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Abstract. We consider rough products produced by a factory. Each product coming from the plant
has m vital elements and some elements can be damaged. To obtain a perfect product (i.e. all the
constitutive m elements are safe) all the damaged elements are repaired and a test phase follows.
The result of this two-steps procedure is random. We suppose that the number Zk of non-damaged
elements is a Markov chain valued in the set {0, 1, · · · ,m}, where k is the number of applied repairing-
test phases. We have a qualitative result which says that if the repair phase is efficient then P (Zk = m)
is close to 1. As for production of a large number n of products, the former result allows us to give
conditions under which either the n elements or a fraction of these n elements are (is) safe after the
application of k previous maintenance phases.

Key words and phrases : Reliability, repairing procedure, target theory, treatment of cancer by
radiotherapy, damaged cell, Markov chain, large deviations.
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1 Introduction

Most engineering systems endure degradations with time from wear, manufacturing defects, shocks
and damages, and ultimately fail when the total damage exceeds a failure critical level [11]. Such
events are usually mathematically described as stochastic processes and different models have been
developed to analyze reliability properties and improve maintenance policies. In this chapter, we
propose a bio-inspired modeling of engineering systems reliability, based on the target theory and
hit-modeling paradigm introduced in the 1920s when biologists were beginning to develop quantum
approaches to inactivation phenomena in irradiated biological tissue [8, 4, 5, 1, 10, 14, 13].

1.1 In target theory, a cell is assumed to get different vital sites called targets which must be all
inactivated to kill the cell. For instance, it is accepted that the chromosomes are sensitive targets but
there is additional evidence that the nuclear membrane, or some cell organelles close to the nuclear
membrane can also be regarded as targets. Each target is deactivated when it is hit by a number of
radiation particles. There are several classes of hit models classified by the number of targets and the
number of hits. In these models, it is generally assumed that cells have an homogeneous behavior. In
practice, there are at least three main reasons to put this hypothesis into question. The first cause of
heterogeneity comes from the nonuniform spatial distribution of the radiation dose. The second cause
is due to the differences between the cell types (necrotic, quiescent, proliferating, stem cells, etc.) and
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the nonuniform concentration of oxygen and nutrients. A third factor corresponds to a cell-to-cell
variability of damages and to the variation of the cell sensitivity to radiation. In [2], a model of tumor
growth based on the target and hit modeling paradigm has been proposed. It is based on a Markov
chain formalism able to describe both the target reparation between two consecutive dose fractions of
the radiation schedule and the heterogeneity of damages induced by radiations.

Production
Phase

Maintenance
Phase

Checking
Phase

m components

complex
product

damaged
components

modifications

safe
product

k

Figure 1: Reliability test schedule of a manufacturing system based on a loop composed of a
checking phase and a maintenance step. k is the number of maintenance cycles in the loop.

1.2 We claim that this model may be applied to other fields than cell biology, for instance reliability of
engineering systems. For instance, let us consider a space launcher composed of numerous subsystems
such as the payload structure, the guidance part, and the propulsion system, which are themselves
made up of thousands of constitutive elements. The production of such sophisticated systems is not
perfect and the products can have different manufacturing faults. If the m components of a given
product have no failure, the product can be directly used or sold. Otherwise, if at least one of its
m constitutive elements is out of order, the product has to be repaired. As illustrated in Figure 1,
the maintenance procedure is iteratively repeated until each product is completely safe. We assume
that the time period of the maintenance cycle is constant and the number of cycles for each product
is noted k, which is equivalent to a discrete time. k = 0 corresponds to the time instant when the
product is coming out from manufacturing and has undergo no maintenance. During the maintenance
cycle, two successive random phenomena can occur.

1. Reparation phase. At the beginning of the k-th cycle, all the m elements of a product are
checked. If i ≥ 1 elements are detected as damaged then each element is repaired. The repair
mechanism only concerns these i elements. However the result of a repair of a given element
is not certain, we suppose that it is successful with probability r and the damaged element
remains in the same state with probability 1 − r. The results concerning the maintenance
of these i elements are supposed to be independent. If we adopt the convention that a disk
with (without) a cross denotes a damaged (resp. safe) element, the previous procedure can be
summarized as

⊗ r−→ ⃝ ⊗ 1−r−→ ⊗ ⃝ 1−→ ⃝. (1.1)
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2. Damage occurence. The reparation phase is always risky. Indeed, the maintenance operator
can make mistakes, forget connexions or introduce undesirable elements in the product, which
therefore leads to cause new damages. To account for this risk, we denote q (resp. 1 − q) the
probability for any constitutive element to be damaged (resp. to remain undamaged). The
associated scheme is :

⃝ q−→ ⊗ ⃝ 1−q−→ ⃝ ⊗ 1−→ ⊗. (1.2)

These assumptions of heterogeneous damages caused to a complex system come from [2] : the cell
and its inward targets are herein replaced by the manufactured product and its constitutive elements
respectively.
The parameters q and m are considered as fixed and only depend on the own feature of the product.
However r is allowed to vary freely : an active maintenance strategy consists in carefully repairing the
failed elements so that after a few repairing phases, they will be without any default.

1.3 Let Zk the random variable denoting the number of safe elements in the manufactured product
at time k. We suppose that (Zk) is a discrete-time Markov chain, i.e. the unit state at time k + 1
only depends on the current state at time k.
Let Π be the corresponding transition matrix of (Zk). We briefly define Π, interested readers can
refer to [2] for details. The dynamics of (Zk) takes into account first repair mechanisms and second
the phase of testing as follows :

Π = RQ (1.3)

where R models repairing and Q describes the procedure of tests. According to our assumptions, the
matrices R and Q take the form :

R(i, j) =

{
(m−i
j−i )r

j−i(1− r)m−j i ≤ j

0 j < i.
(1.4)

Q(i, j) =

{
(ij)q

i−j(1− q)j j ≤ i < m
0 i < j.

(1.5)

When i = m,
Q(m,m) = 1, Q(m, j) = 0, for any 0 ≤ j < m.

