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Abstract

This paper argues that observations of non-stationary choice behavior need not
necessarily imply specific properties of the individual’s discount function. As we
show, the observed preference reversals in intertemporal choice are consistent with
constant discounting and can alternatively be explained by decreasing absolute risk
aversion together with the individual’s risk perception. This risk may concern the size
of the actual outcome or the endowment consumption stream to which the outcome
is added. Both types of uncertainty naturally appear in the context of intertemporal
choice. We show how relative degrees of changes in risk over time can determine
choices.

Keywords: Hyperbolic Discounting, Decreasing Impatience, Increasing impatience,
Risk

JEL classification: D91, D81

2



Page 3 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

1 Introduction

Individuals generally value immediate payoffs higher than later payoffs, i.e. they discount

future payoffs. There are many reasons for discounting future outcomes (Frederick, Loewen-

stein, and O’Donoghue, 2002). One of them is that the future is risky and that there is

a positive probability that we will no longer be alive in the future. In this paper we will

not focus on the fact that risk causes impatience as such. We will rather study how the

interaction of risk and impatience influences choice behavior over time. More specifically,

we will analyze the extent to which we can draw conclusions about the curvature of an

individual’s discount function merely from observing choice behavior.

A widely used model in intertemporal choice that captures an individual’s impatience

is discounted utility. For a long time Samuelson’s (1937) constant, that is exponential,

discounting has been the most popular model for decision making in economics. Un-

der constant discounting preferences satisfy stationarity, i.e. the preference between two

streams of outcomes does not change if the delivery of every outcome in both streams is

postponed by a common delay. Under some additional assumptions stationarity implies

time-consistent behavior.

Strotz (1956) was the first to analyze a formal economic model with time-inconsistent

preferences. Since then many psychological and economic studies have found evidence

against stationary behavior (Benzion, Rapoport, and Yagil, 1989; Bleichrodt and Johan-

nesson, 2001; Cairns and van der Pol, 2000; Green, Fristoe, and Myerson, 1994; Kirby

and Marakovic, 1995; Mazur, 1987, 2001; Read and Read, 2004; Rodriguez and Logue,

1988; and Thaler, 1981). Most studies found decreasing impatience, as in Thaler’s (1981)

example of a person who prefers one apple today over two apples tomorrow, but at the

same time prefers two apples in 51 days over one apple in 50 days. Loewenstein and Prelec

(1992) called this the “common difference effect.” As a consequence of the empirical ev-

idence in favor of decreasing impatience, quasi-hyperbolic (Phelps and Pollak, 1968) and

generalized hyperbolic discounting (Loewenstein and Prelec, 1992) were introduced. These

discount functions satisfy decreasing impatience. Hyperbolic discounting models are be-
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coming increasingly popular in applications (Angeletos et al., 2001; Barro 1999; Harris and

Laibson, 2001; Herings and Rohde, 2006; Krusell and Smith, 2003; Laibson, 1997; Luttmer

and Mariotti, 2003, 2006; O’Donoghue and Rabin, 1999a, 1999b; Rohde, 2008; and Thaler

and Benartzi, 2004).

This paper shows that non-stationarity may be less of an anomaly than has often been

thought and instead can be fully compatible with Samuelson’s (1937) constant discounting.

We will show that non-stationary behavior occurs when subjects perceive their endowments

or outcomes as risky, even when they satisfy constant discounting. Both types of risk nat-

urally appear in the context of intertemporal choice. When choosing between two different

outcomes the decision maker (DM) determines his preference between the consumption

streams that result if the outcomes are added to his endowment consumption. Since the

latter involves future consumption, it seems natural to assume that the DM considers the

endowment to be subject to risk.1 At the same time any outcome that is to be received

in the future may itself be considered risky. Whoever has promised to deliver the outcome

may fail on the obligation. Whether the DM takes into account outcome risk depends,

among other things, on the reputation of the individual or institution who has promised

the outcome and on the precautions that have been taken in order to guarantee its delivery.

Keren and Roelofsma (1995) and Benzion, Rapoport, and Yagil (1989) discussed before

that risk may be underlying some of the findings of non-constant discounting. The second

half of this paper formalizes their ideas.

In general both endowments and outcomes will be risky. However, in order to study

the influence of each type of risk on the DM’s choice behavior we analyze both types

of risk in isolation. We show that for a DM who satisfies constant discounting observed

behavior may suggest increasing impatience, i.e. we observe an i-reversal, whenever the

increase in endowment risk in the near future is relatively large compared to the increase

in endowment risk in the far future, or whenever the increase in outcome risk in the

near future is relatively small compared to the increase in outcome risk in the far future.

1The role of this background risk for decisions making under risk has also been studied by Gollier and

Pratt (1996) and Eeckhoudt et al. (1996).
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Increase in risk in the near future
relative to

the increase in risk in the far future

large small

endowment risk i-reversal d-reversal

outcome risk d-reversal i-reversal

Table 1: Predictions for a DM with constant discounting.

Conversely, when endowment risk increases relatively strongly in the far compared to the

near future, or when outcome risk increases relatively strongly in the near compared to

the far future, the DM’s behavior may suggest decreasing impatience, i.e. we observe a

d-reversal. Thus, endowment risk and outcome risk are countervailing forces. Table 1

summarizes these results. The main reason for these findings is that under decreasing

absolute risk aversion, whenever endowments become riskier, it becomes more valuable to

receive an outcome on top of these endowments, while if an outcome becomes riskier, it

becomes less valuable to receive that outcome on top of endowments. Hence, a DM who

today is willing to wait for a larger (riskless) outcome will be less willing to wait in the

future, if the increase in endowment risk is smaller in the future relative to today. By

contrast, a DM who today is not willing to wait for a larger risky outcome will be more

willing to wait in the future, if the increase in outcome risk is smaller in the future relative

to today.

This paper is related to Noor (2009), who shows that under constant discounting all

anomalies in intertemporal choice, except for intransitivity, can be explained by changes

in future endowments. The papers are complementary in the sense that Noor rationalizes

observed behavior by perceived deterministic increases in future endowments while we

rationalize behavior by perceived risk in future endowments or outcomes. Moreover, we

show that all kinds of preference reversals can be obtained for a discount function satisfying

increasing, constant or decreasing impatience even if we take the decision maker’s utility
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function as given and only vary the perceived risk.

Several recent studies also analyze the effect of risk or uncertainty on intertempo-

ral choice and its implications on the anomalies often found. Fernández-Villaverde and

Mukherji (2006) consider a framework with uncertainty concerning the utility that a par-

ticular outcome will yield. Their framework does allow for the endowment and outcome

risks that we consider. They focus on behavior that suggests decreasing impatience and as-

sume that uncertainty does not increase in the future. We aim to give a thorough discussion

on how two sources of risk, namely endowment and outcome risk, can have countervailing

influences on behavior and do not rule out continuously increasing uncertainty.

Dasgupta and Maskin (2005) assume that the timing of outcomes is risky. Bommier

(2006) and Halevy (2008) consider uncertainty about lifetime. Halevy (2008) needs the

assumption that decision-makers weight probabilities non-linearly, which we do not need.

