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An Observer with Measurement-triggered Jumps for Linear Systems
with Known Input *

F. Ferrante, F. Gouaisbaut, R. G. Sanfelice, S. Tarbouriech

Abstract

This paper deals with the estimation of the state of linear time invariant systems for which measurements of the output are
available sporadically. An observer with jumps triggered by the arrival of such measurements is proposed and studied in a hybrid
systems framework. The resulting system is written in estimation error coordinates and augmented with a timer variable that
triggers the event of new measurements arriving. The design of the observer is performed to achieve uniform global asymptotic
stability (UGAS) of a closed set including the points for which the state of the plant and its estimate coincide. Furthermore, a
computationally tractable design procedure for the proposed observer is presented and illustrated in an example.

I. INTRODUCTION

State observer design is undoubtedly a difficult problem, with high relevance in applications. Indeed, observers can
be employed to obtain an estimation of certain state variables, which are not directly accessible or also to reduce the
number of the sensors used in control systems. Many of the most interesting recent applications pertain to controlled
systems linked together through data networks. The nature of such networks may often introduce time delays, asynchronism,
packages drop-out, and communication channel limitations; see, for example, [13]. Moreover, in modern distributed systems,
the communication mechanisms across the network are governed by logic statements, which aim at reducing the required
bandwidth over the communication channel; see, for example, [20], [21]. Such mechanisms lead to an intermittent availability
of the measured variable. In this setting, the classical paradigm of continuously measured variables needs to be reconsidered
to face the new challenges induced by data network constraints. Indeed, an observer can exploit the measured output only
at discrete time instants, which are a priori unknown. In fact, the estimation algorithm can be actually governed by an
event-triggered mechanism (see [1] for further details).
In this paper, we focus on the estimation problem for linear systems where the input injected into the plant is known
and the measured output is gathered in an intermittent fashion. Building from the idea in [15], we propose an open-loop
observer along with a suitable event-triggered updating of the estimated state. Since the evolution of the considered observer
exhibits both continuous-time behavior and instantaneous updating, we provide a hybrid model of the observer including
the triggering logic. Then, using a Lyapunov function, we propose a condition which guarantees global uniform asymptotic
stability of the estimation error as well as robustness with respect to bounded perturbations, in an input-to-state stability
sense (see [18]). Finally the obtained condition is turned into a design algorithm for the proposed observer based on the
solution of a set of linear matrix inequalities. The proposed hybrid model allows us to effectively exploit the properties
of the time domain of the solutions to the resulting hybrid system, as for example, the persistence in jumping. This not
only provides a more tight comprehension of the system behavior but also enables as to construct a more general Lyapunov
function, so as to overcome the convexity issues induced by non-uniformity in sampling time, which are pointed out also
in [15] and moreover characterizing the effect of a measurement noise by the mean of an input-to-state stability bound on
the estimation error.
The paper is organized as follows. Section II presents the system under consideration, the problem we intend to solve, and
the hybrid modeling of the proposed observer. Section III is dedicated to the main results, which provide a solution to the
stated estimation problem. Section IV is devoted to numerical issues and it ends providing a convex design algorithm for
the proposed observer. In Section V, the effectiveness of the approach is illustrated through a numerical example.
Notation: The set N0 is the set of the positive integers including zero and R≥0 represents the set of the nonnegative real scalars. For every
complex number ω, Re(ω) and Im(ω) stand respectively for the real and the imaginary part of ω. I denotes the identity matrix whereas
0 denotes the null matrix (equivalently the null vector) of appropriate dimensions. For a matrix A ∈ R

n×m, A′ denotes the transpose of
A and ‖A‖ denotes the Euclidean induced norm. He(A) = A+ A′. For two symmetric matrices, A and B, A > B means that A− B
is positive definite. In partitioned symmetric matrices, the symbol ⋆ stands for symmetric blocks. The matrix diag{A1; . . . ;An} is the
block-diagonal matrix having A1, . . . , An as diagonal blocks. For a vector x ∈ R

