
HAL Id: hal-00912032
https://hal.science/hal-00912032v1

Submitted on 1 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composition-centered architectural pattern description
language

Tu Minh Ton That, Salah Sadou, Flavio Oquendo, Isabelle Borne

To cite this version:
Tu Minh Ton That, Salah Sadou, Flavio Oquendo, Isabelle Borne. Composition-centered architectural
pattern description language. 7th European Conference on Software Architecture - ECSA, Jul 2013,
Montpellier, France. pp.1-16. �hal-00912032�

https://hal.science/hal-00912032v1
https://hal.archives-ouvertes.fr


Supporting architectural pattern language using

structural properties

Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

Université de Bretagne Sud
IRISA

Vannes, France
{minh-tu.ton-that,Salah.Sadou,Flavio.Oquendo}@irisa.fr

Abstract. Architectural patterns(styles) are important artifacts con-
taining specialized design knowledge to build good-quality systems. Com-
plex systems often exhibit several architectural patterns in their design
which leads to the need of architectural pattern composition. Unfortu-
nately, information about the composition of patterns tend to be va-
porized right after the composition process which causes problems of
traceability and reconstructability of patterns.
This paper proposes a pattern description language that first, facilitates
several types of pattern merging operation and second, allows the trace-
ability of pattern composition. More specifically, the approach consists
of a proper description of pattern that supports composition operations
and a two-step pattern design process that helps preserve pattern com-
position information.

1 Introduction

Problems:
1. Patterns exist in complex forms which require the combination and reuse of
other patterns. In the literature, the supports for pattern composition consist
of using merging operators that are different from the pattern language which
prevent the reusability as well as the composability of patterns.
Main contributions:
1. Give patterns and merging operators first-class status.
2. Support the design of hierarchical patterns

2 Problem statement

Architectural patterns tend to be combined together to provide greater support
for the reusability during the software design process. Indeed, architectural pat-
terns can be combined in several ways. A pattern can be blended with, connected
to or included in another pattern. To highlight the existing problems, we first
show an example for each case of architectural pattern composition and then
point out issues drawn from them.



2 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

2.0.1 Blend of patterns By observing the documented patterns in [6,7], we
can see that there are some common structures that patterns share. For example,
the patterns Pipes and Filters and Layers share a structure saying that their
elements should not form a cycle.

Fig. 1. Pipes and Filters

If we consider this type of structure as a sub-pattern, we can say that the pat-
tern Pipes and Filters is composed of two sub-patterns (see Figure 1): The first
called Sequential pattern consists of Filter components linked together by Pipe
connectors and the second called Acyclic pattern consists of Acylic components
in a way that no cycle can be formed from them. Thus, Pipes and Filters is
actually the product of the blend of these two patterns. But unfortunately, it is
impossible to reuse the Sequential pattern or the Acyclic pattern alone because
they are completely melted in the definition of the Pipes and Filters pattern.

2.0.2 Connection of patterns A lot of documented patterns formed from
two different patterns can be found in [7,2]. For instance, the pattern Pipes and
Filters can be combined with the pattern Repository to form the pattern called
Data-centered Pipeline as illustrated in Figure 2.

Fig. 2. The Data-centered pipeline pattern



Supporting architectural pattern language using structural properties 3

As we can observe, the two patterns are linked together by a special connector
which serve two purposes at the same time: convey data from a Filter and access
to the Repository. But once the composed pattern built, it is difficult to identify
the sub-patterns used in its constituent patterns.

2.0.3 Inclusion of patterns Architectural patterns themselves can help to
build the internal structure of one specific element of another pattern. In [2],
we can find several known-uses of this type of pattern composition. An example
where the Layers pattern becomes the internal structure of Repository pattern is
shown in Figure 3. Indeed, when we have to deal with data in complex format,
the Layers pattern is ideal to be set up as the internal structure of the repository
since it allows the process of data through many steps.

Fig. 3. Layers as internal structure of Repository

Despite the existence of this type of composition, the proposed works have
not given the support for it.

2.1 Discussion

As we can observe from the example of sub-section 2.0.2, the Pipes and Filters
pattern is used as a constituent pattern to build the Data-centered pipeline
pattern. When we look at the Pipes and Filters pattern in this view, we have
no idea that it is composed from other patterns as shown in Example 2.0.1.
We think the fact that the border between constituent patterns of a composed
pattern is blurred can reduce greatly the pattern comprehensibility. Moreover,
since the composed patterns may be then used to build another pattern, knowing
the role and the original pattern of every element in the pattern becomes really
essential.



