
HAL Id: hal-00911897
https://hal.science/hal-00911897

Submitted on 1 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Reactive Whole-Body Motion Planning in
Cluttered Environments by Precomputing Feasible

Motion Spaces
Andreas Orthey, Olivier Stasse

To cite this version:
Andreas Orthey, Olivier Stasse. Towards Reactive Whole-Body Motion Planning in Cluttered Envi-
ronments by Precomputing Feasible Motion Spaces. International Conference on Humanoid Robots,
Oct 2013, Atlanta, United States. pp.286–291. �hal-00911897�

https://hal.science/hal-00911897
https://hal.archives-ouvertes.fr

Towards Reactive Whole-Body Motion Planning in Cluttered

Environments by Precomputing Feasible Motion Spaces

Andreas Orthey1,2, Olivier Stasse1

Abstract— To solve complex whole-body motion planning
problems in near real-time, we think it essentials to precompute
as much information as possible, including our intended move-
ments and how they affect the geometrical reasoning process. In
this paper, we focus on the precomputation of the feasibility of
contact transitions in the context of discrete contact planning.
Our contribution is twofold: First, we introduce the contact
transition and object (CTO) space, a joint space of contact states
and geometrical information. Second, we develop an algorithm
to precompute the decision boundary between feasible and non-
feasible spaces in the CTO space. This boundary is used for
online-planning in classical contact-transition spaces to quickly
prune the number of possible future states. By using a classical
planning setup of A* together with a l2-norm heuristic, we
demonstrate how the prior knowledge about object geometries
can achieve near real-time performance in highly-cluttered
environments, thereby not only outperforming the state-of-
the-art algorithm, but also having a significantly lower model
sparsity.

I. INTRODUCTION

Consider the problem in Fig. 1a: A highly-cluttered envi-

ronment has to be traversed by a humanoid robot, without

stepping onto obstacles on the ground. The goal is to find a

set of footsteps, which allows us to move the robot towards

the goal region. This problem is problematic from different

point of views: First, for each footstep we want to take, we

have to compute a control law for each degree of freedom

of the robot, such that we fulfill certain constraints like joint

limits, dynamics and stability. Second, we have to check if

the body of the robot is in collision with objects in the

environment. Due to the large number of objects and the

nearness of the robot to the objects, this is generally not

possible in real-time. In this paper, we provide an algorithm,

which generates a footstep path for a humanoid robot which

is faster than the state-of-the-art approach, and runs in real-

time even for challenging environment like the one in Fig.

1a, where 30 objects are randomly placed.

The underlying problem is the one of real-time planning

of motions for a high-dimensional degrees of freedom robot.

We approach this problem by using an approximation method

to precompute if a motion between two contact points will

be feasible. Our contribution is twofold: First, we introduce

the contact transition and object (CTO) space: The union of

a reduced set of contact points and the parameters of approx-

imated objects in the environment. Second, we perform an

analysis of the decision boundary between feasible and non-

feasible subspace within the CTO space. We hereby focus

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, INP, LAAS, F-31400 Toulouse

(a) (b)

Fig. 1: Left: A highly-cluttered environment with 30 randomly placed
objects, where the robot has to avoid stepping onto objects, while reaching a
goal region. Right: Our algorithm finds a feasible footstep path in 0.3s by (1)
approximating objects with simple geometrical shapes and (2) adding this
geometrical information to the precomputation of the feasibility of motions.

on a sparse and approximate representation of this boundary,

which allows us to discriminate very fast between feasible

and non-feasible contact points.

This work can be seen as an additional simplification of

planning in the contact space of a robot [1]. It further devel-

ops the ideas of [2], which used the swept volume – defined

as ”the space, occupied by a robot during the execution”

[3] – to precompute if a motion between two contact points

will be feasible. We further advance this precomputation idea

by including the geometrical information of objects in the

environment.

The paper is organized by first considering related work

Section II. Section III will focus on background in contact

planning, motion generation and swept volume approxima-

tion. In Section IV we introduce the CTO space, Section V

discusses the sampling and approximation of the feasibility

function, and Section VI demonstrates the applicability of

our approach in a highly-cluttered environment.

