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4 Fédération de Mathématiques de l’Ecole Centrale Paris, FR CNRS 3487
5 Center For Turbulence Research, Stanford University, 488, Escondido Mall, Stan-
ford CA 94305-3035, USA

Abstract. The accurate simulation of disperse two-phase flows, where a discrete par-
ticulate condensed phase is transported by a carrier gas, is crucial for many applica-
tions; Eulerian approaches are well suited for high performance computations of such
flows. However when the particles from the disperse phase have a significant inertia
compared to the time scales of the flow, particle trajectory crossing (PTC) occurs i.e. the
particle velocity distribution at a given location can become multi-valued. To properly
account for such a phenomenon many Eulerian moment methods have been recently
proposed in the literature. The resulting models hardly comply with a full set of de-
sired criteria involving: 1- ability to reproduce the physics of PTC, at least for a given
range of particle inertia, 2- well-posedness of the resulting set of PDEs on the chosen
moments as well as guaranteed realizability, 3- capability of the model to be associated
with a high order realizable numerical scheme for the accurate resolution of particle
segregation in turbulent flows. The purpose of the present contribution is to introduce
a multi-variate Anisotropic Gaussian closure for such particulate flows, in the spirit
of the closure that has been suggested for out-of-equilibrium gas dynamics and which
satisfies the three criteria. The novelty of the contribution is three-fold. First we derive
the related moment system of conservation laws with source terms, and justify the use
of such a model in the context of high Knudsen numbers, where collision operators
play no role. We exhibit the main features and advantages in terms of mathematical
structure and realizability. Then a second order accurate and realizable MUSCL/HLL
scheme is proposed and validated. Finally the behavior of the method for the descrip-
tion of PTC is thoroughly investigated and its ability to account accurately for inertial
particulate flow dynamics in typical configurations is assessed.
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1 Motivation and objective

Two-phase flows constituted of a gaseous phase carrying a disperse condensed phase
play a key role in many industrial and scientific applications e.g. spray combustion in
Diesel engines or aeronautical combustors, soot dynamics, fluidized beds. In all these
applications the disperse phase is composed of particles/droplets of various sizes that
can possibly coalesce or aggregate, break-up, evaporate and have their own inertia and
size-conditioned dynamics.

To describe the disperse phase, many strategies can be envisioned. In the present
work, we consider the dynamics of the particulate phase in a statistical sense using a
kinetic approach and we describe it using a Number Density Function (NDF). The NDF
measures an ensemble average (over a given set of initial conditions) number of particles
at a specific location in the phase space. The phase space is determined by the number
of internal coordinates that describe the particle state: position, velocity, size, temper-
ature, etc... These variables evolve due to physical phenomena: transport, drag force,
evaporation, heating, etc... which are accounted for through a Williams-Boltzmann Equa-
tion (WBE) [76], also called a Generalized Population Balance Equation (GPBE) in other
scientific communities (chemical engineering, aerosol science).

There are several strategies to solve this kinetic equation: a direct resolution in the full
phase space through deterministic methods is too expensive and beyond reach in most
practical cases. A second choice is to approximate the NDF by a sample of discrete nu-
merical parcels describing particles of various internal coordinates through a Lagrangian-
Monte-Carlo approach [1, 25, 37, 56]. It is called Direct Simulation Monte-Carlo method
(DSMC) in [8] and is generally considered to be the most accurate method for solving this
type of WBE; it is specially suited for direct numerical simulations (DNS) on canonical
configurations since it does not introduce any numerical diffusion. However, the number
of parcels required to achieve a satisfactory statistical convergence comes to be high in
3D cases, especially when a high number of internal coordinates is required, and such an
approach is no longer suitable for practical applications.

To overcome this limitation, Macroscopic Eulerian Moment Methods offer a promis-
ing alternative. Instead of solving the NDF itself, the WBE is integrated over selected
dimensions of the phase space, including in particular velocity [19, 40]. Moment equa-
tions are obtained with a new phase space of reduced dimension, for which deterministic
methods of discretization are affordable and efficient. The coordinate of the phase space
which is the most essential to deal with is the velocity, because it will drive the spatial
distribution of particles. Thus in the following we will focus on distributions which are
monodisperse in all variables except velocity. Additional dimensions of the phase space
can still be accounted for, such as the size phase space, and we refer to Appendix A for
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a general methodology and references. Even with this non-restrictive level of simplifica-
tion, the main drawback of such methods is that some level of information is lost while
integrating over the velocity phase space, that is when describing the disperse phase
through a limited number of well-chosen velocity moments. Consequently designing an
accurate moment method mainly relies on a physics-dependent choice for the moment
structure and on its link with the underlying NDF and WBE.

In the present work we are interested in the description of the dynamics of inertial
particles in a gaseous carrier phase. In such flows the motion of particles strongly de-
pends on their inertia characterized by their Stokes number, i.e. the ratio between their
relaxation time and a characteristic time scale of the carrier phase. For instance in turbu-
lent flows the Kolmogorov time scale of the gas can be considered. For Stokes numbers
below one the particulate phase velocity is strongly correlated to the gas phase veloc-
ity and previous studies have shown that Eulerian methods are able to capture properly
the physics [3]: The velocity distribution is properly approximated by a hydrodynamic
equilibrium assumption called a Monokinetic velocity distribution†, thus involving only
a small set of low order moments. Several methods exist for this range of Stokes num-
bers [28,42,48], that are widely used in the literature (see for example [20] and references
therein). But when the Stokes number is above one, the velocity distribution is no longer
Monokinetic because of the occurrence of Particle Trajectory Crossing (PTC) referred to
as the Random Uncorrelated Motion in [29], and more moments are needed to describe
it. We divide up the approaches of the literature into two categories :

• Algebraic-Closure-Based Moment Methods (ACBMM): A limited set of moments,
usually up to the second order moments, are chosen and transported. Since their
transport involves higher order moments, these missing moments are computed
from the knowledge of the lower order moments through “equilibrium assump-
tions” inspired from RANS turbulence modeling using explicit algebraic closures
[65]. One example of this class of methods introduced in [50, 51] considers and
transports a unique, scalar second order moment. Other second or third order mo-
ments are then computed from the knowledge of the transported moments to get
the most accurate closure at a reduced cost. This type of approach has already
reached the real application level [49, 60, 63, 72]. However it has to face local realiz-
ability problems [64], i.e. the occurrence of moments linked to a non-positive NDF,
and the design of adapted numerics is not straightforward and has never been con-
ducted since the mathematical structure of the underlying system of PDEs is not
clearly identified.

• Kinetic-Based Moment Methods (KBMM): The main idea of this type of approach is
to consider a set of moments for which we can associate in a one-to-one correspon-
dence a unique kinetic velocity distribution with a sufficient number of parameters

†A Maxwell-Boltzmann distribution at zero temperature, that is all the particles have the same velocity at a
given position and time.
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to control the given set of moments. This presumed NDF must be positive and al-
lows to evaluate high order moments needed in the system of PDEs for transport.
Closures have been proposed to control moments up to the first order (Monokinetic
closure [42]), up to the second order [53], up to the third order (CQMOM [78]), and
up to the fourth order (Multi Gaussian [43]). Among the KBMM two categories
emerge; the first is based on hydrodynamic equilibrium usually related to a given
notional collision operator and the second is based on quadrature methods. The
first category allows a well-defined mathematical structure and entropy inequal-
ity, whereas most of the time the second leads to weakly hyperbolic systems [16].
The main advantage with KBMM is the existence of dedicated numerical meth-
ods, which will guarantee the realizability and the stable behavior of the numerical
schemes, either classical hyperbolic solvers [44, 68] or kinetic schemes [11, 19, 78].

In the present work, KBMM of the first category are preferred because of their inher-
ent advantages over ACBMM in terms of realizability, mathematical structure and nu-
merical scheme design. We propose a method that can control moments up to the second
order: the Anisotropic Gaussian closure (AG). This closure has already been introduced
in the context of out-of-equilibrium rarefied gases [46], and is chosen for several reasons :

• the first evidence of PTC is a non-zero velocity variance, described by internal “ag-
itation” energy, which needs at least second order moments to be captured;

• such a closure has good mathematical properties for rarefied gases [2, 36] at both
kinetic and moment levels;

• the resulting system of partial differential equations is proven to be hyperbolic and
admits entropies.

The main interest in using this closure rather than more complex ones such as CQMOM
or Multi-Gaussian, beyond the advantages in terms of mathematical structure and en-
tropy inequality for the treatment of singularities, is a matter of cost: we seek the best
compromise in terms of number of moments versus reproduction of the physics of the
particulate flow. Second order moments may be in fact sufficient to capture such physics
in a large range of Stokes number, as long as such methods are able to connect to the zone
where the velocity distribution is Monokinetic i.e. where macroscopic internal energy is
zero.

The scope of the present contribution is three-fold. First we derive the related moment
system of conservation laws with source terms, we justify the use of such a model in the
context of high Knudsen numbers (which are classical in a large range of particulate flows
where collision operators play no role), and we exhibit the main features and advantages
in terms of mathematical structure and realizability. The potential of a Eulerian method
cannot be fairly assessed without then considering the related numerical strategy [19]:
we therefore develop a new dedicated numerical scheme, that is robust and realizable.
We design a second order accurate and realizable MUSCL/HLL scheme; it is presented
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and validated. Finally the behavior of the method for the description of PTC is then
thoroughly investigated, and its ability to account accurately for inertial particulate flow
dynamics in typical configurations relevant to the real applications is assessed.

The paper is organized in the following way. In section 2 we introduce the AG model
for a disperse phase with a discussion about the justification of such an approach for dis-
perse phase flows and the resulting moment equations. In section 3 we describe a new
second order MUSCL-HLL scheme, based on a realizable reconstruction of the primitive
variables. In section 4 the numerical methods are evaluated on 1D cases and an emphasis
is made on the necessity of a proper handling of vacuum zones. In section 5, the level of
description of the AG model is assessed on a 2D crossing jet configuration that mimics the
most simple crossing that can occur. In section 6 the new approach is assessed on model
turbulent flows. Results on 2D Taylor-Green vortices and a 2D decaying turbulence are
compared to a Lagrangian reference and to a so-called Isotropic Gaussian closure to as-
sess the significance of anisotropy for such flows. In the prospect of realistic applications
the extension to 3D structured and unstructured meshes is discussed in the conclusion.

2 The 10-moment Anisotropic Gaussian (AG) velocity closure

2.1 Kinetic description of a disperse phase

In the present work we consider dilute particulate flows under the point-particle ap-
proximation. Therefore the disperse phase is completely described at a mesoscopic level
[30, 52] by its Number Density Function (NDF) f (t,x,u), where f dxdu denotes the aver-
age number of droplets (in a statistical sense), at time t, in a volume of size dx around a
space location x, with a velocity in a du-neighborhood of u.