Boyarchenko and Levendorskii (2006) assume that outcomes are risky. The decision makers

in their study pay, or receive, a particular amount at a particular date t in order to receive,

or pay, an outcome T dates later. The decision maker can choose date t. Thus, the receipt

of the outcome T dates later in return for a payment today is seen as an option which can

be exercised at any date t either with or without a limit. The authors use option pricing

theory to show that this setting produces the common intertemporal choice anomalies,

even though the underlying discounting is constant. The main differences between their

approach and ours are that they use the theory of real options, which we do not, and that

they do not make the distinction between outcome and endowment risk, which we do.

Finally, apart from many studies that find decreasing impatience, there are also stud-

ies that do not find such evidence (Read et al., 2005; Rubinstein, 2003). Some even find

increasing impatience (Attema et al., 2010; Chesson and Viscusi, 2003; Frederick, 1999;

Gigliotti and Sopher, 2003; Onay and Oncüler, 2007; Read, Airoldi and Loewe, 2005; Say-

man and Oncüler, 2009). Our results provide a simple and intuitive explanation for this

observed increasing impatience. Also, we show how decreasing, constant, and increasing

impatience can all be observed in one natural and simple model. Thus, the studies find-

ing increasing impatience do not necessarily contradict the studies that found decreasing

6
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impatience.

This paper is organized as follows. Section 2 introduces the general setting that we

consider and the assumptions made. The next two sections consider the case of risky

endowments (Section 3) and the case of risky outcomes (Section 4). Section 5 concludes.

All proofs are in the Appendix.

2 The setting

This section introduces basic notation and concepts. The set of nonnegative real numbers is

denoted by R+. The set R is the set of all random variables with realizations in R and with

finite expectation. Rk contains all k-tuples of independently distributed random variables.

For two random variables x, y ∈ R, x =d y means that x has the same distribution as y.

We consider a decision-maker (DM) who has a lifetime or planning horizon of T periods.

Date t = 0 corresponds to ‘today’ and date T is the final period. The DM has a complete

and transitive preference relation < on RT+1. He has an endowment ω = (ω0, . . . , ωT ) ∈

RT+1. A typical example for a DM’s endowment is his current and future income. A

different example arises if the DM only evaluates deviations from some reference income

as in Prospect Theory (Kahneman and Tversky, 1979). In this case the DM’s endowment

in any period is given by the deviation of his actual income from the reference income.

We assume that date-0-endowment is riskless, i.e. V ar(ω0) = 0, whereas date-t-endow-

ment ωt in general will be a random variable.2 The endowment ωt is riskless, whenever

V ar(ωt) = 0 and it is risky otherwise. If ωt is riskless we identify ωt with E(ωt) ∈ R.

Endowment risk is i.i.d. if endowments for all future dates t > 0 are independently and

identically distributed. Endowment ωt̄ is a mean-preserving spread of ωt if ωt̄ =d ωt+ε and

ωt̄ 6=d ωt, with ε ∈ R and E(ωt̄ |ωt = wt) = wt for all realizations wt of ωt. We say that

endowment risk is increasing if ωt̄ is a mean-preserving spread of ωt for every 0 ≤ t < t̄ ≤ T .

It seems reasonable to assume that endowment risk is increasing over time. For example,

if wealth is invested on financial markets and asset prices follow a random walk, then the

2We use the notation V ar to denote the variance and E to denote the expectation of a random variable.
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endowment risk is clearly increasing over time. Also, if the endowment is given by the DM’s

wage income, then it seems plausible to assume that income risk is increasing over time

since, among others, the employment status and wage income depends upon the overall

state of the economy which itself can be assumed to be subject to increasing risk.3

Throughout this paper a DM will have a choice between receiving one outcome x ∈ R

at a particular date or another outcome y ∈ R at another date. We use the notation

(t : x) to indicate that on top of the endowment, the DM receives outcome x ∈ R at time

t ∈ T = {0, . . . , T}, where x can be riskless or risky and is always independently distributed

from endowments. We call (t : x) a dated outcome. We assume that the outcome x is

consumed at the date when it is received. Thus, a DM who receives (t : x) consumes

the consumption stream ξ(t:x) =
(
ξ

(t:x)
0 , ξ

(t:x)
1 , . . . , ξ

(t:x)
T

)
∈ RT+1 with ξ

(t:x)
t = ωt + x and

ξ
(t:x)
t′ = ωt′ for all t′ 6= t. Let X be the set of all dated outcomes (t : x) such that t ∈ T ,

x ∈ R, and x and ωt are independently distributed. The DM’s preference relation <

on consumption streams defines an induced preference relation <∗ on X as follows. Let

(t : x), (t′ : y) ∈ X . Then

(t : x) <∗ (t′ : y) if and only if ξ(t:x) < ξ(t′:y).

Thus, (t : x) <∗ (t′ : y) means that the DM weakly prefers the consumption stream where

on top of his endowment he receives x at date t, over the consumption stream where on

top of his endowment he receives y at date t′. From completeness and transitivity of < it

follows that that <∗ is complete and transitive. This paper addresses the question to what

extent we can draw conclusions about preferences < from observing induced preferences

<∗ .

3One may argue that the expected endowment may not be constant over time but instead changes over

the DM’s life cycle. We restrict to a fixed expected endowment for two reasons. First, in many experiments

on intertemporal choice the time horizon is rather short and hence there are good reasons to assume that

the average endowment is constant. Second, we want to point out the influence of risk on intertemporal

choice and to this end we rule out any other factors that may influence intertemporal decision making like

increases or decreases in expected future income (cf. Noor, 2009).

8
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We assume throughout that < can be represented by a discounted expected utility func-

tion:

ξ < ξ′ ⇐⇒
T∑
t=0

δ(t)EU(ξt) ≥
T∑
t=0

δ(t)EU(ξ′t),

for ξ, ξ′ ∈ RT+1, where δ is a discount function and EU stands for the expected utility

associated with a von Neumann-Morgenstern utility function U : R → R. We assume

that the utility function U is three times continuously differentiable, increasing (U ′ > 0)

and strictly concave (U ′′ < 0). Moreover, we assume that U satisfies strictly decreasing

absolute risk aversion:

Assumption I −U ′′(x)/U ′(x) is strictly decreasing in x for all x ∈ R.

Observe that monotonicity together with decreasing absolute risk aversion implies that

U ′′′ > 0. Let x ∈ R and ε ∈ R be such that EU(x+ ε) exists and is finite. Then by π(x, ε)

we denote the risk premium for the risk ε at x, i.e. π(x, ε) is defined by

EU(x+ ε) = U(x+ E(ε)− π(x, ε)).

The utility function U satisfies strictly decreasing absolute risk aversion if and only if

π(x, ε) is strictly decreasing in x for all ε ∈ R with a nondegenerate distribution, i.e. with

Prob(ε = E(ε)) < 1 (Pratt, 1964).