n, x′ denotes the transpose of x, whereas ‖x‖ denotes
the Euclidean norm. For a function s ∈ [0,+∞) → R

n, ‖s‖t = supτ∈[0,t] ‖s(τ)‖. Let X be a given set, Co{X} represents the convex
hull of X . δB is the closed ball with radius δ of appropriate dimension in the Euclidean norm. A function α : R≥0 → R≥0 is said to
belong to the class K if it is continuous, zero at zero, and strictly increasing. A function α : R≥0 → R≥0 is said to belong to class K∞ if it
belongs to the class K and is unbounded. A function β : R≥0×R≥0 → R≥0 is said to belong to class KL if it is nondecreasing in its first
argument, nonincreasing in its second argument, and lims→0+ β(s, t) = limt→+∞ β(s, t) = 0. A function β : R≥0×R≥0×R≥0 → R≥0

is said to belong to class KLL if, for each r ∈ R≥0, the functions β(·, ·, r) and β(·, r, ·) belong to class KL.

II. PROBLEM STATEMENT

A. System description

Consider the following continuous-time linear system:

ż = Az +Bu

y = Mz
(1)
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ż = Az +Bu

y = Mz

˙̂z = Aẑ +Bu

ẑ+ = ẑ + L(y −Mẑ)
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Fig. 1: State estimation for a linear system with output gathered through a data network

where z ∈ R
n, y ∈ R

q and u ∈ R
p are, respectively, the state, the measured output, and the input of the system, while A,B

and M are constant matrices of appropriate dimensions. Assume also that the input u belongs to the class of the measurable
and locally bounded functions u : [0,∞) → R

p. Suppose that the input u is measurable. We want to design an observer
providing an estimation ẑ of the state z when the output y is available only at some times tk, for k ∈ N0, not known
a priori. Figure1 illustrates such a setting in the context of network control. Suppose that {tk}

+∞
0 is a strictly increasing

unbounded real sequence of times. Furthermore (see [14], [3] and the references therein) we assume also that there exist
two positive real scalars T1, T2 with T1 < T2 such that

T1 ≤ tk+1 − tk ≤ T2. (2)

Notice that the condition (2) prevents the existence of accumulation points in the sequence {tk}
+∞
0 (see [10]) and, hence, it

avoids the existence of Zeno behavior, which is typically undesired in practice. Hence, since the information on the output
y is available in an impulsive fashion, motivated by the work of [15], to solve the considered estimation problem, we want
to design an observer with jumps in its state following the law:

˙̂z = Aẑ +Bu when t /∈ {tk}
+∞
0 (3a)

ẑ(t+k ) = ẑ(tk) + L(y(tk)−Mẑ(tk)) when t ∈ {tk}
+∞
0 (3b)

where L is a real matrix of appropriate dimensions to be designed. It is worthwhile to point out that in [19] the same
observer is adopted to state estimation in presence of quantized measurement.
Following the lines of [17], the state estimation problem can be formulated as a set stabilization problem. Namely, defining
the set

As =
{
(z, ẑ) ∈ R

2n : z = ẑ
}

(4)

our goal is to design the matrix L such that As is globally asymptotically stable. At this stage, as usual in estimation
problems, one considers the estimation error defined as ε := z − ẑ. Through such a change of variable, the set As defined
in (4) is replaced as

Aε = {ε ∈ R
n : ε = 0} (5)

while the error dynamics are given by the following dynamical system with jumps:

ε̇ = Aε when t /∈ {tk}
+∞
0 (6a)

ε(t+k ) = (I− LM)ε(tk) when t ∈ {tk}
+∞
0 . (6b)

Due to the linearity of the system (1), the estimation error dynamics and the dynamics of z are decoupled. Then, for the
purpose of stabilization of the set Aε, one can effectively neglect the plant state and just consider system (6).

