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Abstract

This study is devoted to the effective plastic flow surface of a bi-porous material
saturated by a fluid. The material under consideration exhibits two populations of
voids. The smaller voids are spherical voids whereas the larger ones are spheroidal
and randomly oriented inside the material. These two populations of voids are sub-
jected to internal pressures due to the presence of gases. Approximate models for
the effective plastic flow surface of such a bi-porous saturated material have pre-
viously been proposed in (Vincent, P.-G., Monerie, Y., Suquet, P., 2009. Porous
materials with two populations of voids under internal pressure: I. Instantaneous
constitutive relations. International Journal of Solids and Structures 46, 480-506),
where a three-scale homogenization procedure has been performed: first, smearing
out all the small spherical bubbles using a Gurson-like matrix, and second, smearing
out the intergranular ellipsoidal bubbles. Our objective here is to derive a simple
analytical expression of the effective flow surface, starting from one of these previ-
ous models, obtained by generalizing the approach of (Gologanu, M., Leblond, J.B.,
Devaux, J., 1994. Approximate models for ductile metals containing non-spherical
voids-case of axisymmetric oblate ellipsoidal cavities. ASME Journal of Engineering
Materials and Technology 116, 290-297) to compressible materials. The main con-
tributions of the present paper are: (1) an expression for the average dilatation-rate
in the matrix, (2) an approximation of the effective flow surface in the form of a
Gurson-Tvergaard-Needleman criterion. The accuracy of this new model is assessed
in a companion paper by comparison with full field numerical simulations.

∗Corresponding author. Tel: +33 4 91 16 42 08; fax: +33 4 91 16 44 81
Email addresses: pierre-guy.vincent@irsn.fr (Pierre-Guy Vincent),

suquet@lma.cnrs-mrs.fr (Pierre Suquet), yann.monerie@irsn.fr (Yann Monerie),
moulinec@lma.cnrs-mrs.fr (Hervé Moulinec)
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1. Motivations and objectives

This study is devoted to the effective plastic flow surface of bi-porous materials
characterized by the presence of two populations of voids with well separated sizes:
(1) spherical intragranular bubbles at a very small scale, and (2) ellipsoidal (oblate)
intergranular bubbles at a larger scale. These two populations of voids are filled
with a fluid and therefore are subjected to internal pressures. They are randomly
distributed inside the material with random orientation (for the ellipsoidal voids).

Such a microstructure is typical of the highly irradiated uranium dioxide (UO2),
a nuclear fuel commonly used in nuclear reactors. The assessment of the safety of
nuclear plants under accident conditions has recently motivated several studies on
the mechanical behavior of highly irradiated nuclear fuels at different scales (Vincent
et al., 2008, 2009a,b), (Julien et al., 2011). UO2 is a polycrystalline material which
exhibits, when highly irradiated, a very specific microstructure with two populations
of voids of rather different sizes and shapes as shown in Figure 1 (more information
about the formation and the size of these voids can be found in (Kashibe et al.,
1993), (Lösönen, 2000), and (Kashibe and Une, 1991)):

• at the smallest scale (microscopic scale), a first population of voids, almost
spherical in shape, is observed inside the grains. The diameter of these so-
called intragranular voids is typically of the order of a few nanometers, much
smaller than the typical grain size which is of the order of 10 µm (Olander,
1976; Dherbey et al., 2002; Kashibe and Une, 1991).

• at a larger scale (mesoscopic scale), a second population of voids, roughly
spheroidal in shape, is located at the grain boundaries (the diameter of these
so-called intergranular voids is typically of the order of a few microns).

Both types of voids are filled with fission gases, with possibly different pressures
inside the intergranular and intragranular voids. Under accident condition, the tem-
perature in the material and the gas pressure inside the voids increases suddenly. At
such high temperatures, this polycrystalline ceramic is ductile and the two popula-
tions of voids start growing until they eventually coalesce to form a macro-crack, a
mechanism which is strongly reminiscent of ductile rupture in metals. The problem
addressed in the present study is thus not restricted to highly irradiated UO2 and
concerns more generally voided materials with two populations of pressurized voids.

The typical length scale attached to this polycrystalline material at the macro-
scopic scale is much larger than those of the two populations of voids leading to a
clear separation of scales. Therefore the macroscopic properties of such bi-porous
materials can be predicted by two successive homogenization procedures, a first one
from the microscopic to the mesoscopic scale, and a second one from the mesoscopic
to the macroscopic scale, as schematically illustrated in Figure 1b.
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Figure 1: Micrography of irradiated UO2 (23 GW d/tU) after heat treatment at 2000 K during 3 h
(Dubourg et al., 2005). (b) Three-scale up-scaling (or homogenization) procedure (Vincent et al.,
2009a).

The first scale transition, from the microscopic to the mesoscopic scale, will not
be discussed here in much details. It amounts to finding the effective behavior of a
porous material made from a von Mises matrix containing pressurized voids. Since
the voids are spherical in shape with a rather low volume fraction Gurson’s model
(Gurson, 1977), with adequate modifications to account for the internal pressure
in the voids, is a convenient and reasonably accurate model for the problem un-
der consideration. More sophisticated homogenization models do exist, at least for
viscoplasticity (Danas et al., 2008), but Gurson’s model, in addition to its accu-
racy in the present context, has the definite advantage that it delivers an explicit
form for the dissipation potential at the mesoscale which is needed for the second
scale transition, from the mesoscopic to the macroscopic scale. This second step, to
which most of this study is devoted, amounts to finding the effective properties of a
voided material, composed of a Gurson matrix and containing randomly distributed
ellipsoidal (spheroidal) voids. The distribution of the second population of voids as-
sumed here is slightly different from that encountered in polycrystalline UO2, where
the intergranular voids are located along the grain boundaries. This approximation
is motivated by the results of Lebensohn et al. (2011) who showed that when the
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anisotropy of the single crystals is moderate (typically cubic materials such as UO2),
the precise location of the intergranular voids is not very important. Another point
worthy of notice is that a composite grain model could be constructed in the line
of Vincent et al. (2009b) where the ellipsoidal voids are smeared out in a layer of
material along the grain boundary surrounding a core of Gurson material. For the
sake of simplicity and in order to obtain analytical results this model has not been
pursued here.

The problem of a pressure-sensitive ductile matrix containing voids has been
considered by different authors, Lee and Oung (1999), Guo et al. (2008) and Thoré
et al. (2009) for a Drucker-Prager matrix containing spherical voids, Monchiet and
Kondo (2012) for a Mises-Schleicher matrix, again with spherical voids. The prob-
lem of an incompressible matrix containing ellipsoidal voids in an incompressible
matrix has been considered by Gologanu et al. (1994), Ponte Castañeda and Zaid-
man (1996), Benzerga et al. (2004), Monchiet et al. (2011), Madou and Leblond
(2012) among others. The effect of a secondary population of small voids on the
growth of a primary population of larger voids has been considered by several au-
thors (Leblond and Perrin (1999), Fabrègue and Pardoen (2008) among others).
But to the authors’ knowledge the only work addressing specifically the problem
of a Gurson matrix containing spheroidal voids under internal pressure is Vincent
et al. (2009a) on which the present study is based.

Our objective here is to derive a simple analytical expression of the effective
flow surface of such bi-porous materials under internal pressure building upon the
previous study of Vincent et al. (2009a) where two rigorous upper bounds and an
estimate of the effective flow surface have been derived. The first bound was based
on the variational method of Ponte Castañeda (1991), also called the modified secant
method (Suquet, 1995; Ponte Castañeda and Suquet, 1998) and was accurate at low
stress-triaxiality. The second bound was obtained by generalizing the approach of
Gurson (1977) and Gologanu et al. (1994) to compressible materials. The resulting
prediction was observed to be accurate at high stress-triaxiality and this procedure
is often referred to as the limit analysis procedure (LA). The estimate, called the
N-phase model, inspired by the work of Bilger et al. (2002), was again based on
the variational method of Ponte Castañeda (1991) and matches the best of the two
bounds at low and high triaxialities. However, its implementation in a standard
FEM code requires to solve, at each Gauss point of the structure, a set of N non-
linear equations. This local nonlinear step results in a significant slowing-down of
the structural calculation. The objective of the present work is therefore to derive
an approximation in closed-form of the effective flow surface. This objective is
motivated by the need of a model which can be accurate and at the same time
cost effective for structural calculations. Such a model is also particularly useful for
parametric studies to study the influence of the volume fraction and aspect ratio of
the voids, as well as their internal pressure on the overall response of the material.

This objective is achieved by searching a “Gurson-like”, or Gurson-Tvergaard-
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Needleman (GTN), approximation of the effective flow surface in the form:

1

β
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− Σ̄−
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))
− 1 = 0, (1)

where Σm is the macroscopic hydrostatic stress and Σeq is the von Mises stress,

Σm = 1
3
Tr (Σ), Σeq =

√
3
2
Σd : Σd, Σd = Σ − Σmi is the deviatoric part of Σ, σ0

denotes the yield stress of the unvoided matrix. Σ̄+
m and Σ̄−

m are the flow stresses of
the material under hydrostatic stress (corresponding respectively to a contraction
and a dilatation of the material), α and β are the two scalar functions:

α = cosh

(
3

4
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m − Σ̄−

m

σ0

)
, β =

(
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σ0

)2
α

α− 1
, (2)

where Σ̄eq is the flow stress of the material under purely deviatoric strain-rate. α,
β, Σ̄+

m, and Σ̄−
m depend on the shape and volume fractions of the two populations

of voids and on the internal pressures pb (in the intragranular voids) and pe (in the
intergranular voids). Thus, the proposed criterion is a generalized Gurson criterion
passing through the three specific points Σ̄+

m, Σ̄
−
m, and Σ̄eq as illustrated in Figure

2.
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Figure 2: Generalized GTN criterion passing through the three specific points (Σ̄+
m, 0), (Σ̄−

m, 0),

(
Σ̄

−

m
+Σ̄

+
m

2
, Σ̄eq) corresponding respectively to purely hydrostatic (positive or negative) and deviatoric

overall strain-rates.

As will be seen later, accurate approximations for these three specific points can
be derived from the compressible velocity field of Vincent et al. (2009a) generalizing
to compressible materials the approach of Gologanu et al. (1994). The key point in
the determination of Σ̄+

m, Σ̄
−
m, and Σ̄eq is the estimation of the average dilatation-rate

in the matrix, a new unknown by comparison with the more classical incompressible
case. The analysis is performed on a hollow ellipsoid but the result remains valid
for an assemblage of randomly oriented ellipsoids such as shown in Figure 3.