The discount function δ is assumed to be strictly decreasing in t (δ(t̄) < δ(t) for t̄ > t),

and to satisfy δ(t) > 0 for all t ∈ T , and δ(0) = 1. The discount function satisfies

decreasing (constant, increasing) impatience if outcomes that are received in the far future

are discounted less (equally, more) than outcomes that are received in the near future. This

is formalized in the following definition which is equivalent to Prelec’s (2004) definition.

Definition 2.1

The discount function δ satisfies decreasing (constant, increasing) impatience if for all t, t̄

with t < t̄ and for all τ > 0

δ(t)

δ(t+ τ)
> (=, <)

δ(t̄)

δ(t̄+ τ)

9
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constant φ < 1 such that δ(t) = φt for every t.

Throughout the paper we assume that at every date the expected utility of the endow-

ment exists and is finite.

Assumption II For all t, |EU(ωt)| <∞.

Assumption II in particular holds for all endowments ω where ωt has a bounded support

for all t.

It is assumed throughout that the utility function U is known and that the discount

function δ is not known. Imagine, for instance, an experimenter who elicited the utility

function from the DM through the observation of choices between outcomes that are re-

ceived immediately, i.e. at date 0. Now, by observing choices between dated outcomes,

i.e. by observing induced preferences, he wants to elicit the DM’s discount function under

the assumption that the DM has a discounted expected utility function. Under discounted

expected utility (t : x) <∗ (t′ : y) if and only if

δ(t) [EU(ωt + x)− EU(ωt)] ≥ δ(t′) [EU(ωt′ + y)− EU(ωt′)] . (1)

We say that the induced preference (t : x) <∗ (t′ : y) can be supported by a discount

function δ if (1) holds for that particular δ.

3 Choices under endowment risk

This section will show that induced preferences that, at first sight, suggest decreasing or

increasing impatience in fact do not rule out constant impatience. The results are driven

by a change in endowment risk over time. In order to focus on the effect of endowment risk

10
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we only consider riskless outcomes in this section. As we will show, a choice pattern that

suggests decreasing impatience can be observed for a discounted expected utility function

with constant or even increasing impatience when the change in endowment risk in the

near future is small compared to that change in the far future. Similarly, a choice pattern

suggesting increasing impatience can be observed for a discounted expected utility function

with constant or even decreasing impatience as long as the change in endowment risk in the

near future is relatively large compared to the change in risk in the far future. Hence, since

perceived endowment risk is unobservable, one has to be careful when drawing conclusions

about discount functions from observed behavior in intertemporal choice. In experiments

it may therefore be instructive to elicit subjects’ perceived change in endowment risk over

time.

The results in this paper are driven by second-order changes in perceived risk: changes

in changes in perceived risk. Thus, we do not require large changes in the perception of

risk. If perceived risk changes only slightly, then still the change in the change in risk can

be such that it generates our results. Thus, our results hold even for experiments or choices

that consider only short horizons and small amounts of money.

D-reversals

We start by considering a d-reversal, which is the most commonly observed preference

reversal.

Definition 3.1 d-reversal

Induced preferences <∗ exhibit a d-reversal at the riskless outcomes y > x > 0 and dates

t̄ > t ≥ 0 and τ > 0 if

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) ≺∗ (t̄+ τ : y).4

4If a d-reversal exists, then by continuity and monotonicity we can also find outcomes x′ and y′ close

to x and y such that (t : x′) �∗ (t+ τ : y′) & (t̄ : x′) ≺∗ (t̄+ τ : y′).

11



Page 12 of 36

Acc
ep

te
d 

M
an

us
cr

ip
tA d-reversal seems to suggest decreasing impatience: The DM is indifferent between re-

ceiving x at date t and waiting for the larger outcome y to be received at date t + τ , but

once the receipt of both outcomes is delayed by the same amount of time, the DM prefers

to wait for the better outcome. Indeed, without uncertainty, a d-reversal would imply

decreasing impatience.

As we will show next, d-reversals in fact do not rule out constant or even increasing

impatience when endowments are risky. In particular, a d-reversal does not necessarily

contradict Samuelson’s (1937) constant discounting. To give an intuition for this result

observe that obtaining a positive payoff on top of a risky endowment has two effects. First,

it increases wealth at the given date. Second, the DM can cope better with the risk involved

in consumption at that date, because at a higher wealth level he is less risk averse due

to strictly decreasing absolute risk aversion. Hence, upon receiving a positive and riskless

payoff the DM suffers less from the endowment risk. The larger the increase in risk over

time, the more valuable it is to delay the receipt of an outcome. Suppose that the increase

in endowment risk is larger in the far than in the near future. Then, it is relatively more

valuable to delay the receipt of an outcome in the far than in the near future.5

Hence, if the DM is indifferent between receiving outcome x at date t and receiving

outcome y at date t + τ , then at date t̄ > t, when the increase in risk is larger, waiting

for outcome y becomes more valuable, because the risk to be compensated is larger. This

explains a d-reversal. The next theorems will formalize this intuition.

Theorem 3.2 Let the DM satisfy a d-reversal, i.e.

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) ≺∗ (t̄+ τ : y)

where y > x > 0, and t̄ > t ≥ 0, τ > 0. Then there exist endowments with increasing

endowment risk, such that the reversal can be supported by a discount function satisfying

constant impatience.

5By far future we mean the further future. Thus, the far future may be ‘tomorrow’ if we take the near

future being ‘in two hours’.
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Remark 3.3 The d-reversal in Theorem 3.2 can even be supported by a discount function

satisfying increasing impatience. In particular, it can be supported by the constant relative

decreasing impatience (CRDI) discount function with δ(t) = exp(−bt1+g) for some b, g > 0,

that was introduced by Ebert and Prelec (2007) and Bleichrodt, Rohde, and Wakker (2009).

The next theorem provides conditions for d-reversals to be observed under constant impa-

tience when endowment risks are given.

Theorem 3.4 Let y > x > 0, t̄ > t ≥ 0, and τ > 0. Let endowment risk be increasing and

let the DM’s discount function satisfy constant impatience. Then, for every M there is an

N such that if

| (EU(ωt̄+τ + y)− EU(ωt̄+τ ))− (EU(ωt+τ + y)− EU(ωt+τ )) | > M and (2)

| (EU(ωt̄ + x)− EU(ωt̄))− (EU(ωt + x)− EU(ωt)) | < N (3)

and if

(t : x) ∼∗ (t+ τ : y)

then

(t̄ : x) ≺∗ (t̄+ τ : y).

The crucial assumption in Theorem 3.4 is that, from the point of view of the DM, the

increase in endowment risk in the far future is relatively large (Eq. 2) compared to the

increase in risk in the near future (Eq. 3).

Remark 3.5 If the DM’s discount function is given by δ(t) = exp(−bt1+g) with b, g > 0,

then, under the conditions of Theorem 3.4, (t : x) ∼∗ (t + τ : y) implies that (t̄ : x) ≺∗

(t̄+ τ : y) if g is sufficiently small.

The next example illustrates the findings of Theorems 3.2 and 3.4.

13
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Example 3.6 As an example we will illustrate how the data of experiment 1 in Read and

Roelofsma (2003) could be explained by changes in risk rather than decreasing impatience.

