
HAL Id: hal-00912086
https://hal.science/hal-00912086v1

Submitted on 1 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring Qualities for OSGi Component-Based
Applications

Salma Hamza, Salah Sadou, Régis Fleurquin

To cite this version:
Salma Hamza, Salah Sadou, Régis Fleurquin. Measuring Qualities for OSGi Component-Based Ap-
plications. 13th International Conference on Quality Software, Jul 2013, France. pp.25-34. �hal-
00912086�

https://hal.science/hal-00912086v1
https://hal.archives-ouvertes.fr


Measuring Qualities for OSGi Component-Based
Applications

Salma Hamza
IRISA

University of South Brittany
Vannes, France

Email: salma.hamza@irisa.fr

Salah Sadou
IRISA

University of South Brittany
Vannes, France

Email: salah.sadou@irisa.fr

Régis Fleurquin
IRISA

University of South Brittany
Vannes, France

Email: regis.fleurquin@irisa.fr

Abstract—Component-based software engineering (CBSE) be-
gins to reach a certain level of maturity. Indeed, for the
development of complex applications the use of component
paradigm has become common. Therefore, the evaluation of the
quality of these applications becomes necessary. In this context,
the use of metrics is considered very important. Several metrics
specific to component-based applications have been proposed.
However, any of these metrics gained the consensus of the CBSE
community and mainly there is no proposed tool to support them.

As a large part of frameworks for component-based appli-
cation development is based on object-oriented technology, we
propose to use some object-oriented (OO) metrics to evaluate
component-based applications produced with this kind of frame-
work. Indeed, these metrics became a standard in OO com-
munity. So, they are well-defined, well-known and empirically
validated. To identify which object-oriented metrics are useful
for the evaluation of component-based applications, we have
conducted an experimental study on 10 OSGi applications. This
study also gives us the opportunity to discuss on the respect by
OSGi developers of some properties pointed out by the literature.

Keywords-Component properties, OO metrics, OSGi frame-
work.

I. INTRODUCTION

Component-oriented programming is becoming well ac-
cepted by the industry. Its adoption by the industrial is due
to the expected benefits such as reliability, reusability and
maintainability. But to ensure that a component-based ap-
plication meets these quality characteristics, components and
architectures should respect some "good" properties. Many
quality models have been proposed to help in defining the
quality of components [1], [2], [3]. In the same way, the
architectures should adhere to sound software engineering
principles. The two principles that are most often sought in the
literature are high cohesion and low coupling. Other properties
such as the absence of cycles, adequate size and complexity
are also often cited.

The quantitative estimation of these properties is a good
means for component developers and architects to predict
the quality of their produced artifacts. To realize this aim,
they need some dedicated metrics. Several (product level)
metric or set of metrics have been proposed specifically for
the component paradigm [1], [4], [5], [6], [7]. But as stated
by [8] in their survey: i) there is no consensus yet on many of

the concepts and elements that are measured by these metrics,
ii) inconsistencies in component definitions can frequently be
found in many studies, iii) they lack a statistically significant
experimental validation and a set of experimental data to
provide better insight into their use. Last, but not least,
these metrics are not supported by code analysis tools yet.
Thus, developers and architects do not (and cannot) use these
metrics. Without such product level metrics, an accurate
planning and control of the development process are more
difficult to achieve.

In this paper we propose a pragmatic approach to help
developers and architects to measure some of the essential
structural properties that affect the quality of their components
and component-based applications in the case of the OSGi
framework. In the literature, there is some consensus that
component metrics require a different approach from that of
structural software or object-oriented metrics. We do not
deny the need to provide specific answers to some aspects
of the component world such as the measure granularity, the
black-box vision and the concept of interface. But in the
absence of dedicated standards and tools, we advocate that
it is possible and appropriate, in the OSGi framework, to rely
on some well-known object-oriented metrics. We will show
that some of them can provide valuable information both at
the component level (for the developer) and at the application
level (for the architect). Furthermore, these metrics have
the advantage of being well-defined, the subject of numerous
empirical validation and so well-understood, and especially to
be computable by most of the code analysis tools.

Thus, we have conducted an experimental study on 10 OSGi
applications in order to identify the object-oriented metrics
that are useful for this component model. Based on this
experimentation, we also propose to quantitatively draw what
are an actual typical component and application according to
the internal properties pointed out by the literature. This gives
us the opportunity to discuss on the importance and the respect
of some of these properties by OSGi developers.

