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Abstract

This paper deals with the estimation of the state of linear time invariant systems for which mea-
surements of the output are available sporadically. An observer with jumps triggered by the arrival of
such measurements is proposed and studied in a hybrid systems framework. The resulting system is
written in estimation error coordinates and augmented with a timer variable that triggers the event
of new measurements arriving. The design of the observer is performed to achieve uniform global
asymptotic stability (UGAS) of a closed set including the points for which the state of the plant and
its estimate coincide. Furthermore, a computationally tractable design procedure for the proposed
observer is presented and illustrated in an example.

1 Introduction

State observer design is undoubtedly a difficult problem, with high relevance in applications. Indeed,
observers can be employed to obtain an estimation of certain state variables, which are not directly ac-
cessible or also to reduce the number of the sensors used in control systems. Many of the most interesting
recent applications pertain to controlled systems linked together through data networks. The nature of
such networks may often introduce time delays, asynchronism, packages drop-out, and communication
channel limitations; see, for example, [13]. Moreover, in modern distributed systems, the communication
mechanisms across the network are governed by logic statements, which aim at reducing the required
bandwidth over the communication channel; see, for example, [21]. Such mechanisms lead to an intermit-
tent availability of the measured variables. In this setting, the classical paradigm of continuously measured
variables needs to be reconsidered to face the new challenges induced by data network constraints. Indeed,
an observer can employ the measured output only at discrete-time instants, which are a priori unknown,
that is the estimation algorithm is actually governed by an event-triggered mechanism (see [1] for further
details). It is worthwhile to notice that for the periodic sampling case, several solutions are shown in the
literature, (see for example [14]).

∗This work has been supported by ANR project LimICoS contract number 12 BS03 00501 and by HYCON2 Network
of Excellence grant agreement 257462. Research by R. G. Sanfelice has been partially supported by the National Science
Foundation under CAREER Grant no. ECS-1150306 and by the Air Force Office of Scientific Research under YIP Grant
no. FA9550-12-1-0366.
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In this paper, we focus on the estimation problem for linear systems where the input injected into
the plant is known and the measured output is gathered in an intermittent fashion. Building from the
idea in [16], we propose an open-loop observer along with a suitable event-triggered updating of the
estimated state. Since the evolution of the considered observer exhibits both continuous-time behavior
and instantaneous updating, we provide a hybrid model of the observer including the triggering logic.
Then, using a Lyapunov function, we propose a condition that guarantees global uniform asymptotic
stability of the estimation error as well as robustness with respect to bounded perturbations, in an input-
to-state stability sense (see [19] and [5]). To this end, by relaxing the input-to-state stability Lyapunov
condition for hybrid systems proposed by Cai and Teel in [5], we exhibit a novel sufficient condition to
prove input-to-state stability in presence of persistent jumps. Finally, the obtained condition is turned into
a design algorithm for the proposed observer based on the solution of a set of linear matrix inequalities.

The proposed hybrid model allows us to effectively exploit the properties of the time domain of the
solutions to the resulting hybrid system, in particular, the persistence of jumps. This feature not only
provides a tighter understanding of the system behavior but also enables us to construct a more general
Lyapunov function, so as to overcome the convexity issues induced by non-uniformity in sampling time,
which are also pointed out in [16], and, moreover, to characterize the effect of measurement noise via
input-to-state stability.

The paper is organized as follows. Section II presents the system under consideration, the problem we
intend to solve, and the hybrid modeling of the proposed observer. Section III is dedicated to the main
results, which provide a solution to the stated estimation problem. Section IV is devoted to numerical
issues and provides a convex design algorithm for the proposed observer. In Section V, the effectiveness
of the approach is illustrated through a numerical example.

Notation: The set N0 is the set of the positive integers including zero and R≥0 represents the set of the

nonnegative real scalars. For every complex number ω, Re(ω) and Im(ω) stand respectively for the real and the

imaginary part of ω. I denotes the identity matrix whereas 0 denotes the null matrix (equivalently the null vector)

of appropriate dimensions. For a matrix A ∈ R
n×m, A′ denotes the transpose of A and ‖A‖ denotes the Euclidean

induced norm. He(A) = A+A′. For two symmetric matrices, A and B, A > B means that A−B is positive definite.

