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The time-harmonic Maxwell equations describe the propagation of electromagnetic waves and are therefore fundamental for the simulation of many modern devices we have become used to in everyday life. The numerical solution of these equations is hampered by two fundamental problems: first, in the high frequency regime, very fine meshes need to be used in order to avoid the pollution effect well known for the Helmholtz equation, and second the large scale systems obtained from the vector valued equations in three spatial dimensions need to be solved by iterative methods, since direct factorizations are not feasible any more at that scale. As for the Helmholtz equation, classical iterative methods applied to discretized Maxwell equations have severe convergence problems.

We explain in this paper a family of domain decomposition methods based on well chosen transmission conditions. We show that all transmission conditions proposed so far in the literature, both for the first and second order formulation of Maxwell's equations, can be written and optimized in the common framework of optimized Schwarz methods, independently of the first or second order formulation one uses, and the performance of the corresponding algorithms is identical. We use a decomposition into transverse electric and transverse magnetic fields to describe these algorithms, which greatly simplifies the convergence analysis of the methods. We illustrate the performance of our algorithms with large scale numerical simulations.

Introduction

The first order time dependent Maxwell equations are

ε ∂E ∂t -∇ × H + σE = -J , µ ∂H ∂t + ∇ × E = 0, (1) 
and domain decomposition methods can be directly applied in space time to these equations, see for example [START_REF] Courvoisier | Time domain Maxwells equations and Schwarz waveform relaxation methods[END_REF] for Schwarz waveform relaxation methods.

The time-harmonic Maxwell equations are obtained from (1) by assuming that the source is time periodic, J (x, t) = Re(J(x) exp(iωt)), which implies E(x, t) = Re(E(x) exp(iωt)), H(x, t) = Re(H(x) exp(iωt)), and leads to the first order time-harmonic Maxwell's equations

(iωε + σ)E -∇ × H = -J, iωµH + ∇ × E = 0. (2) 
Eliminating H in this system of equations, we obtain the second order Maxwell equations

(-ω 2 ε + iωσ)E + ∇ × 1 µ ∇ × E = -iωJ. (3) 
Domain decomposition methods have been developed for the first order formulation [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF], see [START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF], [START_REF] Dolean | Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method[END_REF], [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF], [START_REF] Bouajaji | Comparison of a one and two parameter family of transmission conditions for Maxwells equations with damping[END_REF], [START_REF] Bouajaji | Optimized Schwarz methods for the time-harmonic Maxwell equations with dampimg[END_REF], and also for the second order formulation [START_REF] Chevalier | Méthodes numériques pour les tubes hyperfréquences[END_REF], see [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF], [START_REF] Chevalier | Méthodes numériques pour les tubes hyperfréquences[END_REF][section 4.7], [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition[END_REF], [START_REF] Alonso-Rodriguez | New nonoverlapping domain decomposition methods for the harmonic Maxwell system[END_REF], [START_REF] Peng | One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems[END_REF], [START_REF] Peng | Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[END_REF], [START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF]. Both formulations contain the inherent difficulties of the indefinite Helmholtz equation (∆ + k 2 )u = f , namely the pollution effect [START_REF] Ihlenburg | Finite element solution to the Helmholtz equation with high wave number. Part I: The h-version of the FEM[END_REF][START_REF] Ihlenburg | Finite element solution to the Helmholtz equation with high wave number. Part II: The h-p version of the FEM[END_REF] and the difficulties iterative solvers have with such problems [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF]. The focus of this paper is the iterative solution of discretized Maxwell equations of the form (2) or (3) using domain decomposition techniques. There is also a large body of literature for Maxwell equations with a very different nature: if one discretizes [START_REF] Alonso-Rodriguez | New nonoverlapping domain decomposition methods for the harmonic Maxwell system[END_REF] in time using some implicit scheme, on obtains for example for the trapezoidal rule

ε E n+1 -E n ∆t -∇ × H n+1 + H n 2 + σ E n+1 + E n 2 = - J n+1 + J n 2 , µ H n+1 -H n ∆t + ∇ × E n+1 + E n 2 = 0, (4) 
and thus has to solve at each time step a different type of Maxwell's equation of the form

(ε √ η + σ)E -∇ × H = -J, µ √ ηH + ∇ × E = g, (5) 
where (E, H) := (E n+1 , H n+1 ), √ η := 2 ∆t , J := J n+1 +J n 2 -√ ηεE n + 2σE n -∇ × H n , and g = √ ηµH n -∇ × E n . Here as well, one can eliminate H from the system and obtains the second order formulation