Remark 1: Notice that assuming the knowledge of the input is not so restrictive. Indeed in many real situations all the
devices exploited to control and supervise the plant are located in the same location. For example, in an observer based
decentralized controller the input u is often directly accessible by the observer. This situation is depicted in Figure 1, where
the dotted edges refer to impulsive data streams, while the solid edges to continuous data streams.

B. Hybrid modeling

The fact that the observer experiments jumps when a new measurement is available suggests that such a innovation
processes is governed by a hybrid system. Thus due to this, we represent the whole system composed by the observer (3)
and the logic triggering jumps as a hybrid system (see [12] where similar techniques are adopted to model a finite time
convergent observer).
However, in order to do that, one needs to model the hidden time-driven mechanism triggering the observer jumps. To
this end, in this work, we augment the system state with an auxiliary timer variable τ , which tracks the time flow and
triggers a jump whenever a certain condition is verified. This allows to describe the time-driven jump triggering mechanism
as a state-driven jump triggering mechanism, which leads to a model that can be efficiently represented by relying on the



framework for hybrid systems proposed in [8].
Namely, we make τ decreasing as the ordinary time increases and, whenever it reaches zero, trigger a jump. Moreover,
after a jump occurs τ , is re-initialized to some value belonging to the interval [T1, T2] and, after the reset it flows again.
Therefore, the whole system composed by the state ε and the timer variable τ can be represented by the following hybrid
system:

Hε





ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(7a)

with the flow set and the jump set defined as

C =
{
(ε, τ) ∈ R

n+1 : τ ∈ [0, T2]
}

D =
{
(ε, τ) ∈ R

n+1 : τ = 0
}
.

(7b)

For this system, we denote by x̃ = [ε′τ ′]′ the state and by f and G, respectively, the flow map and the jump map, i.e.,

f(x̃) =

[
Aε
−1

]
(8a)

G(x̃) =

[
(I− LM)ε
[T1, T2]

]
. (8b)

Notice that, in order to make the hybrid system (7) an accurate description of the real time-triggered phenomenon, which
governs the feedback innovation process, the variable τ needs to definitely belong to the interval [0, T2]. Then the set Aε

defined in (5) can be slightly modified to take into account this further requirement. This leads to the following set

A =
{
(ε, τ) ∈ R

n+1 : ε = 0, τ ∈ [0, T2]
}
. (9)

Since A is closed, let x be a given vector, the distance from x ∈∈ R
n+1 to A is defined as follows:

|x|A = inf
y∈A
‖x− y‖.

It turns out that for every x̃ ∈ C ∪D ∪ G(D), |x̃|A = ‖ε‖. Finally, the problem we intend to solve can be formulated as
follows:

Problem 1: Given the matrices A, B, and M of appropriate dimensions and two positive scalars T1 and T2 such that
T1 < T2, compute a matrix L ∈ R

n×q such that the set A defined in (9) is Uniform Global Asymptotic Stability (UGAS)
for the hybrid system (7).
We consider the following notion of UGAS for general hybrid system H.

Definition 1: ([8]) Let A be closed. The set A is

• uniformly globally stable for hybrid system H if there exists a class-K∞ function α such that any solution φ to H
satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ domφ;

• uniformly globally attractive for H if for each ω > 0 and r > 0 there exists T > 0 such that, for any solution φ to H
with |φ(0, 0)|A ≤ r every solution is complete and

lim
(t, j) ∈ domφ

t + j → +∞

|φ(t, j)|A = 0

• uniformly globally asymptotically stable for H if it is both uniformly globally stable and uniformly globally attractive.
Concerning the existence of solutions to system (7), relying on the concept of solution proposed in [8, Definition 2.6], it is
straightforward to check that for every initial condition x̃(0, 0) ∈ C ∪D every solution to H is complete. In addition, we
can characterize the domain of these solutions. Indeed, the variable τ , acting as a timer, guarantees that for every initial
condition x̃(0, 0) ∈ C ∪ D, at least for j ≥ 1, tj+1 − tj ∈ [T1, T2]. Therefore, the domain of the solutions to H can be
written as follows:

domφ = ([t0, t1]× {0}) ∪




⋃

j∈N\{0}

([tj , tj+1])× {j}




T1 ≤ tj+1 − tj ≤ T2 ∀j ∈ N \ {0}

0 ≤ t1 − t0 ≤ T2

(10)