The evolution of the NDF is described by a Boltzmann-like equation, the Williams
transport equation [76,77]. Considering a simplified model where only local momentum
exchange with the gas due to drag force and convective fluxes are described, as well as
particles interactions, it reads:

∂t f +c·∂x f +∂c ·(F f )=Γ( f ), (2.1)

where F is the drag acceleration per unit mass and Γ( f ) the collision/coalescence op-
erator describing the particle/particle interactions. These terms require models which
should take into account physical phenomena at the particle scale. As an illustration the
Stokes law can model F when the particular Reynolds number is moderate. This acceler-
ation per unit mass is due to the velocity difference with the gaseous phase:

F(t,x,c)=
ug(t,x)−c

τp
, τp =

ρld
2
p

18µg
, (2.2)

where ug(t,x) is the gas velocity, µg its dynamic viscosity, dp the particle diameter and ρl
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its material density‡. The details of the modeling of Γ( f ) will not be provided since this
operator will be discarded in the following; however details can be found in [21].

Since a direct resolution of Equation (2.1) through deterministic methods would not
be efficient given the dimension of the phase space, we envision a resolution of some
moments of the NDF :

Mi,j,k(t,x)=
∫∫∫

ci
1c

j
2ck

3 f (t,x,c)dc=
〈

ci
1c

j
2ck

3 f
〉

. (2.3)

Equation (2.1) is integrated over the phase space and conservation equations on moments
are obtained:

∂t Mi,j,k+∂x ·




Mi+1,j,k

Mi,j+1,k

Mi,j,k+1


=− 1

τp


(i+ j+k)Mi,j,k−ug ·




iMi−1,j,k

jMi,j−1,k

kMi,j,k−1




. (2.4)

This system of conservation laws lives in a 3D space which can be efficiently discretized
and solved for instance in a finite volume framework. The resolution will require the
evaluation of fluxes and will rely on the mathematical structure of the system associated
with the closure solution: for every moment set of order N containing all moments for
which i+ j+k ≤ N, moments of order N+1 are required to describe the fluxes in the
physical space. The moment method we choose will then consist in determining (1) the
moment set that is solved, (2) the closure that enables to find the unknown fluxes, and
(3) the mathematical structure and potential entropy inequalities in order to identify the
nature of solutions and design a numerical scheme.

2.2 Kinetic-based moment methods of second order and its relation to rarefied
gas dynamics

Before detailing the requirements on our closure and the associated kinetic description,
we first introduce some definitions:

• A moment vector M of order N is realizable if there exist a non-negative NDF, the
moments of which up to order N are exactly the components of M. By extension a
NDF is denoted realizable if it is non-negative.

• The moment space is the set of moment vectors that are realizable. The moment
space is a convex space§.

‡Let us underline that we focus on simple models for the sake of legibility of the paper but the present
analysis can be extended to both more complex models [19,27] and to two-way coupled configurations [21];
however, the evaluation of the model will be conducted in a much more systematic way in the present
setting, without interfering with model additional difficulties.
§In the usual gas dynamics framework it is also denoted the set of admissible states and is an open convex
set [31].
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For number density functions, the support of which is defined on a compact set in
1D, the finite moment problem, called the Hausdorff moment problem, has an infinite
number of solutions for moment vectors inside the moment space, whereas a unique
solution can be found by the maximization of entropy in the sense of Shannon (see [54]
and references therein), with potential difficulties in the neighborhood of the frontier of
the moment space. Similarly, in our case, where the velocity phase space is R

d, namely
the multidimensional Hamburger moment problem [70], we would like to rely on a one-
to-one correspondence between the moment vector and an underlying NDF through a
similar entropy formalism. One way to do it is to use the hydrodynamic limit such as for
the normal solutions of the Boltzmann equation, which lead to Euler fluid equations for
the moment vector [4, 32, 45]. However such an approach usually relies on the structure
of collision operators, whereas we deal with an infinite Knudsen number framework. Let
us first recall some results from kinetic theory and then envision what we can learn for
particulate flows.

2.2.1 Kinetic theory for rarefied gases

In the context of kinetic theory and rarefied gases, this Hamburger problem has been
largely investigated. Actually in such flows the kinetic equation is the following:

∂t f +c·∂x f =C( f ), (2.5)

where C( f ) is the Boltzmann collision operator. This collision operator has several prop-
erties [32, 34] :

• Mass 〈 f 〉, momentum 〈c f 〉, and energy
〈
c2 f
〉

are invariant through collisions

• C( f ) satisfies a local dissipation of the entropy H( f )= 〈 f ln f 〉 i.e. 〈C( f )ln( f )〉<0.
Equation 2.5 has consequently an associated H-theorem.

• the local equilibrium is the Maxwell-Boltzmann distribution:

feq(t,x,c)=
ρ

(2π)
3
2

√
Θ

exp

(
− (c−u)2

2Θ

)
, (2.6)

where ρ= 〈 f 〉, u= 〈c f 〉 and Θ=
〈
(u−c)2 f

〉
.

For small Knudsen number the NDF can be sought as an expansion about this Maxwell-
Boltzmann equilibrium distribution and zero and first order expansions generate the clas-
sical Euler and Navier-Stokes systems of equations respectively, for which total density,
momentum, and energy equations have to be solved. As for the Navier-Stokes equations,
such a perturbative approach can lead to realizability problems [47].

To approximate the collision operator for such types of flows, simplified operators
have been proposed in the literature. The most famous one is the BGK operator [7]:

C( f )=
feq− f

τc
, (2.7)
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where τc is the collision time. The kernel of this operator is the equilibrium Maxwell-
Boltzmann distribution. Then for small Knudsen numbers, the classical Euler system of
equations can be obtained. For higher Knudsen numbers, this collision operator leads to
the Navier-Stokes system of equations. However it always predicts a Prandtl number of
unity, whereas typical Prandtl numbers for gases are actually less than unity. To correct
the BGK model Holway [36] proposed a modified version of the BGK operator: instead
of using the Maxwell-Boltzmann distribution as the kernel of the collision operator, he
uses a linear combination, parametrized by ν, of the Maxwell-Boltzmann distribution
and an Anisotropic Gaussian distribution that has the same moments as the NDF up to
second order, sometimes referred to as the ellipsoidal distribution leading to the so-called
ES-BGK collision operator [13, 67]:

f ν
ME(c)=

ρ

(2π)
3
2 |Σν |

1
2

exp

(
−1

2
(c−u)T

Σ
−1
ν (c−u)

)
. (2.8)

where Σν =νΘ+(1−ν) 1
3 (trΘ)I, with Θ= 1

ρ 〈[(c−u)⊗(c−u)] f 〉 The AG distribution has

been chosen based on the maximization of the Shannon entropy (the opposite of the
microscopic Entropy H( f )): among the infinite number of possible distributions which
fulfill the moment constraints and rotational invariance, only this family maximizes the
Shannon entropy for a given range of ν [36]. Such distributions can be viewed as the
most probable distribution given the knowledge on the moments. This combination is
parameterized in such a way that the Prandtl number can be modified through ν and
the behavior of classical gases can be reproduced [36, 67]. The proposed extended BGK
operator, for the proper range of ν, has been proven to fulfill the H-theorem in [2].

For higher Knudsen numbers when larger non-equilibrium effects have to be taken
into account, relying on perturbative methods and expansions around an equilibrium
distribution may not be accurate. Several methods exist in the literature to account for
more complexity for this type of flows. Grad [33] has developed high order closures, such
as the Grad-13 theory. However these methods encounter realizability issues, as they are
based on a NDF that cannot be guaranteed non-negative. In this context, this AG distri-
bution has been later placed in a hierarchy of modeling approaches by Levermore and
Morokoff [45], where the authors suggested to use NDFs based on Entropy maximization
using larger and larger sets of moments, thus being more and more accurate. As men-
tioned by Levermore and Morokoff [46], this distribution provides an intermediate level
of description between Euler and Navier Stokes equations, without relying on expan-
sions. Higher order closures based on entropy maximization have also been considered;
in [14, 43, 55] the authors analyze both the model and the numerics, especially in terms
of realizability. However the inversion of highly non-linear systems, along with higher
order methods, becomes cumbersome for practical applications.

The main interest of closures avoiding a perturbation method is that:

(1) they are intrinsically realizable as they rely on non-negative NDFs,
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(2) they fulfill entropy dissipation conditions that are mandatory to respect a H-theorem
on the microscopic entropy, which is the basis of a physically sound system and
provides entropy inequalities at the macroscopic level,

(3) they always yield hyperbolic systems of equations at the moment level [45].

2.2.2 Particle-laden flows

Back to the WBE Eq. (2.1) for the description of particulate flows, collisions, even if
present through the term Γ( f ), are considered as negligible since the dilute regime leads
to very large Knudsen numbers. Thus we can not expect a relaxation towards an equilib-
rium distribution corresponding to hydrodynamic limit such as in the collisional flows
encountered in gas dynamics. However the drag acceleration plays the role of a dissi-
pation phenomenon and can be shown, in the presence of Brownian motion or subgrid
turbulent agitation, to lead to Maxwell-Boltzmann equilibrium distribution in the limit
of a zero Stokes number [17,80]. In this context we know that for sufficiently small Stokes
numbers, the assumption of a hydrodynamic limit at zero temperature is valid as long as
PTC does not take place [19, 52] and it leads to pressureless gas dynamics equations. For
slightly larger Stokes numbers, we expect that second order moment methods follow-
ing the line presented previously should be able to capture properly PTC and connect
naturally with pressureless gas dynamics.

Let us underline that PTC, in this context is going to be treated statistically, in the
sense that it will not be deterministically resolved such as in CQMOM or Multi-Gaussian
higher order moment methods, but its impact will be described through an energy of agi-
tation. The last ingredient we need is related to the fact the PTC can be highly anisotropic
and such an energy has to be directional and cannot be described by an isotropic model
(see in particular section 5). Inspired by the work of [45,46], we consider the Anisotropic
Gaussian model.

It is important at this level to insist on the fact that we do not only close the system
of PDEs on the moments up to second order by assuming that the central moments of
order three are zero. The present model comes with an entropy formalism through the
correspondence between the moment level and the kinetic distribution and enables to
treat singularities naturally appearing in moment conservation equations. Besides, hy-
perbolicity provides a warrant that such singularities can be controlled.

Hereafter, we justify such a choice using several arguments:

• Entropy Maximization: the AG distribution is the most probable velocity distribu-
tion, with the constraint that the second order moments are fixed, following the
Maximization of Shannon entropy [36], and is also the minimum of microscopic
entropy [2]. We will thus make an assumption of local hydrodynamic equilibrium.