(ε √ η + σ)E + ∇ × 1 µ √ η ∇ × E = -J -∇ × 1 µ √ η g. (6) 
There are many very good solvers for this type of Maxwell's equation of the first order form [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition[END_REF] or second order form [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF], since, as one can see from comparing them with the time-harmonic formulations (2) and (3), they correspond to the positive definite Helmholtz equation1 ηu -∆u = f , and for such equations, virtually all iterative methods perform well, especially multigrid and domain decomposition. A classical overlapping Schwarz method has for example been proposed and analyzed for [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF] in [START_REF] Toselli | Some results on overlapping Schwarz methods for the Helmholtz equation employing perfectly matched layers[END_REF][START_REF] Toselli | Overlapping Schwarz methods for Maxwell's equations in three dimensions[END_REF], and an optimized Schwarz method for (5) can be found in the second part of [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF]. FETI type preconditioners have been developed for [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF] with jumping coefficients in [START_REF] Toselli | A FETI domain decomposition method for edge element approximations in two dimensions with discontinuous coefficients[END_REF], and for mortar discretizations in [START_REF] Rapetti | A FETI preconditioner for two-dimensional edge element approximations of Maxwell's equations on nonmatching grids[END_REF]. Primal iterative substructuring methods for the same problem have been analyzed in [START_REF] Toselli | An iterative substructuring method for Maxwell's equations in two dimensions[END_REF], see also [START_REF] Hu | A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions[END_REF] for an effective preconditioner for the Schur complement. Efficient multigrid methods for [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF] have been proposed in [START_REF] Hiptmair | Multigrid method for Maxwell's equations[END_REF], see also [START_REF] Hiptmair | Nodal auxiliary space preconditioning in H(curl) and H(div) spaces[END_REF]. In this paper, we are not interested in the Maxwell type problems of the form ( 5), [START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF], where many very good solvers exist, but in the time-harmonic case modeled by ( 2), [START_REF] Chevalier | Méthodes numériques pour les tubes hyperfréquences[END_REF]. Over the last decade, a new class of overlapping Schwarz methods was developed for scalar partial differential equations, namely the optimized Schwarz methods. These methods are based on a classical overlapping domain decomposition, but they use more effective transmission conditions than the classical Dirichlet conditions at the interfaces between subdomains. New transmission conditions were originally proposed for three different reasons. First, to obtain Schwarz algorithms that are convergent without overlap, see [START_REF] Lions | On the Schwarz alternating method. III: a variant for nonoverlapping subdomains[END_REF] for Robin conditions. The second motivation for changing the transmission conditions was to obtain a convergent Schwarz method for the Helmholtz equation, where the classical overlapping Schwarz algorithm is not convergent. As a remedy, approximate radiation conditions were introduced in [START_REF] Després | Décomposition de domaine et problème de Helmholtz[END_REF][START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF]. The third motivation was that the convergence rate of the classical Schwarz method is rather slow and too strongly dependent on the size of the overlap. For an introduction to optimized Schwarz methods, see [START_REF] Gander | Optimized Schwarz methods[END_REF].

Like the Helmholtz equation, the high frequency time-harmonic Maxwell's equations are difficult to solve by classical iterative methods. Domain decomposition methods are currently the most promising solution techniques for this class of problems. Optimized transmission conditions for the best performance of the Schwarz algorithm in a given class of local transmission conditions were first introduced for the Helmholtz equation in [START_REF] Chevalier | Symmetrized method with optimized secondorder conditions for the Helmholtz equation[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF]. Following the first provably convergent method in [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF], various optimized Schwarz methods were developed over the last decade [START_REF] Chevalier | Symmetrized method with optimized secondorder conditions for the Helmholtz equation[END_REF][START_REF] Collino | A new interface condition in the non-overlapping domain decomposition for the Maxwell equations Helmholtz equation and related optimal control[END_REF][START_REF] Gander | Optimized Schwarz methods without overlap for the Helmholtz equation[END_REF][START_REF] Alonso-Rodriguez | New nonoverlapping domain decomposition methods for the harmonic Maxwell system[END_REF][START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF][START_REF] Bouajaji | Optimized Schwarz methods for the time-harmonic Maxwell equations with dampimg[END_REF]. As far as Maxwell's equations are concerned, there are two basic formulations: the first order formulation (2), for which complete optimized results are known [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF][START_REF] Bouajaji | Optimized Schwarz methods for the time-harmonic Maxwell equations with dampimg[END_REF], and the second order or curl-curl formulation (3), with partial optimization results. Applications to real life problems using a Discontinuous Galerkin method can be found in [START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF][START_REF] Dolean | Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method[END_REF][START_REF] Bouajaji | Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains[END_REF]. For finite-element based non-overlapping and non-conforming do-main decomposition methods for the computation of multiscale electromagnetic radiation and scattering problems we refer to [START_REF] Lee | A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays[END_REF][START_REF] Peng | One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems[END_REF][START_REF] Peng | Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[END_REF][START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF].

Optimized Schwarz algorithms

We consider the curl-curl problem (3) with zero conductivity σ = 0 in a bounded domain Ω, with boundary conditions on ∂Ω such that the problem is well posed [START_REF] Nédélec | Acoustic and electromagnetic equations. Integral representations for harmonic problems[END_REF]. We further assume that µ is constant, and therefore obtain

-ω 2 E + ∇ × ∇ × E = -iωZJ, (7) 
where ω := ω √ µε and Z := µ ε . A general Schwarz algorithm for two subdomains Ω = Ω 1 ∪ Ω 2 then solves iteratively for n = 1, 2 . . . the subdomain problems

-ω 2 E 1,n + ∇ × ∇ × E 1,n = -iωZJ in Ω 1 T n1 (E 1,n ) = T n1 (E 2,n-1 ) on Γ 12 , -ω 2 E 2,n + ∇ × ∇ × E 2,n = -iωZJ in Ω 2 T n2 (E 2,n ) = T n2 (E 1,n-1 ) on Γ 21 , (8) 
where Γ 12 = ∂Ω 1 ∩ Ω 2 , Γ 21 = ∂Ω 2 ∩ Ω 1 , and T nj are transmission conditions, n j denoting the unit outward normal vector of subdomain Ω j . The classical Schwarz method uses for example the impedance condition