4 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

Another issue to be taken into consideration is the reconstructability of com-
posed patterns. In the example of sub-section 2.0.1, when one of the two pattens
forming the Pipes and Filters pattern changes, we should be able to propagate
the change to the Pipes and Filters pattern. Moreover, since the Pipes and Filters
pattern has been changed, the Data-centered Pipeline in which it participates
in Example 2.0.2 must be also reconstructed.

In the literature, the already proposed approaches such as [12,3,8] present
pattern merging operators in an ad-hoc manner where information about the
composition of patterns is vaporized right after the composition process. Thus,
they totally ignore two aforementioned issues.

To realize the inclusion merging operation like one presented in the exam-
ple from sub-section 2.0.3, the pattern description language should provide the
recursive definition for pattern. More specifically, when specifying an element
of a pattern we should be able to add other patterns inside to characterize the
element’s internal structure. To our knowledge, the proposed pattern languages
have not give the optimal solution to this type of hierarchical composition.

In summary, the examples shown above highlight three problems to solve:

1. Traceability of constituent patterns: One should be able to trace back to
constituent patterns while composing the new pattern.

2. Reconstructability of composed patterns: Anytime there is a change in a con-
stituent pattern, one should be able to reuse the merging operators to reflect
the change to the composed pattern.

3. Support for hierarchical pattern composition: While constructing a pattern,
one should be able to build the internal structure of an element by including
another pattern.

3 General Approach

We propose the process of constructing patterns including two steps as illustrated
in Figure 4. The first step consists of describing a pattern as a composition graph
of unit patterns. Thus, the pattern comprises many blocks, each block represents
a unit patterns, all linked together by merging operators.

The second step consists of refining the composed pattern in the previous step
by concretizing the merging operators. More specifically, depending on which
type of merging operator (see Section 4.1), a new element is added to the com-
posed pattern or two existing elements are mixed together. On the purpose of
automating the process of pattern refinement, we use the Model Driven Archi-
tecture (MDA) approach [17]. Each pattern is considered as a model conforming
to its meta-model in order to create a systematic process thanks to model trans-
formation techniques. Thus, each refined pattern is attached to a corresponding
pattern model from step 1 and any modification must be done only on the latter
at step 1. At this stage, we offer the architect a pattern description language
based on the use of classical architectural elements, architectural patterns and
pattern merging operators.



Supporting architectural pattern language using structural properties 5

Fig. 4. Overall Approach

We can see that through this two-step process, anytime we want to trace back
the constituent patterns of a composed pattern in the second step, we can easily
find them in its corresponding pattern model. Thus, we solve the traceability
problem pointed out in the previous section.

We solve the second problem (reusability of merging operators) by the fact
that merging operators are first-class entities in our pattern description lan-
guage. In other words, merging operators are treated as elements of the pattern
language where we can manipulate and store them in the pattern model like
other elements. Therefore, the composition of patterns is not an ad-hoc opera-
tion but a part of pattern. This proposal facilitates significantly the propagation
of changes in constituent patterns to the composed pattern. Indeed, the latter
can thoroughly be rebuilt thank to the stored merging operators. So, merging
operators not only do their job which performs a merge on two patterns but also
contain information about the composition process. Thus, we think documenting
them is one important task that architects should take into consideration.

Finally, to solve the third problem (support for hierarchical pattern com-
position), we propose to give pattern itself first-class status in our pattern de-
scription language. That means that patterns should play the same role as other
elements where we can make connection with, add properties and most impor-
tantly, set them up as internal elements. This recursive definition of pattern gives
the pattern description language the capacity to describe hierarchical patterns
as mentioned in the illustrative example of Section 2.0.3.

In the two following sections, we describe our pattern description language
and the transformation process that produce the refined pattern model from a
pattern model.

4 A pattern language for hierarchical pattern and

composition

We introduce our language called COMLAN (Composition-Centered Architec-
tural Pattern Language) as a means to realize two main purposes: build complex



6 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

patterns from more fine-grained patterns using merging operators and leverage
hierarchical patterns.