• Hyperbolicity: a great interest compared to ACBMM or Grad-13 theory is that the
generated moment system is hyperbolic, making it a good candidate to Godunov-
type solvers, which can cope with singularity formation.
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• Entropic structure:

the macroscopic system of equations we will consider is in fact the limit for zero
Knudsen numbers of the following equation :

∂t f̃ +c·∂x f̃ +∂c ·
(
F f̃
)
=Γ( f̃ )+Cr( f̃ ), (2.9)

which is an approximation of (2.5), where we rely on an additional “notional” col-
lision operator :

Cr( f̃ )=
f̃ ν
ME− f̃

τr
, (2.10)

with the constraint that f̃ ν
ME has the same moments up to order two as f̃ and the

notional collisional time τr is taken in the zero limit. Let us underline that there is
a fundamental difference between the case ν∈ [−1/2,0)∪(0,1] and the case ν= 0,
which we are going to consider. In the former range, studied in [2], the collisional
invariants are the usual collisional invariant of the Boltzmann operator, that is only
the trace of the energy covariance matrix is involved, whereas in the latter, the full
covariance matrix becomes a collisional invariant. In the sequel, we will consider
the case ν = 0 since we want to minimize the impact in the moment equation of
the notional collision operator. Eq. (2.9) admits a H-theorem, as well as an entropy
inequality at macroscopic level. Besides the macroscopic contribution of the orig-
inal and physical collision operator Γ( f ) can be evaluated (we will dismiss that in
the following) as in [46]. The resulting system of macroscopic conservation equa-
tions is thus obtained through Maxwell transfer equations, using the form of the
equilibrium AG distribution obtained in the τr →0 limit.

2.3 The Anisotropic Gaussian moment system

In this subsection the resulting system of conservation laws with source terms is derived
from the kinetic description using the previously introduced ingredients. We consider a
2D physical space, but all the proposed developments can be extended to 3D space in a
straightforward manner.

2.3.1 System of conservation laws with source terms

First, we define the macroscopic quantities of interest, that is the zero, first and second
order central moments:

ρ=M0,0, u=
M1,0

M0,0
, v=

M0,1

M0,0
, σ11=

M2,0

M0,0
−u2, σ12=

M1,1

M0,0
−uv, σ22=

M0,2

M0,0
−v2

(2.11)

where ρ is total number density, u and v the mean velocities in x and y directions, and σ11,
σ12 and σ22 the covariances in x, x−y and y directions. Taking the Maxwell transfer equa-
tion Eq. (2.9) in the limit of zero τr at hydrodynamic equilibrium leads after integration
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over the velocity phase space to the following system of conservation laws with source
terms related to the drag acceleration :

∂tM+∂x ·F (M)=S(M) (2.12)

where the moments M and the fluxes F=
(
Fx,Fy

)T
take the expression : :

M=ρ




1
u
v

u2+σ11

uv+σ12

v2+σ22




, Fx =ρ




u

u2+σ11

uv+σ12

u3+3uσ11

u2v+2uσ12+vσ11

uv2+uσ22+2vσ12




, S=
ρ

τp




0
ug−u
vg−v

2(uug−u2−σ11)
uvg+vug−2uv−σ12

2(vvg−v2−σ22)




.

(2.13)

and Fy is deduced by obvious substitutions. We also define P=ρΣ with Σ=

(
σ11 σ12

σ12 σ22

)
.

S represents the relaxation of the particle velocities towards the one of the gas phase
through drag force. In the limit of small τp, this term needs a specific numerical attention
to recover the asymptotic tracer-like limit, that is the particles have the same velocity as
the gas phase. In the present contribution we will focus on relaxation times that do not
require a specific treatment in order to preserve accuracy, that is inertial particles. The
reader may refer to [17] for details about how to capture the right asymptotic limit in the
framework of Asymptotic-Preserving schemes.

2.3.2 Eigenstructure, hyperbolicity and entropies

The introduced formalism allows directly deducing the eigenvalues as well as hyperbol-
icity and entropies. The presentation of the present subsection is inspired from [6] and
we restrict to a 1D configuration for the sake of clarity. Some subtleties of the multidi-
mensional formulation will be studied as part of our next studies and will be essential
for unstructured mesh simulation, but can be avoided in the Cartesian meshes we use in
this paper. The system (2.12) is hyperbolic and admits the set of eigenvalues [6] :

λx =
(
u, u, u+

√
σ11, u−√

σ11, u+
√

3σ11, u−
√

3σ11

)T
. (2.14)

The eigenvalue u has two orders of multiplicity and is associated to a linearly degen-
erated field. The other eigenvalues have one order of multiplicity. The eigenvalues
u±√

3σ11 are associated to genuinely nonlinear fields and the eigenvalues u±√
σ11 are

associated to linearly degenerate fields.
The system (2.12) is also associated with two entropy families. We define the functions

s11 and s12:

s11=
p11

ρ3
=

σ11

ρ2
, s12=

p11 p22−p2
12

ρ4
=

σ11σ22−σ2
12

ρ2
. (2.15)
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A family of convex functions F (s11) and G(s12) resulting from the composition of the
logarithm function and a functional that has some identified properties [6], as well as en-
tropy fluxes uF (s11) and uG(s12) yield Lax entropy pairs of the system (2.12) and satisfy :

∂tρF (s11)+∂x (uF (s11))≤0, ∂tρG(s12)+∂x (uG(s12))≤0. (2.16)

Such an approach allows to treat the shocks that can naturally appear in Eulerian moment
models and also to rely on the large literature devoted to Godunov-like schemes.

3 A realizable MUSCL/HLL scheme

In the Eulerian simulation of disperse phase flows, the choice of the numerics plays a
significant role. Actually, the density field may encounter large variations, featuring at
worst vacuum zones and stiff accumulations. Such singularities are difficult to capture
and require high order adapted numerics. In the literature, many strategies can be found.
Here is a non-exhaustive list of possible strategies:

• high order numerics with artificial viscosity: in the AVBP code the Eulerian moment
equations are solved using a central scheme [18]. Due to their oscillatory behavior
in the neighborhood of high gradients, the scheme is stabilized using artificial vis-
cosity [23] that is user-defined. Such schemes can lead to accurate solutions [23] but
need a non-negligible effort to find the most accurate set-up, while maintaining the
stability of the computation.

• second order kinetic schemes with slope limitations: to avoid numerous user-defined
parameters, limited schemes are a classical alternative. For instance a second order
kinetic scheme is used in [19] for the resolution of the Monokinetic Eulerian mo-
ment method [42]. Based on the work of [11], this scheme uses a limited linear and
conservative reconstruction of density and velocities. For the linear reconstructed
conservative values, the scheme offers an exact in time integration of fluxes at cell
interfaces (the so-called non-local approach [10]) by making use of the underlying
kinetic equation. Other works have used this type of scheme for more complex
systems of equations [39].

• second order MUSCL schemes [69]: depending on the moment system, an exact-in-
time kinetic integration of the convective fluxes cannot always be used. To circum-
vent this issue, MUSCL schemes make use of a second order space reconstruction, a
first order flux evaluation at cell interfaces, and a RK2 time integration. This type of
scheme has for instance been proposed for Eulerian simulations in [74] and is also
used in industrial oriented codes such as the CEDRE code at ONERA (see [20, 58]
and references therein).

• relaxation schemes can also be used such as in [6,9] and see references therein. The
key issue here is to design a second order in time and space that associates several
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criteria, such as realizability as well as proper asymptotic behavior in the limit of
zero pressure as treated in [9] in the case of Euler equations. Thus, even if this is
a promising path, we do not have all the ingredients at hand in order to build the
final solver for the case we want to tackle.

As we require a robust and realizable method, high order schemes with artificial vis-
cosity are not retained. Moreover, because of the complexity of the moment system, ki-
netic schemes are more difficult to handle and do not lead to accurate solutions. Finally,
kinetic schemes are more difficult to handle in the framework of unstructured meshes
and relaxation solvers still require some amount of work in order to comply with the
program we have in mind for particle-laden flows. Thus we focus on the development of
a second order MUSCL scheme.

In this work, a splitting strategy is used: the convection part and source part are
treated separately using an Alternate Lie splitting, which is second order in time [44].
The convective part is also solved using a dimensional splitting. The splitting is used
because it is easier to develop solvers that are proven to be realizable for each element of
the full equation.

Then, we derive a second order MUSCL-HLL scheme with conservative reconstruc-
tion of primitive variables U=(ρ,u,v,σ11,σ12,σ22)T. This method is composed of two main
steps:

1. Reconstruction: each variable is reconstructed within each cell to calculate interface
values;

2. Flux evaluation: the fluxes are evaluated using the interface values with a first or-
der flux. Using a RK2 method for the time integration, it provides a second order
scheme in space and time.

In the present work we propose a reconstruction of the primitive variables ρ, u, and
Σ because realizability conditions such as positivity of the energy are easier to impose
on primitive variables. We also impose that our reconstruction is conservative i.e. the
integral over the cells of the inner reconstruction is equal to the cell value, such as for
kinetic schemes in [11], which is not classical in the framework of MUSCL scheme [6].

Hereafter we first detail the reconstruction strategy, the slope evaluation strategy be-
ing detailed in Appendix B. Then, the flux evaluation and the time integration are pre-
sented.

3.1 Conservativity and corrected cell values

To achieve a second order in space scheme, linear reconstructions are envisioned. A pre-
vious work from Berthon [5] has been devoted to the evaluation of several reconstruc-
tion strategies in the perspective of MUSCL schemes for Euler equations. In the present
work, we propose a new reconstruction based on central moments, which has the ad-
vantage of being conservative and realizability-preserving. We consider a finite volume
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discretization over the x dimension into cells of characteristic size ∆x. The reconstructed
variables for the cell j are the density, the mean velocities and the covariance matrix (cell-
reconstructed variables are noted ·̃ ):

Ũj(x)=U j+DU (x−xj), (3.1)

U j =(ρj,uj,vj,σ11,j,σ12,j,σ22,j)
T, DU =(Dρj

,Duj
,Dvj

,Dσ11,j
,Dσ12,j

,Dσ22,j
)T.

Classically, this type of reconstruction is done without a conservativity constraint [5],
because it is just needed to evaluate the fluxes at the interface. But as our aim is to ensure
the realizability of the moments through the their time evolution, a conservative recon-
struction guarantees that the fluxes will preserve realizability. Conservativity imposes to

consider a corrected cell value for each reconstructed variable noted (·). The subsequent
constraints are the following:

Mkl,j =
1

∆x

∫ xj+1/2

xj−1/2

M̃kl,j(x)dx. (3.2)

where M̃kl,j(x) is the reconstructed 2D velocity moment of order k+l and Mkl,j its mean
values in the cell j. Then, for each moment, we get:

M00,j = ρj, M10,j =ρjuj+Dρj
Duj

∆x2

12
, M01,j =ρjvj+Dρj

Dvj

∆x2

12
,

M20,j = ρj(u
2
j +σ11,j)+

(
ρjD

2
uj
+Dρj

(
2ujDuj

+Dσ11,j

))
∆x2

12
,

M11,j = ρj(ujvj+σ12,j)+
(

ρjDuj
Dvj

+Dρj

(
ujDuj

+vjDvj
+Dσ12,j

))
∆x2

12
,

M02,j = ρj(v
2
j +σ22,j)+

(
ρjD

2
vj
+Dρj

(
2vjDvj

+Dσ22,j

))
∆x2

12
.