II. RELATED WORK

We provide in this section a basic overview about contact

planning, with emphasis on footstep planning but also on

how to construct a general contact space framework. For

each approach, we focus on its relation to our work.

Chestnutt et al. [4], [5] pose the problem of footstep

planning as a discrete search problem, and are approximating

its heuristic by a mobile robot planner. Complementary to

their work we use a simple heuristic, and instead focus solely

on a fast decision about which steps will be feasible in the

present of obstacles.

Escande et al. [1] provide a complete framework for multi-

contact planning, in which they investigate how to choose

contact points, and how to generate paths between them.

Our work focuses on the first point, for which we provide

an approximate solution.

Hauser et al. [6] are planning general multi-contact points

for a humanoid climbing robot. Their approach focuses

on using motion primitives of contact points as an initial

trajectory for a sampling based algorithm. While their work

is concerned with finding a probabilistically complete algo-

rithm, we focus on simplifications for real-time planning.

Hornung et al. [7] are using a anytime variant of the

A* algorithm to plan footsteps for the Nao robot. This can

be seen complementary to our work, in which we try to

approximate the feasibility of footstep transitions.

Perrin et al. [2] are using swept volumes to approximate

the contact transition between footsteps. While they require

the storage of complete swept volumes for collision check-

ing, we devised an approximate mapping from contact points

to feasibility by incorporating the object geometry directly

into the precomputation process.

III. BACKGROUND

Our approach is based on three core topics, which will

be explained in the following sections: First, we introduce

the concept of contact-space planning to reduce the dimen-

sionality of a robotic system in Section III-A. Second, we

discuss how the whole-body motion of a robot is generated

between two contact points in Section III-B, and finally, we

introduce approximation via swept volumes in Section III-C.

A. Planning in Contact Space

Planning a movement for a robotics system, with many

degrees of freedom (dof), is commonly seen as intractable,

because their complexity is exponential in the number of dof

[8]. A simplification, which reduces the planning dimensions,

is the contact-space planning approach [4], [1], [6]. Planning

is posed as a discrete search problem of finding a sequence

of contact-points, which can be used to reach a desired

goal region. For transitions between contact-points, local

optimization methods can be used. In our work, we will make

the further simplification, that contact-points are restricted to

footsteps. The long-term goal of our research is the inclusion

of hand-environment contacts, which is why we formulate

our approach in terms of general contact-points, rather than

foot-contacts. We also note, that we are interested in fast

real-time planning methods, which is contrary to algorithms

which try to find a complete trajectory in the general contact-

point space [6], [1]. Earlier research in motion planning made

this distinction explicit by dividing algorithms into coarse

and fine motion planning [9] — whereby our work can be

considered coarse motion planning.

B. Optimal whole-body motion between contact points

For finding a trajectory between two contact points xI

and xG, we assume that there is an optimization function

p : R
M × K → R

d, which maps a contact point x, of

dimension M , into a joint configuration q, of dimension d,

which we will call a contact configuration. The space K

defines a behaviour of the robot, i.e. how the rest of the

body is positioned. Given one behaviour, and assuming zero

noise, the mapping p is uniquely defined, so that we can

further operate on contact configurations, without loss of

generality. Between two contact configurations qI and qG,

we then utilize a local optimization function formalized as a

classical optimal control problem

minimize
u

tf
∫

t0

C(u(t), q(t))dt

subject to q̇(t) = f(q(t), u(t))

whereby q(t) is the configuration at time t, u(t) is the

control input, f is the dynamics of the robot, and C is

the cost function, which could depend on the task and the

behaviour we want to achieve. We now assume the existence

of an algorithm g, which solves the whole-body generation

problem between two contact configurations:

qqI→qG = g(qI , qG, C) (1)

whereby qqI→qG is the final trajectory of the robot, qI
and qG are the start and the goal configurations, and C is

the above mentioned cost function. Besides being a non-

chaotic system, we make no restrictions on the optimization

algorithm g and the cost function C. Therefore, we can make

use of potential functions [8], nonlinear attractors like the

dynamical motion primitive [10], stochastic optimal control

solvers [11], or – as in our case – a hierarchical null space

control framework, called the stack of task [12]. In this

case, we use costs depending on distance to self collisions,

distance to joint limits, and dynamical stability.