4.1 The COMLAN meta-model

In this work, we reuse part of our role-based pattern language [21] which serves
at documenting architectural decisions about the application of architectural
patterns. As shown in Figure 5, our meta-model is composed of two parts: the
structural part and the pattern part. As pointed out in [14,1] and also described
in [7], the design vocabulary of an architectural pattern (style) necessarily con-
tains a set of component, connector, port and role. We take these concepts into
consideration to build the structural part of our language. More specifically, they
are described in our language as follows:

Fig. 5. The COMLAN meta-model

– Component is a composite element which, through the internalElements re-
lation, can contain a set of component ports or even a sub-architecture with
components and connectors

– Component port is a simple element through which components interact
with connectors. A component port can be attached to a connector role or
delegated to another component port in an internal sub-architecture.



Supporting architectural pattern language using structural properties 7

– Connector is a composite element which, through the internalElements re-
lation, can have a set of connector roles or even a sub-architecture with
components and connectors.

– Connector role is a simple element that indicates how components (via com-
ponent ports) use a connector in interactions. A connector role can be dele-
gated to another connector role in an internal sub-architecture.

The pattern aspect part (see Figure 5) of our meta-model aims at providing
functionalities to characterize a meaningful architectural pattern. To be more
specific, the meta-model allows us to describe a pattern element at two levels:
generic and concrete. Via the multiplicity, we can specify an element as generic
or concrete. A concrete element (not associated with any multiplicity) provides
guidance on a specific pattern-related feature. Being generic, an element (as-
sociated with a multiplicity) represents a set of concrete elements playing the
same role in the architecture. A multiplicity indicates how many times a pattern-
related element should be repeated and how it is repeated. Figure 6 shows two
types of orientation organization for a multiplicity: vertical and horizontal. Being
organized vertically, participating elements are parallel which means that they
are all connected to the same elements. On the other hand, being organized hori-
zontally, participating elements are inter-connected as in the case of the pipeline
architectural pattern [6].

Fig. 6. Orientation organization of generic elements

Each element in the meta-model can be associated with a role. A role specifies
properties that a model element must have if it is to be part of a pattern solution
model [9]. To characterize a role, we use architectural constraints. A constraint
made to a role on an element helps to make sure that the element participating
in a pattern has the aimed characteristics. Constraints are represented in our
approach in form of OCL [18] rules.
Similar to [4,12], in our language two types of merging operator are supported:
stringing and overlapping as shown in Figure 7. A stringing operation means a
connector is added to the pattern model to connect one component from one
pattern to another component from the other pattern. If an overlapping oper-
ation involves two elements, it means that two involving elements should be



8 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

merged to a completely new element. Otherwise, if an overlapping operation in-
volves a composite element and a pattern, it means that the latter should be
included inside the former. In both cases of merging, the participating elements
are respectively determined through two references source and target.

Fig. 7. Two types of merging operation

Pattern can contain all concepts described above and most importantly, it
inherits from Element which allows a composite element to contain it. This
special feature helps our language to include an entire pattern into an element
while constructing a pattern. In other words, hierarchical patterns are supported.

4.2 Pattern definition through example

For the purpose of illustration, our pattern language will be used to model
an example about the pattern for data exploration and visualization as in the
Vistrails application’s architecture in [5]. More specifically, this model represents
the first step of the two-step pattern definition process. As shown in Figure 8,
this pattern consists of three main sub-patterns: Pipes and Filters, Client-Server
and Repository, all connected together through merging operators. Among these
three patterns, the Repository pattern is a hierarchical one whose the component
Repository includes the Layers pattern.

To explain how the pattern concepts are realized, we go into details for the
Pipes and Filters pattern. On the upper left corner of Figure 8, we can observe
that the Pipes and Filters pattern is constructed with the emphasis on the follow-
ing elements: the component Filter specified with two roles Filter and Acyclic-
Component, the connector Pipe specified with the role Pipe. The connector Pipe
is not assigned with any multiplicity. Otherwise, the component Filter is assigned
with a multiplicity since it represents many possible filters inter-connected by
Pipe connectors. Furthermore, its horizontal multiplicity1 indicates that there
may be many instances of Filters and they must be horizontally connected. The
role Filter is characterized by the ConnectedFilter constraint. To be more spe-
cific, it stipulates that a filter cannot stand alone, there must be at least one pipe

1 upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity



Supporting architectural pattern language using structural properties 9

Fig. 8. Example of pattern model

connected to a filter. Similarly, the constraint AcyclicComponent characterizing
the role AcyclicComponent stipulates that among filters, we cannot form a cycle.
Finally, the two constraints InputConnectedPipe and OutputConnectedPipe say
that for a given pipe, there must be a filter as input and a filter as output. The
above constraints are presented as OCL invariants as follows:

invariant AcyclicComponent:

if role->includes(’AcyclicComponent’) then

Component.allInstances()->forAll(role = ’AcyclicComponent’ implies not

self.canFormCycle())

endif;

invariant ConnectedFilter:

if role->includes(’Filter’) then

Connector.allInstances()->exists(role = ’Pipe’ and isConnected(self))

endif;

invariant InputConnectedPipe:

if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’ and

getOutputConnectors().contains(self))

endif;