T n (E) = (∇ × E × n) × n + iωE × n, (9) 
see [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF]. This impedance condition is equivalent to using the condition

T n (E) = (∇ × E × n) -iωn × (E × n), (10) 
which is just a rotation by 90 degrees of ( 9), but is more adapted to variational formulations, see for example [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF]. The transmission conditions in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] developed for the first order formulation of Maxwell's equations [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF], and for which complete optimization results are available, can be written for the curl-curl formulation [START_REF] Courvoisier | Time domain Maxwells equations and Schwarz waveform relaxation methods[END_REF] in the form

T 1 n (E) = (I + (δ 1 1 S T M + δ 1 2 S T E ))(∇ × E × n) × n + iω(I -(δ 1 3 S T M + δ 1 4 S T E ))(E × n). (11) 
Here S T M = ∇ τ ∇ τ •, S T E = ∇ τ × ∇ τ ×, τ denotes the tangential direction and δ 1 l , l = 1, 2, 3, 4 are parameters that can be chosen in order to obtain fast convergence, see [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] for several optimized choices. A different form of transmission conditions was proposed in [START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF] and [START_REF] Peng | Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics[END_REF],

T 2 n (E) = (I + (δ 2 1 S T M + δ 2 2 S T E ))(n × ∇ × E) -iω(I -(δ 2 3 S T M + δ 2 4 S T E ))(n × (E × n)), (12) 
for more details, see [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF]. Using the TE-TM decomposition, we show in the next section that the two general forms of transmission conditions [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF] and [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] lead apart from a few subtleties to optimized Schwarz methods with the same contraction factor, and therefore the complete optimization results obtained in [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] for the first order formulation (2) can be used for all these families of Schwarz methods for the curl-curl formulation (3) to obtain the fastest methods in each class. Our analysis in the TE-TM decomposition also shows that one can optimize separately for TE and TM modes, which can be of interest in certain situations.

Convergence analysis using the TE-TM decomposition

In order to show the relationship between the to families of transmission conditions ( 11) and ( 12), we use Fourier analysis, and thus assume that the coefficients are constant, and the domain on which the original problem is posed is Ω = R 3 , in which case we need to impose the Silver-Müller radiation condition lim r→∞ r (∇ × E × n + iωE) = 0, where r = |x|, n = x/|x|, for the problem to be well-posed [START_REF] Nédélec | Acoustic and electromagnetic equations. Integral representations for harmonic problems[END_REF]. The two subdomains Ω 1 = (-∞, L) × R 2 and Ω 2 = (0, ∞) × R 2 we consider are half spaces, and the interfaces are Γ 12 = {L} × R 2 and Γ 21 = {0} × R 2 , the overlap size being L ≥ 0. Let the Fourier transform in y and z directions be

Ê(x, k) := (FE)(x, k) = R 2 E(x, y, z)e i(kyy+kzz) dydz,
where we denote by k y and k z the Fourier variables, k = (k y , k z ) and |k| 2 = k 2 y + k 2 z . We will also use the hat to denote the Fourier symbols of operators. We first compute the local solutions of the homogeneous counterparts of [START_REF] Després | Décomposition de domaine et problème de Helmholtz[END_REF], which corresponds to the equation that the error satisfies at each iteration.

Lemma 1 (Local solutions). The local solutions of (8) with J = 0 are of the form

Ê1 = e λ(x-L) - i(A 2 k z + A 4 k y ) λ , A 4 , A 2 T , Ê2 = e -λx i(A 1 k z + A 3 k y ) λ , A 3 , A 1 T (13) where λ = |k| 2 -ω2 (14) 
and the coefficients A 1,2,3,4 depend in general on k y , k z .

Proof. We take a Fourier transform of the curl-curl Maxwell's equations ( 7) with J = 0, and obtain with the notation Ê = ( Êx , Êy , Êz )

-ω 2 Êx + ik y d Êy dx + ik z d Êz dx + (k 2 y + k 2 z ) Êx = 0, -ω 2 Êy + ik y d Êx dx -k y k z Êz - d 2 Êy dx 2 + k 2 z Êy = 0, -ω 2 Êz + ik z d Êx dx -k y k z Êy - d 2 Êz dx 2 + k 2 y Êz = 0. ( 15 
)
The general solution of this system of ordinary differential equations is

Êx = i(A 3 k y + A 1 k z )e -λx λ - i(A 4 k y + A 2 k z )e λx λ , Êy = A 3 e -λx + A 4 e λx , Êz = A 1 e -λx + A 2 e λx . ( 16 
)
Using now the Silver-Müller conditions in both subdomains we obtain [START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF].

The local solutions in [START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF] suggest to use a different basis, which we call the TE-TM decomposition.

Lemma 2 (TE-TM decomposition of local solutions). The local solutions from (13) can be re-written as

Êj = A T M Êj,T M + A T E Êj,T E , j = 1, 2, (17) 
where

Ê1,T E = e λ(x-L) 0, -kz ky , 1 T , Ê1,T M = e λ(x-L) -i|k| 2 kyλ , 1, kz ky T , Ê2,T E = e -λx 0, -kz ky , 1 T , Ê2,T M = e -λx i|k| 2 kyλ , 1, kz ky T . (18) 
Proof. We split the solution in Ω 1 from ( 13) into a combination of solutions verifying A 2 k z + A 4 k y = 0, A 2 , A 4 = 0 called TE modes, and the orthogonal complement called TM modes. The relation

A 2 k z + A 4 k y = 0 implies that A 4 = -A 2 kz
ky , and therefore, choosing A 2 = 1, a basis vector for the TE mode in Ω 1 is Ê1,T E given in [START_REF] Toselli | Overlapping Schwarz methods for Maxwell's equations in three dimensions[END_REF]. To find the corresponding TM mode, we need to find a vector of the form Ê1 in [START_REF] Dolean | A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods[END_REF] orthogonal to Ê1,T E . Such a vector is orthogonal to Ê1,T E if we choose A 4 := 1 and A 2 := kz ky which leads to the vector Ê1,T M in [START_REF] Toselli | Overlapping Schwarz methods for Maxwell's equations in three dimensions[END_REF]. The result for subdomain Ω 2 is obtained similarly.