In the absence of noise, we assume that the optimization

problem is uniquely defined, i.e. for a pair of qI ,qG, optimizer

g, and cost function C, g returns one unique trajectory.

C. Swept-Volume Approximations

The unique trajectory from Eq. (1) defines directly a

swept volume of the robot body [2], which we will denote

as SVqI ,qG . The number of possible contact transitions is

infinite and needs to be reduced to make planning com-

putationally tractable. We therefore use a set of N contact

points, which are a discretization of all mechanically feasible

footsteps of the robot. This implies the computation of
(

N
2

)

swept volumes (one for each transition pair). By adding

a waypoint, as reported in [2], one can assume, that each

transition will have a common end point, which prunes the

number of swept volumes to N . Using this setting, Perrin

et al. [2] have demonstrated real-time motion planning in a

constrained environment with fixed upper body and stepping

capabilities. Our goal in the next section is to show, how to

speed up this approach by (1) introducing the geometry of

objects directly into the precomputation algorithm and (2)

approximating the decision boundary between feasible and

non-feasible space in the joint space of objects and contact

points.

IV. CONTACT TRANSITION AND OBJECT (CTO) SPACE

To plan a discrete set of contacts for a robot, we want

to precompute if the transition between two contact points

is feasible. The feasibility is a function of the environment

and the underlying controller. It is therefore necessary to

represent the environment, which we do by using an object-

centered approach and by fitting generalized geometrical

shapes to those objects.

To decide if a contact transition will be feasible, a common

approach [2] is to use precomputed swept volumes for

each contact transitions and check each swept volume for

collisions with all visible objects in scene. In this work,

we go one step back and analyse directly the joint space

of contact points X and objects O . Instead of recalling the

swept volume and doing collision checking to determine

feasibility, our goal is to approximate a feasibility function

f : X×O → R directly by learning a discriminative function

of the form f̂ : X × O → R, such that we minimize the

distance between them.

For making this tractable, we apply two simplifications:

First, we use a discrete set of contact points X̃ , which was

obtained from all possible contact points X by (A) utilizing

the symmetries of the robot body and a waypoint contact

as discussed in section III-C, (B) uniformly discretizing

contact points from X , and (C) pruning contact points not

satisfying internal constraints — like joint limits and self

collisions. This provides us with a set of N contact points,

which all have the same common goal contact point xG.

For example to go from an arbitrary contact x0 to another

contact x2, we concatenate x0 to xG, and xG to x2. The

contact points are a set with an underlying structure, in this

case an geometrical ordering (position of contacts) and a

metric (distance between contacts). Set and structure define

together a mathematical space, such that we can define:

Definition 1 (Reduced Contact-Transition Space): A dis-

crete set of contact points x0, · · · ,xN , which have a com-

mon goal contact point xG

X̃ = {x0, · · · ,xN} (2)

In this paper, one contact point is defined as x =
{(x, y, θ, q̄)T |x, y, θ ∈ SE(2), q̄ ∈ {L,R}}, whereby x, y

are the middle point of one foot, and θ is the inclination,

and q̄ is the support foot.

Second, we observe that the detailed shape of an object

is not important for coarse motion planning [9], where one

is interested in a first reasonable guess of the trajectory. We

therefore build the reduced object space Õ from the complete

object space O by assuming that objects can be approximated

by basic geometrical shapes. As an intermediate representa-

tion between a set of basic shapes (cylinder, sphere, box)

and a complete mesh triangle representation, we utilize a

generalization of basic shapes, called the superellipsoid. The

superellipsoid allows us to describe different basic shapes by

one formula with a sparse set of parameters [13]

S(x, y, z; ~θ,~λ) =

(

(

x

λ1

)
2

θ2

+

(

y

λ2

)
2

θ2

)

θ2
θ1

+

(

z

λ3

)
2

θ1

(3)

whereby ~θ > 0 specifies the shape (e.g. a cylinder),

and ~λ > 0 specifies the elongations along the axes (e.g.