The individuals in that experiment were on average indifferent between receiving Dfl. 100

(Dutch Guilders, 1 Guilder being approximately 60 cents or 40 pence) immediately or

Dfl. 128 in 8 weeks or Dfl. 153 in 16 weeks (see Read and Roelofsma 2003, table 2, LL,

interval 16 split in 2).

Consider an individual with CRRA utility function U(x) = −x1−c with c > 1 the coeffi-

cient of relative risk aversion and x his weekly consumption in Dutch Guilders. Throughout

this example we will consider three possible values for c : 1.5, 2, and 2.5. Assume that this

week the individual expects to consume w. As the subjects were students, we let w be 300,

400, or 500 (all numbers denoted in Dfl.).

First assume that the individual does not perceive his expected consumption to be

risky. Thus, in 8 weeks and in 16 weeks he expects to consume w per week as well. We will

show that the observed indifferences (0 weeks : 100) ∼ (8 weeks : 128) ∼ (16 weeks : 153)

together imply decreasing impatience at these particular dates. The first indifference,

(0 weeks : 100) ∼ (8 weeks : 128), implies an 8-weekly discount factor of

δ(8) =
U(w + 100)− U(w)

U(w + 128)− U(w)
.

The second indifference, (8 weeks : 128) ∼ (16 weeks : 153), implies that the 16-weekly

discount factor δ(16) satisfies

δ(16)

δ(8)
=
U(w + 128)− U(w)

U(w + 153)− U(w)
.

For w ∈ {300, 400, 500}, and for all possible values of c ∈ {1.5, 2, 2.5} we have that δ(16) >

δ(8)2, which is the case only under decreasing impatience.

Now assume that the individual perceives his future expected weekly consumption to

be risky. In 8 weeks, he expects to consume either w(1+dw8) or w(1−dw8), both with 50%

probability. In 16 weeks he expects to consume w(1+dw8)(1+dw16), w(1+dw8)(1−dw16),

w(1 − dw8)(1 + dw16), or w(1 − dw8)(1 − dw16), each with 25% probability. Assume that
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w = 300 w = 400 w = 500

c=1.5 (0.140, 0.260) (0.110, 0.240) (0.090, 0.230)

c=2 (0.140, 0.220) (0.110,0.200) (0.090, 0.190)

c=2.5 (0.135, 0.194) (0.110, 0.180) (0.095, 0.165)

Table 2: Values of (dw8, dw16) that yield the indifferences under constant discounting.

the individual satisfies constant discounting with an 8-weekly discount factor δ(8) = 0.8.6

Table 2 gives values of dw8 and dw16 that yield the indifferences for each of the values

of c and w. More precisely, the values in Table 2 yield (0 weeks : 100) � (8 weeks : 127),

(0 weeks : 100) ≺ (8 weeks : 129), (8 weeks : 128) � (16 weeks : 152), and (8 weeks :

128) ≺ (16 weeks : 154). In this example a higher endowment w requires more change

in risk and a higher coefficient of relative risk aversion requires less change in risk, if we

measure change in risk as the difference between dw16 and dw8. This is consistent with

the fact that the derivative of the coefficient of absolute risk aversion w.r.t. consumption

x is increasing in x and decreasing in c. It is not clear, though, whether this is a general

result which holds for all possible parameter values. Note that Theorem 3.4 describes the

change in risk in terms of expected utilities. In this paper we have not explicitly defined

a measure for the change in risk. We leave it to future research to define such a measure

and to see whether the results of this example can be generalized.

2

I-reversals

The previous results have shown that even though a d-reversal suggests decreasing impa-

tience, it is consistent with a discount function that exhibits constant or even increasing

impatience. More specifically, we have seen that if the increase in endowment risk in the

6This magnitude of the discount factor and the corresponding large discount rate is commonly found

in experiments.
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far future is large compared to the increase in risk in the near future, then d-reversals can

be observed for all types of discount functions. We will now consider an i-reversal, which

suggests increasing impatience. Similar to the case of d-reversals analysed above, we will

show that an i-reversal is consistent with a discount function that satisfies constant or even

decreasing impatience.

Definition 3.7 i-reversal

Induced preferences <∗ exhibit an i-reversal at the outcomes y > x > 0 and dates t̄ > t ≥ 0

and τ > 0 if

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) �∗ (t̄+ τ : y).7

An i-reversal suggests increasing impatience: the DM is indifferent between receiving

x at date t and receiving y, τ periods later, but he is no longer willing to wait for y if the

delay is from the later date t̄ to t̄+ τ . Thus, the DM appears to be more impatient in the

far future than in the near future. Indeed, if there were no risk, an i-reversal would imply

increasing impatience.

A similar reasoning as for the d-reversal tells us that when the increase in endowment

risk is larger in in the near than in the far future, an i-reversal will be observed, even under

constant discounting. The following theorems formalize this intuition.

Theorem 3.8 Let the DM satisfy an i-reversal, i.e.

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) �∗ (t̄+ τ : y),

where y > x > 0, t̄ > t ≥ 0, τ > 0. Then there exist endowments with increasing

endowment risk, such that the reversal can be supported by a discount function satisfying

constant impatience.

7If an i-reversal exists, then by continuity and monotonicity we can also find outcomes x′ and y′ close

to x and y such that (t : x′) ≺∗ (t+ τ : y′) & (t̄ : x′) �∗ (t̄+ τ : y′).

16
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Remark 3.9 The i-reversal in Theorem 3.8 can even be supported by a discount func-

tion satisfying decreasing impatience. In particular, it can be supported by a generalized

hyperbolic discount function δ(t) = (1 + αt)−β/α for some α, β > 0.

The next theorem provides conditions for i-reversals to occur under constant impatience

and given increasing endowment risk.

Theorem 3.10 Let y > x > 0, t̄ > t ≥ 0, and τ > 0. Let endowment risk be increasing

and let the DM’s discount function satisfy constant impatience. Then, for every M there

is an N such that if

| [EU(ωt̄ + x)− EU(ωt̄)]− [EU(ωt + x)− EU(ωt)] | > M and (4)

| [EU(ωt̄+τ + y)− EU(ωt̄+τ )]− [EU(ωt+τ + y)− EU(ωt+τ )] | < N (5)

and if

(t : x) ∼∗ (t+ τ : y)

then

(t̄ : x) �∗ (t̄+ τ : y).

The crucial assumption in Theorem 3.10 is that the increase in endowment risk in the

near future is relatively large (Eq. 4) compared to the increase in risk in the far future

(Eq. 5).

Remark 3.11 If the DM has a generalized hyperbolic discount function δ(t) = (1+αt)−β/α

with α, β > 0, then, under the conditions of Theorem 3.10, (t : x) ∼∗ (t + τ : y) implies

that (t̄ : x) �∗ (t̄+ τ : y) if α is sufficiently small.

A special case of increasing endowment risk that increases more in the near than in the

far future, is the case with i.i.d. endowment risk. The following theorem shows that when

endowment risk is i.i.d. we can predict an i-reversal whenever date 0 is involved.
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Theorem 3.12 Consider a DM with i.i.d. endowment-risk and let ωt = ω̄ for all t ≥ 1

for some ω̄ ∈ R. Assume that U(ω0) > EU(ω̄) and (0 : x) ∼∗ (τ : y) where y > x > 0 and

τ > 0. If the DM’s discount function satisfies constant impatience, then

(t : x) �∗ (t+ τ : y) for all t > 0.

