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The canonical crystal isomorphism in Fock spaces

Thomas Gerber ∗

November 29, 2013

Abstract

We introduce an analogue of Schensted’s algorithm for affine type A, using its natural

interpretation in terms of crystals. In fact, we make explicit a particular crystal graph iso-

morphism between connected components of Fock spaces representations of U′q(ŝle). This

so-called "canonical" crystal isomorphism turns out to be expressible only in terms of:

− Schensted’s bumping procedure,

− the cyclage isomorphism defined in [9],

− a new crystal isomorphism acting on cylindric multipartitions.

1 Introduction

To understand the representations of the quantum algebras of affine type A, Jimbo, Misra,

Miwa and Okado introduced in [11] Fock spaces of arbitrary level l. These are vectors spaces

over C(q) depending on a parameter s ∈ Zl, with basis the set of all l-partitions. We denote

by Fs such a space. They made explicit an action of the quantum algebra U′q(ŝle) which

endowed Fs with the structure of an integrableU′q(ŝle)-module. In addition, there is a natural

subrepresentation V(s) of Fs, the one generated by the empty l-partition, that gives a concrete

realisation of any abstract highest weightU′q(ŝle)-module, provided s is suitably chosen.

According to the works of Kashiwara [13], these abstract modules have a nice underly-

ing combinatorial structure: their crystal. In particular, we can define the so-called crystal

operators, crystal graph, crystal basis, and global basis for such modules. The combinatorial

nature of Fock spaces provides a convenient framework for the study of the crystal structure

of the highest weight U′q(ŝle)-modules. Actually, the whole space Fs has a crystal structure,

and the features of the highest weight U′q(ŝle)-representations (most interestingly the global

basis) also exist more generally for the whole module Fs, see e.g. [22], [23] or [17].

There exists a relation between this crystal structure on Fock spaces and the modular

representation theory of complex reflection groups. Ariki has proved in [1] the LLT conjecture

[15], enabling the computation of the decomposition matrices for Hecke algebras of type

G(l, 1, n) (also known as Ariki-Koike algebras) via the matrices of the canonical basis of

level l Fock spaces. In particular, it is known that the crystal structure on V(s) is isomorphic

to the structure induced by the restriction and induction functors on the set of irreducible

representations of the corresponding Ariki-Koike algebra H . According to [21], the set of

irreducible representations of any rational Cherednik algebra H also has a crystal structure,

given, again, by the restriction and induction functors, which is isomorphic to the crystal of

the whole Fs (for the appropriate s). As noticed by Gordon and Martino in [6, Section 4.15],

the KZ functor (which maps a H -module to a H-module in a compatible manner) has an

image whose labeling set is exactly the set of vertices in the crystal graph of V(s). One can

expect that the crystal structure on the set of irreducible H -modules could be explicited and

proved to be identified with that of Fs. If so, the main result of this paper, namely Theorem

5.26, will make explicit the action of the KZ functor on l-partitions.
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Indeed, this paper is concerned about the more specific study of crystal graphs within

Fock spaces. The notion of crystal graph has been first introduced and studied by Kashiwara

in [13], but see also, for instance, [14], [19], [16], [9], or [10]. The whole Fock space has

a crystal graph, consisting of several connected components, each of which is entirely de-

termined (and hence parametrised) by its so-called highest weight vertex. In particular, the

connected component with highest weight vertex the empty l-partition is the crystal graph

of the highest weight representation V(s). What we call a crystal isomorphism within Fock

spaces is essentially a graph isomorphism. We demand that it maps the highest weight vertex

of some connected component to the highest weight vertex of some other connected com-

ponent (a priori of a different Fock space), and that it intertwines the structure of oriented

colored graph. Because of the ubiquitous combinatorics in Fock spaces, we expect these

crystal isomorphisms to have an nice combinatorial description.

In their papers [9] and [10], Jacon and Lecouvey have gathered some information about

such mappings. Indeed, in [9], in order to generalise the results of [8] for l = 2, they described

the crystal isomorphisms mapping the crystal graph of V(s) to that of V(r), when s and r are

in the same orbit under the action of Ŝl. In [10], they explained how an arbitrary crystal

isomorphism should act on a highest weight vertex.

The point of this article is to determine crystal isomorphisms in Fock spaces in a more

general setting. By Proposition 2.16, each connected component ot the crystal graph of Fs is

isomorphic to the crystal of some V(r), where r belongs to a particular fundamental domain

for the action of Ŝl for which a simple combinatorial description of this crystal is known

(its vertices are the "FLOTW" l-partitions defined in 2.3). The question is then to determine

the associated crystal isomorphism Φ. Precisely, we aim to express explicitely and combi-

natorially the action of Φ on any λ ∈ Fs. This particular mapping is called the canonical

U′q(ŝle)-crystal isomorphism (Definition 2.16). Drawing a parallel with the non-affine case

(representations ofUq(sle), orUq(sl∞)), we can then regard the construction λ 7→ Φ(λ) as an

affine analogue of Schensted’s bumping algorithm. Indeed, in the case of regular type A, it is

known (Theorem 3.1) that the canonical crystal isomorphism is exactly the bumping proce-

dure. Roughly speaking, we replace the Schensted algorithm on semistandard tableaux by a

rectification procedure on symbols (also called keys or tabloids in the literature) yielding, in

turn, semistandard, cylindric symbols, and FLOTW symbols.

The paper is organized as follows. Section 2 contains the basic notations and definitions

needed to handle the combinatorics of crystals in Fock spaces, as well as a quick review on the

theory of U′q(ŝle)-representations, and more particularly the Fock space representations. We

also formally express the problem we wish to solve, which translates to finding the canonical

U′q(ŝle)-crystal isomorphism.

In Section 3, we first roughly explain how the limit case e → ∞ gives another structure

on Fock spaces, namely that of a Uq(sl∞)-module. We then recall some classic results about

Uq(sl∞)-crystals (and their relation to Schensted’s bumping procedure) and explain how this

solves our problem when Fock spaces are considered asUq(sl∞)-modules. In this perspective,

the canonicalU′q(ŝle)-crystal isomorphism we construct in the last section can be seen as an

affine version of Schensted’s insertion.

Then, we show in Section 4 that both structures are compatible. More precisely, any

Uq(sl∞)-crystal isomorphism is also a U′q(ŝle)-crystal isomorphism (Corollary ??). Using

this, we determine a way to restrict ourselves only to the study of so-called cylindric multi-

partitions. This requires the results aboutU′q(ŝle)-crystal isomorphisms obtained in [9].