If we assume that the product is initially in state i0 (i0 active component(s)), i.e. P (Z0 = i0) = 1,
then

P (Zk = i) = Πk(i0, i) i ∈ {0, . . . ,m}. (1.6)

The first question which is addressed herein is the efficiency measure of the repairing procedure at the
element scale. Suppose that k is fixed and Z0 = i0. According to (1.6), Πk(i0,m) is the probability
that all the m elements are safe after k periods of time. It is clear that the design of repairing
procedure is successful if Πk(i0,m) is close to 1. The strategy is the following : choose r near 1
so that Πk(i0,m) ≈ 1. Note that if r = 1 (all the repaired elements are safe) then Zk = m and
Πk(i0,m) = 1. We provide a qualitative result (see Theorem 2.1 below), which gives the exact rate of
convergence of 1−Πk(i0,m) in terms of 1− r. This actually means that if the repairing procedure is
efficient, i.e. 1 − r ≈ 0, then with a high level of confidence, the m elements have no default after k
periods. Theorem 2.1 has an interesting interpretation initially developed in a biological setting and
more precisely for anti-cancer treatments [3]. Let us introduce:

T := inf{i, Zi = m}. (1.7)

Since m is an absorbing state for (Zk),

Πk(i0,m) = P (T ≤ k). (1.8)
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Note that T is the minimal random number of periods necessary to repair and deliver a product
without any default. As a result, for r sufficiently close to 1, the probability that the product is
completely repaired before k periods is near 1.
The parameter E(m − Zk) is a second pertinent qualitative indicator evaluating the quality of the
procedure. Indeed, since Zk converges in distribution as r → 1 then lim

r→1
E(Zk) = m. Using Theorem

2.1, the rate of convergence of E(m− Zk) in terms of 1− r → 0 is given in Proposition 2.3.

1.4 Our second goal is to measure the efficiency of the repairing procedure applied to the production
of a large number n of elements. We propose to take into account the performance of the whole
production with the following control probability :

CPk,n := P (all the n products have no default at time k). (1.9)

Suppose that the repairing and test phases are independent for any product and i0 is the common
initial state of each product, then

CPk,n =
(
P (Zk = m)

)n
=
(
Πk(i0,m)

)n
. (1.10)

It is clear that CPk,n ≈ 1 actually means that the ability of the system to repair defective products is
good.
In the setting of cancer cells exposed to a treatment of radiotherapy, the analog of the parameter
CPk,n is the tumor control probability (TCP), see [3], [2] and Section 3.
Suppose that q and k are fixed. The number n of products being large, CPk,n is close to zero. This is
obviously a non desirable answer. To solve this issue, we propose to take r as an explicit function of
n such that r ≈ 1 and the CPk,n is larger that a given threshold (for instance 95%). This goal is easy
to perform (see Theorem 2.5), it is a direct consequence of Theorem 2.1.
Obviously, the requirement that all the n products are ready after k periods, is a very stringent
condition. It seems interesting to define a weaker criterium based on the proportion of products
presenting a default at time k :

CP ∗
k,n,α := P

(Nk

n
≤ α

)
(1.11)

where α ∈ [0, 1[ and Nk denotes the number of non-damaged products at time k.
It is easily seen thatNk = 0 means all the n elements have non-default. Consequently, CPk,n ≤ CP ∗

k,n,α

for any α and CP ∗
k,n,α = CPk,n when α = 0. We prove in Theorem 2.8 that it is actually possible to

tune the parameters r and k such that probability CP ∗
k,n,α ≈ 1.

The proposed index CPk,n and CP ∗
k,n,α which measure the quality of the repairing procedure have to

be compared. Suppose that θ0 is a given level close to 1, for instance θ0 = 95%. If 1 − r is chosen

as a decreasing function of n of the type
C

n1/k
where C is a constant, then CPk,n ≈ θ0. As for the

second index, the answer is very different. Suppose that α is small. It can be shown that if n is larger
than n1 (which only depends on α and θ0) and 1 − r is proportional to α1/k, then CP ∗

k,n,α ≈ θ0. In
particular, it is not necessary that r depends on n. A more complete result can be found in Theorem
2.8 and Proposition 2.9 below.
As for the organization of the paper, the mathematical results are given in Section 2. In Section 3 we
interpret our results presented in terms of reliability associated with the treatment of cancer cells by
radiations. Finally the proofs of Theorems and Propositions are postponed in Section 4.

2 The main results

2.1 Our first goal is to study the behavior of r 7→ Πk(i0,m) when r → 1. It is intuitive that more
carefully a technician (or a machine) repairs the elements (i.e. more r is close to 1), more the probability
of having m non-damaged elements after the test phase is high. It is clear from definitions that if
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r = 1 then Zk = m for any k ≥ 1 and r 7→ Πk(i0,m) is continuous. Note that it has been proved in [3]
that r 7→ Πk(i0,m) is increasing. Therefore Zk converges in distribution to m as r → 1. The issue is
to measure this convergence. It is actually possible determining the rate of decay of 1−Πk(i0,m) in
terms of 1− r. This result is important since it will be applied to prove Proposition 2.3 and Theorem
2.5.

Theorem 2.1 Let 0 ≤ i0 < m. Set ε := 1− r. Then

1−Πk(i0,m) ∼ (m− i0)
(
1 + (m− 1)q

)k−1
εk, ε→ 0. (2.1)

Remark 2.2 1. Using definition (1.4) of the matrix R, it can be proved easily (see Lemma 4.2)
that R admits the following asymptotic expansion :

R = R0 +

m∑
l=1

Rlϵ
l, (ϵ→ 0).

Since Π = RQ we have :

Π = Π0 +
m∑
l=1

Πlϵ
l, (ϵ→ 0) (2.2)

where Πl = RlQ.

Therefore it is expected that Πk(i0,m) = 1 + aϵ + ϵo(ϵ), where lim
ϵ→0

o(ϵ) = 0. Theorem 2.1 says

there are non-trivial cancelations.

2. One interesting property in (2.1) is the fact that the coefficient in front of ϵk is explicitly given
in terms of i0,m, q and k. This permits interpretations, see item below.

3. In [3], it has been observed that i 7→ Πk(i,m) and r 7→ Πk(i0,m) are increasing and q 7→
Πk(i0,m) is decreasing. Note that the coefficient φ(i, r, q) := −(m− i)

(
1+ (m− 1)q

)k−1
(1− r)k

inherits the same properties : i 7→ φ(i, r, q) and r 7→ φ(i, r, q) are increasing and q 7→ φ(i, r, q)
is decreasing. These properties corresponds to intuition.