In partitioned symmetric matrices, the symbol ⋆ stands for symmetric blocks. The matrix diag{A1; . . . ;An} is the

block-diagonal matrix having A1, . . . , An as diagonal blocks. For a vector x ∈ R
n, x′ denotes the transpose of x,

whereas ‖x‖ denotes the Euclidean norm. For a function s ∈ [0,+∞) → R
n, ‖s‖t = supτ∈[0,t] ‖s(τ)‖. Let X be

a given set, Co{X} represents the convex hull of X. δB is the closed ball with radius δ of appropriate dimension

in the Euclidean norm. A function α : R≥0 → R≥0 is said to belong to the class K if it is continuous, zero at

zero, and strictly increasing. A function α : R≥0 → R≥0 is said to belong to class K∞ if it belongs to the class

K and is unbounded. A function β : R≥0 × R≥0 → R≥0 is said to belong to class KL if it is nondecreasing in

its first argument, nonincreasing in its second argument, and lims→0+ β(s, t) = limt→+∞ β(s, t) = 0. A function

β : R≥0 ×R≥0 ×R≥0 → R≥0 is said to belong to class KLL if, for each r ∈ R≥0, the functions β(·, ·, r) and β(·, r, ·)

belong to class KL.

2 Problem statement

2.1 System description

Consider the following continuous-time linear system:

ż = Az +Bu

y = Mz
(1)

where z ∈ R
n, y ∈ R

q and u ∈ R
p are, respectively, the state, the measured output, and the input of

the system, while A,B and M are constant matrices of appropriate dimensions. Assume also that the
input u belongs to the class of the measurable and locally bounded functions u : [0,∞) → R

p. We want
to design an observer providing an estimate ẑ of the state z when the output y is available only at some
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times tk, for k ∈ N0, not known a priori. Figure 1 illustrates such a setting in the context of network
control. Suppose that {tk}

+∞
0 is a strictly increasing unbounded real sequence of times. Furthermore,

assume that there exist two positive real scalars T1, T2 with T1 < T2 such that1

T1 ≤ tk+1 − tk ≤ T2. (2)

Since the information on the output y is available in an impulsive fashion, motivated by the work of [16],

ż = Az +Bu

y = Mz

˙̂z = Aẑ +Bu

ẑ+ = ẑ + L(y −Mẑ)

Data Network
Network

Supervisor

yu

ẑ

Observer

PlantPlant

y(tk)

Figure 1: State estimation for a linear system with output gathered through a data network.

to solve the considered estimation problem, we design an observer with jumps in its state following the
law:

˙̂z = Aẑ +Bu when t /∈ {tk}
+∞
0 (3a)

ẑ(t+k ) = ẑ(tk) + L(y(tk)−Mẑ(tk)) when t ∈ {tk}
+∞
0 (3b)

where L is a real matrix of appropriate dimensions to be designed. It is worthwhile to point out that in
[20] the same observer is adopted to state estimation in presence of quantized measurement.
Following the lines of [18], the state estimation problem can be formulated as a set stabilization problem.
Namely, define

As =
{
(z, ẑ) ∈ R

2n : z = ẑ
}

(4)

our goal is to design the matrix L such that As is globally asymptotically stable for the plant (1) inter-
connected with the observer in (3a). At this stage, as usual in estimation problems, one considers the
estimation error defined as ε := z− ẑ, so the error dynamics are given by the following dynamical system
with jumps:

ε̇ = Aε when t /∈ {tk}
+∞
0 (5a)

ε(t+k ) = (I− LM)ε(tk) when t ∈ {tk}
+∞
0 . (5b)

Due to the linearity of the system (1), the estimation error dynamics and the dynamics of z are decoupled.
Then, for the purpose of stabilizing the set As, one can effectively just consider system (5).

Remark 1. Notice that assuming the knowledge of the input is not overly restrictive. Indeed, in many
practical settings, all of the devices employed to control and supervise the plant may be embedded into
the same system. This situation is depicted in Figure 1, where the dotted arrows denote impulsive data
streams, while the solid arrows denote continuous data streams. Notice also that, often, the estimated
state is part of a feedback controller (e.g. in linear observer-based controller architectures), in which case
the input u is a static function of the estimated state that is perfectly known.