The present study, in two parts, is organized as follows. In the present paper,
the different scales involved in the problem, the class of microstructures, the main
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assumptions of the model, the loading conditions, and classical relations used in
upscaling methods are recalled in section 2 and the main results of Vincent et al.
(2008, 2009a) are summarized. Then a simplified analytical model is derived in
section 3 and 4 for spherical voids and in section 5 for spheroidal voids. The accuracy
of this new model is assessed in part 2 of the paper by comparison with full field
numerical simulations using the Fast Fourier Transform method of Moulinec and
Suquet (1998), Michel et al. (2000), and Michel et al. (2001). These simulations
are performed on microstructures containing a large number of spheroidal voids as
shown in Figure 3 (b).

2. Micromechanical analysis

2.1. Microstructure and loading conditions

As exposed in section 1, the problem with primary and secondary populations of
voids involves three different scales. The smallest (or microscopic) scale corresponds
to the intragranular level (Figure 1b left). The intermediate (or mesoscopic) scale
corresponds to the scale of a single grain or of a couple of grains with a large number
of small intragranular voids (Figure 1b center). The largest (or macroscopic) scale
corresponds to a large representative volume element containing a sufficiently large
number of grains and intergranular voids together with an even larger number of
intragranular voids.
Let V denote a representative volume element at the macroscopic scale, ωe is the
domain occupied by the intergranular voids and ωb is the domain occupied by the
intragranular voids. The partial porosities fb, fe and the total porosity f read:

fb =
|ωb|

|V − ωe|
, fe =

|ωe|
|V | , f = fe + fb − fefb. (3)

Since our main objective is to derive the instantaneous effective flow surface of the
material (instantaneous in the terminology of Ponte Castañeda and Zaidman (1996)
and Zaidman and Ponte Castañeda (1996)), the microstructure of the material is
assumed to be fixed.
The spherical intragranular smaller voids are filled with fission gases at pressure pb.
The larger, intergranular, ellipsoidal voids are filled with fission gases at pressure pe
which can be different from pb. In addition, the whole volume element is subjected
to an overall strain-rate Ė.

2.2. Up-scaling

The three scales of the problem being well separated, the up-scaling (or homoge-
nization) procedure can be performed in two successive steps (see Figure 1(b)), first
from the microscopic to the mesoscopic scale, smearing out all the small spherical
voids, and second from the mesoscopic to the macroscopic scale, smearing out the
details of the grain boundaries and the intergranular ellipsoidal voids. These two
successive steps will be called the first scale transition and the second scale transition
in the sequel.
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2.2.1. Average stress and strain rate in voided materials

The overall stress and strain-rate are the volume averages of the local stress
and strain-rate fields over a representative volume element V comprising a matrix
domain and a domain occupied by voids denoted by ω (which can be ωb or ωe,
depending on the scale transition under consideration). The voids are subjected to
a uniform pressure p (which could either be pb or pe depending on the scale under
consideration). The overall stress and strain rate are defined as in (Vincent et al.,
2009a):

Σ = 〈σ〉 = 1

|V |

∫

V−ω

σ dx− |ω|
|V |pi, (4)

Ė = 〈ε̇〉 = 1

|V |

(∫

V−ω

ε̇ dx−
∫

∂ω

u̇⊗s n ds

)
, (5)

where σ and ε̇ are the local stress and strain-rate fields, n is the unit normal vector
on the boundary of the voids pointing from the bulk material towards the interior
of the void, i is the second-order identity tensor, and u̇ is the local velocity field.
The symmetric tensor product of a ⊗s b of the two vectors a and b is defined as
(a⊗s b)ij =

1
2
(aibj + ajbi).

2.2.2. Effective dissipation potential and effective flow surface

The up-scaling procedure for the two scale transitions is based on the minimiza-
tion of the average plastic dissipation in a representative volume element under an
imposed macroscopic strain-rate to which corresponds a variational principle. The
scale transition is not specified and the variational principle applies to both changes
of scale:

Σ =
∂Φ

∂Ė
(Ė, p), (6)

with

Φ(Ė, p) = inf
u̇ ∈K(Ė)

1

|V |

[∫

V−ω

ϕ(ε(u̇))dx+ p

∫

∂ω

u̇ · n ds

]
, (7)

where K(Ė) denotes the set of velocity fields u̇ satisfying u̇ = Ė.x on ∂V . The
dissipation potential of the matrix, ϕ, is a positively homogeneous function of degree
1 with respect to ε̇. Φ inherits this property of homogeneity of degree 1, and therefore
is not everywhere differentiable. Relation (6) must be understood in a generalized
sense. Φ is the dissipation potential of an effective domain P hom(p) characterized
as:

P hom(p) = {Σ such that Σ : Ė ≤ Φ(Ė, p) for all Ė}. (8)

The boundary of P hom(p) is the effective flow surface of the material and consists of
all stresses deriving from the potential Φ:

when Ė 6= 0, Σ =
∂Φ

∂Ė
(Ė, p) belongs to the effective flow surface. (9)

The variational principle (7) and the characterization (9) apply to both scale tran-
sitions.
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2.2.3. First scale transition: generalized Gurson criterion

For the first scale transition, the plastic dissipation potential ϕ corresponds to
a von Mises, incompressible, material (ϕ(ε̇) = σ0ε̇eq). Generalizing Gurson’s ap-
proach to account for the internal pressure in the voids, Vincent et al. (2009a) have
established that the effective (mesoscopic) potential differs from the usual Gurson’s
potential by only a linear term

Φb(Ė, pb) = ΦGur(Ė)− 3pbĖm (10)

where Gurson’s potential corresponding to the drained case (pb = 0), reads:

ΦGur(Ė) = σ0

∫ 1

f∗

b

(
4

y2

(
Ėm

)2
+

1

q3

(
Ėeq

)2) 1

2

dy. (11)

Ėm is the hydrostatic strain rate and Ėeq is the von Mises norm for the strain rate,

Ėm = 1
3
Tr
(
Ė
)
, Ėeq =

√
2
3
Ė

d
: Ė

d
, Ė

d
= Ė− Ėmi is the deviatoric part of Ė. The

initial analysis of Gurson corresponds to f ∗
b = fb and q3 = 1. The enhanced porosity

f ∗
b = q1fb and the parameter q3 have been introduced by Koplik and Needleman
(1988) to better match their unit-cell calculations. Detailed expressions for these
parameters q1 and q3 can be found can be found in Koplik and Needleman (1988)
and Leblond et al. (1994).

The effective flow surface corresponding to (10) through relation (9) is a gen-
eralized Gurson-Tvergaard-Needleman (GTN) criterion (Gurson, 1977; Koplik and
Needleman, 1988; Tvergaard, 1990) :

q3

(
Σeq

σ0

)2

+ 2q1fb cosh

(
3

2

Σm + pb
σ0

)
− 1− (q1fb)

2 = 0, (12)

where Σm is the hydrostatic stress and Σeq is the von Mises stress, Σm = 1
3
Tr (Σ),

Σeq =
√

3
2
Σd : Σd, Σd is the macroscopic stress deviator. Note that when the voids

are subjected to a uniform internal pressure pb, the general form of the Gurson
criterion is preserved, Σ being replaced by Σ+ pbi.

2.3. Second scale transition: the upper bound of Vincent et al. (2009a)

For the second scale transition, the local dissipation potential ϕ in (7) is the
mesoscopic effective potential (10) corresponding to a compressible material, the
voided domain consists of the intergranular voids ω = ωe, the internal pressure is
the pressure in the intergranular voids p = pe and the effective potential derived
from (7) is the effective macroscopic potential Φ(Ė, pb, pe).

A more specific microstructure will be assumed at the mesoscopic scale, ob-
tained by assembling confocal hollow ellipsoids in the line of Gologanu et al. (1994)

9



or Madou and Leblond (2012) (who considered a single hollow ellipsoid). All in-
tergranular voids are assumed to be spheroidal in shape with the same aspect-ratio
w = c/a between the semi-axis c in the direction of the axis of the spheroid and the
semi-axis a in the plane orthogonal to this direction. The intergranular voids are
therefore oblate when w < 1, spherical when w = 1 and prolate when w > 1. Each
void is surrounded by an ellipsoidal shell of matrix which is confocal to the void and
the whole space is filled with such self-similar ellipsoids with arbitrary orientation
and size (Figure 3 (b)). Vincent et al. (2009a) have derived rigorous properties and

(a)

(b)

Figure 3: (a): Assemblage of self-similar randomly oriented hollow ellipsoids (from Vincent et al.,
2009a). Unit pattern (left). Rotated and dilated hollow ellipsoid (center). Representative volume
element (right). (b): Typical microstructure used in the full-field simulations: randomly oriented
ellipsoidal voids (intergranular) in a compressible matrix (due to the presence of intragranular
voids)

approximations for the effective potential Φ. In particular they showed that

Φ(Ė, pb, pe) = Φ(Ė, pb − pe, 0)− 3peĖm = Φ(Ė, 0, pe − pb)− 3pbĖm. (13)

In other words when the two populations of voids are saturated, with pressure pb
in the small voids and pe in the large voids, and when the matrix is incompressible
at the microscopic scale, it is sufficient to perform the second scale transition for
a drained porous matrix (pb = 0), provided that the pressure in the larger voids
is set equal to pe − pb. Equivalently, it is sufficient to determine the potential
Φ(Ė, pb − pe, 0) for a saturated porous matrix under pressure pb − pe, provided that
the pressure in the larger voids is set equal to 0.
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Moreover Vincent et al. (2009a) have derived a rigorous upper bound for the
above described assemblage of hollow ellipsoids by generalizing to compressible ma-
terials the approach of Gologanu et al. (1994) by using for a single hollow ellipsoid
the velocity field

u̇ = u̇Gol + Ax, (14)

where A is a scalar parameter and u̇Gol is derived from the incompressible velocity
field of Gologanu et al. (1994). A more detailed construction of the velocity field (14)
is given in (Vincent et al., 2008) and (Vincent et al., 2009a). A definite advantage of
this explicit field over the more general, but less explicit, family of velocity fields of
Gologanu et al. (1997) is that it leads to an effective dissipation potential which can
be expressed (almost) in closed form (see relation (40)). The matrix being isotropic
(Gurson material) the use of enriched velocity fields is not expected to lead to
significant improvements, although this point has not been checked in details. This
velocity field can classically be extended to the hollow ellipsoid assemblage. The
resulting strain-rate field in the matrix reads as

ε̇ = ε̇Gol + Ai,

and since the field ε̇Gol is incompressible, A can be interpreted as the dilatation rate
in the matrix (which is assumed to be uniform by the specific choice (14)):

ε̇m = A in the matrix.