The action of the operators involved in the transmission conditions [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF] and ( 12) becomes very simple with the TE-TM decomposition.

Lemma 3 (Action of operators in T 1

n on TE-TM modes). For the normals n 1 = (1, 0, 0) and n 2 = (-1, 0, 0), the operators in T 1 n applied to TE and TM modes satisfy for j = 1, 2 the relations

( ∇ × Êj,T E × n j ) × n j = λ( Êj,T E × n j ), ( ∇ × Êj,T M × n j ) × n j = - ω2 λ ( Êj,T M × n j ), ( 19 
) ŜT E (( ∇ × Êj,T E × n j ) × n j ) = ŜT E ( Êj,T E × n j ) = 0, ŜT M (( ∇ × Êj,T M × n j ) × n j ) = ŜT M ( Êj,T M × n j ) = 0, ( 20 
) ŜT E ( Êj,T M × n j ) = |k| 2 ( Êj,T M × n j ), ŜT M ( Êj,T E × n j ) = -|k| 2 ( Êj,T E × n j ). ( 21 
)
Proof. We first compute ∇ × Êj,T E and ∇ × Êj,T M ,

∇ × Ê1,T E =     i|k| 2 ky -λ -λ k z k y     e λ(x-L) , ∇ × Ê1,T M =      0 k z ω2 k y λ - ω2 λ      e λ(x-L) , ∇ × Ê2,T E =     i|k| 2 ky λ λ k z k y     e -λx , ∇ × Ê2,T M =      0 - k z ω2 k y λ ω2 λ      e -λx . (22) 
We now use the fact that for any vector field U = (U x , U y , U z ) we have the relations

n 1 × U =   0 -U z U y   , n 2 × U =   0 U z -U y   , n j × (U × n j ) =   0 U y U z   , j = 1, 2.
(23) Applying the first two relations of ( 23) to the quantities Êj,T E and Êj,T M and the last relation of [START_REF] Helmholtz | Theorie der Luftschwingungen in Röhren mit offenen Enden[END_REF] to their curl, and using the symbols

ŜT E = k 2 z -k y k z -k y k z k 2 y , ŜT M = -k 2 y -k y k z -k y k z -k 2 z , (24) 
we find after a short calculation the relations [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF], [START_REF] Gander | Iterative methods for Helmholtz and Maxwell equations[END_REF], [START_REF] Gander | Optimized Schwarz methods[END_REF].

Lemma 4 (Action of operators in T 2 n on TE-TM modes). Similarly, the operators in T 2 n applied to TE and TM modes satisfy for j = 1, 2 the relations

n j × ∇ × Êj,T E = -λ(n j × ( Êj,T E × n j )), n j × ∇ × Êj,T M = ω2 λ (n j × ( Êj,T M × n j )). ( 25 
) ŜT E (n j × ∇ × Êj,T M ) = ŜT E (n j × ( Êj,T M × n j )) = 0, ŜT M (n j × ∇ × Êj,T E ) = ŜT M (n j × ( Êj,T E × n j )) = 0. ( 26 
) ŜT E (n j × ( Êj,T E × n j )) = |k| 2 (n j × ( Êj,T E × n j )), ŜT M (n j × ( Êj,T M × n j )) = -|k| 2 (n j × ( Êj,T M × n j )). ( 27 
)
Proof. We proceed as in the proof of Lemma 3 except that we apply the last relation of ( 23) to the quantities Êj,T E and Êj,T M and the first two relations of (23) to their curl.

Theorem 1 (Convergence factors). The convergence factor of the Schwarz algorithm (8) with transmission conditions [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF] and overlap L ≥ 0 is given by

ρ 1 = λ-iω λ+iω max 1-(λ+iω)(δ 1 1 λ+iωδ 1 3 ) 1-(λ-iω)(δ 1 1 λ-iωδ 1 3 ) , 1-(λ+iω)(λδ 1 4 +iωδ 1 2 ) 1-(λ-iω)(λδ 1 4 -iωδ 1 2 ) |e -λL |, (28) 
where λ = |k| 2 -ω2 , see [START_REF] Dolean | Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method[END_REF], and ω = ω √ εµ. With transmission conditions [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF], the convergence factor is

ρ 2 = λ-iω λ+iω max 1+(λ+iω)(δ 2 2 λ+iωδ 2 4 ) 1+(λ-iω)(δ 2 2 λ-iωδ 2 4 ) , 1+(λ+iω)(λδ 2 3 +iωδ 2 1 ) 1+(λ-iω)(λδ 2 3 -iωδ 2 1 ) |e -λL |. ( 29 
)
Therefore if we choose

δ 2 2 = -δ 1 1 , δ 2 4 = -δ 1 3 , δ 2 1 = -δ 1 2 , δ 2 3 = -δ 1 4
, the two Schwarz algorithms are completely equivalent.