It should be noticed that the structure of the foregoing hybrid time domain implies that ∀(t, j) ∈ domφ

t ≤ T2(j + 1) (11)



III. MAIN RESULTS

A. Conditions for Uniform Global Asymptotic Stability

The following result provides conditions for the UGAS of the set A defined in (9) for system (7).
Theorem 1: Given two positive scalars T1 and T2 such that T1 < T2. If there exist a symmetric positive definite matrix

P ∈ R
n×n and a matrix L ∈ R

q×n such that

(I− LM)′eA
′vPeAv(I− LM)− P < 0, ∀v ∈ [T1, T2], (12)

then the set A defined in (9) is UGAS for the hybrid system (7).
Proof: Consider the following Lyapunov function candidate for the hybrid system (7) defined for every x̃ ∈ R

n+1:

V (x̃) = ε′eA
′τPeAτε (13)

To prove the claim, we rely on the stability result provided in [8, Proposition 3.24]. To this end, notice that there exist two
positive scalars α1, α2 such that

α1|x̃|
2
A ≤ V (x̃) ≤ α2|x̃|

2
A ∀x̃ ∈ C ∪D ∪G(D) (14)

Namely, due to the positive definiteness of P and the non-singularity of the matrix eAτ for every τ , by continuity arguments,
one can set

α1 = min
τ∈[T1,T2]

λmin

(
eA

′τPeAτ
)

(15)

α2 = max
τ∈[T1,T2]

λmax

(
eA

′τPeAτ
)

(16)

where λmin(·) and λmax(·) denote, respectively, the smallest and the largest eigenvalue of the their matrix argument. By
straightforward calculations one gets

∇V (x̃)′ = [ 2ε′eA
′τPeAτ ε′eA

′τ (A′P + PA)eAτε].

Exploiting the fact that the matrices eAτ and A commute, one has

〈∇V (x̃), f(x̃)〉 = 0 ∀x̃ ∈ C. (17)

Notice that, for every g ∈ G(x̃), there exists a real scalar v belonging to the interval [T1, T2] such that

g =

[
(I− LM)ε

v

]

Then, for every g ∈ G(x̃), one has

V (g)− V (x̃) = ε′(I− LM)′eA
′vPeAv(I− LM)ε

− ε′eA
′τPeA

′τε.

Whenever x̃∈D, from (7b), we have that τ=0. Then, we have

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε.

Hence, by virtue of relation (12), it follows that there exists a positive small enough scalar β such that, for every v ∈ [T1, T2],

V (g)− V (x̃) ≤ −βε′ε = −β|x̃|2A, ∀x̃ ∈ D, ∀g ∈ G(x̃). (18)

Now, let φ be a solution to (7). As shown in (11), (t, j) ∈ dom φ implies t ≤ T2(j + 1). Hence, for all T > 0 such that
t+ j ≥ T , one gets

j ≥
T − T2

T2 + 1
.

Therefore, applying [8, Proposition 3.24], for which , in this case, Nr = T2

T2+1 and γr(T ) =
T

T2+1 , thanks to relations (17)
and (18), the set A defined in (9) is UGAS for system (7).

Remark 2: Notice that assuming relation (12) to hold implies that the eigenvalues of eAv(I−LM) are strictly contained
in the unit circle for every v belonging to [T1, T2].



B. Effect of measurement noise

Until now, the measured output was assumed to be perfectly known at sampling times tk. However, in real situations, the
measured output can be affected by a measurement noise. Hence, having some insight on the robustness of hybrid system
(7) with respect to a bounded measurement noise is undoubtedly an interesting issue.
To this end, denoting the measurement noise as η : [0,+∞)→ δB, the measured output is defined by

y = Mx+ η.