According to relation (5), the macroscopic dilatation-rate can be expressed as

3Ėm = 3(1− fe)A+ fe
˙|ωe|

|ωe|
,

where |ωe| denotes the volume of ωe. Keeping in mind that fe =
|ωe|
|V |

, the change in
volume fraction of the ellipsoidal voids can be expressed as

ḟe
fe

=
˙|ωe|

|ωe|
−

˙|V |
|V | = 3(Ėm − A)

1− fe
fe

where
˙|V |

|V | = 3Ėm. (15)

In other words

- when A = 0, there is no dilatation-rate in the matrix (ḟb = 3fbε̇m = 0) and the
overall dilatation is entirely due to the change of volume of the intergranular
voids,

- when A = Ėm, the volume fraction of the intergranular voids does not change
(ḟe = 0) and the overall dilatation is entirely due to the change of volume of
the intragranular voids.
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An accurate determination of the average dilatation rate A in the matrix for arbi-
trary loading conditions pb, pe and Ė is essential in obtaining accurate predictions
for the effective flow surface of the material. A numerical procedure was used in
Vincent et al. (2009a). The present study aims at deriving an analytical approxi-
mation for this dilatation rate, using asymptotic expansions of A as a function of
pb−pe and Ė in the neighborhood of A = ±∞, A = 0 and A = Ėm. Section 3 deals
with the simpler case of spherical voids, whereas the general case of spheroidal and
randomly oriented voids is addresses in section 5.

3. Spherical intergranular voids: average strain-rate in the matrix

3.1. The upper bound of Vincent et al. (2009a)

When the intergranular voids are spherical (w = 1) (Vincent et al., 2009a) have
shown that the effective potential Φ(Ė, pb, pe) for the composite sphere assemblage
can be bounded from above by:

Φ+(Ė, pb, pe) = infA φ(A, Ė, p)− 3peĖm, (16)

where p = pb − pe and

φ(A, Ė, p) = σ0

∫ 1

fe

∫ 1

f∗

b

√

4
A2

y2
+ 4

(Ėm − A)2

q3z2
+

(Ėeq)2

q3
dy dz − 3(1− fe)pA. (17)

The effective flow surface corresponding to the potential (16) is defined by the para-
metric equations:

Σm =
1

3

∂Φ+

∂Ėm

(Ė, pb, pe) = −pe +
4

3

σ0

q3

∫ 1

f∗

b

∫ 1

fe

Ėm −Asol

z2
√
4
A2

sol

y2
+ 4 (Ėm−Asol)2

q3z2
+ (Ėeq)2

q3

dz dy,

Σeq =
∂Φ+

∂Ėeq

(Ė, pb, pe) =
σ0

q3

∫ 1

f∗

b

∫ 1

fe

Ėeq√
4
A2

sol

y2
+ 4 (Ėm−Asol)2

q3z2
+ (Ėeq)2

q3

dz dy,





(18)
where Asol denotes the solution of the minimization problem (16). In a structural
calculation the minimization problem (16) and the numerical integration of the
double integrals in (18) have to be performed at every Gauss point of the structure.
Both operations are time-consuming at a single material point and the cost at the
level of a structure is extremely high. The rest of the paper aims first at determining
an approximate, but accurate, analytical expression for the average dilatation-rate in
the matrix Asol and second, to use this approximation to propose a simple analytical
expression for the effective flow surface.

12



3.2. Specific properties of Asol

The approximation proposed is based on several general properties of Asol as a
function of pb, pe and Ė. Note that Asol depends in fact on pb and pe only through
their difference p = pb−pe. The properties are listed below and proved in Appendix
A.

Property 1: Asol(p, Ė) is an odd function of (p, Ė) :

Asol(−p,−Ė) = −Asol(p, Ė) (19)

A straightforward consequence of property 1 is that Φ+ is itself an even function of
(Ė, pb, pe):

Φ+(−Ė,−pb,−pe) = Φ+(Ė, pb, pe). (20)

Property 2: Asol(p, Ė) is a monotone increasing function of p.

This property allows to consider either Asol as a function of p (the determination of
this function is our final goal), or conversely p as a function of Asol (it will be useful
to compute p for a few, physically relevant, values of Asol).

Property 3:

lim
p→±p∞

Asol(p, Ė) = ±∞ where p∞ =
2

3

σ0

1− fe
I0, (21)

where I0 is a scalar function of fe and f ∗
b given by (A.7), and more specifically

Asol(p, Ė) ∼ ±
√

σ0

12q3(1− fe)

√
4Ė2

mI1 + Ė2
eqI2

1√
p∞ ∓ p

when p → ±p∞, (22)

where I1 and I2 are two scalar functions of fe and f ∗
b given by (A.10).

In other words the range of pressure p for which the problem (16) has a solution
is limited to the interval ]−p∞,+p∞[. Explicit expressions of I0, I1, and I2 are given
in Appendix C.

Two other specific values of p, are worth investigating. The first one, p0, corre-
sponds to the pressure which compensates exactly the effect of the overall strain-rate
Ė and gives no average dilatation-rate in the matrix: Asol = 0 when p = p0.

Property 4: Asol(p, Ė) = 0 when p = p0(Ė) with

p0(Ė) =
−4σ0(1− f ∗

b )

3
√
q3(1− fe)

Ėm

∫ 1

fe

1

z2

(
4
Ė2

m

z2
+ Ė2

eq

)−1/2

dz. (23)

In addition

∂Asol

∂p
(p0, Ė) =

3(1− fe)

4σ0
√
q3(1− f ∗

b )

1[
1
f∗

b

(
4Ė2

mJ1 + Ė2
eqJ2

)
+

Ė2
eq

q3
J1

] , (24)
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where J1 and J2 are functions of f ∗
b , fe and Ė defined in (A.13).

The second pressure of interest, p1 corresponds to the internal pressure in the voids
for which A = Ėm, which, following (15), corresponds to the specific loading con-
ditions where the void volume fraction of the interganular voids is kept constant in
time.

Property 5: Asol(p, Ė) = Ėm when p = p1(Ė) with

p1(Ė) =
4σ0

3
Ėm

∫ 1

f∗

b

1

y2

(
4
Ė2

m

y2
+

Ė2
eq

q3

)−1/2

dy. (25)

In addition
∂Asol

∂p
(p1, Ė) =

3q3
4σ0

1(
1
fe
J3 + Ė2

eqJ4

) , (26)

where J3 and J4 are functions of f ∗
b , fe and Ė defined in (A.17).

3.3. Explicit approximation for Asol

An interpolation, matching the above exact asymptotic results when p ∼ −p∞,
p ∼ p0 p ∼ p1, and p ∼ p∞ is proposed.

Attention is restricted to Ėm > 0, since according to (A.1), the expression of Asol

for Ėm < 0 can be deduced from that for Ėm > 0 by changing the sign of p and the
sign of Asol.

The interval ] − p∞,+p∞[ is split into 3 subintervals and the proposed interpo-
lation takes different forms in each of these intervals:

Ā(Ė, p) =





A−(Ė, p) when − p∞ < p ≤ p0,

A0(Ė, p) when p0 ≤ p ≤ p1,

A+(Ė, p) when p1 ≤ p < p∞.

(27)

The branches are chosen in such a way that the singularity of Asol(p, Ė)) at p = ±p∞

is reproduced and the exact values of Asol(p, Ė)) and ∂Asol

∂p
(p, Ė) are met at p = p0

and p = p1 (the dependence on Ė is omitted for simplicity):

A−(p
0) = A0(p

0) = 0,
∂A−

∂p
(p0) =

∂A0

∂p
(p0) =

∂Asol

∂p
(p0)

A0(p
1) = A+(p

1) = Ėm,
∂A0

∂p
(p1) =

∂A+

∂p
(p1) =

∂Asol

∂p
(p1)

In the first interval ]− p∞, p0[ the proposed approximation reads as:

A−(p) = −C−

(√
p∞ + p0√
p∞ + p

− 1

)
+D−(p− p0) (28)
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with

C− =
1√

p∞ + p0

√
σ0

12q3(1− fe)

√
4Ė2

mI1 + E2
eqI2,

D− =
∂Asol

∂p
(p0)− C−

2(p∞ + p0)
.





(29)

Similarly, the interpolation proposed for the interval ]p1,+p∞[ reads as:

A+(p) = C+

(√
p∞ − p1√
p∞ − p

− 1

)
+D+(p− p1) + Ėm (30)

with

C+ =
1√

p∞ − p1

√
σ0

12q3(1− fe)

√
4Ė2

mI1 + E2
eqI2,

D+ =
∂Asol

∂p
(p1)− C+

2(p∞ − p1)
.





(31)

As for the middle interval ]p0, p1[, the function Asol(p) is approximated by a polynom
of degree 3 in p matching the exact values of Asol(p) and its first derivative at p = p0
and p = p1:

A0(p) = (p− p0)

(
E

2
(p− p1)2 + F (p− p1) +

Ėm

p1 − p0

)
(32)

with

E =
2

(p1 − p0)2

(
∂Asol

∂p
(p0) +

∂Asol

∂p
(p1)− 2Ėm

p1 − p0

)
,

F =
1

p1 − p0

(
∂Asol

∂p
(p1)− Ėm

p1 − p0

)





(33)

3.4. Comparison between the exact minimizer Asol and the approximation Ā (27)

The approximate form (27) is compared in this section with the exact minimizer
Asol of (16). This is done for three different values of the triaxiality ratio of the
overall strain-rate: Ėm/Ėeq = 0, Ėm/Ėeq = +∞ and Ėm/Ėeq = 1.

3.4.1. Purely deviatoric macroscopic strain-rate: Ėm = 0.

When the overall strain-rate is purely deviatoric, the two intermediate pressures
p0 and p1 are both equal to 0 and the intermediate regime (between p0 and p1)
no more exists. The approximation (27) takes a simplified form thanks to the
expressions given in Appendix A.1. The exact minimizer of (16) (crosses) and the
approximation (27) (solid line) are compared in Figure 4 for four different values of
the volume fraction of both populations of voids. As can be seen, the agreement is
excellent over the whole range of admissible pressures p, and for the four values of
the porosities.
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Figure 4: Spherical intergranular voids. Purely deviatoric overall strain-rate Ėm = 0. Comparison
between the exact dilatation-rate Asol (crosses) and the approximation Ā (27) (solid line).
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3.4.2. Purely hydrostatic macroscopic strain-rate: Ėeq = 0.

When the overall strain-rate is purely hydrostatic, the two intermediate pressures
p0 and p1 can be computed explicitly (see Appendix A.2). Other simplifications
occur in the different terms of the approximation (27) which takes a simplified form
thanks to the expressions given in Appendix A.2. Again, the agreement between
the exact minimizer of (16) (crosses) and the approximation (27) (solid line) is
excellent over the whole range of admissible pressures p, and for the four values of
the porosities (Figure 5).
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Figure 5: Spherical intergranular voids. Purely hydrostatic overall strain-rate Ėeq = 0. Comparison
between the exact dilatation-rate Asol (crosses) and the approximation Ā (27) (solid line).