A slightly weaker result holds if the discount function is of the generalized hyperbolic

form, i.e. δ(t) = (1 + αt)−β/α, with α, β > 0. In this case there will be an i-reversal for

a given delay t whenever α is sufficiently small. Moreover, if the DM has a generalized

hyperbolic discount function and if there is an i-reversal for some delay t̄, then any delay

t < t̄ also results in a strict preference for the earlier outcome. Thus, if we observe one i-

reversal, then we will observe many more i-reversals. We state these results in the following

remark:

Remark 3.13 Under the conditions of Theorem 3.12 the following holds:

(i) For every t > 0 there is an A such that if the DM has a generalized hyperbolic

discount function δ(t) = (1 + αt)−β/α, with α, β > 0, i.e. the discount function

satisfies decreasing impatience, and if α < A then (t : x) �∗ (t+ τ : y).

(ii) If the DM’s discount function is given by δ(t) = (1 + αt)−β/α, where α, β > 0, and if

(t̄ : x) �∗ (t̄+ τ : y), then (t : x) �∗ (t+ τ : y) for all t with 0 < t ≤ t̄.

4 Choices under outcome risk

While in the previous section we only considered riskless outcomes, in this section we ad-

dress the case of risky outcomes. This section formalizes the ideas of Keren and Roelofsma

(1995). We assume that the DM perceives any outcome x that is received at some date

t > 0 to be risky, i.e. the DM perceives the outcome to be x + εx,t for some εx,t ∈ R with

E(εx,t) = 0 and Prob(εx,t = 0) < 1. Any outcome x to be received at t = 0 is perceived to

be riskless, i.e. we assume that εx,0 = 0 for all x ∈ R. Outcome risk for x is i.i.d. if εx,t is

18
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independently and identically distributed for all t > 0. Outcome risk for x is increasing if

εx,t̄ is a mean-preserving spread of εx,t for all 0 ≤ t < t̄ ≤ T .

In order to focus on the impact of outcome risk on behavior, throughout this section

we will assume that endowments are stationary and riskless, i.e. ω = (w, . . . , w) for some

w ∈ R. Thus, a DM who receives (t : x) now consumes the consumption stream ξ(t:x) =

(ξ
(t:x)
0 , ξ

(t:x)
1 , . . . , ξ

(t:x)
T ) ∈ RT+1 with ξ

(t:x)
t = w + x+ εx,t and ξ

(t:x)
t′ = w for all t′ 6= t.

Throughout this section we assume that the expected utility of receiving a risky outcome

on top of the endowment is finite.

Assumption III |EU(w + x+ εx,t)| <∞ for all x ∈ R and all t = 0, . . . , T.

D-reversals

In Section 3 we showed that i-reversals at t = 0 are supported by a discount function that

satisfies constant or even decreasing impatience if endowment risk is i.i.d. Similarly, we

now show that d-reversals at t = 0 are supported by a discount function that satisfies

constant or even increasing impatience if outcome risk is i.i.d. The intuition behind the

result is as follows. Receiving a reward in the future instead of receiving it immediately has

two drawbacks. First, under impatience a DM always prefers to receive a reward earlier.

Second, in the future the reward will be subject to risk and a risk averse DM dislikes risk.

Thus, for the DM to be indifferent between receiving reward x today and receiving reward

y at the future date τ , reward y must be sufficiently superior to reward x so that it offsets

the two aforementioned drawbacks. Now assume that outcome risk is i.i.d. Delaying the

receipt of both outcomes by t̄ periods does not increase the risk of outcome y, but does

increase the risk of outcome x. Thus, this delay makes outcome x relatively less attractive,

which results in a strict preference for the later outcome y.

Theorem 4.1 Consider a DM with riskless endowment and i.i.d. outcome-risk for all

19
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x ∈ R. Let <∗ exhibit a d-reversal at date 0, i.e.

(0 : x) ∼∗ (τ : y) & (t̄ : x) ≺∗ (t̄+ τ : y),

where y > x > 0 and t̄, τ > 0. Then this reversal can be supported by a discount function

satisfying constant impatience.

Remark 4.2 The d-reversal in Theorem 4.1 can even be supported by a discount function

satisfying increasing impatience. In particular, in can be supported by the CRDI discount

function δ(t) = exp(−bt1+g) for some b, g > 0.

The following theorem makes behavioral predictions. If a DM is indifferent between

receiving outcome x today or outcome y at the future date τ , then constant impatience

implies that delaying the receipt of both outcomes by t periods results in a strict preference

for the later outcome y.

Theorem 4.3 Consider a DM with riskless endowments and i.i.d. outcome-risk for all

x ∈ R. Let (0 : x) ∼∗ (τ : y) where y > x > 0 and τ > 0. If the DM’s discount function

satisfies constant impatience, then (t : x) ≺∗ (t+ τ : y) for all t > 0.

If the DM has a CRDI discount function δ(t) = exp(−bt1+g) with b, g > 0 (i.e. increasing

impatience), then there will be a d-reversal for a given delay t whenever g is sufficiently

small. Finally, if δ(t) = exp(−bt1+g) and if there is a d-reversal for some delay t̄, then any

delay t < t̄ also results in a strict preference for the later outcome. Thus, if we observe one

d-reversal then we will observe many more d-reversals:

Remark 4.4 Under the conditions of Theorem 4.3 the following holds:

(i) For every t > 0 there is a G such that if the DM has a discount function δ(t) =

exp(−bt1+g) with b, g > 0 and g < G then (t : x) ≺∗ (t+ τ : y)

(ii) If the DM’s discount function is given by δ(t) = exp(−bt1+g) for some b, g > 0, and

if (t̄ : x) ≺∗ (t̄+ τ : y), then (t : x) ≺∗ (t+ τ : y) for all 0 < t ≤ t̄.
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As long as outcome-risk increases relatively strongly in the near future compared to

the far future, a d-reversal does not rule out constant impatience, even when outcome risk

is not i.i.d. as is shown next.

Theorem 4.5 Let the DM satisfy a d-reversal, i.e.

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) ≺∗ (t̄+ τ : y)

where y > x > 0, t̄ > t ≥ 0, and τ > 0. If outcome risk for x is increasing, then there

exists increasing risk for y, εy,t′, t
′ = 1, . . . , T , such that the d-reversal can be supported by

a discount function satisfying constant impatience.

Remark 4.6 The d-reversal in Theorem 4.5 can even be supported by a discount function

satisfying increasing impatience. In particular, it can be supported by the CRDI discount

function δ(t) = exp(−bt1+g) for some b, g > 0.

In Theorem 4.5 and Remark 4.6 we showed that there exist outcome risks εy,t′ , t
′ =

1, . . . , T , such that the d-reversal can be supported by a discount function satisfying con-

stant or increasing impatience. In the proof we constructed an increasing outcome risk for

y. Alternatively, we could have let outcome y be riskless.