Section 5 treats the case of cylindric multipartitions. The key ingredient is Theorem 5.20,

and the expected canonical crystal isomorphism is described in Theorem 5.26. Together with

Section 4, this eventually enables the determination of the canonical crystal isomorphism Φ

in full generality.

Finally, Section 6 is an application of these results. We deduce a direct way to compute

the highest weight vertex of any connected component of a crystal without using the crystal

operators ẽi to go back up the crystal graph. Note that this requires the invertibility of the

map Φ. This is achieved by adding some "recording data" to the construction of Φ, in a very

similar way to the whole (one-to-one) Robinson-Schensted-Knuth correspondence.
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2 Formulation of the problem

2.1 Generalities

We recall the usual notations and definitions about the combinatorics of multipartitions.

Fix n ∈ N and l ∈ Z>0. A partition λ of n is a sequence (λ1, λ2, . . . ) such that λa ≥ λa+1 for

all a, and
∑

a λa = n. The integer n is then called the rank of λ and denoted by |λ|. Each λa is

called a part of λ. For convenience, we often consider that a partition has infinitely many parts

equal to zero. The set of partitions of n is denoted by Π(n). We also set h(λ) = maxλa,0 a, and

call h(λ) the height of λ. Out of simplicity, we use the multiplicative notation for a partition

λ. For instance, (4, 2, 2, 1, 0, . . .) = (4.22.1). A l-partition (or simply multipartition) λ of n is

a l-tuple of partitions λc, for c ∈ ~1, l� such that
∑l

c=1 |λ
c| = n. The integer n is again called

the rank of λ and denoted by |λ|; and we write Πl(n) for the set of l-partitions of n. Moreover,

we denote by ∅ the partition (0, 0, . . . ) and by ∅ the multipartition (∅, . . . , ∅).

A multipartition λ is often identified with its Young diagram [λ]:

[λ] :=
{

(a, b, c) ; a ≥ 1, c ∈ ~1, l�, b ∈ ~1, λc
a�

}

In turn, the Young diagram of λ is itself depicted by a l-tuple of array where the c-th array

is the superposition of λc
a boxes, a ≥ 1. For example, [(1, 22, ∅)] =

(
, , ∅

)
. Each box in

this diagram is then labeled by an element (a, b, c) of [λ]. These elements are called the nodes

of λ. A node γ of λ is said to be removable (or a node of type R) if [λ]\{γ} is still the Young

diagram of some l-partition µ. In this case, we also call γ an addable node (or a node of type

A) of µ.

A l-charge (or simply multicharge) is a l-tuple s = (s1, . . . sl) of integers. A charged

multipartition is a formal pair denoted |λ, s〉, where λ is a l-partition and s is a l-charge. We

can then define the content of a node γ = (a, b, c) of λ charged by s as follows:

contλ(γ) = b − a + sc.

Also, given e ∈ Z>1, we define the residue of γ by

resλ(γ) = contλ(γ) mod e.

Let i ∈ ~0, e − 1�. A node γ of λ is called an i-node if resλ(γ) = i. If γ = (a, b, c) is

a node of λ, denote by γ+ the node (a, b + 1, c), that is the node located on the right of γ.

Similarly, denote by γ− the node (a, b − 1, c), the node located on the left of γ. Of course,

µ = γ+ ⇔ γ = µ−. Also, if γ is an i-node of type R, γ+ is an (i + 1)-node of type A

We can represent each charged multipartition |λ, s〉 by its Young diagram whose boxes are

filled by the associated contents. For instance,

|(4.1, 22, 3), (0, 3,−2)〉 =
(

0 1 2 3
-1

, 3 4
2 3

, -2 -1 0

)
.

There is an equivalent way to represent charged multipartitions by another combinatorial

object, namely by the so-called symbols. Let us recall their definition, following [5]. Having

fixed a multipartition λ and a multicharge s, take p ≥ maxc(1− sc + h(λc)). We can first define

b
c
a(λ) := λc

a − a + p + sc,

for 1 ≤ c ≤ l and 1 ≤ a ≤ p + sc. We then set Bc
s(λ) = (bcp+sc

(λ), . . . , bc
1
(λ)), and the s-symbol

of λ of size p is the following l-tuple:

Bs(λ) = (B1
s (λ), . . . ,Bl

s(λ)).

It is pictured in an array whose c-th row, numbered from bottom to top, is Bc
s(λ).

Example 2.1. Take λ = (4.1, 22, 3) and s = (0, 3,−2). Then we can take p = 4, and we get

B
1
s (λ) = (0, 1, 3, 7),B2

s (λ) = (0, 1, 2, 3, 4, 7, 8) and B3
s (λ) = (0, 4), which is represented by

Bs(λ) =


0 4

0 1 2 3 4 7 8

0 1 3 7

 .
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Note that one recovers the elements bca(λ) encoding non-zero parts by translating by p

the contents of the rightmost nodes in the Young diagram. In fact, it is easy to see that both

objects encode exactly the same data. Throughout this paper, we often switch between the

classic approach of "Young diagrams with contents" on the one hand, and the use of symbols

on the other hand.

Definition 2.2. Let s ∈ Zl and λ ∈ Fs. The symbol Bs(λ) is called semistandard if the three

following conditions are satisfied:

• s1 ≤ s2 ≤ · · · ≤ sl,

• the entries in each column of Bs(λ) are non-decreasing,

• the entries in each row of Bs(λ) are increasing.

For e ∈ Z>1, we denote

Se = {s ∈ Z
l | 0 ≤ sc − sc′ < e for c < c′}.

We define a family of particular multipartitions, the FLOTW multipartitions (for Foda,

Leclerc, Okado, Thibon, Welsh [3]). We will see in the Section 2.3 why this is an object of

interest in this paper.

Definition 2.3. Let s ∈ Se. A charged multipartition |λ, s〉 is called FLOTW if:

• For all 1 ≤ c ≤ l − 1, λc
a ≥ λ

c+1
a+sc+1−sc

for all a ≥ 1; and λl
a ≥ λa+e+s1−sl

for all a ≥ 1.

• For all α > 0, the residues of the nodes (a, α, c) with λc
a = α (i.e. the rightmost nodes of

the rows of length α of λ) do not cover ~0, e − 1�.