3.4.3. Intermediate strain-rate: Ėm/Ėeq = 1.

For all intermediate values of the triaxiality ratio of the overall strain-rate, the
integrals have to be computed numerically. A specific triaxiality ratio Ėm/Ėeq = 1
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has been considered for the comparison performed in Figure 6. Again the agreement
between the exact minimizer and its approximation is seen to be excellent.
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Figure 6: Spherical intergranular voids. Triaxial overall strain-rate: Ėm/Ėeq = 1. Comparison
between the exact dilatation-rate Asol (crosses) and the approximation Ā (27) (solid line).

All these comparisons show that Asol , the average dilatation-rate in the matrix,
solution of the variational problem (16) can be accurately approximated by the
expression (27). Consequently, the resolution of the minimization problem (16) can
be avoided.

4. A GTN criterion for pressurized voided materials with spherical in-
tergranular voids

It remains to find an accurate approximation for the effective flow surface defined
by the parametric equations (18). A first approach is to use the approximation Ā
in (16) to get an upper bound, denoted by Φ̄, for the overall dissipation potential:

Φ̄(Ė, pb, pe) = φ(Ā(p, Ė), Ė, p)− 3peĖm. (34)
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Then the approximate flow surface is defined by the parametric equations:

Σm =
1

3

∂Φ̄

∂Ėm

(Ė, pb, pe), Σeq =
∂Φ̄

∂Ėeq

(Ė, pb, pe) (35)

It should be noted that the parametric equations (35) do not reduce to (18) upon
substitution of Asol with Ā. In addition to the double integrals in (18), other terms
involving the derivatives of Ā with respect to Ėm and Ėeq have to be taken into
account. The resulting flow surface is a rigorous outer bound to the flow surface
defined by the potential Φ+. A comparison between the two flow surfaces is shown
in Figure 7 where they are respectively plotted with crosses and squares. The
agreement between crosses and squares is seen to be excellent which proves that the
expression (27) is an accurate approximation of the actual solution Asol.
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Figure 7: Spherical intergranular voids. Comparison between the flow surface (18) (crosses), the
flow surface (35) (squares) and the GTN approximation (1) (solid line). p denotes the difference
pb − pe.

The cost for determining the flow surface (35) is certainly less than that for
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(18), as there is no minimization problem to be solved for Asol. However the double
integrals are still time-consuming (keeping in mind that this operation has to be
repeated at every Gauss point of a piece of material, at every time step along its
loading history) and a simpler analytical expression for this flow surface is searched
for.

To this end, a useful observation can be made from Figure 7: the shape of the
two flow surfaces (18) and (35) is reminiscent of a GTN flow surface whose equation
is (1). As schematically depicted in Figure 2, such a GTN surface is completely
determined by the data of three particular stress points: the two points (Σ̄−

m, 0) and
(Σ̄+

m, 0) on the hydrostatic axis and the point (1
2
(Σ̄−

m+Σ̄+
m), Σ̄eq) corresponding to the

maximum deviatoric stress on the surface. Obviously, looking for an approximation
in the form (1) for the flow surface, leads to enforcing certain symmetries which are
not necessarily present in the actual surface. This is discussed in Appendix D.

The two hydrostatic points (Σ̄±
m, 0) correspond to the two purely hydrostatic

strain rates Ė = ±i where i is the identity among second-order tensors. Indeed
Ā and consequently Φ̄ depend on the two first invariants of Ė. Therefore, the
constitutive relations obtained by derivation of the potential are isotropic and the
principal axes of the overall stress and of the overall strain-rate coincide. Every
direction is a principal direction for Ė and consequently for Σ which proves that Σ
is hydrostatic as well. The points (Σ̄±

m, 0) could be computed using the relations (35)
with Ė = ±i. But it is simpler to use a specific property of positively homogeneous
functions of degree 1. Both Φ+ and Φ̄ are such that

Φ̄(λĖ) = λΦ̄(Ė) for all positive λ.

By derivation with respect to λ (and setting λ = 1), one gets (Euler’s equation):

∂Φ̄

∂Ė
(Ė) : Ė = Φ̄(Ė). (36)

It follows from this relation applied with Ė = ±i that

3Σ̄±
m = ±φ(Ā±,±i, p)− 3pe (37)

where φ is defined in (17) and Ā± = Ā(±i, p) where the function Ā is defined in

(27). Similarly, choosing a purely deviatoric strain-rate Ė
d
with Ėd

eq = 1 in (36)
yields

Σ̄eq = φ(Āeq, Ė
d
, p), (38)

where Āeq = Ā(Ė
d
, p) with the function Ā defined in (27). The quantities Ā±

and Āeq take simplified forms thanks to the expressions given in Appendix A.1
and Appendix A.2. Then the flow surface corresponding to Φ̄ is bounded all the
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hydrostatic and the deviatoric axes by:

Σ̄±
m = ±σ0

3

∫ 1

fe

∫ 1

f∗

b

√

4
(Ā±)2

y2
+ 4

(±1 − Ā±)2

q3z2
dy dz − (1− fe)pĀ

± − pe,

Σ̄eq = σ0

∫ 1

fe

∫ 1

f∗

b

√

4
Ā2

eq

y2
+ 4

Ā2
eq

q3z2
+

1

q3
dy dz − 3(1− fe)pĀeq.






(39)

The integrals entering (39) can be expressed in closed form (see Appendix C).

4.1. Comparison between the GTN approximation and the flow surfaces associated
with the upper bounds Φ+ and Φ̄.

The three flow surfaces corresponding to the potential Φ+ (16) of Vincent et al.
(2009a), the present potential Φ̄ and the approximation (1) are compared in Figure
7. As can be seen the agreement is very satisfactory at all stress triaxiality. A more
accurate comparison, focusing on the three specific overall stresses corresponding

respectively to the three overall strain-rate states Ė = ±i and Ė = Ė
d
, has been

performed over a broad range of porosities. These stress states provide rigorous
bounds for the effective flow surface on the hydrostatic axis and on the deviatoric
axis respectively. These three stress states are successively evaluated with the ac-
tual solution Asol of the minimization problem (16) (the corresponding stresses are
denoted by Σsol±

m , Σsol
eq ) and with the approximation Ā (the corresponding stresses

are denoted by Σ̄±
m, Σ̄eq). As can be seen in Figure 8, the discrepancy between the

two sets of results is less than 1.5 % over the whole range of porosities f ∗
b and fe of

interest in the present context of nuclear fuel.

5. Ellipsoidal intergranular voids

5.1. Upper bound and approximation of Vincent et al. (2009a)

The present section is devoted to ellipsoidal voids, and more specifically to
spheroidal voids characterized by two equal axes. In view of Figure 1a, attention
is restricted to oblate spheroids where the third axis is smaller than the two equal
axes (see Appendix E for more details). The voids are randomly distributed and
randomly oriented in the volume element V and the matrix surrounding them is
a Gurson material. The additional porosity due to these intergranular voids is de-
noted by fe (see (3)). All voids are assumed to have the same aspect ratio w (w < 1
for oblate spheroids).

Using the trial field (14), Vincent et al. (2009a) have derived an upper bound for
the plastic potential of a single hollow ellipsoid in a Gurson matrix. Then, averaging
over all possible orientations of the hollow ellipsoids (as schematically depicted in
Figure 3), the effective dissipation potential of an assemblage of hollow ellipsoids
has been bounded from above by:
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Figure 8: Spherical intergranular voids. pe = 0 and q3 = 1. Left: pb = σ0, right: pb = 2σ0.
Comparison between Σsol±

m , Σsol
eq obtained with Asol and Σ̄±

m, Σ̄eq obtained with Ā.

Φ+(Ė, pb, pe) = inf
A

[
σ0

∫ 1

f∗

b

∫ λ2

λ1

H(λ,A, y, Ėm, Ėeq)dλ dy − 3(1− fe)pA

]
− 3peĖm,

(40)
where

H(λ,A, y, Ėm, Ėeq) =

√

J2(λ)
4A2

y2
+

J(λ)

q3

(
3QJ(λ)

(
Ėm − A

)2
+ J(λ)Ė2

eq

)
, (41)

λ is related to the systems of ellipsoidal coordinates (see Appendix E). This expres-
sion is hardly amenable to analytical calculations. However, following the notations
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and the analysis of Gologanu et al. (1994), Vincent et al. (2008) have noticed that,
the potential Φ+(Ė, pb, pe) can be approximated with a very good accuracy by a
simpler expression

Φ+(Ė, pb, pe) ≈ Φ̃(Ė, pb, pe) = inf
A

[
φ̃(Ė, pb, pe, A)

]
− 3peĖm, (42)

where:

φ̃(Ė, pb, pe, A) = · · ·

σ0(g + 1)

∫ 1

f∗

b

∫ 1

f̃

√
4A2

y2
+

(Ėm − A)2

z2
ã2

q3
+ (Ėm − A)2

b̃2

q3
+

(Ėeq)2

q3
dz dy · · ·

−3(1 − fe)pA.

(43)

The scalar coefficients g, ã, b̃, given by relations (E.8) and (E.11) in Appendix E,
depend on the geometry of the ellipsoidal voids only. f̃ is a function of the geometry
of the voids and of the actual porosity fe (see (E.8)). The form (43) is very close
to the form (17) of the potential for spherical voids where the actual porosity fe of
the ellipsoidal voids is replaced by an artificial porosity f̃ , except for the presence of

the additional term (Ėm −A)2 b̃2

q3
. The very same procedure of approximation as for

spherical voids can be followed. First an explicit (and accurate) approximation Ā
of the average dilatational rate Asol is proposed, based on specific properties of Asol.
Second, this approximation is used to identify the coefficients of a GTN criterion.

5.2. General properties of Asol

Let Asol(p, Ė) denote the solution of the variational problem (42). Then the five
properties of Asol that were found for spherical voids have counterparts for ellipsoidal
voids, with only slight modifications. Properties 1 and 2 are unchanged: Asol is an
odd function of (p, Ė) and a nondecreasing function of p

Asol(−p,−Ė) = −Asol(p, Ė),
∂Asol

∂p
(p, Ė) ≥ 0.