(3.3)

The corrected cell values are then:

ρj =ρj, uj =uj−
Dρj

Duj

ρj

∆x2

12
, vj =vj−

Dρj
Dvj

ρj

∆x2

12
, (3.4)

Σj =Σj−
∆x2

12
αD2

u−
∆x2

12

Dρj

ρj
DΣ, (3.5)

where D2
u =

(
D2

uj
Duj

Dvj

Duj
Dvj

D2
vj

)
, DΣ =

(
Dσ11

Dσ12

Dσ12
Dσ22

)
and α= 1+

∆x2

12

D2
ρj

ρ2
j

. To finish the

reconstruction a slope evaluation strategy is required, which is detailed in Appendix B.
The slope evaluation is complex because the slopes can lead to unrealizable corrected cell
values. Moreover whereas the positivity of the central moments can be easily ensured,
the positivity of the covariance matrix determinant imposes a non-linear constraint. Our
slope evaluation satisfies the positivity of the density, the diagonal components of Σ,
as well as its determinant. This limitation also imposes a maximum principle on each
variable to avoid the generation of spurious oscillations.
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3.2 Fluxes and time integration

Once the reconstruction strategy is provided, one has to decide how to solve the gener-
alized Riemann problem (GRP) at each cell interface [68]. A classical strategy is to use a
MUSCL scheme [69]: instead of solving the GRP, it solves a classical Riemann problem
for which each state is defined as the right and left states at the interface position, given
by the reconstruction strategy. Such a Riemann problem can be solved using first order
Approximate Riemann solvers. This strategy has been extensively studied in [5] for the
Euler equations using several reconstruction strategies. In the following we will use the
same method: we will use the reconstruction strategy to evaluate the states at the inter-
faces and, for the purpose of proving the realizability preservation, we will consider a
piecewise constant reconstruction in each cell. Then we will solve the Riemann problem
at each interface using a first order HLL scheme [35] and finally embed it into a second
order in time SSP-Runge Kutta scheme. The realizability of the scheme is proven if:

1. using the linear reconstruction of the primitive variables to evaluate a piecewise
constant reconstruction leads to realizable states,

2. the HLL scheme preserves the realizability,

3. the chosen Runge Kutta scheme preserves the realizability.

Let us introduce some notations. For a given reconstruction strategy, which is as-
sumed to satisfy a realizability condition, we will associate a spatial reconstruction in
the cell constituted of three constant states (ML,MC,MR), where ML denotes the left
boundary reconstructed state ML = M̃j(xj−∆x/2) and MR denotes the right boundary
reconstructed state MR = M̃j(xj+∆x/2). We want this new spatial reconstruction to be
equivalent to the reconstruction previously introduced in the integral sense and further
assume the width of the support of ML is α1 ∆x, α1 ∈ [0,1/2], the one of ML is α1 and the
one of MC is 1−2α1. At this level we have to provide both α1 and the middle state MC.
The following Theorem provides a way to evaluate these quantities.

Theorem 3.1. Let us consider a linear reconstruction strategy in the jth cell, which satisfies
the realizability of the state vector at the cell interfaces. This reconstruction is equivalent in the
integral sense to a realizable three constant substate spatial reconstruction (ML,MC,MR) with
respective supports (xj−∆x/2,xj−∆x/2+α1 ∆x), (xj−∆x/2+α1 ∆x,xj−∆x/2+(1−α1)∆x),
(xj−∆x/2+(1−α1)∆x,xj+∆x/2) and with ML= M̃j(xj−∆x/2) and MR= M̃j(xj+∆x/2),
under the conditions α1=1/6 and

σ11σ22−σ2
12+

∆x4

48

D2
ρ

ρ2

(
σ11D2

v+σ22D2
u−2σ12DuDv

)
>0.

The proof is provided in Appendix C. A consequence of the realizability conditions is
that the CFL-like condition, which avoids interactions among Riemann problems at the
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various interfaces becomes:

∆t

∆x
max(λ)<

1

2
min(α1,1−2α1). (3.6)

The realizability of the piecewise constant approximation being proven, we then apply a
first order HLL scheme at each cell interface. Considering the moment equations for the
advection in one direction:

∂tM+∂xF (M)=0. (3.7)

Integrating Eq. (3.7) over x-direction across one cell interface j+1/2, one gets the inter-
mediate state:

M∗
j+1/2=

λ
j
minMj−λ

j+1
maxMj+1

λ
j
min−λ

j+1
max

−F (Mj)−F (Mj+1)

λ
j
min−λ

j+1
max

. (3.8)

where λ
j
min and λ

j+1
max are respectively the slowest and the fastest characteristic waves of

the states in cells j and j+1. The fluxes are then computed at the interface:

FHLL
j+1/2(Mj,Mj+1)=

1

2

(
F (Mj)+F (Mj+1)

)
(3.9)

− 1

2
|λj

min|
(
M∗

j+1/2−Mj

)
− 1

2
|λj+1

max|
(
Mj+1−M∗

j+1/2

)
. (3.10)

Theorem 3.2. Let us assume that, ∀j ∈ Z, Mn
j at time tn is realizable. Under the condition

λ
j
min < uj−√

σ11,j and λ
j
max > uj+

√
σ11,j, ∀j∈Z, the intermediate states M∗

j+1/2 at each cell

interface are realizable. Under the CFL condition (3.6), the HLL scheme is realizable.

The proof is also given in appendix C. Finally the integration in time is performed
using a two-step Runge-Kutta method. Two RK2 methods can be envisioned. The first
one is the most used in applied simulations because it is the less memory-consuming:

Mn+1/2
j =Mn

j −
1

2

∆t

∆x

(
FHLL

j+1/2(Mn
j ,Mn

j+1)−FHLL
j−1/2(Mn

j−1,Mn
j )
)

,

Mn+1
j =Mn

j −
∆t

∆x

(
FHLL

j+1/2(Mn+1/2
j ,Mn+1/2

j+1 )−FHLL
j−1/2(Mn+1/2

j−1 ,Mn+1/2
j )

)
. (3.11)

For such a scheme, realizability is hard to prove, whereas there exists another RK2 scheme
for which realizability is demonstrated, as long as the basis first order scheme and the
reconstruction are realizable:

M̃j =Mn
j −

∆t

∆x

(
FHLL

j+1/2(Mn
j ,Mn

j+1)−FHLL
j−1/2(Mn

j−1,Mn
j )
)

,

˜̃Mj =M̃n
j −

∆t

∆x

(
FHLL

j+1/2(M̃n
j ,M̃n

j+1)−FHLL
j−1/2(M̃n

j−1,M̃n
j )
)

,

Mn+1
j =

1

2
Mn

j +
1

2
˜̃Mj (3.12)
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As it is a convex combination of states resulting from the first order scheme, this scheme
is realizable. In the following, both schemes have been tested. Results shown here were
obtained using the second RK2 scheme, whereas the other RK2 scheme leads to essen-
tially the same results.

4 1D cases and vacuum treatment

We now evaluate both the modeling approach and the numerics. They are first studied on
canonical test cases, which are expected to exhibit the accuracy, robustness and stability
of the present method. Three cases are investigated:

• an initial value problem with transported smooth fields: this case is used to evalu-
ate the order of accuracy of the numerical scheme;

• a Sod tube problem: this case from [6] is a standard test case to exhibit the ability of
the scheme to reproduce the classical waves inherent to the 10-moment Anisotropic
Gaussian model;

• a Sod tube problem with vacuum: interfaces with vacuum can generate high veloc-
ities and energies, that are highly constraining for explicit solvers. A regularization
strategy is proposed that treats the problem with a controlled and limited effect on
the accuracy.

4.1 Initial value problem with smooth transported fields

The smooth test case is designed to assess the order of accuracy of the newly introduced
scheme, especially in comparison to the first order HLL scheme. The initial condition is

a Gaussian profile in the x-direction ρ = 1+exp(− (x−0.5)2

0.12 ) with constant velocities u =
v= 1 and constant pressures p11 = p22 = 1.0 and p12 = 0.5. The computation is done for
t=1 s at CFL=1/12. Results of L2 error on density are plotted in Fig. 1 and demonstrate
the improvement of the MUSCL/HLL scheme compared to a classical HLL scheme. In
particular, its order of precision is twice the one of the HLL scheme (respectively 1.6 and
0.79). Moreover, for moderate mesh refinements (200 cells), the second order scheme is
one order of magnitude more accurate than the first order scheme, which will be helpful
for the 2D cases investigated in this work, as well as for real 3D multi-scale problems.

4.2 Sod tube

The Sod tube is a classical problem to investigate the robustness and accuracy of Rie-
mann solvers for hyperbolic problems. Here we have chosen to reproduce the test case
proposed in [6] in order to show the impact of second order schemes on the treatment of
singularities naturally arising in particle-laden flows. The initial conditions are summa-
rized in Table 1. In Fig. 2 the HLL scheme and the new realizable MUSCL/HLL scheme,
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Figure 1: Smooth case: L2 error versus the number of points for HLL (blue squares) and MUSCL/HLL (green
circles) schemes.

both at CFL=1/12, are compared to a reference solution at time t=0.1 s for which mesh
convergence has been verified. Results show that the new MUSCL/HLL scheme obtains
better results than the classical HLL scheme, reducing the smearing of every wave in the
domain. The stability and the robustness of the method are also demonstrated, as no
stabilization procedure is required.

ρ u v P11 P12 P22

left state 1 0 0 2 0.05 0.6
right state 0.125 0 0 0.2 0.1 0.2

Table 1: Initial conditions for the Sod tube problem

4.3 Treatment of interfaces with vacuum zones

The last test case is of primary importance for injection configurations, or any highly seg-
regative conditions, which are met in two-phase flows. It is the same test case as for the
Sod tube problem but the right state has been replaced by vacuum, see Table. 2. Simi-
larly as for Euler equations the treatment of vacuum or low density zones may require
some attention. For example Einfeldt et al. [26] have demonstrated that a Riemann solver
based on a linearization cannot guarantee the positivity of the energy near low density
zones, where Godunov-type schemes such as the HLL scheme can.

ρ u v P11 P12 P22

left state 1 0 0 2 0.05 0.6
right state 0.0 0 0 0.0 0.0 0.0

Table 2: Initial conditions for the Sod tube problem with vacuum.

In Fig. 3 results obtained with HLL and MUSCL/HLL scheme are compared. At the
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Figure 2: Sod tube problem at time t=0.1 s: reference solution (black line), HLL scheme (blue dashed line),
and MUSCL/HLL scheme (red dot-dashed line) with 400 cells.

interface with vacuum central moments such as velocity and internal energy are signif-
icant. Such singularities do not appear in density-weighted quantities, such as momen-
tum and pressure. Actually the most divergent quantity is s11, which reaches values of the
order of 1020. This entropy production is due to the HLL scheme approximation, so that
it is purely due to the numerical scheme and not to the physics of the problem. To handle
such a highly constraining behavior, the time step in explicit methods will be drastically
reduced: a regularization procedure is suggested based on a limitation of the entropy
in the system. This limitation will reduce this artificial generation of entropy, avoiding
abnormally high internal energies and velocities. The procedure is the following:

σcorr =σmin(α), (4.1)

where:

αi =





1 if sii <Slim;

Slim+(Smax−Slim)tanh

(
sii−Slim

Smax−Slim

)
else.