Then, the hybrid system (7) is rewritten as follows:

Hη





ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε− Lη
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(19a)

with
C =

{
(ε, τ) ∈ R

n+1 : τ ∈ [0, T2]
}

D =
{
(ε, τ) ∈ R

n+1 : τ = 0
}
.

(19b)

Thus, the flow map remains defined as in (8a) while the jump map results in

G̃(x̃, η) =

[
(I− LM)ε− Lη

[T1, T2]

]
(20)

It seems natural in our setting to rest on the input-to-state-stability (ISS) concept introduced in [18] for continuous-time
nonlinear systems and recently extended to hybrid systems in [4], [5]. Notice that, this extension of ISS to hybrid systems
deals with hybrid signals as external perturbations, and for such class of signals, a suitable supremum norm is provided.
However, in our case, the perturbation t 7→ η(t) is a purely continuous-time signal, so it needs to be transformed to a hybrid
signal to fit in the framework proposed by Cai and Teel. To this end, as shown in [16], given a solution φ to Hη , the signal
t 7→ η(t) can be represented as a hybrid signal ηH defined as

ηH(t, j) = η(t), ∀(t, j) ∈ domφ. (21)

Now, if for the hybrid signal ηH we consider the hybrid supremum norm ‖ηH‖(t,j) in [5], due to (21), it turns out that for
such signal one has ‖ηH‖(t,j) = ‖ηH‖t for every (t, j) ∈ domφ. Then, the standard continuous-time supremum norm can
be employed for the signal ηH.
Now, the ISS approach leads to the following result, which extends Theorem 1 showing that condition (12) actually suffices
to guarantee the ISS property for the hybrid system (19).

Theorem 2: Given two positive scalars T1, T2 such that T1 < T2. If there exist a symmetric positive definite matrix
P ∈ R

n×n and a matrix L ∈ R
q×n satisfying condition (12), then the set A defined in (9) is ISS with respect to η for the

hybrid system (19).
Proof: Consider the Lyapunov function defined in (13). Since the measurement noise η does not act on the flow map,

as in the proof of Theorem 1, one gets
〈∇V (x̃), f(x̃)〉 = 0 ∀x̃ ∈ C. (22)

For each g ∈ G̃(x̃, η) one gets

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)+

− eA
′τPeAτ

)
ε− 2η′L′eA

′vPeAv(I− LM)ε+

+ η′L′eA
′vPeAvLη

where v is a real scalar belonging to the interval [T1, T2]. Whenever x̃∈D, from (19b), we have τ=0. Then, we get

V (g)− V (x̃) = ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε

− 2η′L′eA
′vPeAv(I− LM)ε+

+ η′L′eA
′vPeAvLη ∀g ∈ G(x̃, η), ∀x̃ ∈ D.

(23)

Now, from (12), there exists a small enough positive real scalarβ such that, for every v∈ [T1, T2] and every ε

ε′
(
(I− LM)′eA

′vPeAv(I− LM)− P
)
ε ≤ −βε′ε.



By completing squares, one gets

V (g)− V (x̃) ≤ −
1

2
βε′ε+

2

β
η′η

∥∥∥L′eA
′vP

(
I+

eAv(I− LM)(I− LM)′eA
′vP

)
eAvL

∥∥∥.
(24)

Thanks to (12), as pointed out in Remark 2, one has ‖eA
′v(I− LM)‖ < 1 and then V (g)− V (x̃) ≤ − 1

2βε
′ε+ ρ‖L‖2η′η

,where

ρ =
2

β
‖P‖(1 + ‖P‖) max

v∈[T1,T2]

(
‖eA

′v‖2
)
.

The above relationship, together with (14), yields

V (g) ≤ eθV (x̃) + ‖L‖2ρη′η ∀x̃ ∈ D, ∀g ∈ G(x̃) (25)

where θ = ln
(
1− β

2α2

)
and α2 is defined in (16).