Since Zk converges in distribution to m, as r goes to 1 and Zk takes its values in {0, 1, · · · ,m}, then
lim
r→1

E(Zk) = m. Theorem 2.1 permits to give the exact rate of convergence of m− E(Zk).

Proposition 2.3 Suppose that Z0 = i0 and k ≥ 1. Then

m− E(Zk) ∼ (m− i0)
(
1 + (m− 1)q

)k
εk, ε→ 0. (2.3)

Remark 2.4 It is interesting to introduce the time Tr devoted to repair one element. It seems rea-
sonable to suppose that r is increasing function of Tr, for instance :

r := 1− α

T β
r

(2.4)

where α, β > 0.
Assume that the cost generated by repairing one element is proportional to Tr. Therefore the mean
cost for repairing at time k all the damaged elements is

E
(
(m− Zk)γTr

)
= γTr

(
m− E(Zk)

)
, (where γ > 0).

Therefore, under (2.4), Proposition 2.3 implies that the above quantity is closed to zero if Tr is large
and kβ > 1. In practice, as soon as β is known, we have an effective way to choose k.
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2.2 We now consider the production of n elements. We suppose that before to be delivered each
element produced by the factory is repaired and tested as explained in details in Section 1.2 of In-
troduction. First we consider the index CPk,n defined by (1.10). It measures the global capability
to produce non-defective elements after k repair-test phases. More CPk,n is a close to 1, more the
maintenance may be considered as successful. To reach this objective, the parameter r is taken as an
increasing function of n such that CPk,n ≈ 1. One second main result of this study is the following.

Theorem 2.5 Let θ0 ∈]0, 1[. Let r such that

1− r :=

(
− ln(θ0)(

m− i0)
(
1 + (m− 1)q

)k−1

)1/k
1

n1/k
(2.5)

Then lim
n→∞

CPk,n = θ0.

Theorem 2.5 is a direct consequence of Theorem 2.1.

Remark 2.6 1. In practice θ0 is often chosen to be equal to 95%.

2. Let us give a practical consequence of Theorem 2.5. Following the analysis developed in Remark
2.4, the mean cost of the quality control applied to the n elements is proportional to ρ :=
n
(
m− E(Zk)

)
. Using (2.5) and Proposition 2.3, we have

ρ ≈ n(m− i0)
(
1 + (m− 1)q

)k
(1− r)k

≈ − ln(θ0)
(
1 + (m− 1)q

)
.

Consequently ρ does not depend on n. Moreover, as expected, the function θ0 7→ ρ (resp. the
functions m 7→ ρ and q 7→ ρ) is (resp. are) decreasing (resp. increasing).

3. In the spirit of Remark 2.2, let us introduce :

Ψ(i, q, n, k, θ0) := −

(
− ln(θ0)(

m− i)
(
1 + (m− 1)q

)k−1

)1/k
1

n1/k

It is immediate to see that Ψ(i, q, n, k, θ0) is an increasing (resp. decreasing) function of either
q or n (resp. i). Moreover it is decreasing (resp. increasing) with respect to k if n is large i.e.

n >
− ln(θ0)

(
1 + (m− 1)q

)
m− i

(resp. otherwise). It is clear that r inherits the same behavior and

its variations correspond to what is expected.

We now study the second parameter CP ∗
k,n,α introduced in subsection 1.4 of the Introduction. Recall

that CP ∗
k,n,α measures efficiency of the whole system and CP ∗

k,n,α near 1 means that the system
operates successfully. To get CP ∗

k,n,α ≈ 1 or equivalently 1 − CP ∗
k,n,α ≈ 0, first we determine in

Proposition 2.7 below an upper bound of 1 − CP ∗
k,n,α in terms of 1 − Πk(i0,m). Second combining

this result with Theorem 2.1 permits to prove that, under some conditions, the parameter CP ∗
k,n,α is

near 1 (see Theorem 2.8 below).

Proposition 2.7 Let 0 ≤ i0 < m and α ∈]0, 1[. Suppose that Πk(i0,m) > 1− α. Then

1− CP ∗
k,n,α ≤

{(1−Πk(i0,m)

α

)α(Πk(i0,m)

1− α

)1−α
}n

, ∀ n ≥ 1. (2.6)

Recall that we have already observed that if r ≈ 1, then Πk(i0,m) is close to 1. Therefore if r is in
the neighborhood of 1, then inequality (2.6) implies CP ∗

k,n,α ≈ 1.
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Theorem 2.8 Let 0 ≤ i0 < m, α and θ0 ∈]0, 1[. Suppose

1− (1− θ0)
1/n ≤ α(1− α)α

2
. (2.7)

1. If we have

1−Πk(i0,m) ≤ α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

(2.8)

then CP ∗
k,n,α ≥ θ0.

2. Suppose that α ≈ 0. If r is taken so that

1− r ≃

 1

(m− i0)
(
1 + (m− 1)q

)k−1

(
α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

)
1/k

(2.9)

then CP ∗
k,n,α ≽ θ0.

Let us give a sufficient and easy condition under which relation (2.7) and (2.9) holds resp. Before
enouncing the result let us introduce a useful notation :

n0 := 1 +
⌊
− 2 ln(1− θ0)

α(1− α)α

⌋
(2.10)

where ⌊a⌋ stands for the integer part of a.

Proposition 2.9 Let 0 ≤ i0 < m, α and θ0 ∈]0, 1[.

1. If n ≥ n0, then condition (2.7) is satisfied.

2. Suppose that α ≈ 0 and n ≥ 4n0 and r is given as

1− r =

{
α

2(m− i0)
(
1 + (m− 1)q

)k−1

}1/k

. (2.11)

then CP ∗
k,n,α ≥ θ0.

Remark 2.10 We would like to compare the two methods leading to CPk,n and CP ∗
k,n,α close to θ0

respectively. As for the first one, Theorem 2.5 says that if 1− r is a decreasing function of n (namely
(2.5) holds) then the goal is achieved, i.e. CPk,n ≈ θ0. We emphasize that the objective CP ∗

k,n,α ≈ θ0
may be obtained under a weaker condition. This result is expected since CP ∗

k,n,α is bigger than CPk,n.
Suppose that assumptions of Proposition 2.9 are satisfied. Relation (2.11) tells us that it is not neces-
sary to take r depending on n (as for the previous case), it suffices that 1− r is proportional to α1/k.
That shows that for n large this condition is weaker than the first one.