1Concerning this assumption, see [15, 3] and the references therein. Notice that, as pointed also in [10], condition (2)
prevents the existence of accumulation points in the sequence {tk}

+∞
0 , and, hence, it avoids the existence of Zeno behaviors,

which is typically undesired in practice.
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2.2 Hybrid modeling

The fact that the observer experiences jumps when a new measurement is available suggests that the
updating process of the error dynamics can be described via a hybrid system. Due to this, we represent
the whole system composed by the plant (1), the observer (3), and the logic triggering jumps as a hybrid
system (see [12] where similar techniques are adopted to model a finite time convergent observer).
Such a hybrid systems approach requires to model the hidden time-driven mechanism triggering the
observer jumps. To this end, in this work, we augment the system state with an auxiliary timer variable
τ , which keeps track of the duration of flows and triggers a jump whenever a certain condition is verified.
This additional state allows to describe the time-driven jump triggering mechanism as a state-driven
jump triggering mechanism, which leads to a model that can be efficiently represented by relying on the
framework for hybrid systems proposed in [8]. More precisely, we make τ to decrease as ordinary time
t increases and, whenever it reaches zero, triggers a jump that makes a self reset of τ . In fact, after a
jump occurs, τ is re-initialized to some value belonging to the interval [T1, T2] and, after the reset, it flows
again. Therefore, the whole system composed by the state ε and the timer variable τ can be represented
by the following hybrid system:

Hε





ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(6a)

with the flow set and the jump set defined as

C =
{
(ε, τ) ∈ R

n+1 : τ ∈ [0, T2]
}

D =
{
(ε, τ) ∈ R

n+1 : τ = 0
}
.

(6b)

For this system, we denote by x̃ = [ε′ τ ′]′ the state and by f and G, respectively, the flow map and the
jump map, i.e.,

f(x̃) =

[
Aε
−1

]
(7a)

G(x̃) =

[
(I− LM)ε
[T1, T2]

]
. (7b)

Notice that to make the hybrid system (6) an accurate description of the real time-triggered phenomenon,
which governs the feedback update process, the variable τ needs to belong to the interval [0, T2], property
that is guaranteed by the definition of C and D. Then, the stabilization objective can be formalized by
introducing the set2

A =
{
(ε, τ) ∈ R

n+1 : ε = 0, τ ∈ [0, T2]
}
. (8)

Then, the problem we intend to solve can be formulated as follows:

Problem 1. Given the matrices A, B, and M of appropriate dimensions and two positive scalars T1 and
T2 such that T1 < T2, compute a matrix L ∈ R

n×q such that the set A defined in (8) is Uniform Global
Asymptotically Stable (UGAS) for the hybrid system (6).

About the notion of UGAS of a given set for a generic hybrid system H, we consider the definition
provided in [8, Definition 3.6]. Concerning the existence of solutions to system (6), relying on the concept
of solution proposed in [8, Definition 2.6], it is straightforward to check that for every initial condition

2Since A is closed, given a vector x ∈ R
n+1, the distance of x from A is defined as follows: |x|A = infy∈A ‖x − y‖. It

turns out that for every x̃ ∈ C ∪D ∪G(D), |x̃|A = ‖ε‖.

4



x̃(0, 0) ∈ C ∪ D, every solution to H is complete. In addition, we can characterize the domain of these
solutions. Indeed, the variable τ , acting as a timer, guarantees that for every initial condition x̃(0, 0) ∈
C ∪D, at least for j ≥ 1, tj+1 − tj ∈ [T1, T2]. Therefore, the domain of a solution φ to H can be written
as follows:

domφ = ([t0, t1]× {0}) ∪




⋃

j∈N\{0}

([tj , tj+1])× {j}




T1 ≤ tj+1 − tj ≤ T2 ∀j ∈ N \ {0}

0 ≤ t1 − t0 ≤ T2

(9)

where domφ is the domain of φ, which is a hybrid time domain. It should be noticed that the structure
of the foregoing hybrid time domain implies that

t ≤ T2(j + 1) ∀(t, j) ∈ domφ. (10)

3 Main results

3.1 Conditions for Uniform Global Asymptotic Stability

The following result provides conditions for the UGAS of the set A defined in (8) for system (6). These
conditions ensure that the assumptions of the Lyapunov result for hybrid systems presented in [8, Propo-
sition 3.24] hold.

Theorem 1. Given two positive scalars T1 and T2 such that T1 < T2, if there exist a symmetric positive
definite matrix P ∈ R

n×n and a matrix L ∈ R
q×n such that

(I− LM)′eA
′vPeAv(I− LM)− P < 0, ∀v ∈ [T1, T2], (11)

then the set A defined in (8) is UGAS for the hybrid system (6).