If |λ, s〉 only verifies the first condition, we say that it is cylindric.

Remark 2.4. In particular, the symbol of a FLOTW l-partition is semistandard.

Multipartitions are the natural objects used to understand combinatorially the represen-

tations of the quantum algebras of affine type A. In the following section, we recall some

definitions and facts about these algebras, their representations, before focusing in Section

2.3 on the crystal structure they are endowed with.

2.2 Fock spaces representations of quantum algebras

In the sequel, we fix e ∈ Z>1.

For the purpose of this article, it is not really necessary to review completely the theory

of quantum algebras. The reader is invited to refer to [2] and [7] for detailed definitions

and properties. However, we recall quickly below the theory of highest weight integrable

representations ofU′q(ŝle).

Essentially, the quantum algebra U′q(ŝle) is a C(q)-algebra which is a one-parameter de-

formation of the universal enveloping algebra of the affine Kac-Moody algebra ŝle, whose

underlying Weyl group is the affine group of type Ae−1. It is defined by generators, denoted

by ei, fi, t
±1
i

for i ∈ ~0, e − 1�, and some relations. Besides, it is possible to endow it with a

coproduct, which makes it a Hopf algebra.

DenoteΛi, i ∈ ~0, e−1� and δ the fundamental weights for ŝle. Recall that the simple roots

are then given by αi := −Λi−1mode + 2Λi −Λi+1mode for 0 ≤ i ≤ e− 1. According to [2, Chapter

6], to each dominant integral weight Λ is associated a particularU′q(ŝle)-module V(Λ), called

the the highest weight module of highest weight Λ, verifying the following property:

Property 2.5. We have V(Λ(1)) ≃ V(Λ(2)) asU′q(ŝle)-modules if and only if Λ(1) − Λ(2) ∈ Zδ.

Moreover, provided we work in the category of so-called "integrable"U′q(ŝle)-modules, it

is known that:

1. For all dominant integral weight Λ, the module V(Λ) is irreducible,

2. Each irreducibleU′q(ŝle)-module is isomorphic to some V(Λ),

3. EachU′q(ŝle)-module is semisimple.
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We now construct a practical representation of U′q(ŝle), the Fock space representation,

which turns out to be integrable and has nice combinatorial properties. In particular, this will

yield a realisation of the highest weight U′q(ŝle)-modules V(Λ). In this perspective, we fix

l ∈ Z>0.

Definition 2.6. Let s = (s1, . . . , sl) ∈ Z
l. The Fock space associated to s is the following

C(q)-vector space:

Fs :=
⊕

n∈N

⊕

λ∈Πl(n)

C(q)|λ, s〉.

This vector space is made into an integrableU′q(ŝle)-module via the action of the gener-

ators of U′q(ŝle) detailed in [11, Proposition 3.5]. We do not recall here what theses actions

are, since it is not important in our context. However, with this definition of the action, it is

easy to see that the element |∅, s〉 is a highest weight vector. Denote by Λ(s) its weight. By

[22, Section 4.2] or [23, Proposition 3.7], we now that for all |λ, s〉 in Fs,

wt(|λ, s〉) =

l∑

c=1

Λsc mode −

e−1∑

i=0

Mi(λ, s)αi − ∆(s)δ, (1)

where Mi(λ, s) is the number of i-nodes in λ, and where ∆(s) is a coefficient depending

only on s and e. In particular, we see that

Λ(s) = wt(|∅, s〉) =

l∑

c=1

Λsc mode − ∆(s)δ. (2)

Consider the module

V(s) := U′q(ŝle).|∅, s〉.

It is an irreducible integrable highest weightU′q(ŝle)-module with highest weightΛ(s). Hence,

by the previous properties of U′q(ŝle)-representations, we know that this module V(s) is iso-

morphic to the "abstract"U′q(ŝle)-module V(Λ(s)).

Using Property 2.5 and Relation (2), we have a U′q(ŝle)-module isomorphism between

V(s) and V(r) whenever r is equal to s up to a permutation of its components and translations

by a multiple of e. In fact, when two multicharges are related in such a way, we regard them as

being in the same orbit under some group action. This is why we now introduce the extended

affine symmetric group Ŝl. It is the group with the following presentation:

• Generators: σi, i ∈ ~1, l − 1� and yi, i ∈ ~1, l�.

• Relations :

– σ2
i
= 1 for i ∈ ~1, l − 1�,

– σiσi+1σ = σi+1σiσi+1 for i ∈ ~1, l − 2�,

– σiσ j = σ jσi if i − j , 1 mod l,

– yiy j = y jyi for i, j ∈ ~1, l�,

– σiy j = y jσi for i ∈ ~1, l − 1� and j ∈ ~1, l� such that j , i, i + 1 mod l,

– σiyiσi = yi+1 for i ∈ ~1, l − 1�.

It can be regarded as the semi-direct product Zl
⋊ Sl, by considering that the elements yi

form the standard basis of Zl, and that the elements σi are the usual generators of Sl (i.e. the

transpositions (i, i + 1)).

Now, there is a natural action of Ŝl on Zl as follows. Let s = (s1, . . . sl) ∈ Z
l. We set

• σi.s = (s1, . . . , si−1, si+1, si, . . . , sl) for all i ∈ ~1, l − 1�, and

• yi.s = (s1, . . . , si−1, si + e, si+1, . . . , sl) for all i ∈ ~1, l�.

It is easy to see that a fundamental domain for this action is given by

De = {s ∈ Z
l | 0 ≤ s1 ≤ · · · ≤ sl < e}.
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Remark 2.7. Note that

De ⊂ Se.

It is important not to be confused between De and the set Se defined just before Definition

2.3. Indeed, it is sufficient to work in Se to have the explicit combinatorial caracterisation of

the crystal of V(s), but it is necessary to work with De if we expect some unicity properties

(as in upcoming Proposition 2.16).

With these notations, it is clear that V(s) ≃ V(r) asU′q(ŝle)-modules if and only if r and s

are in the same orbit under the action of Ŝl. Actually, there is a tight connection between these

highest weight U′q(ŝle)-representations V(s) and the modular representations of Ariki-Koike

algebras (the Hecke algebras of the complex reflection groups G(l, 1, n)), which are defined

using the parameters e and s, and which are invariant when s varies inside a given orbit under

the action of Ŝl. The main link is known as Ariki’s theorem [2, Theorem 12.5],[1], which is a

proof of the LLT conjecture [15]. A good review on this subject can also be found in the book

of Geck and Jacon [5, Chapters 5 and 6].