The remainder of the paper is organized as follows: Sec-
tion II describes the method used to identify the object-
oriented metrics suitable for component-oriented development.
In section III we give the results of our experimentation
accompanied with some analysis. We discuss the obtained



results in section IV. Section V describes the validity and
the limits of our study. Section VI describes the related work
followed by a conclusion in section VII.

II. APPROACH

We want to prove that object-oriented metrics can be useful
in the component paradigm. Our demonstration consists of
the following steps:

1) Select a component model in which the object-oriented
metrics can be calculated using available code analysis
tools.

2) Select a representative sample of component-based ap-
plications in the chosen component model.

3) Identify object-oriented metrics that may be candidate
(meaningful at the component and application level).

4) Apply candidate metrics on the sample.
5) Use statistical methods to determine the significant (sub-

set of) metrics among the candidates.
In the following, we give the applied criteria to select the

component model, the sample of component-based applica-
tions, we describe how we select the candidate metrics and
finally, we detail the used statistical method.

A. Component Model Selection

Because we want to be able to use "as is" the available
code analysis tools, it is necessary that we place ourselves in
a component model based on the object paradigm. In such
component models, according to [9] a component may be
considered as a group of classes that collaborate to provide
a system functionality. Some of these classes are "public"
(exported), so they form the provided interfaces of the com-
ponent. Some classes are defined elsewhere (imported), so
they form the required interfaces of the component.

Among all the existing component models (a survey can be
found in [10], [11]), several are based on the object paradigm.
To select the appropriate component model, we admit that the
part of the code that is specific to the component framework
should not impact significantly on measures targeting the code
that is specific to the component. To meet these criteria, we de-
cided to choose only applications developed within the OSGi
component model. Indeed, in OSGi, except business classes,
there are no additional classes to define the component.

In OSGi, a component is known as a bundle. Each bundle
is defined by a single JAR file which packages the module
(code and resources) and a manifest file which contains the
extra metadata. In fact, the logical bundle is equated with the
physical bundle JAR file (the module) [12]. The manifest file
is used to describe the bundle’s modularity characteristics and
to specify mainly the exported packages that are meant to be
shared and conversely the imported packages that it required.

B. Application Selection

We set the following selection criteria on candidate OSGi
applications:

1) Provide an access to their source code. In fact, the used
metrics (see below) require access to the source code.

2) Cover different domains to avoid the characteristics
related to a given application domain.

3) Different sizes (number of components in an application
and number of classes in a component).

4) Belonging to different development teams to avoid the
characteristics associated with habits and good practices
common to the same team.

Using these criteria we have selected 10 applications. Ta-
ble I provides a short description of these applications. They
are all open-source OSGi projects and developed in JAVA.

Table I: Selected applications

Application Description Nb. of
compo-
nents

Code
Size

(KLOC)

version

MAT Eclipse Memory Analyzer Tool 13 86 1.2.0

STEM Spatiotemporal Epidemiological
Modeler Tool

15 35 1.4.0

Eclipse E4 Eclipse Platform 25 20 4.0

SCOUT Framework for modern service
oriented business applications

27 207 3.8.0

IMP IDE Meta-Tooling Platform 33 117 0.2.1

G-Eclipse Framework for Grid and Cloud
Computing

42 168 1.0

Equinox OSGi-Framework 50 96 3.3

BIRT Business Intelligence and Report-
ing Tools Project

93 1003 3.7.0

OSEE Framework Open System Engi-
neering Environment

98 290 0.9.6

MoDisco Eclipse-GMT project 115 510 0.10.0

As we can see, the set of selected applications covers a
fairly wide spectrum of application domains and has different
sizes (from ∼ 20 KLOC to >1,000 KLOC and from 13 to 115
components). All these projects provide an access to their
source code via a shared CVS-based software repository.

C. Candidate Metrics

Among the several dozen of existing object-oriented met-
rics, we consider only metrics which consider the class as the
minimal granularity level. This is due to our assumption which
considers that components are built by reusing mostly some
existing classes. Thus, we do not need metrics measuring
the internal structure (class size, class cohesion, method
complexity, etc.) of a class.

In particular, work on restructuring object-oriented appli-
cations into component-oriented applications [13], [14], [9]
indirectly suggest some object-oriented metrics related to two
main properties:

• Internal cohesion: a good component should include
classes that interact with each other to provide a specific
set of functionalities. Therefore, the strength of these
interactions is called cohesion.

• Coupling: One of the strengths of component-based de-
velopment is that its components are loosely coupled and
can be combined to build applications. Weak coupling
promotes maintainability and reusability of components.