Then, from (25) and (22), and considering the definition of ηH provided in (21), it turns out that given a solution φ to
hybrid system (19)

V (φ(t, 0)) = V (φ(0, 0)), ∀t ∈ [0, t1] (26a)

V (φ(t, j)) ≤ eθjV (φ(0, 0))+

ρ‖L‖2
j−1∑

i=0

eθiη′H(ti, i)ηH(ti, i), ∀j ≥ 1

∀(t, j) ∈ domφ.

(26b)

Now since by definition θ is negative ∀(t, j) ∈ domφ such that j ≥ 1 we have

V (φ(t, j)) ≤ eθjV (φ(0, 0)) +
ρ‖L‖2

1− eθ
‖η‖2t (27)

Moreover, being the input dependent term in the right-hand side of (27) non-negative, thanks to (26a), we have that (27)
holds for every (t, j) ∈ domφ as well. By using (14), for every (t, j) ∈ domφ one gets

|φ(t, j)|A ≤
α2

α1
eθj |φ(0, 0)|A +

ρ‖L‖2

(1− eθ)α1
‖η‖2t . (28)

Thanks to relation (11) there exist two positive real scalars γ and R such that

θj ≤ R− γ(t+ j), ∀(t, j) ∈ domφ (29)

One has

|φ(t, j)|A ≤ e−γ(t+j)eR
α2

α1
|φ(0, 0)|A +

ρ‖L‖2

(1− eθ)α1
‖η‖2t

∀(t, j) ∈ domφ

(30)

then from (30) we have

|φ(t, j)|A ≤ max

{
2e−γ(t+j)eR

α2

α1
|φ(0, 0)|A,

2ρ‖L‖2

(1− eθ)α1
‖η‖2t

}
, ∀(t, j) ∈ domφ.

(31)

According to [5, Definition 2.3] the set A is uniformly input-to-state stable with respect to η for the hybrid system (19).

Remark 3: The above analysis actually deals only with perturbations on the jump map. On the other hand, due to
unmodeled dynamics, perturbations may affect also the flow map. Thus, analyzing the behavior of the hybrid system Hε in
presence of a wider class of perturbation is a relevant matter. At this stage, one should notice that the way we adopted to
model the hybrid system (7) leads to a hybrid system which is structurally robust with respect to bounded perturbations on
the data. Namely, the hybrid system (7) is well-posed in the sense defined in [8, Definition 6.2]. Thus, the UGAS property
of the set A defined in (9) for the nominal system Hε holds (practically) the perturbed system as well. More specifically,
provided that the set (9) is UGAS for the hybrid system Hε, then for each compact setM of the state space and each ω > 0,
there exists a function κ ∈ KLL, and a scalar δ∗ > 0 such that for each δ ∈ [0, δ∗], every solution φp to the perturbed
system Hp

ε from M satisfies, for all (t, j) ∈ domφp, |φp(t, j)|A ≤ κ(φp(t, j), t, j) + ω. It is worthwhile to remark that
getting a hybrid system exhibiting the above mentioned well-posedness property may not be trivial and it actually derives
from suitable choices done throughout the modeling stage.



IV. NUMERICAL DESIGN PROCEDURE

In the previous section a condition to establish the UGAS and ISS properties, respectively, for systems (7) and (19) was
provided. However, due to its form, such a condition is not computationally tractable to obtain a solution to Problem 1.
Indeed, from a numerical standpoint, condition (12) has two drawbacks: it is not convex in P and L, and it needs to be
verified for infinitely many values of v. The relevance of the second drawback is evident at a first sight, while the lack of
convexity is a severe constraint, since non-convex problems often leads to NP-hard problems: see for example, [2]. Thus, in
order to make the problem numerically tractable, some manipulations are needed. To this end, the following result provides
a first step toward a convex design procedure for the proposed observer.