From now on, we allow ourselves to write λ instead of |λ, s〉 for an element of a Fock space

if there is no possible confusion on the multicharge.

2.3 Crystal isomorphisms and equivalent multipartitions

One of the most important features of Fock spaces is the existence of a crystal, in the sense of

Kashiwara [13]. This yields a nice combinatorial structure, which is in particular encoded in

the crystal graph of Fs. Its definition requires an action of the so-called crystal operators ẽi

and f̃i, for 0 ≤ i ≤ e − 1, on the Fock space Fs. We do not give their original definition, since

the only result we need in the sequel is upcoming Theorem 2.9.

In order to determine this action, we introduce an order on the set of nodes of a charged

multipartition |λ, s〉. Let |λ, s〉 ∈ Fs and γ = (a, b, c) and γ′ = (a′, b′, c′) be two removable or

addable i-nodes of λ. We write

γ ≺s γ
′ if

{
b − a + sc < b′ − a′ + sc′ or

b − a + sc = b′ − a′ + sc′ and c > c′.

Note that this order is needed to define the action ofU′q(ŝle) on Fs in Section 2.2.

For all i ∈ ~0, e− 1�, the i-word for λ is the sequence obtained by writing the addable and

removable i-nodes of λ in increasing order with respect to this order ≺s, each of them being

encoded by a letter A if it is addable, and a letter R if it is removable. We denote it by wi(λ).

The reduced i-word ŵi(λ) is the word in the letters A and R obtained by deleting recursively

all occurences RA in wi(λ). Hence ŵi(λ) = AαRβ for some non-negative integers α and β. If

it exists, the rightmost A (respectively the leftmost R) in ŵi(λ) encodes a node which is called

the good addable (respectively removable) i-node of λ.

Example 2.8. If |λ, s〉 =
(

0 1 2 3

-1
, 3 4

2 3
, -2 -1 0

)
, e = 3, and i = 0, then w0(λ) = ARARR

and therefore ŵ0(λ) = ARR. The good addable 0-node of λ is thus (2, 1, 3), and the good

removable 0-node is (2, 2, 2).

Theorem 2.9 ([11]). Let λ ∈ Fs. The crystal operators act as follows:

• ẽi(λ) =

{
λ\{γ} if γ is the good removable i-node of λ

0 if λ has no good removable i-node,

• f̃i(λ) =

{
λ∪ {γ} if γ is the good addable i-node of λ

0 if λ has no good addable i-node.

Remark 2.10. Clearly, because of Relation (1), we have wt(ẽi(λ)) = wt(λ)+αi and wt( f̃i(λ)) =

wt(λ) − αi.

We can now define the crystal graph of λ.

Definition 2.11. The crystal graph B(λ) of λ is the oriented colored graph with:

• vertices : the multipartitions obtained from λ after applying any combination of the

operators ẽi and f̃i.

6



• arrows : λ
i
−→ µ whenever µ = f̃i(λ).

Theorem 2.9 says that when ẽi acts non-trivially on λ (i.e. when λ has a good removable

i-node), then ẽi removes a node in λ. Hence, any sequence . . . ẽik ẽik−1
. . . ẽi1 (λ) in B(λ) has at

most |λ| elements. In particular, it is finite, and there is a sequence of maximal length m of

operators ẽik such that ẽim ẽim−1
. . . ẽi1 (λ) is a multipartition and ẽim+1

. . . ẽi1 (λ) = 0. Consider the

multipartition
•

λ := ẽim ẽim−1
. . . ẽi1 (λ)

It is not complicated to show that it does not depend on the maximal sequence of operators

ẽik chosen. In other words, all sequences give the same multipartition
•

λ, which we call the

highest weight vertex of B(λ). Also, every vertex µ in B(λ) writes µ = f̃ip
f̃ip−1

. . . f̃i1 (
•

λ) for

some p ∈ N. Therefore, any crystal graph is entirely determined by its highest weight vertex,

and if we know this highest weight vertex, all other vertices are recursively computable. It

turns out that in one particular case, we know an explicit combinatorial description of the

vertices of B(λ).

Notation: When
•

λ = ∅, we write B(∅) =: B(s).

Theorem 2.12 ([3]). Let s ∈ Se. The vertices of B(s) are the FLOTW multipartitions.

Actually, for all s ∈ Zl, B(s) is the crystal graph of the irreducible highest weightU′q(ŝle)-

module V(s) in the sense of Kashiwara [13]. Accordingly, the combinatorics of B(λ) has

some algebraic interpretation. In particular, the vertices of B(λ) (the FLOTW multipartitions

if s ∈ Se) label both the so-called crystal and global (or canonical) basis of V(s). We also

refer to [5] for details.

We can also define a crystal graph for the whole Fock space Fs. Its vertices are all the

l-partitions, and the arrows are defined as in Definition 2.11. We denote it by B(Fs). It has

several connected components, each of them being parametrised by its highest weight vertex.

In other terms,

B(Fs) =
⊔

•

λ

B(
•

λ), (3)

where the union is taken over all highest weight vertices
•

λ, i.e. vertices without any removable

node.

We can now introduce the notion of crystal isomorphism.

Definition 2.13. Let λ ∈ Fs and µ ∈ Fr. AU′q(ŝle)-crystal isomorphism is a map φ : B(
•

λ) −→

B(
•
µ) verifying:

1. φ(
•

λ) =
•
µ,

2. φ ◦ f̃i = f̃i ◦ φ whenever f̃i acts non trivially.

By (b), the image of B(
•

λ) under φ is the whole crystal B(
•
µ). In fact, this definition just

says that φ intertwines the graph structures of B(
•

λ) and B(
•
µ).

Definition 2.14. Let |λ, s〉 ∈ Fs and |µ, r〉 ∈ Fr. We say that |λ, s〉 and |µ, r〉 (or simply λ and

µ) are equivalent if there is aU′q(ŝle)-crystal isomorphism φ between B(
•

λ) and B(
•
µ) such that

φ(|λ, s〉) = |µ, r〉.

Remark 2.15. In other terms, λ and µ are equivalent if they appear at the same place in their

respective crystal graphs.