Other properties were also suggested to assess the quality
of identified components in an object-oriented application
(non-belonging to a cycle, semantic cohesion, granularity,
etc.) [9]. These properties were initially used in the evaluation
of packages but they also can be applied at the component
level. We select all the object-oriented metrics related to this
properties.

In the following subsections, we present the selected candi-
date metrics organized according to their scope (component
level or application level). Thus, a metric may target the
internal organization of a component (for instance its cohe-
sion), its interfaces or its dependencies with other components
(coupling). The two first cases concern the component scope
while the last case concerns the application scope. Note that
the first and second case should be interested by the component
developers. The second and third case should be of interest
for the architect.

1) Component Internal Metrics: Metrics that we classified
as internal are those relating to its size or its internal depen-
dencies.

a) Size Metrics: Metrics concerning size aspects consti-
tute an important checking tool as the size and the organization
of a component have an obvious impact on its comprehension
and thus on its maintainability [15]. The selected metrics for
component size aspects are summarized in the table II.

Table II: Component’s size Metrics

Abbr. Definition
NP Total number of contained packages.

Na Total number of contained abstract classes or interfaces.

Nc Total number of contained classes.

In this category of metrics we might have integrated the LOC
(total number of lines of code) metric. But as our granularity
is the class, the Nc metric covers this aspect of size. All these
metrics are basic measures that several existing tools allow us
to measure at the component granularity.

b) Internal Dependency Metrics: The internal depen-
dency metrics are those that inform the relationship between
the component’s internal elements.

According to [16], local dependencies can have a global
effect on testability of the system. The testability of a
component has a direct impact on its maintainability. For
component granularity, local dependencies means component
internal dependencies. Table III summarizes the object-
oriented internal dependency metrics that we believe are
relevant to the component paradigm.

We used the LTD metric to measure interaction between
classes within a component and the ACD metric, proposed
by Lakos [17], to measure the dependency between these
classes. Martin’s cyclic package metric (PDC) was proposed
for object-oriented design [18]. It intends to verify that there
is no cycle between packages. In fact, packages related with
cycles are more difficult to maintain. We estimate that this
metric is interesting for software component, especially in the

Table III: Component’s Internal Dependency Metrics

Abbr. Definition
LTD Total number of type dependencies (in and out) between

all contained classes.

PDC Total number of cyclically coupled packages contained in
a component.

ACD Average of the number of contained classes that each
contained class directly and indirectly depends on.

ACD =
1

Nc

Nc∑
i=1

CDi (1)

with: CDi = the number of classes that the class i depends on
directly and indirectly. Nc = Number of classes in the component

RC the cohesion between the component’s classes.

RC =
LTD

Nc
(2)

case where exported packages (case of OSGi) are contained
in the cycles. Relational cohesion metric (RC), defined by
Larman [19], measures how strongly the elements in object
design are related. In our case, elements are classes contained
in the component. Thus, RC gives the average dependency of
a component’s classes. They should be strongly related to get
a high cohesion of their component.

2) Component Interface Metrics: Component interface
metrics are those which concern only the visible part of the
component. Table IV summarizes the metrics from object-
oriented paradigm that we identified as related to component
interfaces.

Table IV: Interface Metrics

Abbr. Definition
ExpP Total number of exported packages.

Abs Abstractness only for exported packages.

Abs =
1

n

n∑
i=1

Na(i)

Nc(i)
(3)

with: n = Number of exported packages in the component

In the case of OSGi applications, exported packages are
explicitly defined in the component’s Manifest file. This
allows us to check the total classes of the component to be
shared with other components.

The Abstractness (Abs) metric proposed by Martin [18] for
object-oriented software evaluation will be applied only on
exported packages. This metric gives an information on the
quality of a component’s interfaces. Indeed, a well designed
component is supposed to export only interfaces (in Java
meaning) or at least abstract classes.

3) Application Metrics: Application level metrics are those
that mainly concern the relationship between the components
of an application. In other words, these metrics measure
the external dependencies of components in the context of
their application. According to [20], dependencies reflect the



potential for a component to affect or to be affected by the
other components from the same system.

In table V, we list the metrics from object-oriented paradigm
whose scope has been adapted to the component level in order
to measure its external dependencies.

Table V: Application Metrics

Abbr. Definition
RTD Total number of type dependencies (in and out).

CA Afferent Coupling gives the total number of components
that use the measured component (Incoming dependencies).

CE Efferent Coupling gives the total number of components
that are used by the measured component (Outgoing de-
pendencies).