Properties 3, 4 and 5 have to be slightly amended and read for ellipsoidal voids (see
Appendix B for a proof):

Property 3’:

Asol(p, Ė) ∼ ±
√

σ0(g + 1)

12q3(1− fe)

√
4Ė2

mĨ1 + Ė2
eq Ĩ2

1√
p̃∞ ∓ p

when p → ±p̃∞,

p̃∞ =
2

3

σ0(g + 1)

1− fe
Ĩ0,





(44)

where Ĩ0, Ĩ1 and Ĩ2 are scalar functions of f
∗
b , fe, w given by (B.4) and (B.7). Explicit

expressions of Ĩ0, Ĩ1, and Ĩ2 are given in Appendix C.
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Property 4’: Asol(p, Ė) = 0 when p = p̃0(Ė) with

p̃0(Ė) =
−4σ0(g + 1)(1− f ∗

b )

3
√
q3(1− fe)

Ėm

∫ 1

f̃

c̃2(z)

z2

(
4
Ė2

mc̃
2(z)

z2
+ Ė2

eq

)−1/2

dz,

∂Asol

∂p
(p̃0, Ė) =

3(1− fe)

4σ0(g + 1)
√
q3(1− f ∗

b )

1[
1
f∗

b

(
4Ė2

mJ̃1 + Ė2
eqJ̃2

)
+

Ė2
eq

q3
J̃1

] ,





(45)

where J̃1 and J̃2 are functions of f ∗
b , fe, w and Ė defined in (B.9).

Property 5’: Asol(p, Ė) = Ėm when p = p̃1(Ė) with

p̃1(Ė) =
4σ0(g + 1)

3

1− f̃

1− fe
Ėm

∫ 1

f∗

b

1

y2

(
4
Ė2

m

y2
+

Ė2
eq

q3

)−1/2

dy,

∂Asol

∂p
(p̃1, Ė) =

3q3
4σ0(g + 1)

1− fe

1− f̃

1[
1
4

(
ã2

f̃
+ b̃2

)
J3 + Ė2

eqJ4

] .





(46)

where J3 and J4 given by (A.17) are the same as for spherical voids.

5.3. Explicit approximation for Asol

An interpolation, matching the above exact asymptotic results, can be proposed
in the same vein as in section 3.3. Restricting attention to Ėm > 0 (the expression
of Asol for Ėm < 0 being deduced from that for Ėm > 0 by changing the sign of p
and the sign of Asol) the interpolation consists of three branches and has the same
form as in (27):

Ã(Ė, p) =





−C̃−

(√
p̃∞ + p̃0√
p̃∞ + p

− 1

)
+ D̃−(p− p̃0) when − p̃∞ < p ≤ p̃0,

(p− p̃0)

(
Ẽ

2
(p− p̃1)2 + F̃ (p− p̃1) +

Ėm

p̃1 − p̃0

)
when p̃0 ≤ p ≤ p̃1,

C̃+

(√
p̃∞ − p̃1√
p̃∞ − p

− 1

)
+ D̃+(p− p̃1) + Ėm when p̃1 ≤ p < p̃∞,

(47)
with

C̃− =
1√

p̃∞ + p̃0

√
σ0(g + 1)

12q3(1− fe)

√
4Ė2

mĨ1 + E2
eq Ĩ2,

C̃+ =
1√

p̃∞ − p̃1

√
σ0(g + 1)

12q3(1− fe)

√
4Ė2

mĨ1 + E2
eq Ĩ2,





(48)

The corresponding coefficients D̃−, D̃+, Ẽ and F̃ are given by (29), (31) and (33)
where p0, p1, p∞, C−, C+ should be replaced by p̃0, p̃1, p̃∞, C̃−, C̃+ and where the
derivatives ∂Asol/∂p at p̃0 and p̃1 are obtained by means of (45) and (46).
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5.4. Accuracy of the approximation of Φ+ by Φ̃

In the case of drained voids (no internal pressure) the accuracy of the approxi-
mation of Φ+ by Φ̃ has been discussed in Vincent et al. (2008) to which the reader
is referred for more details. When the voids are pressurized, we illustrate here the
accuracy of this approximation by comparing the limit pressure (beyond which no
macroscopic stress can be sustained by the porous material) as predicted by Φ+ and
by Φ̃.

It is readily seen that the limit pressure for Φ+ is given by:

p∞+ =
1

3(1− fe)
σ0

∫ 1

f∗

b

∫ λ2

λ1

√

J2(λ)
4

y2
+

J(λ)

q3
3QJ(λ)dλ dy. (49)

whereas the limit pressure for Φ̃ is found to be:

p̃∞ =
1

3(1− fe)
σ0(g + 1)

∫ 1

f∗

b

∫ 1

f̃

√
4

y2
+

1

z2
ã2

q3
+

b̃2

q3
dz dy. (50)

p∞+ and p̃∞ are compared in Figure (9). As can be seen the agreement is very good
over a large range of (f ∗

b , fe) and even for small w and the error is less than 1.5 %.

Figure 9: Accuracy of the approximation of the limit pressure between p∞+ (49) by p̃∞ (50).

5.5. Comparison between the exact minimizer Asol and the approximation Ã (47)

The exact minimizer Asol and the approximation Ã (47) are compared over the
whole range of admissible pressures for three specific values of the triaxiality ratio
of the overall strain-rate: Ėm/Ėeq = 0, Ėm/Ėeq = +∞ and Ėm/Ėeq = 1.
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5.5.1. Purely deviatoric macroscopic strain-rate: Ėm = 0.

When the overall strain-rate is purely deviatoric, the approximation (47) takes
a simple form with the help of the detailed expressions in Appendix B.1. Four
different values of the volume fraction of both populations of voids are considered
in Figure 10. As can be seen, the agreement between the exact minimizer of (40)
(crosses) and the approximation (47) (solid line) is excellent over the whole range
of admissible pressures p, and for the four values of the porosities.
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Figure 10: Ellipsoidal intergranular voids. Purely deviatoric overall strain-rate Ėm = 0. Com-
parison between the exact minimizer Asol for Φ+ (crosses) and the approximation Ã (47) (solid
line).

5.5.2. Purely hydrostatic macroscopic strain-rate: Ėeq = 0.

When the overall strain-rate is purely hydrostatic, the two intermediate pressures
p̃0 and p̃1 can be computed explicitly (see Appendix B.2). Other simplifications
occur in the different terms of the approximation (47) which takes a simplified form
thanks to the expressions given in Appendix B.2. Again, the agreement between
the exact minimizer of (40) (crosses) and the approximation (47) (solid line) is
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excellent over the whole range of admissible pressures p, and for the four values of
the porosities (Figure 11).
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Figure 11: Ellipsoidal intergranular voids. Purely hydrostatic overall strain-rate Ėeq = 0, Ėm > 0.

Comparison between the exact minimizer Asol for Φ
+ (crosses) and the approximation Ã (47) (solid

line).

5.5.3. Intermediate strain-rate: Ėm/Ėeq = 1.

For all intermediate values of the triaxiality ratio of the overall strain-rate, the
integrals have to be computed numerically. A specific triaxiality ratio Ėm/Ėeq = 1
has been considered for the comparison performed in Figure 12. Again the agreement
between the exact minimizer and its approximation is seen to be excellent.

5.6. A GTN criterion for pressurized voided materials with ellipsoidal intergranular
voids

It remains to find, as in the spherical case, an accurate approximation for the
effective flow surface. First of all, the exact minimizer of (40) leads to an upper
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Figure 12: Ellipsoidal intergranular voids. Triaxial overall strain-rate Ėm/Ėeq = 1. Comparison

between the exact minimizer Asol for Φ
+ (crosses) and the approximation Ã (47) (solid line).
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bound defined by the parametric equations:

Σm =
1

3

∂Φ+

∂Ėm

(Ė, pb, pe), Σeq =
∂Φ+

∂Ėeq

(Ė, pb, pe), (51)

Σm = −pe +
σ0

q3

∫ 1

f∗

b

∫ λ2

λ1

J(λ)QJ(λ)

H(λ,Asol, y, Ėm, Ėeq)
dλ dy (Ėm − Asol),

Σeq =
σ0

q3

∫ 1

f∗

b

∫ λ2

λ1

J2(λ)

H(λ,Asol, y, Ėm, Ėeq)
dλ dy Ėeq.





(52)

To simplify these relations a first approach consists in using the approximation Ã in
(47) to get an upper bound, denoted by Φ̄ for the overall dissipation potential Φ+:

Φ̄(Ė, pb, pe) = σ0

∫ 1

f∗

b

∫ λ2

λ1

H(λ, Ã(Ėm, Ėeq), y, Ėm, Ėeq)dλ dy

−3(1− fe)pÃ(Ėm, Ėeq)− 3peĖm.

(53)

The associated flow surface is then an upper bound defined by the parametric equa-
tions (35). It is recalled here that the terms proportional to the derivatives of Ã with
respect to Ėm and Ėeq have to be properly taken into account in the expressions
(35).
The two flow surfaces, which remain two upper bounds, are compared in Figure 13.
The agreement between crosses (Φ+) and squares (Φ̄) is seen to be excellent. This
proves that the expression (47) is an accurate approximation for the exact minimizer
of (40). However, even if the approximation of Φ+ by Φ̄ avoids the resolution of
an optimization problem to determine Asol, the evaluation of the double integrals in
the analog of (51) (with Φ̄ instead of Φ+) is still time-consuming when repeated at
each Gauss point of a structure. This motivates the search of an explicit equation
for the effective flow surface.

Following section 4, a GTN flow surface in the form (1) is proposed, based on Ã
(47) and φ̃ (43). The three specific stresses Σ̄−

m, Σ̄
+
m, Σ̄eq which specify completely

the form (1) and correspond respectively to the minimum and maximum hydrostatic
stresses and to the maximum deviatoric stress on the flow surface are then given by:

Σ̄±
m = ±1

3
φ̃(Ã±,±i, p)−pe, Ã± = Ã(±i, p), Σ̄eq = φ̃(Ãeq, Ė

d
, p), Ãeq = Ã(Ė

d
, p),

(54)
where Ã± and Ãeq can be expressed in closed form by means of (Appendix B.1)
and (Appendix B.2). The relations (54), together with the definition (43) of φ̃ lead
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to:

Σ̄±
m = ±1

3
σ0(g + 1)

∫ 1

f∗

b

∫ 1

f̃

√
4(Ã±)2

y2
+

(±1 − Ã±)2

z2
ã2

q3
+ (±1− Ã±)2

b̃2

q3
dz dy

−(1 − fe)pÃ
± − pe,

Σ̄eq = σ0(g + 1)

∫ 1

f∗

b

∫ 1

f̃

√
4(Ãeq)2

y2
+

(Ãeq)2

z2
ã2

q3
+ (Ãeq)2

b̃2

q3
+

1

q3
dz dy

−3(1− fe)pÃeq.