, for i=1,2. (4.2)

where Smax is the maximum entropy threshold Land Slim a entropy at which the limitation
starts to act progressively up to Smax. In the case of entropies that are greater than the
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threshold Smax, all components of the internal energy are reduced in order to keep the
same eigenvalues for the internal energy tensor. This limitation is expected to have a
minor impact on the moment vector, as it acts in low density zones. The choice of the
threshold is physics-dependent: as the internal energy is expected to reproduce crossings,
a good estimate for this threshold is found to be related to events that generate crossings.
For example, in a gas flow field, a good primary estimate is given by the variance of the
gas velocity field and the mean number density in injection or droplets initial clouds.

In Fig. 4 results for the MUSCL/HLL scheme with and without limitations are shown.
Two thresholds are tested: Smax = 100 and Smax = 300, which are respectively the maxi-
mum entropy and twice the maximum entropy at t= 0. Both limited computations re-
produce equivalent results for density momentum and pressure in comparison with the
non-limited result. However central moments u and σ11 are now constrained, resulting
in reasonable limitations on the time step. The effect on the entropy is also obvious, as
the threshold is clearly the limit. A slight entropy oscillation appears at the initial state
interface but it does not impact the accuracy on the full moments.
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Figure 3: Riemann problem with vacuum at time t=0.05 s: HLL scheme (blue dashed line), and MUSCL/HLL
scheme (red full line) with 200 cells.
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Figure 4: Riemann problem with vacuum at time t = 0.05 s: MUSCL/HLL scheme with 200 cells without
limitation (black full line), with Smax =100 (blue dashed line) and with Smax =300 (red dotted line).

5 Eulerian simulation of two crossing jets

In the literature pressure-like models developed in the context of ACBMM have been
tested in the context of turbulent flows [23, 40, 50, 51, 60, 64], where the turbulent mixing
generates multiple and complex crossings. While such configurations are of particular
interest for final turbulent applications, they do not assess the behavior of the model for
the most simple crossing scenario: the crossing between two trajectories. This simple
scenario is the building element of what happens in a turbulent case so we propose to set
up a specific test case.

To investigate this scenario we consider a situation where the strain rate of the gaseous
carrier field will generate PTC for the particulate phase. This test case has already been
investigated in 1D in [19, 52], and here in its 2D version. By injecting particles in the
gaseous field from two positions we will generate, depending on the relaxation time of
the particles, a two-trajectory crossing. In the following we detail this configuration as
well as its analytic Lagrangian solution. We thus analyze the results for the AG model,
emphasizing on the description of the spatial distribution of the number density as well
as on the energy budget.

5.1 Configuration description and analytical solution

We consider a carrier phase with the given velocity field in a Cartesian frame (x,y) ∈
[0,H]×[0,L]:

(
ug

vg

)
(x,y)=

(
ug0

−ǫy

)
, (5.1)
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so that it flows constantly in the x-direction at a velocity ug0 from left to right but with
a compressive velocity field in the y-direction i.e. velocities oriented towards y=0. The

rate of strain on the y = 0 axis of symmetry is ǫ =
∣∣∣ ∂vg

∂y (y=0)
∣∣∣. If we inject particles at

time t=0 and at x=0 at the velocity Up0=ug0 and Vp0=0 that is at equilibrium with the
x-component of the gas velocity, they move uniformly in the x-direction. But they also
accelerate in the y-direction and migrate towards the center according to the Lagrangian
equations:

dtYp =Vp, dtVp =− 1

τp
(Vp−vg(Yp))=− 1

τp

(
Vp+ǫYp

)
, (5.2)

where Yp and Vp are the Lagrangian position and velocity of a particle. Combining the
Lagrangian equations yields a scalar second order equation that describes the y-motion
in a frame that moves along the x-axis:

d2
t Yp+

1

τp
dtYp+

ǫ

τp
Yp =0. (5.3)

We define a Stokes number St=ǫτp. We also define ω2= 1
4

∣∣∣ 1
τ2

p
− 4ǫ

τp

∣∣∣, and the critical Stokes

number Stc =
1
4 [19]. The solution is then given by:

Yp(t)=Yp0exp

(
− t

2τp

)


exp(−ωt) if St≤Stc,

cos(−ωt)+
1

2ωτp
sin(−ωt) otherwise.

(5.4)

First, the particles converge towards the center in a characteristic time that is 2τp. Second,
if particles are injected at least two different ordinates Yp1 and Yp2, PTC occurs as soon as
oscillation occurs that is St>Stc.

When multiplying Eq. (5.3) by velocity, one gets after integration an equation on the
specific energy of a particle:

D

Dt

(
Ẏp

2

2
+

ǫ

τp

Y2
p

2

)
=− 1

τp
Ẏp

2
, (5.5)

where one recognizes a kinetic energy ec =
1
2 Ẏp

2
and a potential energy ep =

ǫ
2τp

Y2
p . The

latter comes from a part of the drag force, which has been split in a conservative and a
non-conservative part. The potential is high when particles are far from the centerline
and minimum when particles are at the center. The sum of these two energies is the
mechanical energy, that decreases due to the non-conservative part of the drag force.

We finally define two tools dedicated to the analysis of the two-jet configuration: the
y-integration operator and the notion of orbitals. To quantitatively compare the different
approaches we define the y-integration operator over a quantity · :

< ·>y=
∫ y′

y0

· dy′, (5.6)



23

where y0 is the y-ordinate of the centerline. The cumulative number density reads:

ψ(x,y)=
<ρ(x,y′)>y

<ρ(x,y′)>+∞

, (5.7)

and is a number (per square length). An α%-orbital is then defined as a sub-manifold of
the x−y plane containing the center line and which encloses α% of the total number of
particles at every x-position.

5.2 Eulerian simulation

We now consider a domain H = 2 m and L= 6 m. The mesh is 1000×400 cells. The gas
flow has an x-velocity Ug = 0.2 m/s and a y-strain ǫ= 1 s−1. Two particle jets of width
δ= 0.2 m are injected at y-ordinates y1 = 0.5 m and y2 = 1.5 m with Ul,inj =Ug = 0.2 m/s
and Vl,inj = 0. The particle Stokes number is St= 5= 20Stc, which is sufficient to let PTC
occur. The entropy limitation is used with Smax =1.

In Fig. 5 the steady solution of the AG model is represented. The white lines repre-
sent the limits of the analytical solution described by Eq. (5.4). Results show that even if
before the first crossing Lagrangian and Eulerian are in very good agreement, after the
first crossing, the AG solution is distributed between the two extremal Lagrangian or-
bitals. However the number density is still enclosed, and reproduces the length scales
(amplitude and spacing) of the crossing even if it cannot capture the details of it.

Figure 5: Steady solution of two inertial particle jets (St=20) injected in a compressive velocity field: particle

number density (m−3). White lines represent the lower and upper Lagrangian trajectories for each jet.

After the first crossing, the AG model looses the detailed information of the velocity
distribution, projecting it with respect to the second order moments onto the maximum
entropy distribution (in the information sense). In fact, it destroys the information that is
not reproduced by the reconstructed NDF. To exhibit this information loss, we propose to
replace the two jets by one jet which as a Gaussian spatial distribution in the y-direction.
Therefore the injection condition at x=0 is described by the following spatial distribution:

ρinj(y)=
2δ√

2πσinj
exp

(
− (y−1)2

2σinj

)
, σinj =

∫ H

0
ρ(y)Up0dy. (5.8)
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Results for the Gaussian injection are represented in Fig. 6. Again white lines represent
the extremal orbitals of the Lagrangian solution. Here before the first crossing the Eule-
rian and Lagrangian solutions are no longer equivalent. After the first crossing however,
the Eulerian solution of the Gaussian jet becomes similar to the one of the two-jet config-
uration:

• most of the number density is enclosed in-between the Lagrangian trajectories,

• internal energy is generated at each crossing events.

The Gaussian jet and the two-jet configurations look similar after the first crossing, which
has destroyed a part of the information of the injection conditions.

Figure 6: Steady solution of Gaussian particle jet (St= 20) injected in a compressive velocity field: Particle

number concentration (m−3). White lines represent the lower and upper Lagrangian trajectories for each jet.

We can estimate the number of particles that are enclosed in-between two y-ordinates
thanks to the y-integral defined in Eq. (5.6). Since the problem is symmetric, ψ(x,y) is
also symmetric in the y-direction. Results are represented in Fig. 7. As qualitatively
assessed, before the first crossing, the two-jet configuration locates the number density
well, while the Gaussian injection condition results in a spreading. After the first crossing
both injection conditions give a smeared solution. The 80%-orbitals are the same, close
to the extremal orbitals of the Lagrangian solution. The 99%-orbitals differ after the first
crossing, but they end up to be similar after the second crossing. Thus both two-jet and
Gaussian-jet configurations become equivalent in terms of number density after crossing.

To further analyze the behavior of the model on both configurations, the mean, inte-
gral, and potential density-weighted energies integrated over the y-direction are plotted
against the x-direction in Fig. 8. Results show that the evolution of the energy is repro-
duced with a good precision compared to the Lagrangian solution. Even before the first
crossing, two-jet and Gaussian-jet configurations are identical. It demonstrates that the
AG model preserves the information of the second order moments at each crossing event,
discarding any higher order information such as the third order central moments.
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Figure 7: Statistics of the jet configurations into a gaseous compressive field: isolines of cumulative number
density for the two-jet analytical solution (100%, black line), the two-jet AG solution (80% and 99%, red lines),
and the Gaussian-jet AG solution (80% and 99%, blue lines).

5.3 Conclusion on the model

In conclusion of this test case results demonstrate the main drawback of the AG model:
it cannot capture the density distribution generated by deterministic crossings such as in
the present configuration. However, when the crossing is generated because of the drag
force of a straining gaseous flow field, the particle trajectories are enclosed in manifolds
that correspond to a specific space scale. The AG model is able to reproduce this scale,
and it captures the width of the crossing and its energetic behavior. Another interesting
property of the AG model is that, after a crossing it does not allow to determine if the
crossing has been generated by a deterministic event, such as a two-jet crossing, or an
ensemble of initial/boundary conditions totalizing the same zero, first and second order
spatial moments.
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Figure 8: Statistics of the jet configurations into a gaseous compressive field: mean and internal energies
(left, the upper curves are for mean energy, the lower for internal energy), and potential energy (right) for the
Lagrangian solution (black continuous line), the AG solution of the two-jet (red dashed line) and the Gaussian
jet (blue dot-dashed line) configurations.