The next theorem shows that if outcome risk increases strongly in the near future and

relatively weakly in the far future, then d-reversals occur whenever the discount function

satisfies constant impatience.

Theorem 4.7 Let y > x > 0, t̄ > t ≥ 0, and τ > 0. Let outcome risk for x and y be

increasing and let the DM’s discount function satisfy constant impatience. Then, for every

M there is an N such that if

|EU(w + x+ εx,t)− EU(w + x+ εx,t̄)| > M and

|EU(w + y + εy,t+τ )− EU(w + y + εy,t̄+τ )| < N.

and if

(t : x) ∼∗ (t+ τ : y)
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then

(t̄ : x) ≺∗ (t̄+ τ : y).

Remark 4.8 If the DM has a CRDI discount function δ(t) = exp(−bt1+g) with b, g > 0,

then, under the conditions of Theorem 4.7 (t : x) ∼∗ (t + τ : y) implies that (t̄ : x) ≺∗

(t̄+ τ : y) if g is sufficiently small.

I-reversals

We now consider i-reversals and show that as long as outcome risk increases relatively

strongly in the far compared to the near future, an i-reversal does not rule out constant or

decreasing impatience.

Theorem 4.9 Let the DM satisfy an i-reversal, i.e.

(t : x) ∼∗ (t+ τ : y) & (t̄ : x) �∗ (t̄+ τ : y)

where y > x > 0, t̄ > t ≥ 0, and τ > 0. If outcome risk for y is increasing, then there

exists increasing risk for x, εx,t′, t
′ = 1, . . . , T , such that the i-reversal can be supported by

a discount function satisfying constant impatience.

Remark 4.10 The i-reversal in Theorem 4.9 can even be be supported by a discount func-

tion satisfying decreasing impatience. In particular, it can be supported by a generalized

hyperbolic discount function δ(t) = (1 + αt)−β/α with α, β > 0.

Finally, Theorem 4.11 predicts that if outcome risk increases relatively strongly in

the far future compared to the near future, then i-reversals occur whenever the discount

function satisfies constant impatience.

Theorem 4.11 Let y > x > 0, t̄ > t ≥ 0, and τ > 0. Let outcome risk for x and y be

increasing and let the DM’s discount function satisfy constant impatience. Then, for every
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M there is an N such that if

|EU(w + y + εy,t+τ )− EU(w + y + εy,t̄+τ )| > M and

|EU(w + x+ εx,t)− EU(w + x+ εx,t̄)| < N

and if

(t : x) ∼∗ (t+ τ : y)

then

(t̄ : x) �∗ (t̄+ τ : y).

Remark 4.12 If the DM has a generalized hyperbolic discount function δ(t) = (1+αt)−β/α

with α, β > 0, then, under the conditions of Theorem 4.11, (t : x) ∼∗ (t + τ : y) implies

that (t̄ : x) �∗ (t̄+ τ : y) if α is sufficiently small.

5 Discussion

We have shown that non-stationary behavior can be observed whenever decision-makers

perceive outcomes or endowments as risky. While we considered endowment risk and

outcome-risk in isolation, it is obvious that similar results hold if both risks are perceived

simultaneously. In this case both risks interact and the dominant change in risk over

time determines the observed behavior. Thus, the result that decreasing and increasing

impatience can be observed simultaneously, even under constant discounting, still holds

with this richer structure in risk.

Our results indicate that one should be careful when drawing conclusions from experi-

ments in intertemporal choice, because part of the results can be influenced by the subjects’

perceptions of risk. It will be useful for researchers doing experiments on intertemporal

choice to try to either elicit or control for the risk perception of subjects. Future research

will deal with the extent to which this is possible.
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6 Appendix

Proof of Theorem 3.2, Theorem 3.4, Remark 3.3 and Remark 3.5

Consider endowments with increasing endowment-risk that satisfy Assumption II. We start

by making an observation which will be helpful in the proof of the result.

Since U ′′′ > 0 by strictly decreasing absolute risk aversion and since ωt̄ is a mean-

preserving spread of ωt for t̄ > t it follows that

E

[
d

dz
U(ωt̄ + z)

]
> E

[
d

dz
U(ωt + z)

]
.

Thus,
d

dz
EU(ωt̄ + z) >

d

dz
EU(ωt + z)

for all z ∈ R.

Thus,

EU(ωt + x)− EU(ωt) < EU(ωt̄ + x)− EU(ωt̄) (6)

for all x > 0.

We can now start with the proof of our results. By

(t : x) ∼∗ (t+ τ : y) we know that for the reversal to be supported by a discount function

δ we need

δ(t) [EU(ωt + x)− EU(ωt)] = δ(t+ τ) [EU(ωt+τ + y)− EU(ωt+τ )] . (7)

By the argument above it follows that

EU(ωt̄+τ + y)− EU(ωt̄+τ ) > EU(ωt+τ + y)− EU(ωt+τ ).

Hence, whenever δ satisfies constant or decreasing impatience we have

EU(ωt̄+τ + y)− EU(ωt̄+τ ) >
δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
[EU(ωt+τ + y)− EU(ωt+τ )] . (8)

Together with (7) this implies

EU(ωt̄+τ + y)− EU(ωt̄+τ ) >
δ(t̄)

δ(t̄+ τ)
[EU(ωt + x)− EU(ωt)] . (9)
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For increasing impatience consider the discount function δ(t) = exp(−bt1+g) for b, g > 0.

Define

b = b(g) :=
ln(A)

(t+ τ)1+g − t1+g
,

where

A :=
EU(ωt+τ + y)− EU(ωt+τ )

EU(ωt + x)− EU(ωt)
.

Then (7) is satisfied for all g > 0. It is immediate to see that δ(t′) → A−t
′/τ for all t′ if

g → 0. Hence,

lim
g→0

δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
= 1

Thus, for g sufficiently small both (7) and (8) are satisfied, which again implies (9).

It remains to show that there exist endowments with increasing endowment risk such

that EU(ωt + x)− EU(ωt) is sufficiently close to EU(ωt̄ + x)− EU(ωt̄) so that

EU(ωt̄+τ + y)− EU(ωt̄+τ ) >
δ(t̄)

δ(t̄+ τ)
[EU(ωt̄ + x)− EU(ωt̄)] .

To see this let γ, λ > 0, and let εt ∈ R be uniformly and independently distributed on

[−γ, γ] for all t = 1, . . . , t̄, and let εt ∈ R be uniformly distributed on [−λ, λ] for all

t = t̄ + 1, . . . , T . Let ωt = ω0 +
∑t

k=1 εk for t = 1, . . . , T . Then ωt′ is a mean-preserving

spread of ωt for all t′ > t. By continuity of U it follows that EU(ωt̄+x)−EU(ωt̄) converges

to EU(ωt + x)− EU(ωt) if γ goes to 0, while the inequality in (8) still holds in the limit.

It follows that (t̄ : x) ≺∗ (t̄+ τ : y). This proves Theorem 3.2 and Remark 3.3.