3 Interpretation in terms of cancer cells and tumor

3.1 The goal of this Section is to interpret the main results given in Section 2 in the setting of an anti-
cancer treatment by radiotherapy. The usual treatment planning in radiotherapy consists in applying a
radiation dose fraction everyday k to the tumor. Let us begin by briefly recalling the model introduced
in [2] to take into account effects of the treatment on a cell and a tumor. At the level of a cancer cell,
it is supposed :

1. a cell has m vital targets.
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2. Each target may be made inactive after the application of a fraction dose of radiation with a
probability q0.

3. The cell death occurs when all the m targets are deactivated.

4. Between two consecutive doses, if the cell is still alive, then an inactive target can be repaired
with probability r0. All the targets behave independently.

The aim of radiotherapy is to deliver enough radiation to the tumor to control it without irradiating
normal tissue to a dose leading to serious complications (morbidity). Since radiation delivery at
a precise point of cells is generally described as a random variable, the effects of the radioactive
treatments on cancer and healthy cells are characterized by two probabilities: (i) the tumor Control
Probability (TCP ) and (ii) the Normal Tissue Complication Probability (NTCP ) [16, 6, 9]. TCPk

is defined as the probability that no cancer cell remains in a tumor after applying k dose fractions
of radiation. NV CPk,v, is defined as the probability that a complication appears in a normal tissue.
Its expression depends on the tissue architecture. Niemierko and Goitein [12] proposed a division of
normal tissues into three different architectures: serial architecture (e.g. nerves or spinal cord), parallel
architecture (e.g. kidney, liver or lung) and graduated response (e.g. skin or mucous membranes). The
optimum choice of radiation dose delivery technique in the treatment of a given tumor has to maximize
the TCP so that at the same time the NTCP must be lower than an acceptable level (see for details
[3]). In clinical radiotherapy a typical choice is TCP ≥ 0.5 and NTCP ≤ 0.05 [15].
Let Zk be the (random) number of damaged target(s) in a cell at day k, i.e. after application of k
fraction dose. It is clear that this model is the analog of the one given in the Introduction and related
to reliability of engineering systems, with

r := q0, q := r0. (3.1)

In practice, the probability q0 should be an increasing function of the applied fraction dose u0. In the
linear-quadratric model of Target Theory (see Section 2.3 in [2] for details) it is supposed that

q0 =
(
1− e−γu0−δu2

0
)1/m

(3.2)

where γ > 0 and δ ≥ 0 are given parameters scaled to be adapted to the range of the possible values
of u0. In particular if u0 = 0, then q0 = 0, this actually means that there is no effect coming from
radiation. However, as for contrary effect, it is important to note that if u0 is large then q0 is close to
1. In other words, there exists a natural way to force q0 to be near 1.
3.2 A tumor is a population of n cells. We suppose that all the cells have the same independent
behavior given above. In particular, the parameters q0 and r0 are common for all the cancer cells.
The efficiency of the treatment applied to a tumor is measured by the Tumor Control Probability.
This quantity is the probability that all the cancer cells are killed after application of k radiation dose
fractions. Due to previous assumptions of independent behaviors of constitutive cells of the tumor and
(1.9)

TCPk,n := CPk,n =
(
P (Zk = m)

)m
(3.3)

where CPk,n is defined with parameters q and r given by (3.1).
Suppose that the tumor has a large number n of cancer cells and the parameters q0 and r0 are fixed.
Then, relation (3.3) implies that TCPk,n goes to 0 since P (Zk = m) < 1 and n is large. This obviously
means that the treatment is not efficient at all. One way to remove this undesirable conclusion is to
strengthen the radiation, i.e. to choose u0 large so that q given by (3.2) is close to 1. This corresponds
exactly to the problematic introduced in the above subsection 1.4. As a result, the approach developed
in Section 2 may be applied.
Following subsection 1.4, let us introduce the second interesting parameter which also permits to
measure efficiency of the treatment :

TCP ∗
k,n,α := CP ∗

k,n,α = P
(Nt

n
≤ α

)
(3.4)
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where
Nt

n
is the fraction of malign cells which have not been destroyed by the treatment.

Recall that TCPk,n ≤ TCP ∗
k,n and the goal is to have either TCPk,n or TCP ∗

k,n close to 1. Here, this
objective can be achieved choosing q0 ≈ 1 or equivalently u0 large.
3.3 It is interesting to interpret the main results given in Section 2 and their consequences on the
radiotherapy response model. We keep notation given in Section 2.

Interpretation of Proposition 2.3 and Remark 2.4
Relation (2.3) can be written as :

m− E(Zk) ∼ (m− i0)
(
1 + (m− 1)r0

)k
(1− q0)

k, q0 → 1. (3.5)

where i0 ∈ {0, 1, · · · ,m− 1} is the initial state of the cell, Zk its state at time k.
Using moreover (3.2) we get

m− E(Zk) ∼ (m− i0)
(
1 + (m− 1)r0

)k[
1−

(
1− e−γu0−δu2

0
)1/m]k

, u0 → ∞. (3.6)

In particular relation (3.6) provides a quantitative way to choose the dose fraction u0 large so that the
mean of Zk is close to 1.

Interpretation of Theorem 2.5 and Remark 2.6
TCPk,n converges to a given real number θ0 as soon as

1− q0 :=

(
− ln(θ0)(

m− i0)
(
1 + (m− 1)r0

)k−1

)1/k
1

n1/k
. (3.7)

This formula can be applied in practice once we have an estimate of the number of cancer cells. Indeed,
recall that q0 is expressed via the dose fraction u0 by (3.2). Therefore u0 and k can be determined
so that the treatment has a good chance to be successful, i.e. the probability to kill the whole tumor
equals .95% for instance.
The comments related to the variation of the coefficient ψ(i, r0, n, k, θ0) given in item 3 of Remark 2.6
remain valid in the biological context.

Interpretation of Theorem 2.8 and Proposition 2.9
We now focus on the second indicator TCP ∗

k,n,α and the goal is again to force TCP ∗
k,n,α ≈ 1. Let us

start with a small α, for instance α = .001. Suppose that the size of the tumor before the beginning
of the treatment is important. If u0 is chosen such that

γu0 + δu20 = − ln

1−

1−{ α

2(m− i0)
(
1 + (m− 1)r0

)k−1

}1/k
m (3.8)

then TCP ∗
k,n,α ≈ θ0.