6 Application to vortex and turbulent flow fields

The ability of the model to reproduce one crossing event being evaluated, we investigate
two more complex cases where several crossing events are encountered:

• The 2D Taylor-Green vortices: this test case features four contra-rotative vortices
with periodicity. It is interesting because it is composed of one scale, and the condi-
tions for PTC are easy to determine. Furthermore the Lagrangian solution exhibits
different structures that correspond to simple or multiple crossings, that are of in-
terest for real turbulent flows. It is an intermediate case between laminar and fully
turbulent cases, because in a turbulent field, the particulate phase will interact with
a full spectrum of scales, each of them having a specific interaction with the parti-
cles. Finally it is also a good test case to demonstrate the quality of the numerics.

• The 2D Decaying Homogeneous Isotropic Turbulence: the physics of this test case
is relevant for realistic applications. The turbulence of the carrier phase generates
multiple crossing events everywhere in the domain, that are impossible to treat
separately in the Eulerian vision of the flow: the validation of Eulerian strategies
requires to investigate their ability to treat such superimposed scales. The first level
of real turbulent flows is the Homogeneous Isotropic Turbulence, for which the
spectrum of scales is well-known. Moreover, we choose a decaying turbulence to
assess the interaction of particles with unsteady time scales.

In the following, we will compare the AG model to a Lagrangian solution with 10
million particles. We will also investigate the importance of the anisotropy of the model
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by comparing to the results of the Isotropic Gaussian model. Actually this model is ob-
tained by assuming that the energy tensor Σ is isotropic, leading to the Euler equations.
This model is the simplest one that can be used to reproduce PTC. Its main advantage
is that less moments are solved, as only one second order moment is needed: the total
energy. However, as it has been shown in the two-crossing jet case, crossing events are
highly anisotropic, and this model could reveal to be inaccurate.

To analyze the results, we will use two tools:

• Instantaneous fields: first, the spatial distribution of particles is investigated. This
is the primary information that we want to capture, and the two-jet case has shown
that the AG is not able to reproduce details, but can capture scales of the flow. We
then want to verify if it is still the case in turbulent-like conditions, where multiple
crossing events can be found at each location.

• Statistics: to evaluate quantitatively the ability of the Eulerian approaches to re-
produce the Lagrangian reference, three statistics of the flow are investigated: the
segregation, the mean central energy and the mean total energy. The segregation
evaluates the generation of stiff accumulation and vacuum zones. It is of particular
importance, for example for dense flows, where the local concentration is a lead-
ing term to evaluate the coalescence source term, or for the combustion of droplets,
where the inhomogeneity of the droplet phase highly influences the whole pro-
cess. Mean total and central energies are also helpful to determine if the coupling
between the gas and the particle phases is well resolved. Here we evaluate the sta-
tistical quantities on a fixed reference mesh of 642 cells on which all results are pro-
jected, for which Lagrangian results are statistically converged. They are expressed
as:

gpp =

{
ρ2
}

{ρ}2
, δΘ̃p =

{ρ(σ11+σ22)}
2{ρ} , Ẽp =

{ρ(E11+E22)}
2{ρ} , (6.1)

where gpp is the segregation, δΘ̃p the mean central energy, Ẽp the mean total energy,
and {.} the spatial averaging operator over the whole domain using the quantities
projected on a 642-cell mesh.

6.1 Taylor-Green vortices

The gas velocity field of the TG is the following:

ug(x,y)=sin(2πx)cos(2πy), vg(x,y)=−cos(2πx)sin(2πy). (6.2)

The dynamics of particles generated by a drag coupling with TG is characterized by a
critical Stokes number Stc = 1/8π as defined in [19]. Below this limit particles stay in
their initial vortex and do not encounter PTC. Above this limit particles have a sufficient
inertia to leave their initial vortex. They will generate PTC, which scales become larger



28

as the Stokes number increases. In the following we will investigate TG for three Stokes
numbers: St=Stc, 5Stc, and 10Stc. The solution obtained by a Lagrangian Tracking is con-
sidered as the reference. Isotropic (IG) and Anisotropic Gaussian (AG) closures will be
investigated, to highlight the importance of the central energy partition in each direction
that is done by AG and not by IG. If it is not mentioned the mesh size is composed of
2562 equi-distributed cells.

6.1.1 Instantaneous fields

First the number density field obtained at time t = 4 is compared for each method and
each Stokes number (Figs. 9-11). At St = Stc, the number density fields have the same
structure for each simulation i.e. a stiff accumulation of particles in the lowest vorticity
zones. Eulerian solutions (IG and AG) are equivalent, which is expected because at this
Stokes number no PTC occurs. This implies that no central energy is generated and the
two models behave like the Monokinetic model [19, 42]. Compared to the Lagrangian
reference the two Eulerian models feature a diffused solution¶.

At St=5Stc PTC is expected so the model will generate a central energy. Contrary to
St= Stc the number density field are different for each model at St= 5Stc. In Fig. 10 the
structures generated by each simulation are relatively different. At this Stokes number,
the Lagrangian reference generates two types of structures: four stiff equilibrium mani-
folds (EM) out of the low vorticity zones, which are the long-time solution of the parti-
cle system of ODEs in TG and larger mixing zones where droplets are traveling around
the low vorticity zones without being attracted inside one of the equilibrium manifolds.
The two Eulerian approaches are able to capture the mixing zones but do not reproduce
the EM. To capture the EM, an Eulerian approach must be able to reproduce exactly the
PTC between two trajectories, which is not the case for one-velocity-node Eulerian ap-
proaches‖. Finally even if IG and AG solutions are different, the best solution among the
Eulerian approaches cannot be discriminated by solely considering the number density
field. However looking at the results for St= 10Stc clearly shows that the IG closure no
longer reproduces the characteristic width of the mixing zones, contrary to AG.

6.1.2 Statistics

In the following of the two-jet crossing case, we further investigate the behavior of our
models by means of statistical quantities namely the segregation and the energy budget.
Statistics are plotted in Figs. 12-14 for St=Stc, 5Stc, and 10Stc.

At St=Stc, the segregation is high due to the accumulation of particles in low vortic-
ity zones. The mean central energy is relatively small compared to the mean total energy.
Both IG and AG reproduce the profile of the time evolution but they do not recover the
same levels. Both models underestimate the segregation, AG giving the best result com-
pared to the Lagrangian reference. The mean central energy is well captured by both

¶But the diffusion length decreases with the mesh refinement.
‖In [43, 78] more nodes have been used and it permits to capture such structures.
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Figure 9: Taylor Green Vortices for St=Stc: number density field at time t=4 for the Lagrangian tracking (left),
for the Eulerian Isotropic Gaussian closure (center), and for the Eulerian Anisotropic Gaussian closure (right).

Figure 10: Taylor Green Vortices for St=5Stc: number density field at time t=4 for the Lagrangian tracking
(left), for the Eulerian Isotropic Gaussian closure (center), and for the Eulerian Anisotropic Gaussian closure
(right).

approaches but the mean total energy is better captured by AG, which can be directly
linked to the segregation results: as we consider phase-average values, missing the de-
scription of the segregation will limit the ability to capture the mean total energy, which
is also sensitive to the segregation.

At St=5Stc the AG captures well all the statistics under study, whereas the IG overes-
timates the segregation. This is a consequence of the underestimation of the mean central
energy: actually, the internal energy generates the width of the structures and in the case
of IG this energy is too small to capture the correct width.

At St=10Stc, the IG closure again strongly overestimates the segregation, whereas the
AG leads to good results but for a short time only. In terms of energy, the results of AG
are again only predictive for a short time, the long-time behavior being missed by both
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Figure 11: Taylor Green Vortices for St=10Stc: number density field at time t=4 for the Lagrangian tracking
(left), for the Eulerian Isotropic Gaussian closure (center), and for the Eulerian Anisotropic Gaussian closure
(right).

Eulerian approaches.
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Figure 12: Taylor Green Vortices for St= Stc: time evolution of the segregation (left), mean central energy
(center), and mean total energy (right) for the Lagrangian tracking (black full line), the Eulerian Isotropic (red
dashed line) and Anisotropic (blue dot-dashed line) Gaussian closures.

To conclude on the TG case, compared to the Lagrangian reference the AG gives better
results than the IG, because the anisotropy of the velocity distribution is mandatory to
reproduce the directional information within PTC zones. In terms of instantaneous field
or statistics, AG leads to satisfactory results for moderate Stokes number but at high
Stokes number the method becomes less predictive.
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Figure 13: Taylor Green Vortices for St= 5Stc: time evolution of the segregation (left), mean central energy
(center), and mean total energy (right) for the Lagrangian tracking (black full line), the Eulerian Isotropic (red
dashed line) and Anisotropic (blue dot-dashed line) Gaussian closures.
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Figure 14: Taylor Green Vortices for St=10Stc: time evolution of the segregation (left), mean central energy
(center), and mean total energy (right) for the Lagrangian tracking (black full line), the Eulerian Isotropic (red
dashed line) and Anisotropic (blue dot-dashed line) Gaussian closures.

6.2 Decaying Homogeneous Isotropic Turbulence

The Homogeneous Isotropic Turbulence (HIT) case is closer to real applications. The
gaseous flow field consists in a full spectrum of space and time scales, whereas TG has
a unique and steady one, and is time-evolving so that the large-scale sweeping of small
scales is present. Such a case is a mandatory step for each modeling method before going
to more complex applications and is extensively investigated in the literature [29, 40, 57,
66, 79].

Here we consider a flow field generated by the ASPHODELE code, developed at CO-
RIA by Julien Réveillon and collaborators [59]. All quantities are dimensionless. The
domain is 3×3. The parameters of the turbulent field at t=0 are listed in Table. 3.

In the following the Stokes number will be considered as the ratio of the relaxation
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Ret ut ǫ ηK lint τK τint

7.12 0.1 0.01 0.022 0.1 0.36 1.0

Table 3: Turbulence properties at time t=0.

time of particles to the Kolmogorov time scale at t = 0: St=
τp

τK
. This Stokes number is

the most relevant in our case, as we will start with equal velocities for gas and disperse
phases at t = 0, so that crossings are generated at time t = 0. Similarly to TG case, we
investigate instantaneous solutions as well as space-average statistics.

6.2.1 Instantaneous fields

The instantaneous flow field at time t=3.6 is plotted in Figs. 15-16 for St=1, and 10. Sim-
ilarly as in the TG case, negligible PTC is expected at St=0.75 and the two Eulerian sim-
ulations therefore give similar results, all comparable to the Lagrangian reference though
being more diffusive. At St=10, the Lagrangian result exhibits mixing zones like in the
TG case, where particles oscillate around the low vorticity zones, but no long-time equi-
librium manifolds, which cannot be captured by IG or AG. The two Eulerian approaches
capture the mixing zones, but their widths are closer to the Lagrangian ones with the AG
model.

Figure 15: HIT case for St=1: number density field at time t=3.6 for the Lagrangian tracking (left), for the
Eulerian Isotropic Gaussian closure (center), and for the Eulerian Anisotropic Gaussian closure (right).