The isomorphisms of U′q(ŝle)-modules V(s) ≃ V(r) whenever r ∈ s modŜl (cf. Section

2.2) yield isomorphisms of crystal graphs between B(s) and B(r). There exist also other

natural crystal isomorphisms.

Proposition-Definition 2.16. Let λ ∈ Fs. There exists a unique l-charge r ∈ De and a unique

FLOTW l-partition µ ∈ Fr such that |λ, s〉 and |µ, r〉 are equivalent. The associated U′q(ŝle)-

crystal isomorphism is called the canonical crystal isomorphism.

7



Proof. First of all, if λ ∈ B(s) then, by the remark just above Proposition 2.16, there is a crystal

isomorphism between B(s) and B(r) where r is the representative of s in the fundamental

domain De.

Suppose now that |λ, s〉 ∈ Fs such that B(λ) , B(s). This means that λ (as a vertex

in its crystal graph) is not in the connected component whose highest weight vertex is the

empty multipartition. Then there is a sequence (i1, . . . , im) such that ẽim . . . ẽi1 (λ) =
•

λ, the

highest weight vertex in B(λ). Write wt(
•

λ) =
∑

i aiΛi + dδ and define r to be the increasing

l-charge containing ai occurences of i. In particular, r ∈ De. Then we have a natural crystal

isomorphism B(λ)
φ
≃ B(r), and therefore there is a FLOTW l-partition µ := φ(λ) = f̃i1 . . . f̃im (∅)

in B(r) equivalent to λ.

These elements are clearly unique, since De is a fundamental domain for the action of

Ŝl. �

The goal of this paper is to find a direct and purely combinatorial way to determine this

canonical crystal isomorphism, without having to determine the sequence of operators leading

to the highest weight vertex and taking the reverse path in B(|∅, r〉) as explained in the previous

proof. Note that this question has been answered in [10] in the particular case where λ is a

highest weight multipartition. The canonical crystal isomorphism in this case is the so-called

"peeling procedure", and is much easier to describe. Of course, in this case, the canonical

isomorphism maps λ to the empty l-partition.

3 The case e = ∞

In this section, we consider the particular (and easier) case where e = ∞. This means that

we regard Fock spaces as Uq(sl∞)-modules, where Uq(sl∞) is defined as the direct limit of

the quantum algebras Uq(sle). We refer e.g. to [12] for detailed background on Uq(sl∞).

Actually, there is an action ofUq(sl∞) on Fock spaces which generalises the action ofU′q(ŝle)

when e tends to ∞. In particular, Fs is made into an integrable Uq(sl∞)-module, and all the

properties of the U′q(ŝle)-representation Fs stated in Section 2.2 still hold for the Uq(sl∞)-

module structure. With this point of view, the algebra Uq(sl∞) is the natural way to extend

U′q(ŝle) when e→ ∞.

In this setting, the notion of being FLOTW for a multipartition simply translates to its

symbol being semistandard, with an increasing multicharge. And as a matter of fact, we know

a Uq(sl∞)-crystal isomorphism which associates to each multipartition a new multipartition

whose symbol is semistandard. This is the point of the following section.

3.1 Schensted’s bumping algorithm and solution of the problem

Let λ ∈ Fs.

We first introduce the reading of the symbol Bs(λ). It is the word obtained by writing

the elements of Bs(λ) from right to left, starting from the top row. Denote it by read(λ, s).

The Robinson-Schensted insertion procedure (or simply Schensted procedure, or bumping

procedure) enables to construct a semistandard symbol starting from such a word. We only

recall it on an example (3.3) below, see also Example 6.1 in Section 6. For proper background,

the reader can refer to e.g. [4] or [20]. Denote by P(read(λ, s)) the semistandard symbol

obtained from read(λ, s) applying this insertion procedure. Finally, we set RS(s) and RS(λ) to

be the FLOTW multicharge and multipartition determined by BRS(s)(RS(λ)) =P(read(λ, s))

We further write RS for the map

RS : B(
•

λ) −→ B(
•

RS(λ))

|λ, s〉 7−→ |RS(λ),RS(s)〉.

Theorem 3.1. |λ, s〉 and |µ, r〉 are equivalent if and only if P(read(λ, s)) =P(read(µ, r)).

For a proof of this statement, see for instance [16, Section 3] or [18], which state the result

for Uq(sle)-crystals, relying on the original arguments of Kashiwara in [13] and [14]. More-

over, since the symbol associated to |RS(λ),RS(s)〉 is semistandard, we have the following

result.
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Corollary 3.2. RS is the canonicalUq(sl∞)-crystal isomorphism.

Example 3.3. s = (0, 2,−1) and λ = (2.1, 3, 4.12).

Then Bs(λ) =


0 2 3 7

0 1 2 3 4 5 9

0 1 2 4 6

.

The associated reading is read(λ) = 7320954321064210, and the Schensted algorithm

yields

P(read(λ)) =


0 1 2 3 4 5 7

0 1 2 3 6 9

0 2 4

.

Hence = RS(s) = (−2, 1, 2) and = RS(λ) = (2.1, 4.2, 1).

Property 3.4. Suppose s is such that s1 ≤ · · · ≤ sl. Take λ ∈ Fs. Then |RS(λ)| ≤ |λ|. Moreover,

|RS(λ)| = |λ| if and only if RS(λ) = λ.

Proof. Because of Corollary 3.2, we know in particular that RS(λ) is in the connected compo-

nent of B(FRS(s)) whose highest weight vertex is ∅. Hence, if we write ∅ = ẽim . . . ẽi1 (RS(λ)),

we have |RS(λ)| = m. Now, because RS is a crystal isomorphism, we have
•

λ = ẽim . . . ẽi1 (λ).

If λ , RS(λ), then the symbol of |λ, s〉 is not semistandard, and the fact that s1 ≤ · · · ≤ sl

ensures that
•

λ , ∅. Therefore, we have |λ| = |
•

λ| + m > m = |RS(λ)|. �

3.2 AnotherUq(sl∞)-crystal isomorphism

Let σ ∈ Sl, and for s = (s1, . . . , sl) ∈ Z
l denote sσ = (sσ(1), . . . , sσ(l)).