Proof. We first compute the action of the interface operators from [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF]. We obtain

T 1 nj ( Êj ) = A j T E (1 + (δ 1 1 ŜT M + δ 1 2 ŜT E ))(∇ × Êj,T E × n j ) × n j + iω(1 -(δ 1 3 ŜT M + δ 1 4 ŜT E ))( Êj,T E × n j ) + A j T M (1 + (δ 1 1 ŜT M + δ 1 2 ŜT E ))(∇ × Êj,T M × n j ) × n j + iω(1 -(δ 1 3 ŜT M + δ 1 4 ŜT E ))( Êj,T M × n j ) . (30) 
By using now properties ( 19) and ( 20) from Lemma 3 this simplifies to

T 1 nj ( Êj ) = A j T E (1 + δ 1 1 ŜT M )λ ± iω(1 -δ 1 3 ŜT M ) ( Êj,T E × n j ) + A j T M (1 + δ 1 2 ŜT E )(- ω2 λ ) ± iω(1 -δ 1 4 ŜT E ) ( Êj,T M × n j ). ( 31 
)
where the upper signs of ± and ∓ correspond to j = 1 and the lower signs to j = 2. Using now [START_REF] Gander | Optimized Schwarz methods[END_REF] and the relation |k| 2 = (λ -iω)(λ + iω) leads to

T 1 nj ( Êj ) = (λ ± iω) A j T E (1 -(λ ∓ iω)(δ 1 1 λ ∓ iωδ 1 3 ))( Êj,T E × n j ) + A j T M (± iω λ + (λ ∓ iω)(-δ 1 2 ω2 λ ∓ iωδ 1 4 ))( Êj,T M × n j ) = (λ ± iω) A j T E (1 -(λ ∓ iω)(δ 1 1 λ ∓ iωδ 1 3 )) ±1 ± kz ky + A j T M (± iω λ + (λ ∓ iω)(-δ 1 2 ω2 λ ∓ iωδ 1 4 )) ± kz ky ∓1 , (32) 
where we used the expressions of the TE and TM modes (40) from Lemma 2.

We thus obtain

T 1 nj ( Êj ) = B j A j T E A j T M , (33) 
and the matrices

B j := ±(1 -(λ ∓ iω)(δ 1 1 λ ∓ iωδ 1 3 )) ± kz ky (± iω λ + (λ ∓ iω)(-δ 1 2 ω2 λ ∓ iωδ 1 4 )) ± kz ky (1 -(λ ∓ iω)(δ 1 1 λ ∓ iωδ 1 3 )) ∓(1 -(λ ∓ iω)(δ 1 1 λ ∓ iωδ 1 3 )
.

(34) can be re-written as

B 1 = (λ + iω) α kz ky β kz ky α -β , B 2 = (λ -iω) -α -kz ky β -kz ky α β , (35) 
with

α = 1 -(λ -iω)(δ 1 1 λ -iωδ 1 3 ), α = 1 -(λ + iω)(δ 1 1 λ + iωδ 1 3 ), β = iω λ (1 -(λ -iω)(λδ 1 4 -iωδ 1 2 )), β = -iω λ (1 -(λ + iω)(λδ 1 4 + iωδ 1 2 )). (36) 
Therefore, the Schwarz iteration [START_REF] Després | Décomposition de domaine et problème de Helmholtz[END_REF] with transmission conditions (11) can be re-written as

B 1 A 1,n T E A 1,n T M = B 2 A 2,n-1 T E A 2,n-1 T M e -λL , B 1 A 2,n T E A 2,n T M = B 2 A 1,n-1 T E A 1,n-1 T M e -λL .
The convergence factor is given by the spectral radius of the iteration matrix B := B -1 1 B 2 e -λL , see for example [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF], and this matrix is diagonal:

B = λ -iω λ + iω α α 0 0 -β β e -λL . (37) 
Hence the spectral radius of B is the convergence factor given in [START_REF] Ihlenburg | Finite element solution to the Helmholtz equation with high wave number. Part II: The h-p version of the FEM[END_REF].

The results for ( 12) can be obtained similarly: we get

B 1 = (λ + iω) -kz ky α β α kz ky β , B 2 = (λ -iω) -kz ky α - β α -kz ky β , (38) 
with α = -1 -(λ -iω)(δ 2 2 λ -iωδ 2 4 ), α = 1 + (λ + iω)(δ 2 2 λ + iωδ 2 4 ), β = -iω λ (1 + (λ -iω)(λδ 2 3 -iωδ 2 1 )), β = iω λ (1 + (λ + iω)(λδ 2 3 + iωδ 2 1 )). ( 39 
)
Even though the iteration matrices B 1,2 from ( 35) and ( 38) are different, the iteration matrix B := B -1 1 B 2 e -λL is of the same form shown in [START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF]. One only has to take the coefficients α, α, β, β from (36) for the algorithm using transmission conditions [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF], and from (39) for the algorithms using transmission conditions [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF].

Optimization

The parameters δ j l , j = 1, 2, l = 1, 2, 3, 4 can be chosen to obtain rapidly converging algorithms. The following corollary is useful, since it leads to a further simplification of the convergence factor. 