Introducing

ψ0 :=
1

2(m− i0)
(
1 + (m− 1)r0

)k−1
.

and using [
1−

{ α

ψ0

}1/k]m
= 1− m

ψ
1/k
0

α1/k + o
(
α1/k

)
, α→ 0

we finally obtain :

γu0 + δu20 ≈ −1

k
ln(α). (3.9)

Note that u0 implicitly depends on θ0 and α since it is supposed that the initial number of cancer cells
constituting the tumor is larger than the threshold n0 given by (2.10).
Moreover (3.9) corresponds to intuition : the smaller α is, the larger u0 has to be.
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4 Proofs

4.1 Proof of Theorem 2.1

We keep notation introduced in Sections 1 and 2.We adopt the convention that for any matrix the
first line and the first column are labeled 0. We begin with a preliminary result which will be used
several times.

Lemma 4.1 Let B1 and B2 two square matrix (m + 1) × (m + 1). Consider R0 the square matrix
defined as

R0(i,m) =

{
1 for any 0 ≤ i ≤ m
0 otherwise.

Suppose :

m∑
j=0

B2(i, j) = a, ∀ i ∈ {0, 1, · · · ,m}. (4.1)

Then

B1B2R0(i,m) = aB1R0(i,m), ∀ i ∈ {0, 1, · · · ,m}. (4.2)

Proof. According to the definition of R0 and (4.1), we have :

B1B2R0(i,m) =

m∑
j=0

B1B2(i, j) =

m∑
k=0

B1(i, k)

m∑
j=0

B2(k, j) = a

m∑
k=0

B1(i, k) = B1R0(i,m).

In Lemma 4.2 below, we give the behavior of R as a function of

ϵ := 1− r (4.3)

when ϵ→ 0.
This allows us to determine the asymptotic expansion of Π in Lemma 4.5.

Lemma 4.2 The matrix R admits the following asymptotic expansion

R = R0 +
m∑
l=1

Rlϵ
l, (ϵ→ 0) (4.4)

where for 1 ≤ l ≤ m, Rl is the (m+ 1)× (m+ 1) matrix

Rl(i, j) :=

(
m− i
l

)(
l

m− j

)
(−1)l+j−m

if 0 ≤ i ≤ j, i < m and m− j ≤ l ≤ m− i. Otherwise Rl(i, j) = 0.

Proof. Using (1.4) and (4.3) we have :

R(i, j) =

(
m− i
j − i

)
(1− ϵ)j−iϵm−j

where 0 ≤ i ≤ j ≤ m and R(i, j) = 0 otherwise.
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Developing (1− ϵ)j−i we get

R(i, j) =

j−i∑
r=0

(
m− i
j − i

)(
j − i
r

)
(−1)rϵm+r−j .

Setting l := m+ r − j leads to (4.4) where

Rl(i, j) := (−1)l+j−m

(
m− i
j − i

)(
j − i
l + j −m

)
1{m−j≤l≤m−i}.

Since : (
m− i
j − i

)(
j − i
l + j −m

)
=

(
m− i
l

)(
l

m− j

)
the result follows.

Lemma 4.3 1. R0Q = R0.

2. For any 1 ≤ l ≤ m, we have :

Rl
0 = R0, R0Rl = 0, R0RlQ = 0.

Proof. The proof is straightforward and is left to the reader.

Definition 4.4 A multi-index i is an element of
∪
k≥1

{1, 2, · · · , m}k. For any multi-index i =

(i1, · · · , ik) we set :
|i| := k, ∥i∥ := i1 + · · ·+ ik,

Πi := Πi1 × · · · ×Πik .

where
Πl := RlQ.

Lemma 4.5 The matrix Πk admits the following asymptotic expansion :

Πk = R0 +
∑
|i|=k

ϵ∥i∥Πi +
∑
|i|≤k

ϵ∥i∥ΠiR0. (4.5)

Proof. Since Π = RQ, then relation (4.4) implies

Πk =
( m∑

l=0

ϵlΠl

)k
=

∑
i1,··· ,ik

Πi1 × · · · ×Πikϵ
i1+···+ik

where i1, · · · , ik belong to {0, 1, · · · ,m}.
We now consider three different cases.
a) If i1 = i2 = · · · = ik = 0 then the corresponding term is Rk

0 = R0.
b) If each ij belongs to {1, 2, · · · ,m}, set i := (i1, · · · , ik). Then |i| = k and ∥i∥ = i1 + · · · + ik ≥ k.
This gives the second term in the right hand-side of (4.5).
c) The third and last case is the one where (i1, · · · , ik) ̸= (0, · · · , 0) and there exists j such that ij = 0.
There are two possibilities :

1. (i1, i2, · · · , ik) = (i1, i2, · · · , ik′ , ik′+1, · · · , ik) where ik′ = 0 and ik′+1 ≥ 1, · · · , ik ≥ 1,

2. (i1, i2, · · · , ik) = (i1, i2, · · · , ik′ , ik′+1, · · · , ik) where ik′ ≥ 1 and ik′+1 = · · · = ik = 0.
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In the first case,
Πi1 × · · · ×Πik = Πi1 × · · · ×Πik′Πik′+1

× · · · ×Πik .

The above product vanishes since Lemma 4.3 implies that

Πik′Πik′+1
= R0QRik′+1

Q = R0Rik′+1
Q = 0.

As for the second case, we have :

Πik′+1
× · · · ×Πik =

(
R0Q

)
× · · · ×

(
R0Q

)
= R0 × · · · ×R0 = R0.

If there exists 1 ≤ j < k′ such that ij = 0, proceeding similarly leads to Πi1 × · · · ×Πik′ = 0. Finally
it can be supposed that (i1, · · · , ik′) is a multi-index with length k′.

Remark 4.6 Lemma 4.5 is crucial in the proof of Theorem 2.1. Indeed, we will see in Lemma 4.8
below that the terms in the second sum of the right hand-side of (4.5) do not contribute to the equivalent
of 1−Πk(i0,m), as ϵ→ 0.

Lemma 4.7 We have the following identities :

m∑
j=0

Rl(i, j) = 0, ∀ i ∈ {0, 1, · · · ,m}, l ≥ 1.