According to [9, Section 2], we know an explicit combinatorial description of the follow-

ingUq(sl∞)-crystal isomorphism:

χσ : B(s) −→ B(sσ)

λ 7−→ χσ(λ)

In fact, in [9, Corollary 2.3.3], the map χσ is described in the case where σ is a transpo-

sition (c, c + 1). We do not recall here the combinatorial construction of χσ(λ), since it is not

really important for our purpose. However, we notice the following property. It will be used

in the proof that the algorithm we construct in Section 4 terminates.

Property 3.5. For all σ ∈ Sl, and for all λ ∈ V(s),

|χσ(λ)| = |λ|.

We also denote simply by χ the isomorphism corresponding to a permutation σ verifying

sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(l) (i.e. the reordering of s).

4 General case and reduction to cylindric multipartitions

4.1 Compatibility betweenU′q(ŝle)-crystals andUq(sl∞)-crystals

In this section, we use the subscript or superscript e or ∞ to specify which module structure

we are interested in, in particular for the (reduced) i-word, crystal operators, crystal graph.

The aim is to show that anyUq(sl∞)-crystal isomorphism is also aU′q(ŝle)-crystal isomor-

phism. This comes as a natural consequence of the existence of an embedding of Be(
•

λ) in

B∞(
•

λ), as explained in [9, Section 4]. Note that the embedding in our case will just map any

λ ∈ B(
•

λ) onto itself, unlike in [9].
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Lemma 4.1. Let i ∈ ~0, e− 1�. Suppose there is an arrow λ
i
−→ µ in the crystal graph Be(λ),

and denote γ := [µ]\[λ]. Then there is an arrow λ
j
−→ µ in the crystal graph B∞(λ), where

j = cont(γ).

Proof. Denote by we
i
(λ) (resp. w∞

i
(λ)) the i-word for λ with respect to the U′q(ŝle)-crystal

(resp. Uq(sl∞)-crystal) structure. Then we
i
(λ) is the concatenation of i-words for theUq(sl∞)-

crystal structure, precisely

we
i (λ) =

∏

k∈Z

w∞i+ke(λ). (4)

We further denote ŵe
i
(λ) and ŵ∞

i
(λ) the reduced i-words (that is, after recursive cancella-

tion of the factors RA). The node γ is encoded in both we
i
(λ) and w∞

j
(λ) by a letter A. Now

if this letter A does not appear in ŵ∞
j

(λ), this means that there is a letter R in w∞
j

(λ) which

simplifies with this A. Hence, because of (4), this letter R also appears in we
i
(λ) and simplifies

with the A encoding γ, and γ cannot be the good addable i-node of λ for the U′q(ŝle)-crystal

structure, whence a contradiction. Thus γ produces a letter A in ŵ∞
j

(λ).

In fact, this letter A is the rightmost one in ŵ∞
j

(λ). Indeed, suppose there is another letter

A in ŵ∞
j

(λ) to the right of the A encoding γ. Then it also appears in ŵe
i
(λ) at the same place

(again because of Relation (4)). This contradicts the fact that γ is the good addable i-node for

theU′q(ŝle)-crystal structure.

Therefore, γ is the good addable j-node of λ for theUq(sl∞)-crystal structure.

�

Lemma 4.2. Let i ∈ ~0, e− 1�, and let ϕ be aUq(sl∞)-crystal isomorphism. Suppose there is

an arrow λ
i
−→ µ in the crystal graph Be(λ), and denote γ := [µ]\[λ]. Then

1. there is an arrow ϕ(λ)
i
−→ ν in the crystal graph Be(ϕ(λ)),

2. ν = f̃∞
j

(ϕ(λ)), where j = cont(γ).

Proof. First, for all k, we have the following relation:

ŵ∞k (λ) = ŵ∞k (ϕ(λ)). (5)

Indeed, if ŵ∞
k

(λ) = AαRβ, then α can be seen as the number of consecutive arrows labeled by

k in B∞(λ) starting from λ, and β as the number of consecutive arrows labeled by k leading

to λ. Subsequently, the integers α and β are invariant by ϕ, and the relation (5) is verified.

Hence, by concatenating, we get

∏

k∈Z

ŵ∞i+ke(λ) =
∏

k∈Z

ŵ∞i+ke(ϕ(λ)), (6)

and therefore

ŵe
i (λ) = ŵe

i (ϕ(λ)), (7)

which proves the first point.

Besides, we know by Lemma 4.1 that f̃ e
i

acts like f̃∞
j

on λ. Together with (6), this implies

that f̃ e
i

acts like f̃∞
j

on ϕ(λ). In other terms, ν = f̃∞
j

(ϕ(λ)), and the second point is proved. �

Proposition 4.3. EveryUq(sl∞)-crystal isomorphism is also aU′q(ŝle)-crystal isomorphism.

Proof. The fact that ϕ is aUq(sl∞)-crystal isomorphism is encoded in the following diagram:

λ
ϕ

//

f̃∞
j

��

ϕ(λ)

f̃∞
j

��

µ
ϕ

// ϕ(µ)

The first point of Lemma 4.2 tells us that we have:
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λ
ϕ

//

f̃ e
i

��

ϕ(λ)

f̃ e
i

��
µ ν

Besides,

ν = f̃∞
j

(ϕ(λ)) by Point 2 of Lemma 4.2

= ϕ( f̃∞
j

(λ)) because ϕ is aUq(sl∞)-crystal isomorphism

= ϕ(µ).

Hence we can complete the previous diagram in

λ
ϕ

//

f̃ e
i

��

ϕ(λ)

f̃ e
i

��

µ
ϕ

// ϕ(µ)

which illustrates the commutation between f̃ e
i

and ϕ. �

As a consequence, the two particular Uq(sl∞)-crystal isomorphisms RS and χσ, defined

respectively in Section 3.1 and 3.2, are U′q(ŝle)-crystal isomorphisms (for all values of e ∈

N>1).

4.2 The cyclage isomorphism

One of the most natural U′q(ŝle)-crystal isomorphisms to determine is the so-called cyclage

isomorphism. For s = (s1, . . . , sl), let s′ := (sl − e, s1, . . . , sl−1). Then the following result is

easy to show (see for instance [9, Proposition 5.2.1], or [8, Proposition 3.1] for the simpler

case l = 2):

Proposition 4.4. The map

ξ : B(
•

λ) −→ B(Fs′)

(λ1, . . . , λl) 7−→ (λl, λ1, . . . , λl−1)

is aU′q(ŝle)-crystal isomorphism. It is called the cyclage isomorphism.