Proposition 1: Let T1 and T2 be two given positive scalars such that T1 < T2. If there exist a symmetric positive definite
matrix P ∈ R

n×n, a matrix J ∈ R
q×n, and a matrix F ∈ R

n×n such that for every v ∈ [T1, T2]
[
−He(F ) F − JM eA

′vP
⋆ −P 0

⋆ ⋆ −P

]
< 0 (32)

then the matrices P and L = F−1J satisfy condition (12).

Proof: By defining ξ =

[
ε+

ε

]
, B̄ = [−I I − LM ] and Q =

[
eA

′vPeAv
0

⋆ −P

]
the satisfaction of relation (12) is

equivalent to
ξ′Qξ < 0, ∀ξ : B̄ξ = 0, ∀v ∈ [T1, T2]. (33)

Then according to Finsler lemma (see [6]) (33) holds if and only if there exists a matrix F =

[
F1
F2

]
such that

Q+ FB̄ + B̄′F < 0, ∀v ∈ [T1, T2]. (34)

By setting F1 = F , F2 = 0 and labeling FL = J , one has
[
eA

′vPeAv −He(F ) F − JM
⋆ −P

]
< 0, ∀v ∈ [T1, T2]. (35)

Finally, by Schur complement, one gets (32) and this concludes the proof.
Remark 4: Notice that condition (32) is convex with respect to the unknown matrices F,L, and P .
To design effectively the observer, one needs to avoid finding a solution to (32) for infinitely many values of v. To

overcome this problem, we provide a technique to embed the term eAv whenever v belongs to the interval [T1, T2] in a
convex set obtaining in this way a convex design procedure composed by a finite number of conditions. This technique
consists in finding some matrices X1, X2, . . . , Xν ∈ R

n×n, such that eAv ∈ Co{X1, X2, . . . , Xν} whenever v ∈ [T1, T2].
To this end, consider the following well known expression

eAv =

σr∑

i=1

mr
i∑

j=1

Rije
λiv

vj−1

(j − 1)!
+

+

σc∑

i=1

mc
i∑

j=1

2eRe(λi)v Re(eIm(λ)Rij)
vj−1

(j − 1)!

(36)

where σr is the number of distinct eigenvalues, σc the number of distinct complex-conjugates eigenvalues pairs. mi and
mc are respectively the multiplicity of the real eigenvalue λi and of the complex-conjugates eigenvalues pair λi, λ

∗
i in the

minimal polynomial of the matrix A. Rij are opportune real n×n matrices. At this stage, note that the matrices Rij are the
residual associated to the partial fraction expansion of (sI −A)−1. Notice that several methods can be adopted to compute
such matrices. In this work, we rely on the procedure proposed in [11]. Once the value of the residual are known, to build
a polytopic embedding of eAv one can proceed in a similar manner of [9]. Namely,

{X1, . . . , Xν} =

{
σr∑

i=1

mr
i∑

j=1

Rijβij +

σc∑

i=1

mc
i∑

j=1

γij + γ∗
ij :

βij ∈ {βij , βij}, γij ∈ {γij , γij}, γ
∗
ij ∈ {γ

∗
ij , γ

∗
ij}

}
,

(37)



where

βij = max
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

βij = min
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

γij = max
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γij = min
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γ∗
ij = max

v∈[T1,T2]
−2eRe(λi)v sin(Im(λi)v)

vj−1

(j − 1)!

γ∗
ij = min

v∈[T1,T2]
−2eRe(λi)v sin(Im(λi)v)

vj−1

(j − 1)!