10 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

invariant OutputConnectedPipe:

if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’

and getInputConnectors().contains(self))

endif;

Merging operators are used to link participating patterns together. More
specifically, in our pattern model (see Figure 8), three merging operators are
used: first, an overlapping operator whose source is the Filter component in
the Pipes and Filters pattern and target is the Client component in the Client-
Server pattern, second, a stringing operator whose source is the Filter compo-
nent in the Pipes and Filters pattern and target is the Repository component
in the Repository pattern and finally, an overlapping operator whose source is
the Repository component in the Repository pattern and target is the Layers
pattern. These three operators are used as elements of the pattern language and
stored along with the other elements.

5 Pattern refinement

After being described as the composition of constituent patterns through merg-
ing operators, the pattern model will be refined. We consider this second step in
the two-step pattern definition process as a model transformation from a pat-
tern model where merging operators are explicitly presented to a pattern model
where merging operators are concretized. While realizing this transformation,
three important issues need to be taken into account: how to concretize a string-
ing operator, how to concretize an overlapping operator and how to handle nested
patterns.

5.1 Stringing operator transformation

Among structural elements in the pattern language, except for components which
can be linked by stringing operators, there is no interest to link together other
elements like connectors, component ports or connector roles. That is the rea-
son why a stringing operator can only be transformed into a new connector to
link source component and target component. New component ports are also
added to the source component and the target component and attached to new
connector roles in the newly created connector. As shown in Figure 9, the string-
ing operator described in the previous step is now transformed to the connec-
tor DataReading/WritingPipe. This new connector contains two connector roles,
one attached to a component port in the ClientFilter component and the other
attached to a component port in the Repository component.

5.2 Overlapping operator transformation

The result of the transformation for an overlapping operator is a new element
which carries all the characteristics of the source element and the target element.



Supporting architectural pattern language using structural properties 11

Fig. 9. The refined pattern model

For composite elements, the composition begins with the fusion of all internal
elements. As we can see from Figure 9, the overlapping operator described in
the previous step is concretized by the component ClientFilter. This component
contains all component ports from the source element which is a Filter and the
target element which is a Client. Furthermore, via these component ports, the
link from the component to two connectors Pipe and Request/Reply is also pre-
served.
The overlapped element plays all the roles of the source element and the tar-
get element. Indeed, the ClientFilter plays three roles at once: AcyclicCompo-
nent and Filter since it participates as a Filter in the Pipes and Filters pattern
and Client since it participates as a Client in the Client-Server pattern.
The multiplicity is merged as follows: The lower bound of the merged element’s
multiplicity is the maximum of the lower bound of the source element’s multi-
plicity and the lower bound of the target element’s multiplicity. On the contrary,
the upper bound of the merged element’s multiplicity is the minimum of the up-
per bound of the source element’s multiplicity and the upper bound of the target
element’s multiplicity. If the source elements multiplicity or the target elements
multiplicity is vertical or horizontal then merged elements multiplicity is also
vertical or horizontal. In our pattern model (Figure 9), the multiplicity of the



12 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

merged component ClientFilter is both vertical and horizontal as illustrated in
Figure 10.

Fig. 10. The merged pattern of Client-Server and Pipes and Filters

In the case of a chain of consecutive overlapping operators in which one con-
tinues another, we use a special algorithm which is sketched in Figure 11. Let’s
say we have n random elements linked together by (n-1) overlapping operators.
The algorithm consists of n-1 steps. In the first step, the overlapping operator
merges Element 2 and Element 1 to create Element 12. Next, Element 2 is
replaced by Element 12. In the second step, the overlapping operator merges El-
ement 3 and Element 2, which is actually already replaced by Element 12, to
create Element 123. Similarly, Element 3 is then replaced by Element 123. The
algorithm continues so on until the (n−1)-th step when all elements are merged
into the Element 123..n. An important remark in this algorithm is that thank
to the replacement mechanism, an element can reflect the merging operation
in which it participates. Thus, the merging operation is propagated to every
element participating in the merging chain.