Proof. Consider the following Lyapunov function candidate for the hybrid system (6) defined for every
x̃ ∈ R

n+1:
V (x̃) = ε′eA

′τPeAτε (12)

To prove the claim, we rely on the stability result provided in [8, Proposition 3.24]. To this end, notice
that there exist two positive scalars α1, α2 such that

α1|x̃|
2
A ≤ V (x̃) ≤ α2|x̃|

2
A ∀x̃ ∈ C ∪D ∪G(D) (13)

Namely, due to the positive definiteness of P and the non-singularity of the matrix eAτ for every τ , by
continuity arguments, one can set

α1 = min
τ∈[T1,T2]

λmin

(
eA

′τPeAτ
)

(14)

α2 = max
τ∈[T1,T2]

λmax

(
eA

′τPeAτ
)

(15)

where λmin(·) and λmax(·) denote, respectively, the smallest and the largest eigenvalue of the their matrix
argument. By straightforward calculations one gets

∇V (x̃)′ = [ 2ε′eA
′τPeAτ ε′eA

′τ (A′P + PA)eAτε].

Exploiting the fact that the matrices eAτ and A commute, one has

〈∇V (x̃), f(x̃)〉 = 0 ∀x̃ ∈ C. (16)
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Notice that, for every g ∈ G(x̃), there exists a real scalar v belonging to the interval [T1, T2] such that

g =

[
(I− LM)ε

v

]

Then, for every g ∈ G(x̃), one has

V (g)− V (x̃) = ε′(I− LM)′eA
′vPeAv(I− LM)ε− ε′eA

′τPeA
′τε.

Whenever x̃∈D, from (6b), we have that τ=0. Then, we have

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε.

Hence, by virtue of relation (11), it follows that there exists a positive small enough scalar β such that,
for every v ∈ [T1, T2],

V (g)− V (x̃) ≤ −βε′ε = −β|x̃|2A, ∀x̃ ∈ D, ∀g ∈ G(x̃). (17)

Now, let φ be a solution to (6). As shown in (10), (t, j) ∈ dom φ implies t ≤ T2(j + 1). Hence, for all
T > 0 such that t+ j ≥ T , one gets

j ≥
T − T2

T2 + 1
.

Therefore, applying [8, Proposition 3.24], for which , in this case, Nr = T2

T2+1 and γr(T ) =
T

T2+1 , thanks
to relations (16) and (17), the set A defined in (8) is UGAS for system (6).

Remark 2. Notice that assuming relation (11) to hold implies that the eigenvalues of eAv(I − LM) are
strictly contained in the unit circle for every v belonging to [T1, T2]. In Section 4, we provide a design
procedure, including an algorithm.

3.2 Effect of measurement noise

Until now, the measured output y was assumed to be perfectly known at sampling times tk. However, in
real-world settings, the measured output is affected by measurement noise. Hence, having some insight on
the robustness of hybrid system (6) with respect to a bounded measurement noise is undoubtedly useful.

To this end, denoting the measurement noise as η : [0,+∞)→ δB, with δ ≥ 0 the measured output is
defined by

y = Mx+ η.

Then, the hybrid system (6) is rewritten as follows:

Hη





ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε− Lη
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(18a)

with
C =

{
(ε, τ) ∈ R

n+1 : τ ∈ [0, T2]
}

D =
{
(ε, τ) ∈ R

n+1 : τ = 0
}
.

(18b)

Thus, the flow map remains defined as in (7a) while the new jump map is given as

G̃(x̃, η) =

[
(I− LM)ε− Lη

[T1, T2]

]
(19)
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To study the effect of the measurement noise, we consider the input-to-state-stability (ISS ) concept
introduced in [19] for continuous-time nonlinear systems and recently extended to hybrid systems in [4, 5].
Notice that this extension of ISS to hybrid systems deals with hybrid signals as external perturbations, and
for such class of signals, a suitable supremum norm is provided. However, in our case, the perturbation
t 7→ η(t) is a purely continuous-time signal, so it needs to be transformed to a hybrid signal to fit in the
framework proposed by Cai and Teel. To this end, as shown in [17], given a solution φ to Hη, the signal
t 7→ η(t) can be represented as a hybrid signal ηH defined as

ηH(t, j) = η(t) ∀(t, j) ∈ domφ. (20)

Now, if for the hybrid signal ηH we consider the (hybrid) supremum norm ‖ηH‖(t,j) in [5], due to (20), it
turns out that for such signal one has ‖ηH‖(t,j) = ‖ηH‖t for every (t, j) ∈ domφ.