Dep Number of components from which the component under
discussion directly and indirectly (transitively) depends
upon (including itself).

The two metrics CA and CE measure respectively incoming
and outgoing dependencies between components. They allow
us to measure the coupling degree between components of the
same application. The coupling degree is the most important
characteristic in the context of reuse [21]. Indeed, a high
coupling between the components implies that any change on
one of them may affects many others. The Dep metric is
an object-oriented metric proposed by Lakos [17]. We have
adapted it to the component context in order to highlight
the transitive dependencies between components of a same
application.

The RTD Metric gives the number of dependencies (in and
out) of classes located inside a component with classes that
are outside it (in other components). In the case of OSGi, only
classes belonging to packages that are exported or imported are
concerned. Thus, this metric measures the level of interaction
of a component in an application.

D. Used Statistical Method

We use the descriptive statistics to study the distribution
of each candidate metric on each selected application. This
statistical method provides simple summaries about the sample
(set of components for each application) and the measures
(candidate metrics). As we study the metrics individually, we
use the univariate analysis.

Thus, our study involves the following steps:
1) We measure the central tendency of the components.

In statistics, the term "central tendency" relates to the
way in which quantitative data tend to be distributed
around some values [22]. In our case, it reflects the
tendency of the components and allows us to determine
a "typical" or a "central" component around which
the other components tend to congregate. The two
traditional measures of central tendency, that we used,
are mean as arithmetic average and median as middle
score.

2) We use standard deviation which is one of the most
frequent measures of spread. It is useful to refer to the
variation to validate the emerged results.

3) We analyze the distribution’s shape of each variable
(metric). For this aim, we first use Skewness which
is a measure of the asymmetry of the distribution. It
indicates whether the data is symmetrical or not around
the mean and describes the dispensing side with the high
frequency. If data is symmetrical (skewness around 0)
then we calculate normalized kurtosis to measure the
degree of peakedness of the distribution. In our case,
the peakedness property means that there is an excess
frequency of components around the central component.

Finally, to illustrate our data’s distribution we use BoxPlot
representation. It is an understandable and useful graphically
way to summarize a collection of data. It is a representation of
the median, quartiles and variables which might be considered
outliers.

III. RESULTS AND ANALYSIS

We apply the descriptive statistics on each of the 13 metrics
to the ten projects. We present the results according to the
internal component, interfaces and application.

A. Component Internal Metrics

1) Size Metrics: Table VI gives measures of metrics related
to the size of components. Concretely, we want to highlight
the management aspect of the component.

Table VI: Descriptive statistics for component’s size metrics
(case of Equinox)

Metric Mean Median std. Dev. skewness Kurtosis
NP 3.1 2.5 2.43 1.54 2.29

Na 3.96 1 8.60 5 28.49

Nc 26 15 34.74 3.31 14.66

The important difference between the median and the mean,
in the case of Na and Nc, has a sense for the characteristics
of a distribution. The mean is affected by the outliers, thus
making its value higher than the median. For these same two
metrics the distribution is skewed strongly to the left with a
very high and stronger peak, with the higher standard deviation
values. These extremely high values can be explained by
their heavy tail. There are many components with very few
entities having either few abstract classes and concrete classes.
Table VI provides an additional information on the package
within component. For the NP metric, the mean is so close
to the median and both skewness and kurtosis values are low,
which leads us to conclude that the mean is significant and the
NP in the majority of the components of Equinox application
is close to the value of the mean. We presented the results for
one application (Equinox), but this result is similar for other
applications. In the following, we find this similarity through
a graphical representation of the distribution of these metrics
on these applications.

• Similarity between the applications
Figure 1 correspond to the size metrics distributions: The
asymmetry of the distributions of Na and Nc (respectively



Figure 1: Component’s Size Metrics Distribution

(b) and (c)) is very important for the majority of applications:
values are strongly spread towards large values. The lower
values are highly concentrated compared to the rest of the
distribution.

Overall, for the NP metric, the median value of the metric
is approximately the same for different applications. The
medians are near to the value of three packages per component.
So, the distribution of packages across components is very
similar in the different applications whatever their sizes.

2) Internal Dependency Metrics: Table VII summarizes
dependencies metrics within components of an application
(Equinox). It shows how classes and packages are connected
within a component.

Table VII: Descriptive statistics for component’s internal de-
pendency metrics (case of Equinox)

Metric Mean Median std. Dev. skewness Kurtosis
LTD 49.20 17.5 119.55 5.73 36.43

PDC 0.86 0 1.48 2.62 9.90

ACD 4.06 2.56 6.68 6.04 39.93

RC 1.25 1.04 0.88 1.13 1.11

The relationship between classes in a component seems to
be quite complex for some components. Indeed, the variation
for LTD is very large. However, the interpretation of central
tendency measures (mean and median) becomes unreliable in
presence of highly skewed distributions.