To prove Theorem 3.4 and Remark 3.5 note that from (t : x) ∼∗ (t + τ : y) and

| [EU(ωt̄+τ + y)− EU(ωt̄+τ )]−[EU(ωt+τ + y)− EU(ωt+τ )] | > M it follows that (7) and (8)

hold whenever δ satisfies decreasing or constant impatience or whenever δ(t) = exp(−bt1+g)

for b > 0 and g > 0 sufficiently small. Hence, by the same argument as in the first part of

the proof, if for given M , | [EU(ωt̄ + x)− EU(ωt̄)]− [EU(ωt + x)− EU(ωt)] | is sufficiently

small, then (t̄ : x) ≺∗ (t̄+ τ : y). This proves Theorem 3.4 and Remark 3.5. 2
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Proof of Theorem 3.8, Theorem 3.10, Remark 3.9 and Remark 3.11

Consider endowments with increasing endowment-risk that satisfy Assumption II. By the

same argument as in the proof of Theorem 3.2 it follows that

EU(ωt + x)− EU(ωt) < EU(ωt̄ + x)− EU(ωt̄) (10)

for all x > 0. From (t : x) ∼∗ (t+ τ : y) we know that for the reversal to be supported by

a discount function δ we need

δ(t) [EU(ωt + x)− EU(ωt)] = δ(t+ τ) [EU(ωt+τ + y)− EU(ωt+τ )] . (11)

Consider the inequality

δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
[EU(ωt̄ + x)− EU(ωt̄)] > EU(ωt + x)− EU(ωt). (12)

Note first that for increasing and constant impatience the foregoing inequality always holds

by (10). For decreasing impatience consider the generalized hyperbolic discount function

δ(t) = (1 + αt)−β/α with α, β > 0. If we let

β = β(α) := −αA(α),

where

A(α) := ln

(
EU(ωt + x)− EU(ωt)

EU(ωt+τ + y)− EU(ωt+τ )

)
/ ln

(
1 + α(t+ τ)

1 + αt

)
.

then (11) is satisfied for any α > 0. It is straightforward to show that

lim
α→0

δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
= lim

α→0

[
(1 + α(t+ τ))(1 + αt̄)

(1 + αt)(1 + α(t̄+ τ))

]A(α)

= 1.

Hence, for α sufficiently small both (11) and (12) are satisfied. Now we see that if

EU(ωt+τ + y)− EU(ωt+τ )

is sufficiently close to

EU(ωt̄+τ + y)− EU(ωt̄+τ )
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then from (11) and (12) it follows that

δ(t̄) [EU(ωt̄ + x)− EU(ωt̄)] > δ(t̄+ τ) [EU(ωt̄+τ + y)− EU(ωt̄+τ )] .

Hence, the i-reversal

(t : x) ∼∗ (t+ τ, y) & (t̄ : x) �∗ (t̄+ τ : y),

can be supported by a discount function satisfying increasing, constant or decreasing im-

patience.

It remains to be shown that there exist endowments with increasing endowment risk

such that EU(ωt+τ + y) − EU(ωt+τ ) is close to EU(ωt̄+τ + y) − EU(ωt̄+τ ). To see this

let γ > 0 and let εi ∈ R be uniformly and independently distributed on [−γ, γ] for all

i = 1, . . . , T − t − τ . Let ωt+τ+i = ωt+τ +
∑i

k=1 εk for i = 1, . . . , T − t − τ . Then ωt+τ+j

is a mean-preserving spread of ωt+τ+i for all j > i. By continuity of U it follows that

EU(ωt̄+τ + y)−EU(ωt̄+τ ) converges to EU(ωt+τ + y)−EU(ωt+τ ) if γ goes to 0 while the

inequality in (12) still holds in the limit. This proves Theorem 3.8 and Remark 3.9.

To prove Theorem 3.10 and Remark 3.11 note that from (t : x) ∼∗ (t + τ : y) and

| [EU(ωt̄ + x)− EU(ωt̄)]− [EU(ωt + x)− EU(ωt)] | > M it follows that (11) and (12) hold

whenever δ satisfies increasing or constant impatience or whenever δ is of the generalized

hyperbolic form, i.e. δ(t) = (1 + αt)−β/α with β > 0 and α > 0 sufficiently small (cf. the

argument above). Hence, by the same argument as in the first part of the proof, if for

given M , | [EU(ωt̄+τ + y)− EU(ωt̄+τ )]− [EU(ωt+τ + y)− EU(ωt+τ )] | is sufficiently small,

then (t̄ : x) �∗ (t̄+ τ : y). This proves Theorem 3.10 and Remark 3.11. 2

Proof of Theorem 3.12 and Remark 3.13

The i-reversal can be supported by a discount function δ if

U(ω0 + x)− U(ω0) = δ(τ)[EU(ω̄ + y)− EU(ω̄)] (13)

and

δ(t̄)[EU(ω̄ + x)− EU(ω̄)] > δ(t̄+ τ)[EU(ω̄ + y)− EU(ω̄)]. (14)
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From U(ω0) > EU(ω̄) and the strict concavity of U it follows that

U(ω0)− U(E(ω̄)− π(0, ω̄)) > U(ω0 + x)− U(x+ E(ω̄)− π(0, ω̄)).

Strictly decreasing absolute risk aversion implies that π(x, ω̄) < π(0, ω̄). Thus,

U(ω0)− U(E(ω̄)− π(0, ω̄)) > U(ω0 + x)− U(x+ E(ω̄)− π(x, ω̄)).

It follows that

EU(ω̄ + x)− EU(ω̄) > U(ω0 + x)− U(ω0).

Thus, there exists δ(τ) < 1 such that (13) holds. Then (14) is satisfied if and only if

δ(τ)δ(t̄)

δ(t̄+ τ)
[EU(ω̄ + x)− EU(ω̄)] > U(ω0 + x)− U(ω0), (15)

which holds for any discount function δ that satisfies increasing or constant impatience.

Thus, we have shown that the i-reversal can be supported by any discount function satis-

fying increasing or constant impatience and (13).

For decreasing impatience consider the generalized hyperbolic discount function δ(t) =

(1 + αt)−β/α with α, β > 0. By a similar argument as in the proof of Remark 3.9 there

exist α > 0 and β > 0 such that both (13) and (15) are satisfied which proves Theorem

3.12 and (i) in Remark 3.13.

We will now prove (ii) in Remark 3.13. Assume that (0 : x) ∼∗ (τ : y) and (t̄ : x) �∗

(t̄+ τ : y). From the argument above we know that it must be the case that

1 >
δ(τ)δ(t̄)

δ(t̄+ τ)
>

U(ω0 + x)− U(ω0)

EU(ω̄ + x)− EU(ω̄)
.

Consider the function

f(t) =
δ(τ)δ(t)

δ(t+ τ)
=

(1 + ατ)−β/α(1 + αt)−β/α

(1 + α(t+ τ))−β/α
.