Notice that, although in [5] a condition for hybrid systems to be ISS is given, such a condition does not
hold in our context, at least in general. Indeed, adopting the Lyapunov condition in [5] to our problem
would require the existence of a Lyapunov function decreasing along the flow of the solutions to system
(18), which requires the matrix A to be Hurwitz. On the other hand, since by Theorem 1 we exhibit the
existence of a Lyapunov function which is not increasing along the flow of the solutions to system (18),
by extending this result, we show that condition (11) actually suffices to guarantee the ISS property for
the hybrid system (18).

Theorem 2. Given two positive scalars T1, T2 such that T1 < T2, if there exist a symmetric positive
definite matrix P ∈ R

n×n and a matrix L ∈ R
q×n satisfying condition (11), then the set A defined in (8)

is ISS with respect to η for the hybrid system (18).

Proof. Consider the Lyapunov function defined in (12). Since the measurement noise η does not act on
the flow map, as in the proof of Theorem 1, one gets

〈∇V (x̃), f(x̃)〉 = 0 ∀x̃ ∈ C. (21)

For each g ∈ G̃(x̃, η) one gets

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)− eA
′τPeAτ

)
ε−

2η′L′eA
′vPeAv(I− LM)ε+ η′L′eA

′vPeAvLη

where v is a real scalar belonging to the interval [T1, T2]. Whenever x̃ ∈D, from (18b), we have τ = 0.
Then, we get

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε

− 2η′L′eA
′vPeAv(I− LM)ε+ η′L′eA

′vPeAvLη ∀g ∈ G(x̃, η), ∀x̃ ∈ D.
(22)

Now, from (11), there exists a small enough positive real scalarβ such that, for every v ∈ [T1, T2] and
every ε

ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε ≤ −βε′ε.

By completing squares, one gets

V (g)− V (x̃) ≤ −
1

2
βε′ε+

2

β
η′η

∥∥∥L′eA
′vP

(
I+ eAv(I− LM)(I− LM)′eA

′vP
)
eAvL

∥∥∥. (23)

Thanks to (11), as pointed out in Remark 2, one has ‖eA
′v(I − LM)‖ < 1 and then V (g) − V (x̃) ≤

− 1
2βε

′ε+ ρ‖L‖2η′η ,where

ρ =
2

β
‖P‖(1 + ‖P‖) max

v∈[T1,T2]

(
‖eA

′v‖2
)
.
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The above relationship, together with (13), yields

V (g) ≤ eθV (x̃) + ‖L‖2ρη′η ∀x̃ ∈ D, ∀g ∈ G(x̃) (24)

where θ = ln
(
1− β

2α2

)
and α2 is defined in (15).

Then, from (24) and (21), and considering the definition of ηH provided in (20), it turns out that given a
solution φ to hybrid system (18)

V (φ(t, 0)) = V (φ(0, 0)), ∀t ∈ [0, t1] (25a)

V (φ(t, j)) ≤ eθjV (φ(0, 0)) + ρ‖L‖2
j−1∑

i=0

eθiη′H(ti, i)ηH(ti, i), ∀j ≥ 1 ∀(t, j) ∈ domφ. (25b)

Now since by definition θ is negative ∀(t, j) ∈ domφ such that j ≥ 1 we have

V (φ(t, j)) ≤ eθjV (φ(0, 0)) +
ρ‖L‖2

1− eθ
‖η‖2t (26)

Moreover, being the input dependent term in the right-hand side of (26) non-negative, thanks to (25a),
we have that (26) holds for every (t, j) ∈ domφ as well. By using (13), for every (t, j) ∈ domφ one gets

|φ(t, j)|2A ≤
α2

α1
eθj |φ(0, 0)|2A +

ρ‖L‖2

(1− eθ)α1
‖η‖2t . (27)

Thanks to relation (10) there exist two positive real scalars γ and R such that

θj ≤ R− γ(t+ j), ∀(t, j) ∈ domφ (28)

Hence one gets

|φ(t, j)|2A ≤ e−γ(t+j)eR
α2

α1
|φ(0, 0)|2A +

ρ‖L‖2

(1− eθ)α1
‖η‖2t ∀(t, j) ∈ domφ (29)

or equivalently

|φ(t, j)|A ≤ max

{√
2
α2

α1
e

R
2 e−

γ(t+j)
2 |φ(0, 0)|A,

√
2ρ

(1− eθ)α1
‖L‖‖η‖t

}
, ∀(t, j) ∈ domφ. (30)

Thus, according to [5, Definition 2.3] the set A is uniformly input-to-state stable with respect to η for the
hybrid system (18).