Over the half of the components do not hold packages
forming cycles (median equals 0). But, the PDC mean is 0.86
which confirms that there are components holding packages
forming cycles. More precisely, there are few components
which hold more than one cycle (standard deviation is 1.48).

RC have a low standard deviation equal to 0.88 with
skewness and kurtosis near to 1. So, for RC the median
is significant and most components have values around the
median. In theory, the cohesion of a component should be
high which means the contained classes should be strongly

related. Given the importance of the RC metric, practitioners
have defined thresholds. For example, for object-oriented
paradigm (which is the paradigm used inside the component),
the NDepend1 tool strongly recommends that the value of
this metric should be between 1.5 and 4. According to this
recommendation, we can conclude that Equinox components
are less cohesive.

• Similarity between the applications
Through Figure 2 we study the similarity between the

applications concerning metrics on internal dependencies.
The observations for LTD (a) are broadly the same as for

MAT application, distribution is asymmetrical and the values
are highly spread towards large values. The same finding for
the metric ACD (c). We note also that the MAT application
is different at the higher dispersion values. Boxplots of
the RC (b) show a fairly symmetrical distribution and that
confirm results show for Equinox concerning the cohesion
of components. PDC (d) has a very strong spread to higher
values with the absence of the cycle for 50 % of individuals
in the most of the applications and by against the presence of
outliers.

B. Interface Metrics

Table VIII provides additional information on the package
within component. ExpP and Abs have a skewness nearest to

Table VIII: Descriptive statistics for Interface metrics (case of
Equinox)

Metric Mean Median std. Dev. skewness Kurtosis
ExpP 2.52 2.0 2.03 1.17 1.16

Abs 0.167 0.125 0.148 1.05 0.36

a normal distribution. Since the mean and median are very
close and both are near the peak, then the measure of central

1Metrics definitions and recommendations implemented in the NDepend
tool (http:www.ndepend.com).



Figure 2: Component’s Internal Dependencies Metrics Distribution

location is significant. This means that the median represents
correctly the set of components from this application.

• Similarity between the applications
We can notice the asymmetry of the ExpP distributions (a):
values are strongly spread towards low values for the majority
of applications, by against a symmetrical distribution of ab-
stractness (b) and the value of the median is very similar and
so low for all applications.

C. Application Metrics

The final set of measurements concerns external dependen-
cies. So, table IX shows the number of coupling between
classes belonging to different components (RTD) and between
components (CA, CE and Dep) for the case of Equinox.
We can easily observe that the values of coupling between
components (CA and CE) are low (median equals 1 for CE
and 2 for CA). Indeed, over the half of the components do
not use more than two components and are not used by more

Table IX: Descriptive Statistics for Application Metrics (case
of Equinox)

Metric Mean Median std. Dev. skewness Kurtosis
RTD 109.8 61.5 115.76 1.33 0.83

CA 2.52 2 2.44 1.23 1.80

CE 2.54 1 5.26 3.16 9.71

Dep 4.96 4 4.34 1.67 3.14

than one other component. However, the variation is quite
high for both metrics mentioned above, especially for CE (the
standard deviation is equal to 5.26). We can notice that the
distribution for CE has extremely high values for skewness
and kurtosis. Therefore, there are many components that are
not used. However, there are few components that are very
coupled with the others.

For the RTD metric the values of skewness and kurtosis



Figure 3: Interface Metrics Distribution

approach to 0 and this means that the value of median is very
close to the peak and so, the value of central tendency of RTD
metric is significant.

• Similarity between the applications

In figure 4 we can see the distribution of CA and CE
respectively (a) and (b). We can show that there are many
extreme values for CE. For example, a single component
in Equinox application was used by 15 other components.
Therefore, this component have too much responsibility and
its changeability raises many problems. For the RTD (d), the
lower values are highly concentrated compared to the rest of
the distribution for the majority of applications.

D. Significance of used metrics

The majority of metrics of class granularity (Na and Nc
(component size metrics), LTD and ACD metrics (for compo-
nent internal dependencies) and RTD (metric for the applica-
tion)) have similar distributions: an asymmetrical distribution
spread by the higher values, a strong condensation to very
low values and many outliers. Thus, these metrics taken alone
seem not significant, but when we combine some of them
they become significant. This is the case of LTD and Nc.
Indeed, the most significant metric for the class granularity is
the standard metric Rc which is a combination of LTD and
Nc.