the height and radius of a cylinder). Eq. (3) is called the

inside-outside function, referring to points x, y, z as being

outside the object for S(x, y, z) > 1 and inside or on the

surface for S(x, y, z) ≤ 1. Examples include the ellipsoid

(θ1 = 1, θ2 = 1), cylindroid (θ1 ≪ 1, θ2 = 1) and the

quader (θ1 ≪ 1, θ2 ≪ 1). For this work, we restrict objects

to the cylindrical space by defining

Definition 2 (Reduced Object Space): The set of objects

o, which can be approximated by a superellipsoid in the

form
Õ = {(x, y, φ, ~θ, ~λ)T |x, y, φ ∈ SE(2),

~θ = (0.01, 1)T ,

~λ ∈ R+)}

(4)

Together with the contact points, we can now define the

CTO space:

Definition 3 (Contact Transition and Object Space): The

union of reduced contact space and reduced object space

CCTO = {X̃ ∪ Õ} (5)

Having defined the CCTO space, the rest of the paper is

devoted to the computation of the decision boundary between

the feasible subspace and the non-feasible subspace. This

is formulated as finding a discriminative function f̂ , which

minimizes an optimization problem of the form

argmin
f̂

||f(x,o)− f̂(x,o)||2

s.t. o ∈ Õ ,x ∈ X̃

Whereby f and f̂ are computing the feasibility of a contact

transition as depicted in Fig. 2: f first optimizes a controller

to traverse the contact points, then computes the swept

volume along its trajectory and finally conducts collision

checking with objects in the environment; f̂ simplifies this

computation by acting as a discriminative function for the

CCTO space, to directly decide if a contact transition and an

object are in the feasible subspace. In the next section, we

will focus on the sampling of f and its approximation f̂ .

V. PRECOMPUTATION OF DECISION BOUNDARY IN CTO

SPACE

To estimate f̂ , we first generate samples from the true

feasibility function f . This requires the definition of a

probability distribution, which provides us samples near the

decision boundary, such that objects have a distance of d ≈ 0
to the swept volume. A particularity of this distribution is its

f(x, o) : X̃ ×O → {0, 1}

Contact X̃ Optimizing Controller

Swept Volume

Collision Checking

Feasibility

Object O

CCTO = {X̃ , Õ}

x ∈ X̃

f(x, o)

o ∈ O

O → Õ

f̂(x, o)

Fig. 2: From Contact Transitions to Feasibility. Dashed lines present
the precomputation functions, which form a shortcut for efficient online
planning

elongated shape, which requires the usage of a momentum

variable to efficiently sample the distribution.

After acquiring samples, we finally discuss the estimation

procedure for f̂ by using nonlinear discriminative analysis

[14].

A. Sampling of the feasibility function

We divide the sampling stage of f̂ into two phases:

First, we acquire N contact points by using an uniform

discretization. We recall, that every contact point has a

unique goal, and together with a controller defines implicitly

a unique trajectory. The unique trajectory in turn defines a

swept volume by using a function S : X̃ → T , whereby T
will be a triangle mesh. The complete set of swept volumes

can then be defined as

SV1:N = [S(x1), . . . ,S(xN)] (6)

For each swept volume, we start obtaining samples oi ∈
Õ , by defining a probability distribution, which provides us

with the properties we want: High probability around the

decision boundary, low probability otherwise. One possible

choice is the normal distribution, defined as

p(xj , oi) = N (d[S(xj),M(oi)];µ = 0, σ) (7)

whereby M computes the triangle meshes of the object i at

position oi, S(xj) is the swept volume from contact position

xj , and d is defined as the norm between the nearest points

on the object and on the swept volume – or the farthest points

inside the swept volume, if the object is in collision. Finally

the standard deviation σ is a measurement of how much we

tolerate samples away from the boundary.