Remark 3. The ISS property guaranteed by Theorem 2 only has perturbations on the jump map. On the
other hand, due to unmodeled dynamics, perturbations may affect also the flow map. Thus, analyzing the
behavior of the hybrid system Hε in presence of a wider class of perturbation is a relevant matter. At this
stage, one should notice that the way we adopted to model the hybrid system (6) leads to a hybrid system
which is structurally robust with respect to bounded perturbations on the data; namely, the hybrid system
(6) is well-posed in the sense defined in [8, Definition 6.2]. Thus, the UGAS property of the set A defined
in (8) for the nominal system Hε holds (semiglobally and practically) for the perturbed system as well.
More specifically, provided that the set (8) is UGAS for the hybrid system Aε, then for each compact set
M of the state space and each ω > 0, there exists a function κ ∈ KLL, and a scalar δ∗ > 0 such that for
each δ ∈ [0, δ∗], every solution φp to the perturbed system Hp

ε from M satisfies, for all (t, j) ∈ domφp,
|φp(t, j)|A ≤ κ(φp(t, j), t, j) + ω. It is worthwhile to remark that getting a hybrid system exhibiting the
above mentioned well-posedness property may not be trivial and it actually derives from suitable choices
done throughout the modeling stage.
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4 Numerical Design Procedure

In the previous section, a condition to establish the UGAS and ISS properties, respectively, for systems
(6) and (18) was provided. However, due to its form, such a condition is not computationally tractable to
obtain a solution to Problem 1. Indeed, from a numerical standpoint, condition (11) has two drawbacks:
it is not convex in P and L, and it needs to be verified for infinitely many values of v. The relevance of
the second drawback is evident at a first sight, while the lack of convexity is a severe constraint, since
non-convex problems often lead to NP-hard problems; see, for example, [2]. Thus, in order to make the
problem numerically tractable, some manipulations are needed. To this end, the following result provides
a first step toward a convex design procedure for the proposed observer.

Proposition 1. Let T1 and T2 be two given positive scalars such that T1 < T2. If there exist a symmetric
positive definite matrix P ∈ R

n×n, a matrix J ∈ R
q×n, and a matrix F ∈ R

n×n such that for every
v ∈ [T1, T2] 


−He(F ) F − JM eA

′vP
⋆ −P 0

⋆ ⋆ −P


 < 0 (31)

then the matrices P and L = F−1J satisfy condition (11).

Proof. The proof is omitted due to lack of space. By defining ξ =

[
ε+

ε

]
, B̄ = [−I I − LM ] and Q =

[
eA

′vPeAv 0

⋆ −P

]
the satisfaction of relation (11) is equivalent to

ξ′Qξ < 0, ∀ξ : B̄ξ = 0, ∀v ∈ [T1, T2]. (32)

Then according to Finsler lemma (see [6]) (32) holds if and only if there exists a matrix F =

[
F1

F2

]
such

that
Q+ FB̄ + B̄′F < 0, ∀v ∈ [T1, T2]. (33)

By setting F1 = F , F2 = 0 and labeling FL = J , one has

[
eA

′vPeAv −He(F ) F − JM
⋆ −P

]
< 0, ∀v ∈ [T1, T2]. (34)

Finally, by Schur complement, one gets (31) and this concludes the proof.

Remark 4. Notice that condition (31) is convex with respect to the unknown matrices F,L, and P .

To efficiently design the observer, one needs to avoid finding a solution to (31) for infinitely many values
of v. To overcome this issue, we propose to embed the term eAv, with v in the interval [T1, T2], in a convex
set, obtaining in this way a convex design procedure composed by a finite number of inequalities. This
technique consists in finding some matrices X1, X2, . . . , Xν ∈ R

n×n, such that eAv ∈ Co{X1, X2, . . . , Xν}
whenever v ∈ [T1, T2].
To this end, consider the following well known expression

eAv =

σr∑

i=1

mr
i∑

j=1

Rije
λiv

vj−1

(j − 1)!
+

σc∑

i=1

mc
i∑

j=1

2eRe(λi)v
(
Re(Rij) cos(Im(λi)v)− Im(Rij) sin(Im(λi)v)

) vj−1

(j − 1)!