This granularity allowed us, in this preliminary study, to
have a vision on the practices of developers in reality. But
remains difficult to interpret in the daily of developers, with
the exception of the metric Rc, and can’t consider that the
class granularity is interesting for the component paradigm.
We admit that a good adaptation of these metrics makes them
more interesting.

By opposite, metrics of package granularity are significant.
Indeed, the study of the distribution of the metrics NP,
ExpP, Abs and PDC shows that they are significant. Indeed,
the results for these metrics have a symmetrical distribution
despite of the existence of some outliers. Thus, the metric of
package granularity seem interesting to study the quality of
the components.

Similarly, metrics of component granularity are also signif-
icant: CA, CE and Dep metrics have distributions that allow
us to see the importance of a component and its degree of
dependencies with the other components and consequently, it
helps to improve reusability.

IV. DISCUSSION

We discuss the results of our experimentation according to
two points of view: the component developer and the architect
who reuses developed components for building applications.
The former is concerned by component the internal and
the interface metrics while the latter is concerned by the
application metrics.

A. Component Developer Point of View

Figure 1 shows that few number of components hold a big
value of Nc and Na while the other components are very
lightweight. So, the former group of components seems to
be the core of the application. But their large size implies low
maintainability. This often happens when legacy application
is restructured into component-based application. Indeed,
developers find difficulties in adjusting the granularity of core
components of the application.

If we examine the distribution of the PDC metric (boxplot
(d) of Figure 2 ) we can notice that all applications contain



Figure 4: Application Metrics Distribution

components having cycles. Therefore, one of the two most im-
portant criteria to ensure the reusability of a component wasn’t
observed. But, with a median equal to 0 for most applications
(9/10) means that more than half of their components have no
cycles.

The general definition of a component specifies that the
latter must provide a unique functionality (a restricted number
of exported methods). In practice, it is unrealistic to expect
that all components export a single functionality. This defini-
tion should be respected by the majority of the components
of an application. But, as shown in Figure 3 there is a lot of
extreme values for the most of applications (eg. 65 exported
packages for the same single component in Birt Application).
Therefore, developers should pay attention to packages that
are intended to be used by other components. Exporting a
large number of packages may mean that the component has
multiple functionalities. It would be better to decompose it
into several components [12].

In addition, we can see that the abstractness is very similar
for all exported packages in all applications. In fact, the most

are ranged from 0 to 0.3 which means that they are more
concrete than abstract. However, to avoid the interdependence
between components (for good reusability) exported packages
must contain only definitions (not concrete classes).

From the remarks noticed above, it is clear that the develop-
ers of the selected component-based applications have ignored
the inside quality of components. They do not respect rules
such as the component must be a cohesive entity and without
cycles formed by its constituents [17].

B. Architect Point of View

From Figure 4 we can notice that the values of coupling
between components (CA and CE) are low for all applications.
Furthermore, by analyzing the median number of packages
exported by component (ExpP), the average number of classes
per component (Nc) and the RTD metric, we can conclude
that the number of method calls between exported packages
remains relatively high (about 100 calls per package). This
demonstrates a good application design because despite a weak
coupling between the components, existing connections have a



good flow of communication. This means that the components
were well used despite their poor internal design.

V. THREATS TO VALIDITY

This empirical study has several threats that may restrict the
generality and limit the interpretation of our results. So, in the
following we discuss the internal and external validity for the
selected systems and the selected metrics.

A. Internal Validity

The measurements of chosen metrics were performed with a
well-known tool (SonarGRaph) and therefore for which there
is a real policy of correctness and bug tracking. It is therefore
reasonable to assume that the measures are consistent with
the definitions of metrics. That is to say that a different
tool implanting the same definitions of metrics obtain the
same values. However, for some metrics, among those we
selected, there are some variations in their definitions and
implementations. Thus, we can not ensure that the use of
another tool for the calculation of these metrics lead to the
same results that we have obtained.

In addition, some metrics have been achieved thanks to the
structuring of applications required by the OSGi framework.
This is the case for example for the Abs metric (Abstractness
only for exported packages). Indeed, the framework clearly
identifies the exported packages with the manifest file. But
the identification of component interfaces, through their source
code, may be more dificult for another framework.