Therefore, in the sequel, we denote ξ(s) := (sl−e, s1, . . . , sl−1) and ξ(λ) := (λl, λ1, . . . , λl−1).

Remark 4.5. Actually, we have more than this. Indeed, the map ξ is clearly invertible. Hence,

because ẽi ◦ f̃i = f̃i ◦ ẽi = Id whenever they act non trivially, we have

f̃i ◦ ξ = ξ ◦ f̃i
i.e. ξ = ẽi ◦ ξ ◦ f̃i
i.e. ξ ◦ ẽi = ẽi ◦ ξ.

Hence, ẽi and ξ also commute.

Remark 4.6. Note that in [9], the cyclage is defined slightly differently, namely by

ζ : B(
•

λ) −→ B(F(s2,s3,...,sl,s1+e))

(λ1, . . . , λl) 7−→ (λ2, . . . , λl, λ1).

It is easy to see that both definitions are equivalent. Indeed, one recovers ξ by:

1. applying l − 1 times ζ,

2. translating all components of the multicharge ζ l−1(s) by −e (which is a transformation

that has clearly no effect on the multipartition).
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Remark 4.7. Note that the cylindricity condition defined in Definition 2.3 is conveniently

expressible in terms of symbols using the cyclage ξ. Precisely, |λ, s〉 is cylindric if and only if

the three following conditions are verified:

1. s ∈ Se,

2. Bs(λ) is semistandard,

3. Bξ(s)(ξ(λ)) is semistandard.

Remark 4.8. We will see (Remark 5.23) that the canonical isomorphism we aim to determine

can be naturally regarded as a generalisation of this cyclage isomorphism...

Finally, it is straightforward from the definition of ξ that the following property holds:

Property 4.9. For all λ ∈ Fs, we have |ξ(λ)| = |λ|.

4.3 Finding a cylindric equivalent multipartition

In this section, we make use of theU′q(ŝle)-crystal isomorphisms RS (see Section 3.1) and ξ

(defined in Proposition 4.4) to construct an algorithm which associates to any charged mul-

tipartition |λ, s〉 an equivalent charged multipartition |µ, r〉 which is cylindric (see Definition

2.3). In the sequel, we will denote by Cs the subset of Fs of cylindric l-partitions. In particu-

lar, this implies that s ∈ Se. First of all, let us explain why restricting ourselves to cylindric

multipartitions is relevant.

Proposition 4.10. Let s ∈ Se. The set Cs is stable under the action of the crystal operators.

Proof. Let λ ∈ Cs. By Remark 4.7, we know that Bs(λ) is semistandard and Bξ(s)(ξ(λ)) is

semistandard.

It is easy to see that Bs( f̃i(λ)) (resp. Bs(ẽi(λ))) is still semistandard, whenever f̃i (resp. ẽi)

acts non trivially on λ. Indeed, denote γ the good addable i-node and let j = cont(γ). It is

encoded by an entry j+ p, where p is the size of the symbol, see Section 2.1. By definition of

being a good node is the leftmost i-node amongst all i-node of content j. Hence, there is no

other no entry below the entry j + p encoding γ. Since ẽi just turns this j + p into j + p + 1,

the symbol of f̃i(λ) is still semistandard. The similar argument applies to ẽi(λ).

Since the symbol of ξ(λ) is semistandard, by the same argument as above, we deduce that

the symbol of f̃i(ξ(λ)) is still semistandard, i.e. the symbol of ξ( f̃i(λ)) is semistandard, since

ξ commutes with f̃i (by Proposition 4.4). This result also holds for ξ(ẽi(λ)) because ξ also

commutes with ẽi (see Remark 4.5).

By Remark 4.7, this means that f̃i(λ) and ẽi(λ) are both cylindric.

�

The algorithm expected can now be stated. Firstly, if Bs(λ) is not semistandard, then we

can apply RS to get a charged multipartition whose symbol is semistandard. Hence we can

assume thatBs(λ) is semistandard. In particular, this implies that sc ≤ sc+1 for all c ∈ ~1, l−1�.

Then,

1. If sl − s1 < e, then:

(a) if Bξ(s)(ξ(λ)) is semistandard, then |λ, s〉 is cylindric, hence we stop and take µ = λ

and r = s.

(b) if Bξ(s)(ξ(λ)) is not semistandard, then put λ ← RS(ξ(λ)) and s ← RS(ξ(s)) and

start again.

2. If sl − s1 ≥ e, then put λ← RS(ξ(λ)) and s← RS(ξ(s)) and start again.

Proposition 4.11. The algorithm above terminates.

Proof. For a multicharge s = (s1, . . . sl), we denote ||s|| :=
∑l

k=2(sk − s1). Hence, if Bs(λ) is

semistandard, we have ||s|| ≥ 0. In particular, at each step in the algorithm, this statistic is

always non-negative, since we replace s by RS(ξ(s)).

Suppose we are in case 1.(b). Since sl − s1 < e and s1 ≤ s2 ≤ · · · ≤ sl, we have

(sl − e) < s1 ≤ s2 ≤ · · · ≤ sl−1. In other terms, the multicharge ξ(s) = (sl − e, s1, . . . , sl−1) is

an increasing sequence. Hence Property 3.4 applies, and we have |RS(ξ(λ))| < |λ|.
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Suppose we are in case 2. The first thing to understand is that we get the same multipar-

tition and multicharge applying ξ and RS, or applying ξ, then χ (see Section 3.2) and RS.

Indeed, χ just reorders the multicharge and gives the associated multipartition, which is a

transformation already included in RS, (which gives a multipartition whose symbol is semi-

standard). Hence, we consider that RS(ξ(λ)) is obtained by applying successively ξ, then χ,

and finally RS, to λ. In this procedure, it is possible that RS acts trivially (i.e. that χ(ξ(λ)) is

already semistandard). In fact,

• If RS acts non trivially, then on the one hand χ(ξ(λ)) is non semistandard; and on the

other hand χ(ξ(s)) is an increasing sequence (by definition of χ). Thus, we have

|RS(χ(ξ(λ)))| < |χ(ξ(λ))| applying Property 3.4

= |λ| by Properties 3.5 and 4.9 .

Hence in this case, |RS(ξ(λ))| < |λ|.

• If RS acts trivially, then this argument no longer applies. However, we have ||RS(χ(ξ(s)))|| =

||χ(ξ(s)))|| < ||s||. Indeed, denote s′ = χ(ξ(s)). Since sl − s1 ≥ e, we have sl − e ≥ s1.