(35)

where σr is the number of distinct eigenvalues, σc the number of distinct complex-conjugate eigenvalue
pairs. The constants mi and mc are, respectively, the multiplicity of the real eigenvalue λi and of the
complex-conjugate eigenvalue pair λi, λ

∗
i in the minimal polynomial of the matrix A. The matrices Rij
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are real n × n matrices corresponding to the residuals associated to the partial fraction expansion of
(sI − A)−1. Notice that several methods can be adopted to compute such matrices. In this work, we
rely on the procedure proposed in [11]. Once the value of the residuals are known, to build a polytopic
embedding of eAv one can proceed in a similar manner of [9]. Namely,

{X1, . . . , Xν} =

{
σr∑

i=1

mr
i∑

j=1

Rijβij +

σc∑

i=1

mc
i∑

j=1

γij Re(Rij) + γ∗
ij Im(Rij) : βij ∈ {βij , βij}, γij ∈ {γij , γij}, γ

∗
ij ∈ {γ

∗
ij , γ

∗
ij}

}
,

(36)

where

βij = max
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

βij = min
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

γij = max
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γij = min
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γ∗
ij = max

v∈[T1,T2]
−2eRe(λi)v sin(Im(λi)v)

vj−1

(j − 1)!

γ∗
ij = min

v∈[T1,T2]
−2eRe(λi)v sin(Im(λi)v)

vj−1

(j − 1)!

(37)

The proposed technique leads to the following result.

Corollary 1. Let T1 and T2 be two given positive scalars such that T1 < T2. Let {X1, . . . , Xν} be
the matrices obtained by (36). If there exist a symmetric positive definite matrix P ∈ R

n×n, a matrix
J ∈ R

q×n, and a matrix F ∈ R
n×n such that, for every i = 1, . . . , ν,



−He(F ) F − JM XiP

⋆ −P 0

⋆ ⋆ −P


 < 0 (38)

then the matrices P and L = F−1J satisfy condition (11).

Proof. The proof is omitted due to lack of space. Since eAv ∈ Co{X1, X2, . . . , Xν} whenever v ∈ [T1, T2],
then there exist ξ1, . . . , ξν positive scalars dependent on v, such that

eAv =

ν∑

i=1

ξi(v)Xi,

ν∑

i=1

ξi = 1. (39)

Then replacing in (31) the term eAv with the expression given in (39) leads to


−He(F ) F − JM

∑ν
i=1 ξi(v)X

′
iP

⋆ −P 0

⋆ ⋆ −P


 < 0 (40)

which, by the mean of the constraint on the ξi in (39), is equivalent to

ν∑

i=1

ξi(v)



−He(F ) F − JM X ′

iP
⋆ −P 0

⋆ ⋆ −P


 < 0. (41)

Hence by the virtue of (38) and Proposition 1 the matrices P and L = F−1J satisfy condition (11) and
this concludes the proof.
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Corollary 1 represents an efficient solution to Problem 1, which finally can be solved by Algorithm 1,
which is given below.

Algorithm 1 Observer design

1: Find the residual matrices Rij in (35)
2: Compute the scalars βij , βij , γij , γij , γ∗

ij , γ
∗
ij as in (37)

3: Compute the matrices {X1, . . . , Xν} as in (36)
4: Solve (38) with respect to J , P and H
5: L← H−1J
6: return L
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5 Illustrative example

Consider the mass-spring system proposed by [7], which is defined by the following data:

A =




0 0 1 0
0 0 0 1
−2 1 −1 0
2 −2 0 −2


 , M =

[
1 0 0 0

]

B′ =
[
0 0 1 0

]
(42)

consider also u(t) = sin(t). By fixing T1 = 0.2 and T2 = 3, Algorithm 1 yields:

P =




0.1180 0.2460 0.1889 0.1491
0.2460 1.1788 1.0392 0.9646
0.1889 1.0392 0.9407 0.8778
0.1491 0.9646 0.8778 0.8328


 , L =




1.0000
−0.9433
−0.6773
1.6274


 . (43)

Figure 3 depicts the projection onto ordinary time t of the states z(t, j) and ẑ. In this simulation,
the sampling instants are selected randomly in the interval [T1, T2] according to a standard Gaussian
distribution. Simulations show that the estimates appear to quickly converge toward the plant state z
since the estimate ẑ and the state z are nearly overlapped after three jumps.

