to smaller iteration numbers, at the
same numerical cost per iteration, an issue we will study numerically in the next
subsection.

6.3. Convergence study

We now use the truncated Generalized Conjugate Residual method (GCR),
see [15], with the block Gauss-Seidel preconditioner corresponding to the al-
ternating form of our Schwarz methods to solve (47). (Note that the theoret-
ical analysis performed in the previous sections can be extended easily to this
form.) The direction of the Gauss-Seidel preconditioner has been chosen to be
consistent with the wave front propagation in the experiments. We denote the
relative residual by ǫ, and terminate the iteration when the relative reduction
in ǫ is smaller than a specified tolerance ǫ0. To present scalability results with
respect to different parameters of interest, we use ω̃ for the wave number, d for
the subdomain size, D for the entire problem domain size, and h for the mesh
size.

6.3.1. Scalability with respect to ω̃h

We use a 1.5λ0 segment of a WR-75 rectangular waveguide operating at 12
GHz, where λ0 denotes the free space wavelength. The waveguide ports are
terminated with perfectly matched layers (PMLs) and as excitation, we use
the TE10 mode. We partition the waveguide into six sub-domains, each 0.25λ0

long. These sub-domains are meshed independently and quasi-uniformly, and
the interface meshes do not match.

The numbers of iterations required using the RPL and OSM transmission
conditions for varying mesh sizes from h = λ0/4 to h = λ0/16 are given in
Table 1. The h−refinement permits the representation of more high frequency
evanescent modes on the interface. Since both RPL and OSM conditions deal
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Table 1: Number of iterations to attain a relative residual reduction of 10−8 for different
transmission conditions and different mesh sizes.

Cases ω̃h = 1.57 ω̃h = 0.785 ω̃h = 0.524 ω̃h = 0.393
RPL conditions 9 (13) 11 (20) 14 (29) 17 (39)
OSM conditions 12 (18) 12 (20) 10 (23) 10 (25)

effectively with evanescent modes, the dependence of the iteration count on
ω̃h is small, but asymptotically more pronounced for the RPL transmission
conditions than for the OSM transmission conditions, as expected from our
spectral analysis.

We next repeat the experiment using a random vector as the right-hand side
to make sure all frequencies are present in the excitation. The corresponding
results are shown in parentheses in Table 1. We see that more iterations are
needed when all modes are present compared to the TE10 mode excitation, but
note again the asymptotic advantage of the OSM transmission conditions when
ω̃h = 1.57 becomes small.

6.3.2. Scalability with respect to ω̃D

We use a WR-75 waveguide of length 0.0375m with mesh size h = λ0/4, par-
titioned into 6 equally sized sub-domains of dimension 0.01905m×0.009595m×
0.0125m. We test the performance of the DD methods for four frequencies: 12
GHz, 20 GHz, 30 GHz and 40 GHz. The electric size of the waveguide increases
accordingly four times. The iteration counts we obtain are given in Table 2 for
both TE10 mode excitation and in parentheses with a random vector as excita-
tion. We see that the DD method with OSM transmission conditions depends
only little on ω̃D, and it clearly outperforms the RPL transmission conditions
when the operating frequency increases.

We next examine the behavior of the methods as the problem size increases.
We use a fixed subdomain size of 0.25λ0, and we increase the length of the
waveguide by increasing the number of subdomains. The mesh size is kept
fixed at h = λ0/6. Figure 4 shows the convergence history of the methods
for 10, 40, 160, 320 subdomains. In this case, the propagating modes are of
great significance because the wave must travel from one end of the waveguide
to the other. We see that both RTL and OSM transmission conditions lead
to a dependence of the convergence on the problem size, which is expected
in the absence of a coarse space. However, the OSM conditions significantly
outperform the RTL conditions. In the top row of Figure 4 we show the results

Table 2: Number of iterations to attain a relative residual reduction of 10−8 for different
transmission conditions and different operating frequencies

Cases f = 12 GHz f = 20 GHz f = 30 GHz f = 40 GHz
RPL conditions 9 (13) 13 (23) 17 (39) 27 (51)
OSM conditions 12 (18) 14 (21) 13 (21) 15 (23)
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(d) OSM conditions

Figure 4: Iterative solver convergence with increased problem size, TE10 mode excitation in
the top row, and random vector excitation in the bottom row.

for a TE10 mode excitation, and below for a random vector excitations, where
the dependence on the number of subdomains with OSM transmission conditions
is only very moderate.

6.4. COBRA Cavity

We conclude our numerical experiments with a large-scale example, which
corresponds to electromagnetic wave scattering from a COBRA cavity, whose
geometrical description is given in Figure 5. The cavity is partitioned into 4
repeated subblocks and meshed with mesh size h = λ0/4. We use 33 subdomains
arranged using these subblocks as shown in Figure 5, leading to 21,562,026
degrees of freedom. A plane wave normal incident upon the cavity aperture,
θ = 180o, φ = 90o, at frequency of f=17.5 GHz is considered. The electric field is
polarized in the x̂ direction. The DD method with OSM transmission conditions
requires 18 iterations to reach ǫ0 = 10−3 versus 29 iterations needed for the DD
method with RPL transmission conditions, at the same computational cost per
iteration.

Next, we perform a simulation using an oblique incidence, θ = 150o, φ = 90o,
and a x̂−polarized electric field. The simulation with oblique incidence requires
23 iterations using OSM transmission conditions, compared to 51 iterations with
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(a) Geometry (b) Domain Partition

Figure 5: Decomposition of the COBRA cavity into 33 subdomains.

RPL transmission conditions, again a significant improvement. The electric
fields on the COBRA cavity are shown in Figure 6 for the normal and oblique
excitations.

7. Conclusions

We explained in this paper how many transmission conditions for solving
time-harmonic Maxwell equations by domain decomposition can be formulated
and analyzed in the common framework of optimized Schwarz methods. In
particular, using the important TE-TM decomposition, we derived explicit for-
mulas which allow us to use optimized transmission conditions developed for first
order formulations directly also for second order formulations, for which such
optimized formulas were missing so far. Numerical experiments showed that
these optimized transmission conditions lead to domain decomposition methods
for the second order time-harmonic Maxwell equations that scale well with re-
spect to the discretization size, the operating frequency and the problem size,
and outperform existing transmission conditions. Finally, we demonstrated sub-
stantially improved convergence for an important large scale simulation, at the
same cost per iteration.
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Journal für reine und angewandte Mathematik, 57:1–72, 1859.

[24] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM Journal on
Numerical Analysis, 36(1):204–225, 1998.

[25] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces. SIAM Journal on Numerical Analysis, 45(6):2483–2509,
2007.

[26] Q. Hu and J. Zou. A nonoverlapping domain decomposition method
for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal.,
41(5):1682–1708, 2003.
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