δ 1 1 = ν, δ 1 2 = ν iω + s te iω + s tm , δ 1 3 = ν iω + s tm iω + s te , δ 1 4 = ν,
or in the transmission conditions [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] the corresponding negative values in (29), the convergence factor simplifies to ρ(|k|, ω, s tm , s te ) = λ-iω λ+iω max λ-s te λ+s te , λ-s tm

λ+s tm |e -λL |, (40) 
where λ = |k| 2 -ω2 and ω = ω √ εµ.

Proof. This result can be obtained by a direct calculation.

Several choices of s te and s tm for optimized performance are possible: in [12, case 3, section 3.5], the authors suggest a choice depending on the use of overlap (L > 0) or not (L = 0):

s tm = s te = (1 + i) (k 2 + -ω 2 ) 1/3 2(Ch) 1/3 L = Ch > 0, (1 + i) √ k max (k 2 + -ω2 ) 1/4 / √ 2 L = 0, (41) 
where k max = πp h , p is the order of polynomial used in the trial functions, h is the local mesh size at the interface, and k + is an estimate of the closest numerical frequency just above ω, see [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF] for more details. This choice is minimizing the convergence factor [START_REF] Toselli | Overlapping Schwarz methods for Maxwell's equations in three dimensions[END_REF] uniformly for all TE-TM modes in the case with overlap, and in a bounded range (0, k max ) in the case without overlap, and leads to a uniformly bounded contraction factor

ρ 1 -2C 1/3 (k 2 + -ω2 ) 1/6 h 1/3 L = Ch > 0, 1 - √ 2(k 2 + -ω 2 ) 1/4 √ k max L = 0. ( 42 
)
It is even possible to obtain weaker dependence on the mesh parameter, namely 1 -O(h 1/4 ) without overlap and 1 -O(h 1/5 ) with overlap if the two subdomains do not use the same parameter, see [12, case 5, section 3.5].

With more information about the frequency content of the TE and TM modes, one can also optimize separately. For example if the high frequency cutoff k max is different for TE and TM modes, we can use in the non-overlapping case

s te = (1 + i) √ k max,te (k 2 + -ω2 ) 1/4 / √ 2, s tm = (1 + i) √ k max,tm (k 2 + -ω2 ) 1/4 / √ 2, ( 43 
)
and a good heuristic choice for non-conforming Nedelec element discretizations, see [36, Section 4.5.1], is k max,te = k max , k max,tm = 2 3 k max .

Transmission conditions rewritten for easy implementation

With the choice ν := 1 |k| 2 -2ω 2 +iω(s te +s tm ) in Corollary 1, the parameters δ j l are not constants, since they contain also the Fourier parameters |k| 2 , and thus the implementation of the corresponding transmission conditions ( 11) and ( 12) seems not immediate. We show here for the case of the transmission conditions [START_REF] Dolean | Optimized Schwarz methods for Maxwell equations[END_REF], which are well suited for variational implementations, how they can be

Domain decomposition and discretization

We decompose the computational domain

Ω ⊂ R 3 into M non-overlapping subdomains such that Ω = Ω 1 ∪ Ω 2 • • • ∪ Ω M .
We mesh each subdomain independently with a tetrahedral mesh T h m with characteristic mesh size h. On each subdomain, we define discrete trial and test functions u h m , v h m ∈ X h m ⊂ H (curl; Ω m ), and for all our experiments X h m is the space of mixed order curlconforming vector basis functions defined in [START_REF] Sun | Construction of nearly orthogonal Nedelec bases for rapid convergence with multilevel preconditioned solvers[END_REF], with order p = 2 (with 20 vector basis functions within each tetrahedron).

The matrix equation resulting from the finite dimensional discretization can be written in compact form, for example for two subdomains, M = 2, as

A 1 C 12 C 21 A 2 u 1 u 2 = y 1 y 2 , ( 47 
)
where the matrices A 1 and A 2 are subdomain matrices and C 12 and C 21 are interface coupling matrices. More details on the submatrices and right-handsides can be found in [START_REF] Peng | A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic maxwell equations in r 3[END_REF]. We solve the linear system (47) iteratively using a preconditioned Krylov subspace method. The OSM methods correspond then to a block-Jacobi preconditioner inverting only the subdomain matrices, leading to the preconditioned linear system

I A -1 1 C 12 A -1 2 C 21 I u 1 u 2 = A -1 1 y 1 A -1 2 y 2 .
(48)

Eigenspectrum

Our convergence analysis predicts the eigenvalue distribution of the preconditioned DD matrix in (48). In this subection, we investigate numerically the eigenvalue distributions that results from the OSM transmission conditions. We study the concrete example of a 0.025m segment of a WR-75 rectangular waveguide. The waveguide name WR stands for Waveguide Rectangular and the frequency band of operation is X-Ku band. The dimensions of the cross-section are 0.01905m × 0.009595m. We partition the waveguide by a transverse plane into two equally sized subdomains, and use quasi-uniform meshes with mesh size h = 0.005m. The dimensions of the subdomains are 0.01905m × 0.009595m × 0.0125m.