B. External validity

Our study focuses on 10 OSGi applications. These applica-
tions were chosen to represent different sizes, different devel-
opment teams and different application areas. We have some
confidence in the conclusions on the existence of common
features regardless of the choice of applications. However
all applications are developed with Java. Thus, we can not
guarantee the same result for another object-oriented language
(eg C + +). Indeed, the structural aspect of Java can facilitate
the identification of common properties for components, as it
can hide others.

In addition, this study is devoted exclusively to the OSGi
framework. It has features that differentiates it from other
framework based also on object-oriented languages. For exam-
ple, the concepts of container and the possibilities of reflexivity
in Fractal framework or the additional classes required by
EJB framework are likely to change the way a component
is structured. This can obviously cause a significant change
in the ranges required for certain metrics. This study is
therefore probably not generalizable to frameworks defining
the contours of a component and their relationships very
different from that of OSGi.

VI. RELATED WORK

Quality for component-based applications is a relatively new
field of study. Several work have appeared in the last few
years in this field. But, it is clear that there is no consensus

on properties for this kind of software. These work concerns
either metrics for component-based applications or quality
models for component-based applications.

A. Metrics

We can distinguish different types of study that relies on
metrics dedicated to individual component and their assembly
in general. Some studies focus on metrics calculating only
the external properties of a component or a component-
based application, not taking into account component internal
properties.

For instance, Washizaki et al. [1] measured the reusability of
black-box components.They defined six metrics for measuring
understandability, adaptability, portability and reusability of a
JavaBeans component. Similarly, Wei et al. [5] proposed a
set of metrics to evaluate the architecture of a component-
based software system. This set of metrics was defined using
the Component Assembly Graph. These studies disregard the
internal code. However, some studies such as [23], [4] have
emphasized the importance of the internal code for a compo-
nent. They consider that internal design can not be simply
ignored since some internal attributes of a component may
provide an indirect measurement of its external characteristics.

Thus, some work propose to take into account the internal
structure of components [6], [7], [24]. For instance, Cho et
al. [6] provided new metrics for measuring the complexity,
customizability and reusability of software components. One
of these metrics is the CPC metric, which is the aggregation of
classes, abstract classes, interfaces and complexity classes and
methods. Likewise, Choi et al. [7] proposed new component-
based cohesion and coupling metrics applying strength of
dependency between classes.

Nevertheless, some studies are interested in the quality of
the interfaces of software components whilst requiring access
to the implementation and hence, suggested some metrics to
measure the properties of the component interface [25], [26].

All these different types of study are useful for developers,
since they must analyze not only the quality of the internal
(hidden) structure of a component but also the quality of its
visible parts.

Right now, there is no evidence that any of the proposed
metrics can predict the component quality effectively [8]. So,
these proposed metrics need systematic studies to determine
their validity and relevance with real information.

B. Quality Models

Several quality models specific to software components and
to component-based applications have been defined. Most of
them are based on the ISO 9126 quality model, with some
changes to make them suitable to the component-oriented
paradigm. In this work, the authors often needed to define new
metrics in order to build their model [2], [27], [28], [1]. But
it was pointed out in [29], any of them has become accepted
as "standard" and most of them have not yet been validated.

Our approach is not based on a specific quality model.
We just selected a suite of metrics that can provide guidance



to developers on the code’s quality of their component or
to architects on the quality of their application. Thus, our
proposal can be complementary to the work on quality models.

VII. CONCLUSION

The primary objective of the study presented in this paper
is to show that it is possible to use metrics from object-
oriented paradigm in order to measure some characteristics
of component-oriented applications built upon object-oriented
technology. We have shown that for component-oriented
applications built with the OSGi framework. We proposed
metrics for each component-oriented application development
actors (component developer and application architect). But
we believe that this study is substantially reproducible for other
frameworks for building component-oriented applications. In-
deed, the metrics which measure has been facilitated by
the OSGi framework, their measure within other frameworks
remains feasible.

By separating the metrics related to the construction of
components from these metrics related to the construction of
applications we highlighted another aspect of the practice of
CBSE: the architects (the component users) seem to know and
observe the component-oriented concepts, while component
developers seem far away. But the context for the latter was
not easy. Indeed, the use of object oriented approach has
obvious consequences. Often to construct a component, the
developer reuses existing classes with their packages. Thus,
she/he undergoes some internal measures without being able
to influence them. The problem is that a component can
be considered as a package, but the mode of structuring a
component is quite different from that of a package.

We believe we have initiated the construction of a repository
of well-validated metrics from object-oriented paradigm that
can be used in case of component-oriented paradigm when
it is implemented upon object-oriented technology. Thus,
further studies can complement this repository. Our future
work will involve the use of the metrics identified by this work
to propose some prediction models for component properties
such as maintainability and reusability.