Eq. (7) is an elongated probability distribution, which can

be very narrow, depending on our choice of σ. Therefore,

standard sampling techniques like the Markov Chain Monte

Carlo (MCMC) algorithm will generally be inefficient, i.e.

require too many samples before converging to the stationary

distribution [14]. One algorithm, which can handle elon-

gated distributions is the Hamiltonian Monte Carlo (HMC)

algorithm [15], which adds a momentum variable to the

sampling process, in order to faster converge to the stationary

distribution. The most important feature of HMC is its ability

to follow the contour curve of the distribution by simulating

the hamiltonian dynamics. In our case, this translates to

following the decision boundary of the CCTO space. The un-

derlying algorithm to simulate this contour-curve following

behaviour is called the leap-frog algorithm, and progresses

by using a number of steps τ and step width ǫ. The initial

momentum in a certain direction is defined by a proposal

distribution. In our experiments, we used ǫ = 0.3, τ = 13 and

a multivariate normal distribution N (µ,Σ) = N (0, 0.09 · I)
as the proposal. For Eq. (7), we have chosen σ = 0.17.

For simplifications, we consider in our experiments objects

approximated by a cylindrical representation, by setting the

θ parameters of Eq. (3) to θ1 = 0.01, θ2 = 1. The

λ parameters are allowed to vary, and are defined for a

cylindrical representation as λ1 = λ2 = r and λ3 = h,

whereby r is the radius of the cylinder and h the height.

Sampling is then conducted explicitly in the space of Õ =
{(x, y, r, h)T |x, y ∈ R, r, h ∈ R+}.

B. Nonlinear Discriminative Analysis

After obtaining the samples from the true function f , we

have to select a model to approximate f by f̂ . The choice of

this model is mainly determined by its online performance:

The more often we can call the function per second, the

better will be our planning performance. One widely used

choice is the multilayer perceptron (MLP), which can lead

to compact models and faster evaluation, but is harder to train

than common kernel machines, because its objective function

is non-convex [14]. Because we need to reduce the time for

online performance as much as possible, we have chosen the

MLP with one hidden layer and trained the network from the

sampled data by utilizing the FANN1 library.

1) Network Optimization: We applied several standard

machine learning tricks to obtain a robust and stable ap-

proximation of f̂ . First, we splitted our training data into a

training set (70%) and a validation set (30%) and used an

early stopping criterion by observing the model error on the

validation set. Second, we used multiple restarts with random

initializations. Third, we combined two samplers to avoid

spurious non-feasible regions: A uniform coarse sampling

technique to avoid spurious non-feasible regions, and the

aforementioned HMC algorithm to accentuate the decision

boundary.

Finally, we summarized the essentials steps of the pre-

computation in Algorithm 1. For each contact point x ∈ X̃ ,

we first compute the whole-body motion to the waypoint

xG, by using the optimizer g and cost function C. The

resulting trajectory qqI→qG defines a swept volume SV ,

which we approximate by using a function S . For the

class of objects Õ , we acquire M samples o1:M by using

the HMC sampling algorithms with parameters τ and ǫ.

Afterwards, we split our sampling data and start the nonlinear

1http://leenissen.dk/fann/

Algorithm 1 Precomputing feasible motion space

Require: C, Õ , τ > 0, ǫ > 0, H > 0,M > 0
function PRECOMPUTE(C, Õ ,M,H, τ, ǫ)

F ← ∅

for all x ∈ X̃ do

qqI→qG ← g(x,xG, C) [12]

SV ← S(qqI→qG) [2]

o1:M ← Sampler(SV, Õ ,M, τ, ǫ) [15]

otrain,ovalidation ← split(o1:M)
f̂ ← NDA(H,otrain,ovalidation) [14]

push(F , f̂)
end for

end function

Fig. 3: Influence of the model complexity on the approximated feasibility

function: Each graph shows the object space Õ for the same swept volume
with changed complexity parameter H . For visualization, we have shown
the non-feasible regions for the (x, y, r)T parameters of a cylinder, whereby
we fixed h = 0.03. Shown is the isosurface of the feasibility function for
the zero value, first the real feasibility function (green), and second the

approximated function f̂ (red). Depending on the complexity parameter H
of the model we can observe different performances: a low complexity like

H = 4, leads to an underfitting of f̂ , while a high complexity H = 28
leads to overfitting, visible by several spurious non-feasible regions. The
goal is to find a parameter, like H = 16, which balances model complexity
and error rate.

discriminative algorithm to approximate f̂ . f̂ is finally saved

in our complete feasibility structure F .