Proof. 1) If i = m then according to the definition of the matrix Rl, we have Rl(m, j) = 0 for any
0 ≤ j ≤ m.
From now on suppose that i < m. Using Lemma 4.2 we get

m∑
j=0

Rl(i, j) =

(
m− i
l

) m∑
j=0

(
l

m− j

)
(−1)l+j−m1{i≤j, m−j≤l≤m−i}.

Setting s = j −m+ l we obtain :

m∑
j=0

Rl(i, j) =

(
m− i
l

)
1{l≤m−i}

l∑
s=0

(
l

l − s

)
(−1)s.

Since

l∑
s=0

(
l

l − s

)
(−1)s = (1− 1)l = 0, then Lemma 4.7 follows.

Lemma 4.8 Let i be a multi-index, then :

ΠiR0(k,m) = 0, for any k ∈ {0, 1, · · · ,m}. (4.6)

Proof. We prove (4.6), reasoning by induction on the length n of i.
1) Let us start with n = 1. Then i = i ≥ 1 and

ΠiR0(k,m) = ΠiR0(k,m) = RiQR0(k,m).

We claim that Lemma 4.1 may be applied.
If i < m, then using (1.5), we get

m∑
j=0

Q(i, j) =

i∑
j=0

(
i
j

)
qi−j(1− q)j = (1 + 1− q)i = 1. (4.7)

Since Q(m, j) = 1{m=j}, it is clear that (4.7) holds when i = m.
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As a result we may apply Lemma 4.1 with B1 := Ri, B2 = Q and a = 1 : RiQR0(k,m) = RiR0(k,m).
Lemma 4.7 implies that we can apply twice Lemma 4.1 with B1 := I, B2 = Ri and a = 0 :
RiR0(k,m) = 0. Consequently ΠiR0(k,m) = 0.
2) It remains to prove n→ n+1. Let i be a multi-index of length n+1. It can be written as i = (j, i′)
where i′ is a multi-index with length n and j ≥ 1. Consequently, for any i0 ∈ {1, 2, · · · ,m}, we have :

ΠiR0(k,m) = ΠjΠi′R0(k,m) =
m∑
s=0

Πj(k, s)
(
Πi′R0

)
(s,m) = 0

since i′ being a multi-index with length n, then
(
Πi′R0

)
(s,m) = 0 .

Lemma 4.9 For any 0 ≤ i < m we have

Π1(i, k) =

 −(m− i) if k = m

(m− i)

(
m− 1
k

)
qm−1−k(1− q)k, if 0 ≤ k < m

(4.8)

Moreover Πs
1(m, j) = 0 for any 0 ≤ j ≤ m and s ≥ 1.

Proof. Suppose that 0 ≤ i < m and 0 ≤ j ≤ m. Using the definition of R1 (cf Lemma 4.2) we easily
prove that R1(i, j) = 0 if j < m− 1, R1(i,m− 1) = m− i and R1(i,m) = −(m− i). As a result :

Π1(i, k) = R1Q(i, k) =
m∑
j=0

R1(i, j)Q(j, k) = (m− i)
(
Q(m− 1, k)−Q(m, k)

)
.

Using (1.5), we get (4.8).
It remains to study the case i = m. Du to the fact that R1(m, j) = 0 for any j, we deduce :

Π1(m, k) = R1Q(m, k) =

m∑
j=0

R1(m, j)Q(j, k) = 0, ∀ k ∈ {0, 1, · · · ,m}.

Let s ≥ 1 and 0 ≤ j ≤ m. We have :

Πs+1
1 (m, j) =

m∑
i=0

Π1(m, i)Π
s
1(i, j) = 0.

Lemma 4.10 For any 0 ≤ i < m we have

Πk
1(i,m) = −(m− i)

(
1 + (m− 1)q

)k−1
. (4.9)

Proof. 1) When k = 1, identity (4.9) is a direct consequence of Lemma 4.9.
Let us deal with k = 2. Let 0 ≤ i < m. Using Lemma 4.9 we get :

Π2
1(i,m) =

m−1∑
j=0

Π1(i, j)Π1(j,m) = −
m−1∑
j=0

(m− i)

(
m− 1
j

)
qm−1−j(1− q)j(m− j).

It is convenient to introduce

S(x) :=
m−1∑
j=0

(m− j)

(
m− 1
j

)
xm−1−j , x ∈ R.
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Indeed,

Π2
1(i,m) = −(m− i)(1− q)m−1S

( q

1− q

)
.

Let us calculate S(x) :

S(x) =
d

dx

(m−1∑
j=0

(
m− 1
j

)
xm−j

)
=

d

dx

(
x(1 + x)m−1

)
= (1 +mx)(1 + x)m−2.

We easily deduce that
Π2

1(i,m) = −(m− i)
(
1 + (m− 1)q

)
.

3) We now prove (4.9) by induction on k. We have already proved it for k = 1 and k = 2. Let us
detail k → (k + 1). Observe that

Πk
1(j,m) = −(m− j)

(
1 + (m− 1)q

)k−1
=
(
1 + (m− 1)q

)k−1
Π1(j,m), 0 ≤ j < m.

Let 0 ≤ i < m. We know from Lemma 4.9 that Πk
1(m,m) = 0, consequently

Πk+1
1 (i,m) =

m−1∑
j=0

Π1(i, j)Π
k
1(j,m) =

(
1 + (m− 1)q

)k−1
m−1∑
j=0

Π1(i, j)Π1(j,m)

=
(
1 + (m− 1)q

)k−1
Π2

1(i,m) = −(m− i)
(
1 + (m− 1)q

)k
.

Proof of Theorem 2.1
Let 0 ≤ i0 < m. Recall that R0(i0,m) = 1, therefore Lemmas 4.5 and 4.8 imply :

1−Πk(i0,m) = −
∑
|i|=k

ϵ∥i∥Πi(i0,m)−
∑
|i|≤k

ϵ∥i∥ΠiR0(i0,m) = −
∑
|i|=k

ϵ∥i∥Πi(i0,m).

It is clear that ∑
|i|=k

ϵ∥i∥Πi(i0,m) ∼ ϵ∥j0∥Πj0(i0,m), ϵ→ 0

where j0 := (1, 1, · · · , 1).
Moreover Lemma 4.10 leads to

1−Πk(i0,m) ∼ ϵkΠk
1(i0,m) ∼ −(m− i0)

(
1 + (m− 1)q

)k−1
ϵk, ϵ→ 0.