Fig. 11. The algorithm in case of multiple overlapping operators



Supporting architectural pattern language using structural properties 13

5.3 Nested pattern transformation

If a pattern participates in a merging operation, all of its internal elements will
be added in the refined pattern while the pattern itself will not be transformed.
As shown in Figure 9, all the three patterns Pipes and Filters, Client-Server
and Repository disappear leaving their internal elements in the refined pattern.
Otherwise, if a pattern does not participate in any merging operation, a refine-
ment procedure (which is actually a recursive procedure) will be applied to the
pattern. Since the Layers pattern does not contain any merging operators, the
refinement procedure just simply keep all its internal elements.

6 Implementation

To verify the feasibility of our approach, we developed the COMLAN tool, then
we applied it to the case of Vistrails’s architecture [5]. With COMLAN we aim
to make concrete the aforementioned concepts. The tool provides the following
functionalities:

1. Create architectural patterns

2. Compose patterns using merging operators

3. Refine the composed pattern

COMLAN is developed based on EMF (Eclipse Modelling Framework) [20].
We choose EMF to realize our tool since we leverage MDA, where models are
basic building units, to develop our approach. The tool consists of two Eclipse
plug-ins built on existing Eclipse technologies. They are:

– Pattern creation plug-in uses EMF and GMF (Graphical Modeling Frame-
work)2 modeling support in order to allow architects to define Pattern mod-
els graphically. More specifically, the editor allows to design constituent pat-
terns and compose them using two types of merging operators: stringing and
overlapping. Furthermore, hierarchical pattern description is also supported.
Besides, the editor allows the automatic propagation of changes in the con-
stituent patterns to the already composed patterns. This editor depends on
the COMLAN Meta-Model (see figure 5).

– Pattern refinement plug-in uses Kermeta [16] to implement rules transform-
ing composed pattern model to refined pattern model. This functionality
allows the architect to obtain a pattern with all the merging operators con-
cretized, ready to be instantiated in the architectural model.

For a complete tutorial and a video about this tool, the reader is invited to
visit the following website: http://

2 Eclipse Consortium. ”Eclipse Graphical Modeling Framework (GMF)(2007).”

http://


14 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

7 Related work

Our work concerns three areas of related work. The first is architectural pat-
tern (style) description language. In the literature there have been some efforts
to model architectural patterns and their properties. For instance, there are
works focusing on the use of formal approach to specify patterns. In the Acme
ADL(Architectural Description Language) [10], the authors tend to provide a
pattern-oriented architectural design environment where patterns are formally
described. [19] uses an ontological approach for architectural pattern modeling
based on a description logic language. As opposed to these domain specific lan-
guages, [15] proposes to use general purpose languages such as UML to model
architectural patterns. Similarly, [11] suggests a mapping to transform from an
ADL to UML 2.x to facilitate the use of UML in architectural pattern modeling.
Applying a role-based pattern modeling approach, our language is designed to
focus specifically on software architectural patterns. However, the genericness of
the language is also assured since the pattern concepts used are those synthesized
from many different ADLs.

The second area of concerned research is pattern composition. There are
mainly two branches of work on the composition of pattern. The first includ-
ing [12,3] proposes to combine patterns at the pattern level which means that
patterns are composed before being initialized in the architectural model. On the
contrary, the second including [8] proposes to compose pattern at instance level
where an architectural entity is allowed to belong to different patterns. How-
ever, all of these approaches consider the composition as transient operation
which leads to the problems we pointed out in previous sections. By proposing
to give composition operators first-class status, our approach helps to prevent
these shortcomings. In another work, [13] proposes a UML profile to attach
pattern-related information on merged elements in composed patterns. With
this approach, although one can trace back the constituent pattern in which an
element participates in, a composition view showing how the original pattern
is composed is still missing. Our proposal should also be compared with works
on architectural constraint composition such as [22]. In this work, a pattern can
be generally imposed by a constraint and complex patterns can be expressed
through the composition of constraints. With our approach we raise the level of
abstraction by using model to describe architectural patterns. Thus, not only the
conformance of architectural patterns is assured but the application of patterns
is also encouraged.

Finally, also related to our research is work on describing hierarchical pat-
tern composition. In [23], the authors propose to use a number of architectural
primitives to model architectural patterns. Through the stereotype extension
mechanism of UML, one can define primitives (which equivalent to sub-patterns
in our approach) to design a specific element of a pattern. However, the fact that
pattern itself is not considered as an element in the pattern construction totally
prevents its reusability. In our proposed pattern language, pattern is treated as
first-class status which allows not only the modeling of primitives as patterns
but also the reusibility of patterns to construct more coarse-grained patterns.