(55)
The integrals entering (55) can be expressed in closed form (see Appendix C). The
three flow surfaces corresponding to the two upper bounds (35) and (52), and the
approximation (1) are compared in Figure 13. As can be seen the agreement is very
satisfactory at all stress triaxiality.
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Figure 13: Ellipsoidal intergranular voids. Comparison between the flow surface (52) associated
with Φ+ (40) (crosses), the flow surface (35) associated with Φ̄ (53) (squares) and the GTN
approximation (1) (solid line). p denotes the difference pb − pe.
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6. Conclusion

This study is devoted to porous materials with two populations of randomly
distributed voids with different sizes. The smallest voids are spherical whereas the
largest voids are spheroidal. Both population of voids are subjected to an internal
homogeneous pressure. In this study, attention has been focused on analytical ap-
proximations for the dilatation-rate in the matrix at the mesoscopic scale and for
the effective flow surface at the macroscopic scale. An analytical estimate for the
effective flow surface, obtained by extending the result of Vincent et al. (2008) to
saturated voids has been proposed. This new criterion has the same form as the
classical GTN criterion, which facilitates its integration in any standard FEM code
in which the GTN criterion is already implemented. In the second part of this study
(next paper) the accuracy of the new model is assessed by comparison with full field
numerical simulations.
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Appendix A. Properties of Asol(Ė, p) for spherical cavities

Proof of Property 1: From the definition (17) of φ it is readily seen that:

φ(−A,−Ė,−p) = φ(A, Ė, p), (A.1)

and that the function which is to be minimized in the right-hand side of (16) is
also an even function of (A, Ė, pb, pe). Since it is a strictly convex function of A
(whenever Ė 6= 0 which is the case throughout the paper), the minimizer Asol in
(16) is unique. Now consider the minimization problem for (−Ė,−pb,−pe). Its
unique minimizer Asol(−Ė,−p) satisfies

φ(Asol(−Ė,−p),−Ė,−p) ≤ φ(B,−Ė,−p) for all B. (A.2)

Choosing B = −A and the parity property (A.1) in the two sides of (A.2) shows
that

φ(−Asol(−Ė,−p), Ė, p) ≤ φ(A, Ė, p) for all A,

which proves, by virtue of the uniqueness of the minimizer, that

−Asol(−Ė,−p) = Asol(Ė, p).

Proof of Property 2: Note that φ is a convex function of all its arguments p, A, Ė
separately. The stationarity of φ with respect to A implies

∂φ

∂A
(Asol, Ė, p) = 0,

and by derivation with respect to p, one gets

∂2φ

∂A2
(Asol, Ė, p)

∂Asol

∂p
+

∂2φ

∂A∂p
(Asol, Ė, p) = 0. (A.3)

φ is a convex function of A and ∂2φ/∂A2 is positive. In addition, it follows from (17)
that −∂2φ/∂A∂p = 3(1− fe) > 0. Therefore Asol is a monotone increasing function
of p.

Proof of Property 3: The functionAsol(Ė, p) can be inverted to get a function p(Asol, Ė)
which is obtained by writing the optimality condition of φ with respect to A

∂φ

∂A
(Asol, Ė, p) = 0.

A straightforward calculation gives:

∂φ

∂A
(A, Ė, p) = σ0

∫ 1

fe

∫ 1

f∗

b

4
A

y2
+ 4

(A− Ėm)

q3z2√

4
A2

y2
+ 4

(Ėm −A)2

q3z2
+

(Ėeq)2

q3

dy dz−3(1−fe)p, (A.4)

35



and therefore the function p(Asol, Ė) reads as:

p(Asol, Ė) =
σ0

3(1− fe)

∫ 1

fe

∫ 1

f∗

b

4
Asol

y2
+ 4

(Asol − Ėm)

q3z2√

4
A2

sol

y2
+ 4

(Ėm − Asol)2

q3z2
+

(Ėeq)2

q3

dy dz. (A.5)

Taking the limit of (A.5) as Asol → ±∞ yields

lim
A→±∞

p(Asol, Ė) = ±p∞, p∞ =
2

3

σ0

1− fe
I0, (A.6)

where

I0 =

∫ 1

fe

∫ 1

f∗

b

√
1

y2
+

1

q3z2
dy dz (A.7)

To prove the more specific result (22), use is made of (A.3). A straightforward
calculation gives:

∂2φ

∂A∂p
(A, Ė, p) = −3(1 − fe), (A.8)

and

∂2φ

∂A2
(A, Ė, p) = σ0

∫ 1

fe

∫ 1

f∗

b

16Ė2
m

q3y2z2
+

4Ė2
eq

q3

(
1

y2
+

1

q3z2

)

(
4
A2

y2
+ 4

(Ėm −A)2

q3z2
+

(Ėeq)
2

q3

)3/2
dy dz. (A.9)

It follows from (A.9) that as p approaches ±p∞, i.e. when Asol approaches ±∞

∂2φ

∂A2
(Asol, Ė, p) ∼ |Asol|−3 σ0

2q3
(4Ė2

mI1 + Ė2
eqI2),

where

I1 =

∫ 1

fe

∫ 1

f∗

b

1

y2z2

(
1

y2
+

1

q3z2

)−3/2

dy dz, I2 =

∫ 1

fe

∫ 1

f∗

b

(
1

y2
+

1

q3z2

)−1/2

dy dz.

(A.10)
Therefore, according to (A.3):

|Asol|−3 ∂Asol

∂p
(Ė, p) ∼ 6q3(1− fe)

σ0

1

(4Ė2
mI1 + Ė2

eqI2)
,

which gives by integration between p and p∞

Asol(p, Ė) ∼
√

σ0

12q3(1− fe)

√
4Ė2

mI1 + Ė2
eqI2

1√
p∞ − p

when p ∼ p∞.
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A similar integration can be performed between −p∞ and p to get a similar asymp-
totic result when p ∼ −p∞.

Proof of Property 4: The derivative of Asol(p, Ė) at p = p0(Ė) (where Asol = 0) can
be obtained from

∂2φ

∂A2
(0, Ė, p0)

∂Asol

∂p
(p0, Ė) = − ∂2φ

∂A∂p
(0, Ė, p0) = 3(1− fe).

It follows from the general expression (A.9) that

∂2φ

∂A2
(0, Ė, p0) = 4σ0

√
q3

∫ 1

fe

∫ 1

f∗

b

4Ė2
m

y2z2
+ Ė2

eq

(
1

y2
+

1

q3z2

)

(
4Ė2

m

z2
+ Ė2

eq

)3/2
dy dz. (A.11)

= 4σ0
√
q3(1− f ∗

b )

[
1

f ∗
b

(
4Ė2

mJ1 + Ė2
eqJ2

)
+

Ė2
eq

q3
J1

]
, (A.12)

where

J1 =

∫ 1

fe

1

z2

(
4Ė2

m

z2
+ Ė2

eq

)−3/2

dz, J2 =

∫ 1

fe

(
4Ė2

m

z2
+ Ė2

eq

)−3/2

dz (A.13)

Therefore

∂Asol

∂p
(p0, Ė) =

3(1− fe)

4σ0
√
q3(1− f ∗

b )

1[
1
f∗

b

(
4Ė2

mJ1 + Ė2
eqJ2

)
+

Ė2
eq

q3
J1

] . (A.14)

Proof of Property 5: The derivative of Asol(p, Ė) at p = p1(Ė) (where Asol = Ėm)
can be obtained from

∂2φ

∂A2
(Ėm, Ė, p1)

∂Asol

∂p
(p1, Ė) = − ∂2φ

∂A∂p
(Ėm, Ė, p1) = 3(1− fe).

It follows from the general expression (A.9) that

∂2φ

∂A2
(Ėm, Ė, p1) = 4

σ0

q3

∫ 1

fe

∫ 1

f∗

b

4Ė2
m

y2z2
+ Ė2

eq

(
1

y2
+

1

q3z2

)

(
4Ė2

m

y2
+

Ė2
eq

q3

)3/2
dy dz. (A.15)

= 4
σ0

q3
(1− fe)

(
1

fe
J3 + Ė2

eqJ4

)
, (A.16)
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where

J3 =

∫ 1

f∗

b

(
4Ė2

m

y2
+

Ė2
eq

q3

)−1/2

dy, J4 =

∫ 1

f∗

b

1

y2

(
4Ė2

m

y2
+

Ė2
eq

q3

)−3/2

dy. (A.17)

Therefore
∂Asol

∂p
(p1, Ė) =

3q3
4σ0

1(
1
fe
J3 + Ė2

eqJ4

) . (A.18)

Appendix A.1. Purely deviatoric macroscopic strain-rate: Ėm = 0.

When the overall strain-rate Ė is purely deviatoric (Ėm = 0), the above quanti-
ties of interest read as:

p0 = p1 = 0,

J1 =
1− fe
fe

Ė−3
eq , J2 = (1− fe)Ė

−3
eq ,

J3 = (1− f ∗
b )
√
q3Ė

−1
eq , J4 =

1− f ∗
b

f ∗
b

Ė−3
eq (q3)

3/2,

∂Asol

∂p
(p0, Ė) =

∂Asol

∂p
(p1, Ė) =

3
√
q3

4σ0

1

1− f ∗
b

f ∗
b fe

q3fe + f ∗
b

Ėeq.





(A.19)

Appendix A.2. Purely hydrostatic macroscopic strain-rate: Ėeq = 0.

When the overall strain-rate Ė is purely hydrostatic (Ėeq = 0), the above quan-
tities of interest read as:

p0 =
2σ0

3
√
q3

1− f ∗
b

1− fe
ln fe

Ėm∣∣∣Ėm

∣∣∣
, p1 = −2σ0

3
ln f ∗

b

Ėm∣∣∣Ėm

∣∣∣
, ,

J1 =
1

16
(1− f 2

e )
∣∣∣Ėm

∣∣∣
−3

, J2 =
1

32
(1− f 4

e )
∣∣∣Ėm

∣∣∣
−3

,

J3 =
1

4
(1− (f ∗

b )
2)
∣∣∣Ėm

∣∣∣
−1

, J4 =
1

16
(1− (f ∗

b )
2)
∣∣∣Ėm

∣∣∣
−3

,

∂Asol

∂p
(p0, Ė) =

3√
q3σ0

f ∗
b

1− f ∗
b

1

1 + fe

∣∣∣Ėm

∣∣∣ ,

∂Asol

∂p
(p1, Ė) =

3q3
σ0

fe
1− (f ∗

b )
2

∣∣∣Ėm

∣∣∣ .





(A.20)
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Appendix B. Properties of Asol(Ė, p) for ellipsoidal cavities

Recall that

φ̃(Ė, pb, pe, A) =

σ0(g + 1)

∫ 1

f∗

b

∫ 1

f̃

√
4A2

y2
+

(Ėm − A)2

z2
ã2

q3
+ (Ėm −A)2

b̃2

q3
+

Ė2
eq

q3
dz dy−3(1− fe)pA.

Proof of Property 3’: The optimality conditions of φ̃ with respect to A

∂φ̃

∂A
(Asol, Ė, p) = 0.