�

4.2 Proof of Proposition 2.3

First we focus on the calculation of E(Zk). Although it is not possible to give an explicit value of the
expection of Zk we are however able to provide a recursive relation between E(Zk+1) and E(Zk).

Lemma 4.11 Suppose that Z0 = i0 and k ≥ 0. Then

E(Zk+1) = (1− q)mr + qmE
(
rm−Zk

)
+ (1− q)(1− r)E(Zk). (4.10)

Proof. Denote Z ′ the number of non-damaged elements after the repairing procedure applied to one
element. According to the scheme (1.2), conditionally on Z ′ = j < m, the distribution of Zk+1 is
binomial with parameters j and 1− q. Therefore

E(Zk+1|Z ′ = j) = (1− q)j.
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When Z ′ = m, then Zk+1 = m.
Consequently :

E(Zk+1) = E
(
1{Z′=m}m

)
+ E

(
1{Z′<m}(1− q)Z ′) = qmP (Z ′ = m) + (1− q)E(Z ′).

We deduce from (1.1) that conditionally on Zk = i, Z ′ − i ∼ B(m− i, r). That implies

P (Z ′ = m|Zk = i) = rm−i, E(Z ′|Zk = i) = i+ (m− i)r = mr + (1− r)i

and
E(Zk+1) = qmE

(
rm−Zk

)
+mr(1− q) + (1− q)(1− r)E(Zk).

Proposition 2.3 will proved by induction on k. First we study the case k = 1 in Lemma 4.12 below.

Lemma 4.12 Suppose that Z0 = i0, then

m− E(Z1) ∼
(
1 + (m− 1)q

)
(m− i0)ϵ, ϵ→ 0

where ϵ = 1− r.

Proof. Using Lemma 4.11 with k = 0 we obtain :

E(Z1) = (1− q)mr + qmrm−i0 + (1− q)(1− r)i0
= (1− q)m(1− ϵ) + qm(1− ϵ)m−i0 + (1− q)i0ϵ

Since (1− ϵ)m−i0 = 1− (m− i0)ϵ+ o(ϵ), we deduce :

E(Z1) = m−
(
1 + (m− 1)q

)
(m− i0)ϵ+ o(ϵ).

Proof of Proposition 2.3
Let us prove by induction on k :

m− E(Zk) ∼ (m− i0)
(
1 + (m− 1)q

)k
εk, ε→ 0. (4.11)

Obviously the case k = 1 corresponds to Lemma 4.12. Suppose that (4.11) holds and prove

m− E(Zk+1) ∼ (m− i0)
(
1 + (m− 1)q

)k+1
εk+1, ε→ 0. (4.12)

Using Lemma 4.11 and (4.11) we get :

E(Zk+1) = (1− q)m(1− ϵ) + qmE
(
(1− ϵ)m−Zk

)
+ (1− q)ϵE(Zk)

= (1− q)m(1− ϵ) + qmE
(
1− (m− Zk)ϵ

)
+ qmR(ϵ)

+(1− q)ϵ
[
m− (m− i0)

(
1 + (m− 1)q

)k
εk
]
+ o(εk)

where
R(ϵ) := E

(
(1− ϵ)m−Zk −

[
1− (m− Zk)ϵ

])
.

Starting with the classical inequality :∣∣(1− ϵ)n − (1− nϵ)
∣∣ ≤ n(n− 1)

2
ϵ2, ∀ ϵ ∈]0, 1[
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we deduce ∣∣(1− ϵ)n − (1− nϵ)
∣∣ ≤ m− 1

2
nϵ2, 0 ≤ n ≤ m, ϵ ∈]0, 1[.

Consequently, ∣∣R(ϵ)∣∣ ≤ m− 1

2
E(m− Zk)ϵ

2.

Using (4.11) we conclude that R(ϵ) = o(ϵk+1) and

E(Zk+1) = m− (1− q)mϵ− qmϵ(m− i0)
(
1 + (m− 1)q

)k
εk

+(1− q)ϵ
[
m− (m− i0)

(
1 + (m− 1)q

)k
εk
]
+ o(εk+1)

= m− (m− i0)
(
1 + (m− 1)q

)k(
qm+ 1− q)ϵk+1 + o(εk+1)

= m− (m− i0)
(
1 + (m− 1)q

)k+1
ϵk+1 + o(εk+1).

This implies (4.12).
�

4.3 Proof of Theorem 2.5

Let 0 ≤ i0 < m and k ≥ 1. Suppose that identity (2.5) holds. Therefore r is a function of n and
moreover ϵ := 1− r goes to 0 as n→ ∞. According to the definition (1.10) of CPk,n, we have :

ln(CPk,n) = n ln
(
Πk(i0,m)

)
= n ln

(
1−

[
1−Πk(i0,m)

])
.

Theorem 2.1 and (2.5) imply that :

ln(CPk,n) ∼ −n
[
1−Πk(i0,m)

]
∼ −n(m− i0)

(
1 + (m− 1)q

)k−1
ϵk ∼ ln(θ0), n→ ∞.

4.4 Proof of Proposition 2.7

Let
(
(Z

(i)
k )
)
i≥1

a collection of independent Markov chains with common transition matrix Π given by

(1.3) and having the same initial point i0. Let us introduce :

Nk =

n∑
i=1

ξi, where ξi := 1{Z(i)
k ̸=m}

Recall that from (1.11) we have :

1− CP ∗
k,n,α := P

(Nk

n
> α

)
.

The technique developed below is classical in the theory of large deviations. In our specific setting
(2.6) is a particular case of Cramér’s theorem (see Section 2.2 in [7] and more specifically Exercise
2.2.23).

Note that
{Nk

n
> α

}
=
{
exp

{
λ

n∑
i=1

ξi

}
> eλαn

}
for any λ > 0. Using the Markov inequality and the

fact that r.v.’s ξi are iid, we get :

1− CP ∗
k,n,α ≤ e−λαnE

(
exp

{
λ

n∑
i=1

ξi

})
=
(
e−λαE

(
eλξ1

))n
= ena(λ) (4.13)

where
a(λ) := −λα+ ln

(
E
(
eλξ1

))
= −λα+ ln

(
p+ (1− p)eλ

)
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and p := P (ξ1 = 0) = P (Z
(1)
k = m) = Πk(i0,m).