For comparison purposes, we also show results for the transmission conditions proposed in [START_REF] Peng | A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic maxwell equations in r 3[END_REF] and [START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF], which we call here "Rawat -Peng -Lee" (RPL) transmission conditions, see also [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF]. The convergence factor of the RPL conditions is given by

ρ RP L (|k|, ω, kte , ktm ) = √ |k| 2 -ω 2 -iω √ |k| 2 -ω 2 +iω •max √ |k| 2 -ω 2 -i kte √ |k| 2 -ω 2 +i kte , √ |k| 2 -ω 2 -i ktm √ |k| 2 -ω 2 +i ktm , (49) 
where ktm and kte are pure imaginary parameters to be chosen. The authors in [START_REF] Peng | A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic maxwell equations in r 3[END_REF] see the last paragraph in Section 4 for more information on estimates for k max,te and k max,tm . We first operate the waveguide above cutoff for only the TE 10 mode, at f = 12 GHz. We show in Figure 1 the eigenvalue distributions of the DD matrices for OSM and RPL transmission conditions. We see that both spectra will lead to good convergence properties, since all the eigenvalues are within the shifted-unit-circle around 1, but the spectrum for the OSM transmission conditions is more clustered than the one for the RPL transmission conditions. This is because the OSM conditions are based on minimizing the convergence factor, which implies ρ max OSM < ρ max RPL , and thus a better clustering around one of the spectrum.

recommended to use kte = -i 1 2 (k max,te + ω) 2 -ω2 , ktm = -i 1 2 (k max,tm + ω) 2 -ω2 , (50) 
Next, we use the same discretization, h = 0.005m and p=2, and increase the frequency to f = 16 GHz. At this operating frequency, both the TE 10 and TE 20 modes propagate. This is reflected in Figure 2 where we see that the spectral radii increased slightly in both cases. Again, we notice that the OSM conditions lead to a smaller spectral radius and eigenvalues more clustered around one.

We finally repeat the numerical analysis at frequency f = 9 GHz, see Fig- ure 3. This results in more evanescent modes in the eigenspectrum, and again we observe the better clustering of the OSM conditions around one, as before, which confirms our analysis for all these regimes. We can therefore expect that the OSM transmission conditions will lead to smaller iteration numbers, at the same numerical cost per iteration, an issue we will study numerically in the next subsection.

Convergence study

We now use the truncated Generalized Conjugate Residual method (GCR), see [START_REF] Eisenstat | Variational iterative methods for nonsymmetric systems of linear equations[END_REF], with the block Gauss-Seidel preconditioner corresponding to the alternating form of our Schwarz methods to solve (47). (Note that the theoretical analysis performed in the previous sections can be extended easily to this form.) The direction of the Gauss-Seidel preconditioner has been chosen to be consistent with the wave front propagation in the experiments. We denote the relative residual by ǫ, and terminate the iteration when the relative reduction in ǫ is smaller than a specified tolerance ǫ 0 . To present scalability results with respect to different parameters of interest, we use ω for the wave number, d for the subdomain size, D for the entire problem domain size, and h for the mesh size.

Scalability with respect to ωh

We use a 1.5λ 0 segment of a WR-75 rectangular waveguide operating at 12 GHz, where λ 0 denotes the free space wavelength. The waveguide ports are terminated with perfectly matched layers (PMLs) and as excitation, we use the TE 10 mode. We partition the waveguide into six sub-domains, each 0.25λ 0 long. These sub-domains are meshed independently and quasi-uniformly, and the interface meshes do not match.

The numbers of iterations required using the RPL and OSM transmission conditions for varying mesh sizes from h = λ 0 /4 to h = λ 0 /16 are given in Table 1. The h-refinement permits the representation of more high frequency evanescent modes on the interface. Since both RPL and OSM conditions deal 

effectively with evanescent modes, the dependence of the iteration count on ωh is small, but asymptotically more pronounced for the RPL transmission conditions than for the OSM transmission conditions, as expected from our spectral analysis.

We next repeat the experiment using a random vector as the right-hand side to make sure all frequencies are present in the excitation. The corresponding results are shown in parentheses in Table 1. We see that more iterations are needed when all modes are present compared to the TE 10 mode excitation, but note again the asymptotic advantage of the OSM transmission conditions when ωh = 1.57 becomes small.

Scalability with respect to ωD

We use a WR-75 waveguide of length 0.0375m with mesh size h = λ 0 /4, partitioned into 6 equally sized sub-domains of dimension 0.01905m × 0.009595m × 0.0125m. We test the performance of the DD methods for four frequencies: 12 GHz, 20 GHz, 30 GHz and 40 GHz. The electric size of the waveguide increases accordingly four times. The iteration counts we obtain are given in Table 2 for both TE 10 mode excitation and in parentheses with a random vector as excitation. We see that the DD method with OSM transmission conditions depends only little on ωD, and it clearly outperforms the RPL transmission conditions when the operating frequency increases.

We next examine the behavior of the methods as the problem size increases. We use a fixed subdomain size of 0.25λ 0 , and we increase the length of the waveguide by increasing the number of subdomains. The mesh size is kept fixed at h = λ 0 /6. Figure 4 shows the convergence history of the methods for 10, 40, 160, 320 subdomains. In this case, the propagating modes are of great significance because the wave must travel from one end of the waveguide to the other. We see that both RTL and OSM transmission conditions lead to a dependence of the convergence on the problem size, which is expected in the absence of a coarse space. However, the OSM conditions significantly outperform the RTL conditions. In the top row of Figure 4 we show the results for a TE 10 mode excitation, and below for a random vector excitations, where the dependence on the number of subdomains with OSM transmission conditions is only very moderate.