Setting:

c̃2(z) =
1

4

(
ã2 + b̃2z2

)
,

it is readily seen that:

∂φ̃

∂A
(A, Ė, p) =

σ0(g + 1)

∫ 1

f̃

∫ 1

f∗

b

4
A

y2
+

4(A− Ėm)

q3z2
c̃2(z)

√

4
A2

y2
+

4(Ėm − A)2

q3z2
c̃2(z) +

Ė2
eq

q3

dy dz − 3(1− fe)p,





(B.1)

and therefore the function p(Asol, Ė) reads

p(Asol, Ė) =
σ0(g + 1)

3(1− fe)

∫ 1

f̃

∫ 1

f∗

b

4
Asol

y2
+ 4

(Asol − Ėm)

q3z2
c̃2(z)

√

4
A2

sol

y2
+ 4

(Ėm − Asol)2

q3z2
c̃2(z) +

Ė2
eq

q3

dy dz. (B.2)

Taking the limit of (B.2) as Asol → ±∞ yields

lim
A→±∞

p(Asol, Ė) = ±p̃∞, p̃∞ =
2

3

σ0(g + 1)

1− fe
Ĩ0, (B.3)

where

Ĩ0 =

∫ 1

f̃

∫ 1

f∗

b

√
1

y2
+

c̃2(z)

q3z2
dy dz=

∫ 1

f̃

∫ 1

f∗

b

√
1

y2
+

ã2 + b̃2z2

4q3z2
dy dz. (B.4)
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To prove the more specific result (44), use is made of the optimality condition:

∂2φ̃

∂A2
(Asol, Ė, p)

∂Asol

∂p
= − ∂2φ̃

∂A∂p
(Asol, Ė, p) = 3(1− fe) (B.5)

A straightforward calculation gives:

∂2φ̃

∂A2
(A, Ė, p) = σ0(g+1)

∫ 1

f̃

∫ 1

f∗

b

16Ė2
mc̃

2(z)

q3y2z2
+

4Ė2
eq

q3

(
1

y2
+

c̃2(z)

q3z2

)

[
4
A2

y2
+ 4

(Ėm − A)2c̃2(z)

q3z2
+

Ė2
eq

q3

]3/2 dy dz. (B.6)

It follows from (B.6) that as p approaches ±p̃∞, i.e. when Asol approaches ±∞
∂2φ̃

∂A2
(Asol, Ė, p) ∼ |Asol|−3 σ0(g + 1)

2q3
(4Ė2

mĨ1 + Ė2
eq Ĩ2),

where

Ĩ1 =

∫ 1

f̃

∫ 1

f∗

b

c̃2(z)

y2z2

(
1

y2
+

c̃2(z)

q3z2

)−3/2

dy dz, Ĩ2 =

∫ 1

f̃

∫ 1

f∗

b

(
1

y2
+

c̃2(z)

q3z2

)−1/2

dy dz.

(B.7)
Therefore, according to (B.5):

|Asol|−3 ∂Asol

∂p
(Ė, p) ∼ 6q3(1− fe)

σ0(g + 1)

1

(4Ė2
mĨ1 + Ė2

eq Ĩ2)
,

which gives by integration between p and p̃∞

Asol(p, Ė) ∼
√

σ0(g + 1)

12q3(1− fe)

√
4Ė2

mĨ1 + Ė2
eq Ĩ2

1√
p̃∞ − p

when p ∼ p̃∞.

A similar integration can be performed between −p̃∞ and p to get a similar asymp-
totic result when p ∼ −p̃∞.

Proof of Property 4’: The derivative of Asol(p, Ė) at p = p̃0(Ė) (where Asol = 0) can
be obtained from

∂2φ̃

∂A2
(0, Ė, p̃0)

∂Asol

∂p
(p̃0, Ė) = − ∂2φ̃

∂A∂p
(0, Ė, p̃0) = 3(1− fe).

It follows from the general expression (B.6) that

∂2φ̃

∂A2
(0, Ė, p̃0) = 4σ0(g + 1)

√
q3

∫ 1

f̃

∫ 1

f∗

b

4Ė2
mc̃

2(z)

y2z2
+ Ė2

eq

(
1

y2
+

c̃2(z)

q3z2

)

[
4Ė2

mc̃
2(z)

z2
+ Ė2

eq

]3/2 dy dz

= 4σ0(g + 1)
√
q3(1− f ∗

b )

[
1

f ∗
b

(
4Ė2

mJ̃1 + Ė2
eqJ̃2

)
+

Ė2
eq

q3
J̃1

]
, (B.8)
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where

J̃1 =

∫ 1

f̃

c̃2(z)

z2

(
4Ė2

mc̃
2(z)

z2
+ Ė2

eq

)−3/2

dz, J̃2 =

∫ 1

f̃

(
4Ė2

mc̃
2(z)

z2
+ Ė2

eq

)−3/2

dz

(B.9)
Therefore

∂Asol

∂p
(p̃0, Ė) =

3(1− fe)

4σ0(g + 1)
√
q3(1− f ∗

b )

1[
1
f∗

b

(
4Ė2

mJ̃1 + Ė2
eqJ̃2

)
+

Ė2
eq

q3
J̃1

] . (B.10)

Proof of Property 5’: The expression of p̃1 is a direct consequence of (B.2) with

A = Ėm. The derivative of Asol(p, Ė) at p = p̃1(Ė) (where Asol = Ėm) can be
obtained from

∂2φ̃

∂A2
(Ėm, Ė, p̃1)

∂Asol

∂p
(p̃1, Ė) = − ∂2φ̃

∂A∂p
(Ėm, Ė, p̃1) = 3(1− fe).

It follows from the general expression (B.6) that

∂2φ̃

∂A2
(Ėm, Ė, p̃1) = 4

σ0(g + 1)

q3

∫ 1

f̃

∫ 1

f∗

b

4Ė2
mc̃

2(z)

y2z2
+ Ė2

eq

(
1

y2
+

c̃2(z)

q3z2

)

(
4Ė2

m

y2
+

Ė2
eq

q3

)3/2
dy dz (B.11)

= 4
σ0(g + 1)

q3
(1− f̃)

[
1

4

(
ã2

f̃
+ b̃2

)
J3 + Ė2

eqJ4

]
, (B.12)

where

J3 =

∫ 1

f∗

b

(
4Ė2

m

y2
+

Ė2
eq

q3

)−1/2

dy, J4 =

∫ 1

f∗

b

1

y2

(
4Ė2

m

y2
+

Ė2
eq

q3

)−3/2

dy. (B.13)

Therefore

∂Asol

∂p
(p̃1, Ė) =

3q3
4σ0(g + 1)

1− fe

1− f̃

1[
1
4

(
ã2

f̃
+ b̃2

)
J3 + Ė2

eqJ4

] . (B.14)
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Appendix B.1. Purely deviatoric macroscopic strain-rate: Ėm = 0.

When the overall strain-rate Ė is purely deviatoric (Ėm = 0), the above quanti-
ties of interest read as:

p̃0 = p̃1 = 0,

J̃1 =
1− f̃

4

(
ã2

f̃
+ b̃2

)
Ė−3

eq , J̃2 = (1− f̃)Ė−3
eq ,

J3 = (1− f ∗
b )
√
q3Ė

−1
eq , J4 =

1− f ∗
b

f ∗
b

Ė−3
eq (q3)

3/2,

∂Asol

∂p
(p̃0, Ė) =

∂Asol

∂p
(p̃1, Ė) =

3
√
q3

4σ0(g + 1)

1− fe

1− f̃

1

1− f ∗
b

f ∗
b f̃

q3f̃ +
f∗

b

4
(ã2 + b̃2f̃)

Ėeq.






(B.15)

Appendix B.2. Purely hydrostatic macroscopic strain-rate: Ėeq = 0.

When the overall strain-rate Ė is purely hydrostatic (Ėeq = 0), the above quan-
tities of interest read as:

p̃0 = −σ0(g + 1)

3
√
q3

1− f ∗
b

1− fe

Ėm∣∣∣Ėm

∣∣∣
Ĩ3,

Ĩ3 =
√

ã2 + b̃2 −
√

ã2 + b̃2f̃ 2 + |ã| ln



 |ã|+
√

ã2 + b̃2f̃ 2

|ã| f̃ +
√

ã2 + b̃2f̃



 ,

p̃1 = −2σ0(g + 1)

3

1− f̃

1− fe
ln f ∗

b

Ėm∣∣∣Ėm

∣∣∣
, ,

J̃1 =
1

4

1− f̃ 2

√
ã2 + b̃2 +

√
ã2 + b̃2f̃ 2

∣∣∣Ėm

∣∣∣
−3

,

J3 =
1

4
(1− (f ∗

b )
2)
∣∣∣Ėm

∣∣∣
−1

, J4 =
1

16
(1− (f ∗

b )
2)
∣∣∣Ėm

∣∣∣
−3

,

∂Asol

∂p
(p̃0, Ė) =

3(1− fe)

4
√
q3σ0(g + 1)

f ∗
b

1− f ∗
b

√
ã2 + b̃2 +

√
ã2 + b̃2f̃ 2

1− f̃ 2

∣∣∣Ėm

∣∣∣ ,

∂Asol

∂p
(p̃1, Ė) =

3q3
σ0(g + 1)

1− fe

1− f̃

1

1− (f ∗
b )

2

4f̃

ã2 + b̃2f̃

∣∣∣Ėm

∣∣∣ .





(B.16)

Remark: For consistency, it can be checked that all results for spherical voids are
recovered from the ellipsoidal case by setting f̃ = fe, g̃ = 0, ã = 2, b̃ = 0.

Appendix C. Integrals

Throughout the paper, use has been made of several integrals which can actually
be expressed in closed form.

42



Appendix C.1. I1 and I2
The integrals I1 and I2 can alternatively be expressed as:

I1 =
√
q3 (i1 + i2 − i3 − i4) , (C.1)

I2 =
1

3
√
q3

[
(f ∗

b )
2(i3 − i1) + q3(f

2
e (i3 − i2) + i4 − i1) + i4 − i2

]
, (C.2)

where

i1 =
√

(f ∗
b )

2 + q3, i2 =
√

f 2
e q3 + 1, i3 =

√
(f ∗

b )
2 + f 2

e q3, i4 =
√

q3 + 1 (C.3)

Appendix C.2. Integrals I0, Ĩ0, (39) and (55),

The double integrals I0, Ĩ0, (39) and (55) are special cases of the more general
integral

I =

∫ 1

ft

∫ 1

f∗

b

√
P 2

y2
+

Q2

z2
+R2 dy dz. (C.4)

Then:

• when R 6= 0:

I = B1 − B2 −B3 +B4 +
PQ

2R
arcsin

(
LM −NK

M2 +N2

)

+ln

[(
Q+B3

ft (Q +B1)

)Q(
f ∗
b (ftP +B3)

ftP +B4

)(Pft)
]

+ln

[(
P +B2

f ∗
b (P +B1)

)P (
ft (f

∗
bQ+B2)

f ∗
bQ+B4

)(Qf∗

b )
]
.