C. Algorithmic analysis

The offline-precomputation of the feasibility function re-

quired ∼6 hours on a 8 core, 3.0Ghz PC with 8GB working

memory. The online performance requires the computation

of two matrix multiplications in our MLP, and therefore

scales with O(H ∗ (N + 1)), whereby H is the complexity

parameter and N the number of dimensions of Õ . At the

moment, we have no theoretical guarantee that the algorithm

is strictly conservative, i.e. that it declares a footstep as

valid, if it is not. We could approach this by proving that

the derivative of the feasibility function is bounded, i.e.

K-lipschitz continuous, and using this as a hard constraint

during the optimization of the approximated model.

VI. EXPERIMENTS

In our experiments, we use a feasibility function f̂ with

a reasonable model complexity of H = 16, which avoids

under- and overfitting, as discussed in Fig. 3. We refer to this

Fig. 4: A cluttered environment, which we consider in our experimental
verification. A number of cylinders are used as obstacles, and determines
the complexity of the scene. In a real world setting, those cylinders would
correspond to approximations of objects, similar to the chair in Fig. 1.

algorithm as FP (16), whereby FP stands for feasibility pre-

computation. For comparison, we use a reimplementation of

the swept volume approximation (SVA) algorithm, proposed

by [2], which stores swept volumes for each action, and

afterwards used a collision checking algorithm for feasibility

checks [16]. Both algorithms are integrated into our planning

framework, and tested in a challenging environment, where

we randomly place objects.

A. Planning

For planning, we utilize a standard A* algorithm [8]

with a classical euclidean l2-norm heuristic to the goal. The

heuristic is complementary to our work: We focus not on the

heuristic, but on approximating the extension of nodes in the

graph search. The choice of the heuristic can further speed

up planning [4], but is beyond the scope of this work.

B. Walking in Cluttered Environment

To evaluate and compare the performance of our feasi-

bility precomputation, we consider a highly-cluttered and

constrained environment, where K small objects are located

randomly over a flat, horizontal floor, as visualized in Fig. 4.

We generate the objects by using a uniform sampler U and

bounding cylinders in the form of x = U(−0.8m, 0.8m), y =
(0.2m, 2.8m), r = U(0.01m, 0.03m), h = U(0.01m, 0.1m).

The robot is allowed to set footsteps, which are constrained

to be between x = [−0.8m, 0.8m] and y = [−0.2m, 3.2m].
The planning tasks is to move the feet, starting with the

left foot at coordinates (xI , yI) = (0, 0), towards the goal

at (xG, yG) = (3, 0), i.e. having one foot in the vicinity

(< 0.3m) of the goal. We compare the two approaches,

mentioned above: For the SVA algorithm, we obtain the

cylinders as triangle meshes from the simulator and store

them offline for efficient collision checks. For FP (16), we

use the x, y, r, h values as the input for f̂ . Before each

execution, we apply a homogeneous transformation to move

the object into the coordinate system with the support foot as

origin, such that they coincide with the precomputation stage.

0

20

40

T
im

e
 [

s
]

0

20

40

S
te

p
s

0 20 40 60 80 100 120
0

0.5

1

Objects

S
u

c
c
e

s
s

SVA

FP(16)

Fig. 5: Comparison between swept volume approximations (SVA) [2]
(green) and the precomputation of the feasibility function (red). Each point
represents the average over 100 trials in the cluttered environment situation,
where the robot had to traverse a distance of 3.0m, while avoiding M
objects, randomly distributed on the floor.

Moreover we prune all objects, which have a certain distance

to the robot (< 1.1m) before we apply the algorithms.