(38)

The proposed technique leads to the following result.
Corollary 1: Let T1 and T2 be two given positive scalars such that T1 < T2. Let {X1, . . . , Xν} be the matrices obtained

by (37). If there exist a symmetric positive definite matrix P ∈ R
n×n, a matrix J ∈ R

q×n, and a matrix F ∈ R
n×n such

that, for every i = 1, . . . , ν, [
−He(F ) F − JM XiP

⋆ −P 0

⋆ ⋆ −P

]
< 0 (39)

then the matrices P and L = F−1J satisfy condition (12).
Proof: Since eAv ∈ Co{X1, X2, . . . , Xν} whenever v ∈ [T1, T2], then there exist ξ1, . . . , ξν positive scalars dependent

on v, such that

eAv =

ν∑

i=1

ξi(v)Xi,

ν∑

i=1

ξi = 1. (40)

Then replacing in (32) the term eAv with the expression given in (40) leads to
[
−He(F ) F − JM

∑ν
i=1 ξi(v)X

′
iP

⋆ −P 0

⋆ ⋆ −P

]
< 0 (41)

which, by the mean of the constraint on the ξi in (40), is equivalent to

ν∑

i=1

ξi(v)

[
−He(F ) F − JM X ′

iP
⋆ −P 0

⋆ ⋆ −P

]
< 0. (42)

Hence by the virtue of (39) and Proposition 1 the matrices P and L = F−1J satisfy condition (12) and this concludes the
proof.
The foregoing result represents an effective solution to Problem 1, which finally can be solved by the Algorithm 1 given
below.

Algorithm 1 Observer design

1: Find the residual matrices Rij in (36)

2: Compute the scalars βij , βij , γij , γij , γ∗
ij , γ

∗
ij as in (38)

3: Compute the matrices {X1, . . . , Xν} as in (37)
4: Solve (39) with respect to J , P and H
5: L← H−1J
6: return L

V. ILLUSTRATIVE EXAMPLE

Consider the mass-spring system proposed by [7], which is defined by the following data:

A =




0 0 1 0
0 0 0 1
−2 1 −1 0
2 −2 0 −2


 , M = [1 0 0 0]

B′ = [0 0 1 0]

(43)



consider also u(t) = sin(t). By fixing T1 = 0.2 and T2 = 3 Algorithm 1 yields to:

P =



0.1180 0.2460 0.1889 0.1491
0.2460 1.1788 1.0392 0.9646
0.1889 1.0392 0.9407 0.8778
0.1491 0.9646 0.8778 0.8328


 , L =




1.0000
−0.9433
−0.6773
1.6274


 . (44)

Figure 2 depicts the projection onto ordinary time t and onto jump time j of the Lyapunov function V (φ(t, j)). Similarly,
Figure 3 depicts the projection onto ordinary time t of the states z(t, j) and ẑ, in this simulation the sampling instants are
selected randomly in the interval [T1, T2] according to a standard Gaussian distribution. Simulations show that the estimation
appears o have a quick convergence toward the plant state z, namely the estimation and the state z are nearly overlapped
after three jumps.

VI. CONCLUSION

This paper proposed a methodology to model and design, through a convex setup, an event-triggered observer to estimate
the state of a linear plant, whenever the output is measured in an impulsive fashion. Moreover, the proposed observer is
shown to be ISS with respect to measurement noise and having a degree of robustness with respect to small enough bounded
perturbations.
The results in this paper suggest several directions of research on event-triggered observers. For example, the setting allows
to consider a design problem for the updating logic of τ , in order to somehow schedule the sampling instants. Moreover, also
the design of an observer-based controller in presence of impulsive output measurement represents certainly an interesting
outlook.
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Fig. 2: The evolution of the Lyapunov function V (φ(t, j)).



0 5 10 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

flows [t]

x
1
,
x̂
1

(a) Projection onto ordinary time t of z1(t, j) (solid) and ẑ1(t, j) (dashed).
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(b) Projection onto ordinary time t of z2(t, j) (solid) and ẑ2(t, j)(dashed).
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(c) Projection onto ordinary time t of z3(t, j) (solid) and ẑ3(t, j)(dashed).
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(d) Projection onto ordinary time t of z4(t, j) (solid) and ẑ4(t, j)(dashed).

Fig. 3: The evolution of the states z and ẑ projected onto ordinary time t.
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