6 conclusion

This paper proposed a methodology to model and design, through a convex problem, an event-triggered
observer to estimate the state of a linear plant whenever the output is measured in an impulsive fashion.
Moreover, the proposed observer is shown to be ISS with respect to measurement noise and having a
degree of robustness with respect to small enough bounded perturbations. The results in this paper
suggest several directions of research on event-triggered observers. For example, the setting allows to
consider a design problem for the updating logic of τ , in order to somehow schedule the sampling instants.
Moreover, the design of an observer-based controller in the presence of impulsive output measurement
represents certainly an interesting outlook.
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(a) Projection onto ordinary time t of the Lyapunov function V (φ(t, j))
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Figure 2: The evolution of the Lyapunov function V (φ(t, j)).
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Figure 3: The evolution of the states z and ẑ projected onto ordinary time t.

(a) Projection onto ordinary time t of z1(t, j) (solid) and ẑ1(t, j) (dashed).
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(b) Projection onto ordinary time t of z2(t, j) (solid) and ẑ2(t, j)(dashed).
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(c) Projection onto ordinary time t of z3(t, j) (solid) and ẑ3(t, j)(dashed).
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(d) Projection onto ordinary time t of z4(t, j) (solid) and ẑ4(t, j)(dashed).
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[1] K. J. Åström and B.M. Bernhardsson. Comparison of riemann and lebesgue sampling for first order
stochastic systems. In Proceedings of the 41st IEEE Conference on Decision and Control 2002,, pages
2011–2016, 2002.

[2] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and
Control Theory. Society for Industrial and Applied Mathematics, June 1997.

[3] C. Briat and A. Seuret. A looped-functional approach for robust stability analysis of linear impulsive
systems. Systems & Control Letters, 61(10):980–988, 2012.

[4] C Cai and A R Teel. Results on input-to-state stability for hybrid systems. In Proceedings of the
44th IEEE Conference on Decision and Control, and the 2005 European Control Conference, 2005,
pages 5403–5408, 2005.

[5] Chaohong Cai and Andrew R Teel. Characterizations of input-to-state stability for hybrid systems.
Systems & Control Letters, 58(1):47–53, 2009.

[6] M. C. de Oliveira and R. E. Skelton. Stability tests for constrained linear systems. In Perspectives
in robust control, pages 241–257. Springer, 2001.

[7] J.C. Geromel and M.C. de Oliveira. H2 and H∞ robust filtering for convex bounded uncertain
systems. IEEE Transactions on Automatic Control, 46(1):100–107, 2001.

[8] R Goebel, R G Sanfelice, and A R Teel. Hybrid Dynamical Systems: Modeling, Stability, and
Robustness. Princeton University Press, 2012.

[9] W PMH Heemels, Nathan Van De Wouw, Rob H Gielen, MCF Donkers, Laurentiu Hetel, Sorin Olaru,
Mircea Lazar, Jamal Daafouz, and Silviu Niculescu. Comparison of overapproximation methods for
stability analysis of networked control systems. In Proceedings of the 13th International Conference
on Hybrid Systems: Computation and Control, pages 181–190, 2010.

[10] L Hetel, J Daafouz, S Tarbouriech, and C Prieur. Stabilization of linear impulsive systems through
a nearly-periodic reset. Nonlinear Analysis: Hybrid Systems, 2012.

[11] J Leyva-Ramos. A new look at partial fraction expansion of transfer function matrices from a
computational viewpoint. Computers & Mathematics with Applications, 26(3):27–35, 1993.

[12] Y. Li and R. G. Sanfelice. A robust finite-time convergent hybrid observer for linear systems. In
Proceedings of the 52th IEEE Conference on Decision and Control, 2013, 2013.

[13] I. Lopez Hurtado, C. T. Abdallah, and C. Canudas-de Wit. Control under limited information:
Special issue (part i). International Journal of Robust and Nonlinear Control, 19(16):1767–1769,
2009.

[14] M. Maroni, P. Bolzern, G. De Nicolao, and U. Shaked. Existence and convergence of solutions to the
h sampled-data estimation problem. International Journal of Control, 73(15):1382–1391, 2000.
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