REFERENCES

[1] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A metrics suite for
measuring reusability of software components,” in IEEE METRICS,
2003, pp. 211–.

[2] M. F. Bertoa and A. Vallecillo, “Quality attributes for cots components,”
2002.

[3] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Software engineering
metrics for cots-based systems,” Computer, vol. 34, no. 5, pp. 44–50,
2001.

[4] K. K. Chahal and H. Singh, “A metrics based approach to evaluate
design of software components,” in ICGSE, 2008, pp. 269–272.

[5] G. Wei, X. Zhong-Wei, and X. Ren-Zuo, “Metrics of graph abstraction
for component-based software architecture,” in Computer Science and
Information Engineering, 2009 WRI World Congress on, vol. 7, 31 2009-
April 2, pp. 518–522.

[6] E. S. Cho, M. S. Kim, and S. D. Kim, “Component metrics to measure
component quality,” in APSEC, 2001, pp. 419–426.

[7] M. Choi, I. J. Kim, J. Hong, and J. Kim, “Component-based metrics
applying the strength of dependency between classes,” in SAC, 2009,
pp. 530–536.

[8] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and M. A. Jabar, “A
mapping study to investigate component-based software system metrics,”
Journal of Systems and Software, vol. 86, no. 3, pp. 587–603, 2013.

[9] S. Allier, H. A. Sahraoui, S. Sadou, and S. Vaucher, “Restructuring
object-oriented applications into component-oriented applications by
using consistency with execution traces,” in CBSE, 2010, pp. 216–231.

[10] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans.
Software Eng., vol. 33, no. 10, pp. 709–724, 2007.

[11] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, “A
classification framework for software component models,” IEEE Trans.
Software Eng., vol. 37, no. 5, pp. 593–615, 2011.

[12] S. M. Richard S. Hall, Karl Pauls and D. Savage, “Osgi in action creating
modular applications in java,” 2011.

[13] S. Chardigny, A. Seriai, D. Tamzalit, and M. Oussalah, “Quality-driven
extraction of a component-based architecture from an object-oriented
system,” in CSMR, 2008, pp. 269–273.

[14] S. D. Kim and S. H. Chang, “A systematic method to identify software
components,” in APSEC, 2004, pp. 538–545.

[15] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring
maintainability,” in QUATIC, 2007, pp. 30–39.

[16] S. Jungmayr, “Design for testability,” in In Proceedings of CONQUEST
2002, 2002, pp. 57–64.

[17] J. Lakos, “Large-scale C++ software design.” Addison-Wesley, 1996.
[18] R. C. Martin, “Agile software development: principles, patterns, and

practices,” 2003.
[19] C. Larman, “Applying uml and patterns,” 2002.
[20] M. Vieira and D. J. Richardson, “Analyzing dependencies in large com-

ponent based systems,” in Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, Edinburgh, UK, 2002.

[21] B. Zeiss, D. Vega, I. Schieferdecker, H. Neukirchen, and J. Grabowski,
“Applying the iso 9126 quality model to test specifications - exemplified
for ttcn-3 test specifications,” in Software Engineering, 2007, pp. 231–
244.

[22] Y. Dodge, The Oxford Dictionary of Statistical Terms , Oxford, 2003.
[23] B. Meyer, “The grand challenge of trusted components,” in ICSE, 2003,

pp. 660–667.
[24] E. Lee, B. Lee, W. Shin, and C. Wu, “A reengineering process for

migrating from an object-oriented legacy system to a component-based
system,” in COMPSAC, 2003, pp. 336–341.

[25] O. P. Rotaru and M. Dobre, “Reusability metrics for software compo-
nents,” in AICCSA, 2005, p. 24.

[26] M. A. S. Boxall and S. Araban, “Interface metrics for reusability analysis
of components,” in Australian Software Engineering Conference, 2004,
pp. 40–51.

[27] A. Alvaro, E. Almeida, and S. Meira, “Towards a software component
quality model,” in Submitted to the 5th International Conference on
Quality Software, 2005.

[28] A. Rawashdeh and B. Matalkah, “A new software quality model for
evaluating cots components,” Journal of Computer Science, vol. 2, no. 4,
pp. 373–381, 2006.

[29] S. Kalaimagal and R. Srinivasan, “A retrospective on software com-
ponent quality models,” ACM SIGSOFT Software Engineering Notes,
vol. 33, no. 6, pp. 1–10, 2008.