It can easily be checked that f(t) is strictly decreasing in t > 0. Thus,

1 >
δ(τ)δ(t)

δ(t+ τ)
>

U(ω0 + x)− U(ω0)

EU(ω̄ + x)− EU(ω̄)
(16)
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for all t ≤ t̄. It follows that (t : x) �∗ (t + τ : y) for all t with 0 < t ≤ t̄ which proves

Remark 3.13. 2

Proof of Theorem 4.1, Theorem 4.3, Remark 4.2 and Remark 4.4

Induced preferences exhibit the d-reversal (0 : x) ∼∗ (τ : y) and (t̄ : x) ≺∗ (t̄+ τ : y) if and

only if the discount function satisfies

U(w + x)− U(w) = δ(τ) [EU(w + y + εy)− U(w)] ,

and δ(t̄+ τ)[EU(w + y + εy)− U(w)] > δ(t̄)[EU(w + x+ εx)− U(w)],

which is equivalent to

U(w + x)− U(w) = δ(τ) [EU(w + y + εy)− U(w)] , (17)

and U(w + x)− U(w) >
δ(τ)δ(t̄)

δ(t̄+ τ)
[EU(w + x+ εx)− U(w)] . (18)

By strict concavity of U we have U(w + x) > EU(w + x + εx). Hence, the d-reversal is

supported by any discount function that satisfies decreasing or constant impatience and

for which δ(τ) satisfies (17). It is also supported by any discount function that satisfies

increasing impatience as long as the increase in impatience is sufficiently moderate, so that

(18) holds. For a particular class of discount functions satisfying increasing impatience

consider the discount function δ(t) = exp(−bt1+g) for b, g > 0. By a similar argument

as in the proof of Remark 3.3 one can show that there exist parameters b and g with g

sufficiently close to zero such that δ satisfies (17) and (18). This proves Theorem 4.1 and

Remark 4.2.

The proof of Theorem 4.3 and (i) in Remark 4.4 follows from the above reasoning. We

will now prove (ii) in Remark 4.4. Assume that (0 : x) ∼∗ (τ : y) and (t̄ : x) ≺∗ (t̄+ τ : y).

Then

U(w + x)− U(w) >
δ(τ)δ(t̄)

δ(t̄+ τ)
[EU(w + x+ εx)− U(w)] .
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Consider the function

f(t) =
δ(τ)δ(t)

δ(t+ τ)
= exp

[
−b
(
τ 1+g + t1+g − (t+ τ)1+g

)]
.

It can easily be checked that f(t) is strictly increasing in t. Thus,

U(w + x)− U(w) >
δ(τ)δ(t)

δ(t+ τ)
[EU(w + x+ εx)− U(w)] .

for all t ≤ t̄. Hence, (t : x) ≺∗ (t + τ : y) for all t with 0 < t ≤ t̄ which proves (ii) in

Remark 4.4. 2

Proof of Theorems 4.5, Theorem 4.7, Remark 4.6 and Remark 4.8

From (t : x) ∼∗ (t+ τ : y) it follows that the discount function δ must satisfy

δ(t) [EU(w + x+ εx,t)− U(w)] = δ(t+ τ) [EU(w + y + εy,t+τ )− U(w)] . (19)

If outcome risk for x is increasing then

EU(w + x+ εx,t)− U(w) > EU(w + x+ εx,t̄)− U(w).

Hence, if δ satisfies decreasing or constant impatience we have

EU(w + x+ εx,t)− U(w) >
δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
EU(w + x+ εx,t̄)− U(w). (20)

By a similar reasoning as in the proof of Theorem 3.2, there exist b, g > 0 with g close to

zero such that (19) and (20) also hold for δ(t) = exp(−bt1+g), i.e. for a discount function

that satisfies increasing impatience. From (19) and (20) it follows that

EU(w + y + εy,t+τ )− U(w) >
δ(t̄)

δ(t̄+ τ)
EU(w + x+ εx,t̄)− U(w).

Hence, if EU(w + y + εy,t̄+τ ) is close to EU(w + y + εy,t+τ ), then

EU(w + y + εy,t̄+τ )− U(w) >
δ(t̄)

δ(t̄+ τ)
EU(w + x+ εx,t̄)− U(w),
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which implies (t̄ : x) ≺∗ (t̄ + τ : y). It remains to show that there exist εy,t′ , t
′ = 1, . . . , T ,

such that EU(w + y + εy,t̄+τ ) is close to EU(w + y + εy,t+τ ). Let γ > 0 and let εt′

be independently and uniformly distributed on [−γ, γ] for all t′ = 1, . . . , T . Let εy,t′ =

ε1 + · · · + εt′ for all t′ = 1, . . . , T . By continuity of U it follows that EU(w + y + εy,t̄+τ )

converges to EU(w + y + εy,t+τ ) if γ goes to 0. This proves Theorem 4.5 and Remark 4.6.

To prove Theorem 4.7 and Remark 4.8 note that from (t : x) ∼∗ (t+ τ : y) and

|EU(w + x+ εx,t)− EU(w + x+ εx,t̄)| > M

it follows that (19) and (20) hold whenever δ satisfies decreasing or constant impatience

or whenever δ(t) = exp(−bt1+g) for b > 0 and g > 0 sufficiently small. Hence, by the

same argument as in the first part of the proof, if for given M , |EU(w + y + εy,t+τ )−

EU(w + y + εy,t̄+τ )| is sufficiently small, then (t̄ : x) ≺∗ (t̄+ τ : y) which proves Theorem

4.7 and 4.8. 2

Proof of Theorems 4.9, Theorem 4.11, Remark 4.10 and Remark 4.12

From (t : x) ∼∗ (t+ τ : y) it follows that the discount function δ must satisfy

δ(t) [EU(w + x+ εx,t)− U(w)] = δ(t+ τ) [EU(w + y + εy,t+τ )− U(w)] , (21)

Since outcome risk for y is increasing we know that

EU(w + y + εy,t+τ )− U(w) > EU(w + y + εy,t̄+τ )− U(w).

Hence, if δ satisfies increasing or constant impatience we have

δ(t+ τ)δ(t̄)

δ(t)δ(t̄+ τ)
EU(w + y + εy,t+τ )− U(w) > EU(w + y + εy,t̄+τ )− U(w). (22)

By a similar reasoning as in the proof of Remark 3.3, there exist α, β > 0 with α close to

zero such that (21) and (22) also hold for δ(t) = (1 + αt)−β/α, i.e. for a discount function

that satisfies decreasing impatience. From (21) and (22) it follows that

δ(t̄)

δ(t̄+ τ)
EU(w + x+ εx,t)− U(w) > EU(w + y + εy,t̄+τ )− U(w).
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Hence, if EU(w + x+ εx,t̄) is close to EU(w + x+ εx,t), then

δ(t̄)

δ(t̄+ τ)
EU(w + x+ εx,t̄)− U(w) > EU(w + y + εy,t̄+τ )− U(w).

which implies (t̄ : x) �∗ (t̄ + τ : y). It remains to show that there exist εx,t′ , t
′ = 1, . . . , T ,

such that EU(w+x+εx,t̄) is close to EU(w+x+εx,t). This follows from a similar argument

as in the proof of Theorem 4.5. This proves Theorem 4.9 and Remark 4.9. The proof of

Theorem 4.11 and Remark 4.12 is similar to the proof of Theorem 4.7 and Remark 4.8. 2
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