Fig. 5 shows the performance of the two algorithms on

this task: In the first row, we show the average planning

time for successful plans versus the number of objects in the

scene. It can be seen, that the time for planning with the

SVA algorithm (green) increases rapidly with the number of

objects. In comparison, our algorithm (red) increases only

marginally and stays bounded by < 1s even for N = 60
objects. Also, we obtain a lower number of steps toward

the goal as seen in the second row. The last row shows the

success rate of the planner, i.e. after a fixed time T , we stop

the planner and consider the task unsuccessful. Those tasks

are cleared from our system and are not considered for the

time and step graphs.

VII. CONCLUSION

In this work, we presented the contact transition and

object space, a joint space of contact points and geomet-

rical information of approximated objects. We developed an

algorithm to precompute the feasibility of specific objects

and contact points, by approximating the decision boundary

between feasible and non-feasible subspaces. As a result we

obtain a sparse discriminative function, which allowed us

to quickly prune non-feasible contact-points – while at the

same time preserving the important stepping-over capability

of humanoid robots.

In our simulated experiments, we demonstrated that our

approach can be used to generate whole-body motions for

a humanoid robot in highly-cluttered environments in near

real-time, thereby outperforming a state-of-the-art algorithm,

which used swept volume approximations. Moreover, our al-

gorithm has a significantly lower memory fingerprint: instead

of saving the complete swept volumes, we require only the

model parameters of our discriminative function to be saved.

This comes at the price of a lower accuracy at run-time: due

to the approximation of the objects by simple geometrical

shapes, we lose the ability to move close to objects and

conduct for example fine-manipulation planning. However,

for certain behaviors like walking, fine-manipulation is per

se not required. Also, we see our method as a first reasonable

guess of the trajectory, which could be further refined locally.

Possible future research directions are the incorporation of

object velocities into the precomputation, the estimation of

the decision boundary for the general superellipsoid space

of objects, the augmentation of the action space and the

verification on our robotics platform using vision systems.

As a natural extension we are going to consider multi-

contact point planning and the implementation of different

control strategies, such that we can switch very fast between

behaviors like walking, crouching and holding objects while

walking.

ACKNOWLEDGMENT

The research in this paper was supported by the KoroiBot

EU-FP7 Project, OSEO/Romeo2 and the French Ministry of

Higher Education and Research.

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428 – 442, 2013.

[2] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, no. 2, 2012.

[3] P. Jiménez, F. Thomas, and C. Torras, “Collision detection algorithms
for motion planning,” in Robot Motion Planning and Control, J.-P.
Laumond, Ed. Berlin: Springer-Verlag, 1998, pp. 1–53.

[4] J. Chestnutt, “Navigation and gait planning,” in Motion Planning

for Humanoid Robots, K. Harada, E. Yoshida, and K. Yokoi, Eds.
Springer London, 2010, pp. 1–28.

[5] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
(ICRA), 2005.

[6] K. K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using
motion primitives in probabilistic sample-based planning for hu-
manoid robots,” in WAFR, ser. Springer Tracts in Advanced Robotics,
S. Akella, N. M. Amato, W. H. Huang, and B. Mishra, Eds., vol. 47.
Springer, 2006, pp. 507–522.

[7] A. Hornung, D. Maier, and M. Bennewitz, “Search-based footstep
planning,” in ICRA Workshop on Progress and Open Problems in

Motion Planning and Navigation for Humanoids, Karlsruhe, Germany,
2013.

[8] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[9] Y. K. Hwang and N. Ahuja, “Gross motion planning – a survey,” ACM

Comput. Surv., vol. 24, no. 3, pp. 219–291, 1992.
[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,

“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in ICML, 2009, p. 132.

[12] N. Mansard, O. Khatib, and A. Khedar, “A unified approach to
integrate unilateral constraints in the stack of tasks,” IEEE Transaction

on Robotics, vol. 25, no. 3, June 2009.
[13] A. Barr, “Superquadrics and angle-preserving transformations,” Com-

puter Graphics and Applications, IEEE, vol. 1, no. 1, pp. 11–23, 1981.
[14] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag New York, 2006.
[15] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of

Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. Jones, and
X. Meng, Eds. Chapman and Hall/CRC Press, 2010.

[16] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018,
Department of Computer Science, University of North Carolina, Tech.
Rep., 1999.