(C.5)

where

B1 =
√

P 2 +Q2 +R2, B2 =
√

P 2 + f ∗
b
2(Q2 +R2),

B3 =

√
Q2 + ft

2(P 2 +R2), B4 =
√

f ∗
b
2Q2 + ft

2(P 2 + f ∗
b
2R2), B5 = PQR,

(C.6)
Ai = (P 2Q2 − R2B2

i ), Ci = 2B5Bi, i = 1, 4, (C.7)

K = A1A4 − C1C4, L = A1C4 + C1A4,
M = A2A3 − C2C3, N = A2C3 + A3C2,

(C.8)

• When R = 0 and P 6= 0, Q 6= 0, then

I = 2(B1 − B2 −B3 +B4)

+ ln

[(
Q+B3

ft(Q +B1)

)Q(
f ∗
b (ftP + B3)

ftP +B4

)Pft
]

+ ln

[(
P +B2

f ∗
b (P +B1)

)P (
ft(f

∗
b Q+B2)

f ∗
bQ+B4

)Qf∗

b

]
,

(C.9)
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with

B1 =
√
P 2 +Q2, B2 =

√
P 2 + f ∗

b
2Q2,

B3 =
√
Q2 + f 2

t P
2, B4 =

√
f ∗
b
2Q2 + f 2

t P
2,

(C.10)

• When R = P = 0, Q 6= 0, then

I = −(1 − f ∗
b )|Q| ln(ft)

• When R = Q = 0, P 6= 0, then

I = −(1 − ft)|P | ln(f ∗
b ).

The double integrals I0, Ĩ0, (39) and (55) can be expressed in closed form:

• The first double integral in (39) (Σ̄±
m) with P = 2Ā±, Q =

2(±1 − Ā±)√
q3

, R = 0,

and ft = fe

• The second double integral in (39) (Σ̄eq) with P = 2Āeq, Q =
2Āeq√
q3

, R =
1√
q3
,

and ft = fe

• I0 with P = 1, Q =

√
1

q3
, R = 0, and ft = fe.

• Ĩ0 with P = 1, Q =
ã

2
√
q3
, R =

b̃

2
√
q3
, and ft = f̃

• The first double integral in (55) (Σ̄±
m) with P = 2Ã±, Q =

ã√
q3
(±1 − Ã±),

R =
b̃√
q3
(±1− Ã±), and ft = f̃ .

• The second double integral in (55) (Σ̄eq) with P = 2Ãeq, Q =
ã√
q3
Ãeq, R =

√
1

q3
+

b̃2

q3
Ã2

eq, and ft = f̃ .

Appendix C.3. Ĩ1 and Ĩ2

Ĩ1 = 4q
3/2
3

(
ĩ1 − ĩ3

b̃2(f ∗
b )

2 + 4q3
+

ĩ2 − ĩ4

b̃2 + 4q3

)
(C.11)
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Ĩ2 =
4
√
q3

b̃2

[
1

ĩ5

[
arctan

(̃
i1ĩ5
)
+ arctan

(̃
i2ĩ5
)
− arctan

(̃
i3ĩ5
)

− arctan
(̃
i4ĩ5
)]

− ĩ1 − ĩ2 + ĩ3 + ĩ4
] (C.12)

ĩ1 =
1

2

√
(f ∗

b )
2
(
ã2 + b̃2

)
+ 4q3, ĩ2 =

1

2

√
ã2 + f̃ 2

(
b̃2 + 4q3

)
,

ĩ3 =
1

2

√
(f ∗

b )
2
(
ã2 + b̃2f̃ 2

)
+ 4f̃ 2q3, ĩ4 =

1

2

√
ã2 + b̃2 + 4q3,

ĩ5 =

∣∣∣b̃
∣∣∣

|ã|√q3
.

(C.13)

Appendix D. Symmetry of the flow surface

The GTN yield function ((1)) corresponds to a flow surface which is symmetric

with respect to the vertical axis passing through the point ( Σ̄
−

m+Σ̄+
m

2
, Σ̄eq) in the plane

(Σm,Σeq). The question addressed here is whether this symmetry property is present
in the actual macroscopic flow surface (corresponding to the exact minimization in
(7) with ϕ = ϕGur over all possible velocity fields), in the flow surface deduced from
the upper bound Φ+ and in the flow surface deduced from Φ̄.

The exact flow surface cannot even be plotted in the plane (Σm,Σeq) because of
the effect of the third invariant of the stress which complicates the representation of
the flow surface even for an isotropic material. In full rigor, the flow surface should be
represented in the space of the three invariants of Σ (Danas et al. (2008)). Therefore
the symmetry of the actual flow surface in the plane of the two first invariants is a
ill-posed question and will not be discussed here. It will just be noted in part II of
this study that this effect of the third invariant on the overall flow surface is small
in the range of porosities of interest to us (less than a few percents).

We discuss here the symmetry of the upper bound corresponding to Φ+. It can be
proved in two specific cases, first when pb = pe = 0 (drained materials see Appendix
D.1 for a proof), and second when f ∗

b = fe and q3 = 1 (see Appendix D.2 for a
proof). It remains an approximation in general. However, it can be checked that
the hydrostatic component (denoted by Σsol

m ) of the stress state on the flow surface
where the equivalent stress is maximum is, for all values of the internal pressure p,

close to the mid point Σsol−
m +Σsol+

m

2
between the two hydrostatic points bounding the

domain on the hydrostatic axis. As can be seen in Figure D.14, the discrepancy is
less than 3 % of the yield stress σ0.

Appendix D.1. Drained materials pb = pe = 0

It follows from the relation (20) that, when pb = pe = 0, Φ+ (16) is an even
function of Ėm and therefore that its derivative with respect to Ėm is an odd function
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Figure D.14: Spherical voids. Asymmetry of the flow surface obtained with Asol : (left) (fb, fe) =
(10%, 1%), (right) (fb, fe) = (1%, 10%).

of Ėm whereas its derivative with respect to Ėeq is an even function of Ėm:

Σm(Ėm, Eeq) = −Σm(−Ėm, Eeq) Σeq(Ėm, Eeq) = Σeq(−Ėm, Eeq), when pb = pe = 0.
(D.1)

This proves the desired symmetry.

Appendix D.2. f ∗
b = fe and q3 = 1

When f ∗
b = fe and q3 = 1, A and Ėm − A play a symmetric role in the first

integral in (17). Therefore it is readily seen that:

φ(A,−Ė, p) = φ(A+ Ėm, Ė, p) + 3(1− fe)pĖm. (D.2)

Since the minimizer of φ is unique it follows from relation (D.2) that

Asol(−Ė, p) = A(Ė, p) + Ėm, (D.3)

and, upon the change of variables B = A + Ėm, that the minima are related by

inf
A

φ(A,−Ė, p) = inf
B

φ(B, Ė, p) + 3(1− fe)pĖm, (D.4)

which implies that the values of the potential Φ+ for two opposite strain-rates are
related by

Φ+(−Ė, pb, pe) = Φ+(Ė, pb, pe) + 3(1− fe)pĖm + 6peĖm. (D.5)

Derivating (D.5) with respect to Ė yields

−∂Φ+

∂Ė
(−Ė, pb, pe) =

∂Φ+

∂Ė
(Ė, pb, pe) + ((1− fe)p+ 2pe)i. (D.6)

In other words

1

2

(
Σ(−Ė, pb, pe) +Σ(Ė, pb, pe)

)
= −(

(1− fe)

2
p+ pe)i,

which shows that the two stresses on the flow surface corresponding to opposite
strain-rates are symmetric with respect to the axis Σm = − (1−fe)

2
p− pe.
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Appendix E. Hollow ellipsoids

The inner and the outer boundary of the reference volume are two confocal
spheroids (ellipsoids which are rotation invariant around the z axis). Denoting by
a1 and b1 the horizontal and the vertical semi-axes of the inner spheroid (similar
notation for the outer spheroid with index 2, see Figure E.15), the void volume-
fraction and the void aspect-ratio can be expressed as:

fe =
a1b

2
1

a2b22
(volume fraction), w =

a1
b1

(aspect ratio). (E.1)

0 y

z

a1
a2

b1
b2

Ω

ω

Figure E.15: Notations for the hollow spheroid of reference (Vincent et al., 2009a).

Since the inner and the outer ellipsoids are confocal, the distance 2c between
their foci is the same and given by:

c =
√

b21 − a21 =
√

b22 − a22. (E.2)

A family of confocal ellipsoids with horizontal axis a and vertical axis b, parametrized
by a scalar λ, is introduced through the following relations:

a = c sinh λ, b = c coshλ, (E.3)

where λ varies between λ1 and λ2:

a1 = c sinh λ1, b1 = c coshλ1, a2 = c sinhλ2, b2 = c coshλ2. (E.4)

Then, with the following notations:

R (λ) = −ac

b2
+Arcsin

(c
b

)
, Z (λ) =

2c

a
− 2Arcsin

(c
b

)
,

R2 = R (λ2), Z2 = Z (λ2),

|Ω| = 4

3
πa2b

2
2, α̃ =

a2b
2
2

2c3
,

(E.5)

one defines:

J (λ) =
4

3

πb (2a2 + b2)

|Ω| , (E.6)
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and:

QJ(λ) =
4

9

bπ

|Ω|
{
b2 [−1 + 6R(λ) α̃ + 3Z2 α̃]

2 · · ·
+2a2

[
1− 6Z2α̃ + 12R2(λ)α̃2 + 12Z2(λ)α̃2 + 9Z2

2 α̃
2 · · ·

+6Z(λ) α̃(1 + 2R(λ) α̃− 3Z2α̃)]}.
(E.7)

The following notations are used for the definition of φ̃ in the expression (43):

f̃ =
g + fe
g + 1

, g =
4e32

3χ
√

1− e22
, χ =

√
π2 +

32

3
, (E.8)

e1 =
c

b1
, e2 =

c

b2
, Z2 =

2e2√
1− e22

− 2 arcsin(e2), (E.9)

αG(e) = −1 − e2

2e2
+

√
1− e2

2e3
arcsin(e), α1 = αG(e1), α2 = αG(e2), (E.10)

ã2 =
3

κ2(g + 1)2
(3− 2η +

4ηZ2

χg
), b̃2 = (1− 2

χg
Z2)

2, (E.11)

κ =

(
2

3
+

g(1− fe)(g + 2fe + gfe)

3(g + 1)2(g + fe)2 ln
g+1
g+fe

)−1

, (E.12)

η =
κ(1− fe)(g + 1)(g + fe) sinh (2κ (α2 − α1))

(g + 1)2 + (g + fe)2 + 2(g + 1)(g + fe)η̃
, (E.13)

η̃ = κ(α2 − α1) sinh (2κ (α2 − α1))− cosh (2κ (α2 − α1)) . (E.14)
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