6.2.2 Statistics

We investigate the same statistics as in the TG case, i.e. the segregation, the mean cen-
tral energy, and the mean total energy. For St=1 the two Eulerian models give the same
results. The comparison with the Lagrangian reference is satisfactory, even if the segrega-
tion is slightly underestimated. For St=10 the two models give now different results. The
AG model underestimates the segregation while overestimating the mean central energy,
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Figure 16: HIT case for St=10: number density field at time t=3.6 for the Lagrangian tracking (left), for the
Eulerian Isotropic Gaussian closure (center), and for the Eulerian Anisotropic Gaussian closure (right).

whereas the IG model has an opposite behavior. However the mean total energy is well
reproduced only by the AG model.

To better estimate the quality of the model we perform in Fig. 19 a mesh sensitivity
analysis for all statistics at St=10. Compared to the TG case where the generated scales of
the particulate phase are relatively wide, the scales generated by the HIT case are small
compared to the mesh size. The results show that refining the mesh, thus reducing the
numerical diffusion, tends to increase the segregation and to decrease the mean central
energy. Whereas the mesh refinement degrades the IG results, AG results are closer and
closer to the Lagrangian results, confirming the mesh convergence of the results. It also
clearly shows the importance of the numerical methods for Eulerian models: second
order schemes are a minimum requirement for turbulent computations. Less dissipative
second order scheme based on Discontinuous Galerkin methods are in development [41,
62] and higher order schemes could be envisioned.
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Figure 17: HIT case for St=1: time evolution of the segregation (left), mean central energy (center), and mean
total energy (right) for the Lagrangian tracking (black full line), the Eulerian Isotropic (red dashed line) and
Anisotropic (blue dot-dashed line) Gaussian closures.
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Figure 18: HIT case for St= 10: time evolution of the segregation (left), mean central energy (center), and
mean total energy (right) for the Lagrangian tracking (black full line), the Eulerian Isotropic (red dashed line)
and Anisotropic (blue dot-dashed line) Gaussian closures.
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Figure 19: HIT case for St=10, impact of the mesh on statistics: time evolution of the segregation (left), mean
central energy (center), and mean total energy (right) for the Lagrangian tracking (black full line), the Eulerian
Isotropic (red dashed line) and Anisotropic (blue dot-dashed line) Gaussian closures. Arrows indicates growing

meshes for each Eulerian model (from 2562 to 20482 cells).
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Conclusion

In this work a new method of moments for particle-laden flows, the 10-moment Anisotro-
pic Gaussian model, together with the principles of KBMM for the modeling of such
flows, is introduced. This method of moments up to second order has already been
used in the context of rarefied gases [12, 46, 55] and is here extended to the simulation of
particle-laden flows. Relying on previous works by [36] and [2] this approach is not only
introduced to provide a closure of the system of conservation laws at the moment level
but also allows, based on entropy maximization in both information and kinetic senses,
to obtain a model for particle laden flows with realizability as well as an entropic struc-
ture. Moreover the resulting moment system is hyperbolic, entitling the use of Godunov
solvers [44, 68]. To ensure robust and accurate simulations a MUSCL / HLL scheme has
been proposed, based on a linear reconstruction of primitive variables and a proper lim-
itation strategy to keep the boundary values realizable. It results in a stable, realizable,
and accurate scheme for the transport of particles, which is usually a stumbling block for
most Eulerian moment models.

The modeling approach and numerical scheme have been validated on 1D cases, to
highlight the accuracy of the scheme for regular and shocked solutions, as well as im-
portant features of the model. Moreover the importance of a regularization procedure at
interfaces achieving vacuum has been shown, with a limited impact on the accuracy of
the model.

Then an injection case into a compressive gaseous carrier flow field has been inves-
tigated. Such a configuration couples transport and drag in such a way that the fluid
particle phase can be considered as hypercompressible∗∗ for a range of Stokes number
involving inertial particles. This case provides of good model for PTC generation in tur-
bulent flows. Results show that the AG model is not able to reproduce the details of
deterministic crossings in terms of number density spatial distribution. However it cap-
tures at least the right scale and the right energetic behavior. Moreover, an important
aspect of this model is that, after a crossing event, it “destroys” part of the information
before the crossings, only keeping the information on zero-to-second order moments in
space. Thus the spatial behavior of this model is directly linked to the velocity phase
space description.

Finally the AG model has been evaluated on 2D turbulent-like test cases. Both Aniso-
tropic and Isotropic Gaussian closures have been compared and we have shown the im-
portance of having a full description of the pressure tensor in order to properly predict
the segregation of particles, a key feature for combustion application for example. In the
Taylor Green vortices the two Eulerian models are not able to get the details of the spatial
distribution. However as in the injection case the AG model captures the characteristic
scales of the flow, where IG cannot. In the decaying turbulence the AG model renders

∗∗Hypercompressibility is defined properly in [20] and is related to the fact that the divergence of the velocity
field of the particles, obtained from the first order moment divided by the zeroth order moment, can grow
and become singular during an occurence of PTC.
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a more relevant segregation than IG. Moreover a mesh sensitivity analysis shows that
the AG results reproduce the Lagrangian solution, whereas IG does not. The partition
between mean and internal energies is also better captured by the AG model and the
mesh sensitivity analysis again demonstrates that AG model reproduces the Lagrangian
solution.

In conclusion the AG model in conjunction with the accurate MUSCL/HLL scheme
that has been proposed are an interesting robust strategy for the simulation of particle
laden flows. However, some aspects of the results have to be understood as consequences
of the modeling approach: such a presumed-velocity-PDF approach is not supposed to
capture the full range of scales but to reproduce some statistical quantities correctly at
the scale of the crossings. Moreover the impossibility to make the difference between
deterministic crossings and the variability imposed by initial/boundary conditions af-
ter the crossing event has to be kept in mind in the interpretation of the results. It has
also been shown that such an approach is robust for shear layers, compared to ACBMM
methods [75].

Let us finally underline a few issues that still need to be addressed before the model is
ready for realistic applications, thus showing the level of maturity of the proposed model
and numerical methods. These issues are the following :

• it would be desirable to compare such a numerical approach to a relaxation ap-
proach in the spirit of [9] for the AG system of conservation laws and draw firm
conclusions on what is the best-suited method for realistic configurations in terms
of both computational cost and accuracy,

• the problem of the interface with vacuum zones has to be further investigated. The
use of a first order entropy-preserving HLL scheme is not sufficient to guarantee
bounded entropy in this context. The present work handles these interfaces by
using a limitation procedure using a user-defined case-dependent parameter. To
free the simulation of such a parameter, a discrete-entropy-diminishing scheme in
the presence of vacuum has to be designed, as well as a clear understanding of the
behavior of the numerics in such zones.

• we are headed towards tackling 3D configurations and higher Reynolds numbers,

• investigating a higher order scheme that preserves realizability on unstructured
meshes is desirable [61,62] but relies on a detailed study of multi-dimensional prop-
erties of the associated system of conservation laws and entropic structure.

• the potential of our approach for the LES of complex configurations has also to be
assessed. Actually, the ACBMM equivalent of our model (see [50,51] and references
therein) is routinely used for LES of real applications [49, 63, 72]. However, before
going to the real applications, fundamental studies about the definition of a fully
realizable KBMM-LES moment method have to be conducted in the spirit of [17,81].
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• in a case where the details of the deterministic crossings are mandatory, the reader
may refer to other contributions using a Multi-Gaussian closure [15,43,71]. Another
important aspect is also the ability to switch from one model to the other depending
on the complexity of the crossing or the requirement we have on its representation.
Such a topic is addressed in [9], by switching between pressureless and Gaussian
models depending on the occurrence of crossing. This work will be extended to
Anisotropic Gaussian and Multi-Gaussian closure in future works.
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A Size-conditioned extension

In the present appendix we show how AG can be extended to a polydisperse phase. In
the literature, polykinetic approaches have been extended using Multi-Fluid approaches
(MF, [38, 42, 72]). We show that it is always possible to extend polykinetic approaches
with MF, as long as the velocity distribution is size-conditioned:

g(t,x,c,S)= f (t,x,c|S)h(t,x,S),

where S is a particle size variable and h(t,x,S) is a probability density function of unity
integral. We consider an extended Williams-Boltzmann equation with additional terms
in the size phase space:

∂tg+c·∂xg+∂c ·(Fg)+∂S (RSg)=0, (A.1)
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where RS is a velocity in the size space, for instance linked to evaporation. Integrating
Eq. (A.1) over the velocity space, we get the semi-kinetic system [19]:

∂t Mi,j,k|Sh(S)+∂x ·h(S)




Mi+1,j,k|S
Mi,j+1,k|S
Mi,j,k+1|S


=

h(S)

τp(S)


(i+ j+k)Mi,j,k|S−ug ·




iMi−1,j,k|S
jMi,j−1,k|S
kMi,j,k−1|S






−∂SRS Mi,j,k|Sh(S). (A.2)

In this system, if one size S is considered, the moment equations of AG are recovered,
with an additional size space flux. If we also want to use a moment method for the size
space, MF can be used. By considering size intervals [Sl ,Sl+1] for i= 0,.. .,N to map the
compact support S∈ [0,Smax]††, sectional size-velocity moments can be defined:

Ml
i,j,k =

1

Sl+1−Sl

∫ Sl+1

Sl

h(S)Mi,j,k|SdS. (A.3)

By considering a first order piecewise constant distribution in size h(S)=1, and that the
size conditioned velocity moments are evaluated at the size cell midpoint Sm,l = (Sl+
Sl+1/2)/2‡‡, we get Ml

i,j,k =Mi,j,k|Sm,l
The final Multi-Fluid AG system is then obtained:

∂t M
l
i,j,k+∂x ·




Ml
i+1,j,k

Ml
i,j+1,k

Ml
i,j,k+1


=

1

τp(Sm,l)


(i+ j+k)Ml

i,j,k−ug ·




iMl
i−1,j,k

jMl
i,j−1,k

kMl
i,j,k−1







− 1

Sl+1−Sl

(
RS Mi,j,k|Sl+1

−RS Mi,j,k|Sl

)
, (A.4)

the last term corresponding to fluxes in size phase space, that depend on size cell interface
values. This term is evaluated using an upwind scheme, so that in the case of RS ≤0
(evaporation for instance):

1

Sl+1−Sl

(
RS Mi,j,k|Sl+1

−RS Mi,j,k|Sl

)
=

1

Sl+1−Sl

(
RS Ml+1

i,j,k −RS Ml
i,j,k

)
. (A.5)

These method has been applied to coalescing flows [22] and further works will also
extend the AG formulation to moment methods in size, as in [73, 74].

B Slope evaluation strategy

In the following a slope evaluation strategy is proposed which respects all the realizabil-
ity constraints for the flux evaluation at the cell interfaces. Here we consider the 2D case,

††A semi-open support S∈[0,+∞[can also be considered by adding a last semi open section [SN ,+∞[ [21,24]
‡‡This approximation is helpful to close the system but it can be relaxed using more complex methods [74].
For a first order method however this approximation has no impact on the accuracy of the method.
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but the same rationale can be used to extend it to a slope limitation in a 3D case. The main
idea of our limitation strategy is to define sufficient conditions for realizability, starting
from the fact that a zero-slope reconstruction is always realizable. Thus, our rationale is
to first evaluate the slope using a classical minmod-limiter, and then to apply a second
limitation that reduces the slopes until realizability is reached. Thus, our reconstruction
strategy can be applied in 3D in a straightforward manner.