Using classical analysis it can be proved that a(λ) ≥ a(λ∗) for any λ > 0 where

λ∗ := ln
( pα

(1− p)(1− α)

)
. (4.14)

Observe that λ∗ > 0 since 1− α < p. Moreover

a(λ∗) = −α ln
( pα

(1− p)(1− α)

)
+ ln

( p

1− α

)
= ln

((1− p

α

)α( p

1− α

)1−α
)
. (4.15)

It is clear that (2.6) is a direct consequence of (4.13) (with λ = λ∗) and (4.15).

4.5 Proof of Theorem 2.8

Let θ0 ∈]0, 1[ and α in ]0, 1[. Let us introduce the function :

f(x) :=
(1− x

α

)α( x

1− α

)1−α

, 1− α ≤ x ≤ 1 (4.16)

and

g(y) := f(1− α+ αy), ∀ y ∈ [0, 1]. (4.17)

Obviously,

g(y) = (1− y)α
(
1 +

α

1− α
y
)1−α

, 0 ≤ y ≤ 1.

Lemma 4.13 The function g is concave over [0, 1] and

g(y) ≤ 1− α(1− α)α

2
y2, ∀ y ∈ [0, 1]. (4.18)

Proof. 1) Taking the second derivative, we get :

g′′(y) = (1− y)α−2
(
1 +

α

1− α
y
)−α−1

h(y)

where

h(y) = α(α− 1)
(
1 +

α

1− α
y
)2

− 2α(1− α)
α

1− α
(1− y)

(
1 +

α

1− α
y
)

−(1− α)α
α2

(1− α)2
(1− y)2

= α
[
(α− 1)

(
1 +

α

1− α
y
)2

− 2α(1− y)
(
1 +

α

1− α
y
)
− α2

1− α
(1− y)2

]
= − α

1− α
.

This identity implies that g′′(y) < 0 for all y in ]0, 1[ and therefore g is concave over [0, 1].
2) Since

g′(y) = (1− y)α−1
(
1 +

α

1− α
y
)−α[

− α
(
1 +

α

1− α
y
)
+ α(1− y)

]
then g′(0) = 0

17



Let y ∈ [0, 1]. Taylor formula leads to :

g(y) = g(0) + g′(0)y +
g′′(z)

2
y2

= 1− α

1− α
(1− z)α−2

(
1 +

α

1− α
z
)−α−1 y2

2

where 0 < z < y.
Since, α− 2 < 0 and 1− z belongs to ]0, 1[, then (1− z)α−2 > 1.
Similarly :

z < 1 ⇒ 1 +
α

1− α
z ≤ 1 +

α

1− α
=

1

1− α
.

Therefore (
1 +

α

1− α
z
)−α−1

≥ (1− α)α+1

and

g(y) ≤ 1− α

1− α
(1− α)α+1 y

2

2
= 1− α(1− α)α

y2

2
.

Proof of Theorem 2.8
Suppose that (2.7) holds, i.e.

1− (1− θ0)
1/n ≤ α(1− α)α

2
. (4.19)

1) We claim that under (2.8) then CP ∗
k,n,α ≥ θ0 where θ0 ∈]0, 1[.

We set Πk(i0,m) = 1− α+ αy where y ∈]0, 1]. Obviously,

y =
Πk(i0,m) + α− 1

α

y ≤ 1 and

y ≥

√
2
[
1− (1− θ0)1/n

]
α(1− α)α

⇔ 1−Πk(i0,m) ≤ α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

Consequently, (2.8) implies that

y ≥

√
2
[
1− (1− θ0)1/n

]
α(1− α)α

. (4.20)

According to (4.16),(4.17), (4.18) and Proposition 2.7 it follows that :(
1− CP ∗

k,n,α

)1/n ≤ f
(
Πk(i0,m)

)
= g(y) ≤ 1− α(1− α)α

2
y2.

Using (4.20), we have successively :

1− α(1− α)α

2
y2 ≤

(
1− θ0

)1/n
1− CP ∗

k,n,α ≤ 1− θ0 ⇒ CP ∗
k,n,α ≥ θ0.

2) Suppose that α ≈ 0. Here we suppose that (2.9) holds, i.e.

1− r ≃

 1

(m− i0)
(
1 + (m− 1)q

)k−1

(
α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

)
1/k

.
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Since α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

≤ α, the former relation implies that r is in the vicinity of 1. Theorem

2.1 may be applied :

1−Πk(i0,m) ≃ (m− i0)
(
1 + (m− 1)q

)k−1
(1− r)k

≃ α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

.

This actually means that (2.8) holds. Step one of Theorem 2.8 gives CP ∗
k,n,α ≽ θ0.

�

4.6 Proof of Proposition 2.9

1) Recall that 1− e−x ≤ x for any positive x. Therefore

1− (1− θ0)
1/n = 1− e

1
n ln(1−θ0) ≤ − ln(1− θ0)

n
. (4.21)

Since n0 := 1+
⌊
− 2 ln(1− θ0)

α(1− α)α

⌋
, we deduce immediately that if n ≥ n0 then condition (2.7) is satisfied.

2) Suppose that n ≥ 4n0. We claim that

α−

√
2α
[
1− (1− θ0)1/n

]
(1− α)α

≥ α

2
. (4.22)

Indeed (4.21), n ≥ 4n0 and n0 ≥ −2 ln(1− θ0)

α(1− α)α
yield to :

1− (1− θ0)
1/n ≤ − ln(1− θ0)

n
≤ − ln(1− θ0)

4n0
≤ α(1− α)α

8
.

We thus get : √
2α
[
1− (1− θ0)1/n

]
(1− α)α

≤ α

2
.

A straightforward calculation shows that (4.22) follows.
Recall that r has been defined by (2.11), i.e.

1− r =

{
α

2(m− i0)
(
1 + (m− 1)q

)k−1

}1/k

.

Since α ≈ 0, then 1− r → 0. Consequently, Theorem 2.1 may be applied, using moreover the previous
identity we obtain :

1−Πk(i0,m) ∼ (m− i0)
(
1 + (m− 1)q

)k−1
(1− r)k =

α

2
.

As a result, we deduce from (4.22) that (2.8) holds. According to item 1 of Theorem 2.8 we can
conclude that CP ∗

k,n,α ≥ θ0.
�
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