Supporting architectural pattern language using structural properties 15

8 Conclusion

Summarize the importance of combinative pattern and hierarchical pattern in
documenting patterns and the proposed approach.

References

1. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, 1997.

2. Paris Avgeriou and Uwe Zdun. Architectural patterns revisited a pattern language.
In In 10th European Conference on Pattern Languages of Programs (EuroPlop
2005), Irsee, pages 1–39, 2005.

3. Ian Bayley and Hong Zhu. On the composition of design patterns. In Proceedings
of the 2008 The Eighth International Conference on Quality Software, pages 27–36.
IEEE Computer Society, 2008.

4. Paolo Bottoni, Esther Guerra, and Juan de Lara. A language-independent and
formal approach to pattern-based modelling with support for composition and
analysis. Inf. Softw. Technol., pages 821–844, 2010.

5. Amy Brown and Greg Wilson. The Architecture Of Open Source Applications.
lulu.com, 2011.

6. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented software architecture: a system of patterns. John Wiley &
Sons, Inc., 1996.

7. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software Archi-
tectures: Views and Beyond (2nd Edition). Addison-Wesley Professional, 2010.

8. Constanze Deiters and Andreas Rausch. A constructive approach to compositional
architecture design. In Proceedings of the 5th European conference on Software
architecture, pages 75–82. Springer-Verlag, 2011.

9. Robert B. France, Dae kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based
pattern specification technique. IEEE Transactions on Software Engineering, pages
193–206, 2004.

10. David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architec-
tural design environments. In Proceedings of the 2nd ACM SIGSOFT symposium
on Foundations of software engineering, pages 175–188. ACM, 1994.

11. Simon Giesecke, Matthias Rohr, Florian Marwede, and Wilhelm Hasselbring. A
style-based architecture modelling approach for uml 2 component diagrams. In
Proceedings of the 11th IASTED International Conference on Software Engineering
and Applications, pages 530–538. ACTA Press, 2007.

12. Imed Hammouda and Kai Koskimies. An approach for structural pattern compo-
sition. In Proceedings of the 6th international conference on Software composition,
pages 252–265. Springer-Verlag, 2007.

13. Dong Jing, Yang Sheng, and Zhang Kang. Visualizing design patterns in their
applications and compositions. Software Engineering, IEEE Transactions on, pages
433–453, 2007.

14. Jung Soo Kim and David Garlan. Analyzing architectural styles. J. Syst. Softw.,
pages 1216–1235, 2010.

15. Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Rob-
bins. Modeling software architectures in the unified modeling language. ACM
Trans. Softw. Eng. Methodol., pages 2–57, 2002.



16 Minh Tu Ton That, Salah Sadou, and Flavio Oquendo

16. Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executabil-
ity into object-oriented meta-languages. In Proceedings of the 8th international
conference on Model Driven Engineering Languages and Systems, pages 264–278.
Springer-Verlag, 2005.

17. O.M.G. Model-driven architecture. http://wwww.omg.org/mda.
18. OMG. Object Constraint Language, OCL Version 2.0, formal/2006-05-01. Tech-

nical report, OMG, 2006.
19. Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring. Ontology-based modelling

of architectural styles. Inf. Softw. Technol., pages 1739–1749, 2009.
20. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling

framework. Addison-Wesley Professional, 2008.
21. Minh Tu Ton That, S. Sadou, and F. Oquendo. Using architectural patterns to

define architectural decisions. In Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP,
pages 196 –200, 2012.

22. Chouki Tibermacine, Salah Sadou, Christophe Dony, and Luc Fabresse.
Component-based specification of software architecture constraints. In Proceedings
of the 14th international ACM Sigsoft symposium on Component based software
engineering, pages 31–40. ACM, 2011.

23. Uwe Zdun and Paris Avgeriou. A catalog of architectural primitives for modeling
architectural patterns. Inf. Softw. Technol., pages 1003–1034, 2008.

http://wwww.omg.org/mda

	Lecture Notes in Computer Science
	Introduction
	Problem statement
	Blend of patterns
	Connection of patterns
	Inclusion of patterns

	Discussion

	General Approach
	A pattern language for hierarchical pattern and composition
	The COMLAN meta-model
	Pattern definition through example

	Pattern refinement
	Stringing operator transformation
	Overlapping operator transformation
	Nested pattern transformation

	Implementation
	Related work
	Conclusion