First we treat the density to which a minmod limiter is applied with an additional
positivity constraint:

Dρj
=

1

2

(
sign(ρj+1−ρj)+sign(ρj−ρj−1)

)
min

(
ρj+1−ρj

∆x
,
ρj−ρj−1

∆x
,
2ρj

∆x

)
. (B.1)

Second for the velocities, two types of constraints are imposed: a minmod limiter that
takes into account the modification of the cell value [11] and two additional constraints
to ensure the positivity of the energies:

Duj
=

1

2

(
sign(uj+1−uj)+sign(uj−uj−1)

)
min




|uj+1−uj|
∆x(1− Dρj

ρj

∆x
6 )

,
|uj−uj−1|

∆x(1+
Dρj

ρj

∆x
6 )

,Dmax,σ11
uj


,

(B.2)

where Dmax,σ11
uj

=

√
σ11,j/

(
∆x2

12 α
)

. The slope on the velocity v being easily retrieved by

analogy. Moreover the resulting slopes must keep the positivity of the corrected determi-
nant within the cell:

σ11,jσ22,j−σ2
12,j >0 (B.3)

By developing each term we rewrite Eq. (B.3):

H=σ11D2
vj
+σ22D2

uj
−2σ12Duj

Dvj
<

σ11σ22−σ2
12

∆x2

12 α
. (B.4)

If H<0 the condition is always satisfied. If H>0 and this condition is not fulfilled by the
first slope evaluation, a correction factor γ∈ [0,1] is introduced:

Dnew
uj

=γDold
uj

, Dnew
vj

=γDold
vj

, γ=min

(
1,

√
σ11σ22−σ2

12
∆x2

12 αH

)
. (B.5)

Third, the slopes of the covariance matrix are evaluated. The following quantities are

introduced to simplify the notations Σ
∗=Σj−

∆x2

12
αD2

u and we impose a minmod slope

evaluation that satisfies the positivity of the energies:

Dσ11,j
=

1

2

(
sign(σ11,j+1−σ11,j)+sign(σ11,j−σ11,j−1)

)
min




|σ11,j+1−σ11,j|
∆x(1− Dρj

ρj

∆x
6 )

,
|σ11,j−σ11,j−1|
∆x(1+

Dρj

ρj

∆x
6 )


.

(B.6)
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This limitation does not ensure the positivity of the determinant, which is a quadratic
function of the position:

∆(x)=σ11σ22−σ2
12+

(
σ11Dσ22,j

+σ22Dσ11,j
−2σ12Dσ12,j

)
x+
(

Dσ11,j
Dσ22,j

−D2
σ12,j

)
x2

>0.

(B.7)

After developing each term we finally get:

∆
∗+A

(
x−∆x2

12

Dρj

ρj

)
+B

(
x−∆x2

12

Dρj

ρj

)2

>0 (B.8)

with:

∆
∗=σ∗

11σ∗
22−(σ∗

12)
2 , A =σ∗

11Dσ22,j
+σ∗

22Dσ11,j
−2σ∗

12Dσ12,j
, B =Dσ11,j

Dσ22,j
−D2

σ22,j
. (B.9)

As the goal of the reconstruction strategy is to evaluate the value at the cell interfaces,
we impose a weaker condition than Eq. (B.8):

∆
∗+A

(
±∆x

2
−∆x2

12

Dρj

ρj

)
+B

(
±∆x

2
−∆x2

12

Dρj

ρj

)2

>0. (B.10)

A new correction factor β∈ [0,1] is introduced:

Dnew
σ11,j

=βDold
σ11,j

, Dnew
σ22,j

=βDold
σ22,j

, Dnew
σ12,j

=βDold
σ12,j

. (B.11)

If β=0 the determinant is positive everywhere so that there is always an admissible value
of β. If the determinant is not positive without correction, the highest β∈ [0,1] is chosen
among the ones that satisfy the positivity of the determinant at each interface of the cell:

∆
∗+βA

(
±∆x

2
−∆x2

12

Dρj

ρj

)
+β2B

(
±∆x

2
−∆x2

12

Dρj

ρj

)2

>0. (B.12)

C Realizability of the MUSCL/HLL scheme

In [5] Berthon demonstrates the stability and the realizability of the MUSCL strategy for
the Euler equations. Here we use the same ingredients to demonstrate the realizability of
the MUSCL/HLL scheme proposed for the Anisotropic Gaussian model.

C.1 Realizability of the piecewise constant approximation

Proof of Theorem 3.1. Let us decompose a cell into three constant states: the left state ML,
the center state MC and the right state MR. Let us consider the following convex combi-
nation:

Mj =α1ML+α2MC+α3MR, with α1+α2+α3=1, (C.1)
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where the parameters αi represent the weights of each state into the total state Mj. Let us
also consider that the border states ML and MR are evaluated at the cell interfaces using
the reconstruction strategy so that, if the reconstruction strategy is realizable, the border
states are realizable:

ML = M̃j(xj−1/2), MR = M̃j(xj+1/2). (C.2)

To demonstrate the realizability of the piecewise constant approximation, we thus have
to demonstrate that the MC state is realizable. In the following we prove a sufficient
condition for realizability. For the sake of simplicity we consider α1=α3. For the density,
we get:

ρC =ρj, (C.3)

so the positivity of the density is fullfilled for any value of α. For the velocities, we get:

uc =uj+
1−6α1

1−2α1

DρDu

ρ

∆x2

12
, vc =vj+

1−6α1

1−2α1

DρDv

ρ

∆x2

12
. (C.4)

Finally for the covariance matrix, we get:

σC =σ+
DρDΣ

ρj

∆x2

12

1−6α1

1−2α1
+D2

u

∆x2

12

(
1−6α1

1−2α1
+

D2
ρ

ρ2

∆x2

12

1

1−2α1

(
2− (1−6α1)

2

1−2α1

))
.

(C.5)

Then a sufficient condition to ensure the positivity of the central energies is α1=1/6:

ρjσ11,C =ρσ11+D2
u

∆x4

48

D2
ρ

ρ
>0, ρjσ22,C =ρσ22+D2

v

∆x4

48

D2
ρ

ρ
>0. (C.6)

Moreover the positivity of the determinant must be imposed by an additional constraint
on the velocity slopes:

σ11,Cσ22,C−σ2
12,C =σ11σ22−σ2

12+
∆x4

48

D2
ρ

ρ2

(
σ11D2

v+σ22D2
u−2σ12DuDv

)
>0, (C.7)

HR =−(σ11D2
v+σ22D2

u−2σ12DuDv)<
σ11σ22−σ2

12

∆x4

48

D2
ρ

ρ2

. (C.8)

As for the slope limitation strategy, we thus introduce another parameter γR:

Dnew
uj

=γRDold
uj

, Dnew
vj

=γRDold
vj

, γR =min


1,

√√√√σ11σ22−σ2
12

∆x4

48

D2
ρ

ρ2 HR


. (C.9)

So we can always define the velocity slopes in such a way that the realizability of the
center state MC is verified, and which ends the proof.
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C.2 Realizability of the HLL scheme

The HLL scheme is based on the definition of an intermediate state at each cell interface.
The final solution is sought as a convex combination of each state on both sides of the
interface and of the intermediate state. Then to prove the realizability of the HLL scheme,
we have to prove the realizability of the intermediate state.

Proof of Theorem 3.2. Let us consider the intermediate state M∗
j+1/2 defined in Eq. (3.8); it

can be rewritten in the following manner:

∆λj+1/2M∗
j+1/2=

(
F (Mj)−λ

j
minMj

)
+
(

λ
j+1
maxMj+1−F (Mj+1)

)
(C.10)

= (uj−λ
j
min)M̃∗

j + (λ
j+1
max−uj+1)M̃∗

j+1 , (C.11)

where ∆λj+1/2=λ
j+1
max−λ

j
min >0, and where we have defined :

M̃∗
j =
(
F (Mj)−λ

j
minMj

)
/(uj−λ

j
min), (C.12)

M̃∗
j+1=

(
λ

j+1
maxMj+1−F (Mj+1)

)
/(λ

j+1
max−uj+1). (C.13)

Let us prove that M̃∗
j is realizable, by developing its primitive variables. For the density,

it naturally leads to ρ̃∗j =ρj. so that the density is positive since λ
j
min<uj. For the velocity

no realizability constraint is necessary:

ũ∗
j =

ρj(u
2
j +σ11,j)−ρujλ

j
min

ρj(uj−λ
j
min)

=uj+
σ11,j

uj−λ
j
min

, (C.14)

ṽ∗j ∗=
ρj(ujvj+σ12,j)−ρvjλ

j
min

ρj(uj−λ
j
min)

=vj+
σ12,j

uj−λ
j
min

(C.15)

Finally positivity of the internal energies and the determinant of Σ is required:

σ̃11,
∗
j =

ρj(u
3
j +3ujσ11,j)−ρj(u

2
j +σ11,j)λ

j
min

ρj(uj−λ
j
min)

−(u∗
j )

2

=σ11,j

(
1− σ11,j

(uj−λ
j
min)

2

)
>0 if λ

j
min <uj−

√
σ11,j (C.16)

σ̃22,
∗
j =σ22,j

(
1− σ11,j

(uj−λ
j
min)

2

)
>0 if λ

j
min <uj−

√
σ11,j (C.17)

σ̃11,
∗
j σ̃22,

∗
j −(σ̃12,

∗
j )

2=
(

σ11σ22−σ2
12,j

)(
1− σ11,j

(uj−λ
j
min)

2

)
>0 if λ

j
min <uj−

√
σ11,j (C.18)
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Repeating the same calculations for the state M̃∗
j+1, we get λ

j+1
max > uj+1+

√
σ11,j+1 as a

realizability constraint. Let us then define the two coefficients :

β̃∗
j =

uj−λ
j
min

∆λj+1/2
, β̃∗

j+1=
λ

j+1
max−uj+1

∆λj+1/2
, (C.19)

then the convex combination

M̃∗
j+1/2=

β̃∗
j

(β̃∗
j + β̃∗

j+1)
M̃∗

j +
β̃∗

j+1

(β̃∗
j + β̃∗

j+1)
M̃∗

j+1 (C.20)

is a realizable state. Thus, by the natural cone structure of the moment space, since

M∗
j+1/2 = (β̃∗

j + β̃∗
j+1)M̃∗

j+1/2 and β̃∗
j + β̃∗

j+1 > 0, we can conclude that M∗
j+1/2 is realiz-

able under the conditions λ
j
min < uj−√

σ11,j and λ
j+1
max > uj+1+

√
σ11,j+1 which ends the

proof.
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