COBRA Cavity

We conclude our numerical experiments with a large-scale example, which corresponds to electromagnetic wave scattering from a COBRA cavity, whose geometrical description is given in Figure 5. The cavity is partitioned into 4 repeated subblocks and meshed with mesh size h = λ 0 /4. We use 33 subdomains arranged using these subblocks as shown in Figure 5, leading to 21,562,026 degrees of freedom. A plane wave normal incident upon the cavity aperture, θ = 180 o , φ = 90 o , at frequency of f =17.5 GHz is considered. The electric field is polarized in the x direction. The DD method with OSM transmission conditions requires 18 iterations to reach ǫ 0 = 10 -3 versus 29 iterations needed for the DD method with RPL transmission conditions, at the same computational cost per iteration.

Next, we perform a simulation using an oblique incidence, θ = 150 o , φ = 90 o , and a x-polarized electric field. The simulation with oblique incidence requires 23 iterations using OSM transmission conditions, compared to 51 iterations with RPL transmission conditions, again a significant improvement. The electric fields on the COBRA cavity are shown in Figure 6 for the normal and oblique excitations.

Conclusions

We explained in this paper how many transmission conditions for solving time-harmonic Maxwell equations by domain decomposition can be formulated and analyzed in the common framework of optimized Schwarz methods. In particular, using the important TE-TM decomposition, we derived explicit formulas which allow us to use optimized transmission conditions developed for first order formulations directly also for second order formulations, for which such optimized formulas were missing so far. Numerical experiments showed that these optimized transmission conditions lead to domain decomposition methods for the second order time-harmonic Maxwell equations that scale well with respect to the discretization size, the operating frequency and the problem size, and outperform existing transmission conditions. Finally, we demonstrated substantially improved convergence for an important large scale simulation, at the same cost per iteration. 
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 12 Figure 1: Eigenspectra for a WR-75 waveguide, f =12 GHz.
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 3 Figure 3: EIgenspectra for a WR-75 waveguide, f =9 GHz.
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 4 Figure 4: Iterative solver convergence with increased problem size, TE 10 mode excitation in the top row, and random vector excitation in the bottom row.
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 5 Figure 5: Decomposition of the COBRA cavity into 33 subdomains.

  (a) Normal incident excitation: θ = 180 o , φ = 90 o (b) Obliquely incident excitation: θ = 150 o , φ = 90 o

Figure 6 :

 6 Figure 6: Electric field magnitude on the COBRA cavity.

Table 1 :

 1 Number of iterations to attain a relative residual reduction of 10 -8 for different transmission conditions and different mesh sizes.

	Cases	ωh = 1.57 ωh = 0.785 ωh = 0.524 ωh = 0.393
	RPL conditions	9 (13)	11 (20)	14 (29)	17 (39)
	OSM conditions	12 (18)	12 (20)	10 (23)	10

Table 2 :

 2 Number of iterations to attain a relative residual reduction of 10 -8 for different transmission conditions and different operating frequencies

	Cases	f = 12 GHz f = 20 GHz f = 30 GHz f = 40 GHz
	RPL conditions	9 (13)	13 (23)	17 (39)	27 (51)
	OSM conditions	12 (18)	14 (21)	13 (21)	15 (23)

This terminology is becoming more and more common, in order to well distinguish this equation from the original Helmholtz equation studied by Helmholtz in[START_REF] Helmholtz | Theorie der Luftschwingungen in Röhren mit offenen Enden[END_REF], see also[START_REF] Gander | Iterative methods for Helmholtz and Maxwell equations[END_REF] 

discretized. The case of transmission conditions [START_REF] Dolean | Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations[END_REF] is similar. The idea is to multiply both sides of the transmission conditions in Fourier by the symbol |k| 2 -2ω 2 + iω(s te + s tm ), and then to discretize the modified transmission conditions after taking the inverse Fourier transform of the resulting relations. This leads to the additional term -∆ τ -2ω 2 + iω(s te + s tm ) and the modified, but equivalent transmission conditions

where δ2 l = νδ 2 l , l = 1, 2, 3, 4, and we have used already the choice of Corollary 1 that leads to δ2 2 = δ2 3 = -1. Using now the fact that -∆ τ I = -S T M + S T E we can further simplify to obtain

(45) If we divide further by the constant -2ω 2 + iω(s te + s tm ), the proposed transmission condition can be rewritten as

We see that the optimized transmission conditions (46) contain, as a first part, the classical impedance conditions [START_REF] Després | A domain decomposition method for the harmonic Maxwell equations[END_REF], and then, as a second part, a perturbation term using the operators S T M and S T E . These two second order differential operators can be implemented using integration by parts in a variational framework, see for example [START_REF] Peng | A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic maxwell equations in r 3[END_REF], where also the discretization of cross points is discussed. Before closing this section, we remark that the parameters used in the proposed transmission conditions are derived by minimizing the convergence factor for all TE-TM modes. We denote this class of transmission conditions by optimized Schwarz Methods (OSM) conditions. They leads to much faster convergence in general comparing to the ones suggested in [START_REF] Peng | A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic maxwell equations in r 3[END_REF] and [START_REF] Rawat | Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations[END_REF], as we will see in the numerical experiments in the next section.

Numerical results

We study now the performance of the optimized Schwarz algorithms via numerical experiments. We start by introducing the notation for the domain decomposition (DD) and discretization. We then test the effectiveness of the proposed OSM transmission conditions both by examining the eigenspectrum of the DD matrix, and by numerical convergence and scalability experiments with respect to several parameters of interest. We conclude with a convergence comparison for the COBRA cavity, an important large-scale electromagnetic problem, where the new OSM transmission conditions lead to significant savings.