This implies that the smallest element of ξ(s) = (sl − e, s1, . . . , sl−1) is again s1, and that

s′
1
= s1. Hence

||s′|| =

l∑

k=2

(s′k − s′1)

=

l∑

k=2

(s′k − s1)

=

l−1∑

k=2

(sk − s1) + (sl − e) − s1

=

l∑

k=2

(sk − s1) − e

= ||s|| − e

< ||s||

Note also that in this case, |RS(ξ(λ))| = |χ(ξ(λ))| = |λ| by Properties 3.5 and 4.9.

We see that at each step, the rank |.| can never increase. In fact, since it is always non-

negative, there is necessarily a finite number of steps at which this statistic decreases. More-

over, when the rank does not increase, then the second statistic ||.|| decreases. Since it can

never be negative (as noted in the beginning of the proof), there is also finite number of such

steps. In conclusion, there is a finite number of steps in the algorithm, which means that it

terminates.

�

Remark 4.12. This algorithm can also be stated in the simpler following way:

1. If |λ, s〉 is cylindric, then stop and take µ = λ and r = s.

2. Else, put λ← RS(ξ(λ)) and s← RS(ξ(s)) and start again.

Example 4.13. Set e = 4, l = 3, s = (0, 9, 5), and λ = (4.22.13, 5.23.14, 7.6.42.22.13) ∈ Fs.

Firstly, we see that

Bs(λ) =


0 1 3 4 5 7 8 11 12 15 17 18

0 1 2 3 4 5 6 7 9 10 11 12 14 15 16 20

0 2 3 4 6 7 10



is not semistandard. Thus we first compute λ̃ := RS(λ) and s̃ := RS(s). We obtain

Bs̃(λ̃) =


0 1 2 3 4 5 6 7 8 10 11 12 14 15 16 17 18

0 1 3 4 5 7 9 11 12 15 20

0 2 3 4 6 7 10

 ,
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i.e. λ̃ = (4.22.13, 10.6.42.3.2.13, 25.13) and s̃ = (0, 4, 10). We see that |λ̃, s̃〉 is not cylindric.

Hence we compute λ(1) := (RS ◦ ξ)(λ) and s(1) := (RS ◦ ξ)(λ). We get

Bs(1) (λ(1)) =


0 1 2 3 4 5 7 8 9 11 12 13 14 15 20

0 1 3 4 6 7 10 11 12

0 2 3 4 6 7 10

 ,

i.e. λ(1)
= (4.22.13, 43.22.12, 6.25.13) and s(1)

= (0, 2, 8).

We keep on applying RS ◦ ξ until ending up with a cylindric multipartition. In fact, if

we denote λ(k) := (RS ◦ ξ)k(λ) and s(k) := (RS ◦ ξ)k(s), we can compute |λ(2), s(2)〉, |λ(3), s(3)〉,

|λ(4), s(4)〉, and we finally have

Bs(5)(λ(5)) =


0 1 2 3 4 6 7 9 11 12

0 1 3 4 5 7 8 10 11 16

0 2 3 4 6 7 10

 ,

i.e. λ(5)
= (4.22.13, 7.32.22.13, 32.2.12) and s(5)

= (−4,−1,−1). We see that |λ(5), s(5)〉 is

cylindric.

This charged multipartition has the following Young diagram with contents:

|λ(5), s(5)〉 =



-4 -3 -2 -1
-5 -4
-6 -5
-7
-8
-9

,

-1 0 1 2 3 4 5
-2 -1 0
-3 -2 -1
-4 -3
-5 -4
-6
-7
-8

,

-1 0 1
-2 -1 0
-3 -2
-4
-5



.

With this representation, we see that |λ(5), s(5)〉 is not FLOTW (cf. Definition 2.3). There-

fore, It remains to understand how to obtain an equivalent FLOTW multipartition from a

cylindric multipartition. This is the point of the next section, which contains the main result

of this paper (Theorem 5.20).

5 The case of cylindric multipartitions

Recall that for s ∈ Se, we have denoted Cs the set of cylindric l-partitions.

5.1 Pseudoperiods in a cylindric multipartition

Let |λ, s〉 ∈ Cs such that λ is not FLOTW. Then there is a set of parts of the same size, say

α, such that the residues at the end of these parts cover ~0, e − 1�. This is formalised in the

following definition.

Definition 5.1.

• The first pseudoperiod of λ is the sequence P(λ) of its rightmost nodes

γ1 = (a1, α, c1), . . . , γe = (ae, α, ce)

verifying:

1. there is a set of parts of the same size α ≥ 1 such that the residues at the rightmost

nodes of these parts cover ~0, e − 1�.

2. α is the maximal integer verifying 1.

3. cont(γ1) = max
c∈~1,l�

a∈~1,h(λc)�

cont(a, α, c) and c1 = min
a∈~1,h(λc)�

cont(a,α,c)=cont(γ1)

c,

4. for all i ∈ ~2, e�, cont(γi) = max
c∈~1,l�

a∈~1,h(λc)�
cont(a,α,c)<cont(γi−1)

cont(a, α, c)

and ci = min
a∈~1,h(λc)�

cont(a,α,c)=cont(γi)

c.
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In this case, P(λ) is also called a α-pseudoperiod of λ, and α is called the width of P(λ).

• Denote λ[1] := λ\P(λ), that is the multipartition obtained by forgetting 1 in λ the parts

α whose rightmost node belongs to P(λ). Let k ≥ 2. Then the k-th pseudoperiod

of λ is defined recursively as being the first pseudoperiod of λ[k], if it exists, where

λ[k] := λ[k−1]\P(λ[k−1]).

Any k-th pseudoperiod of λ is called a pseudoperiod of λ.

Example 5.2. Let e = 3, s = (2, 3, 4), and λ = (2.12, 2.13, 2.14). One checks that λ is cylindric

for e but not FLOTW. Then λ has the following diagram with contents:

λ =



2 3
1
0

,

3 4
2
1
0

,

4 5
3
2
1
0


.

Then λ has one 2-pseudoperiod and two 1-pseudoperiods. Its first pseudoperiod consists

of γ1 = (1, 2, 3), γ2 = (1, 2, 2) and γ3 = (1, 2, 1), with respective contents 5, 4 and 3, colored

in blue. The second pseudoperiod is (γ1 = (2, 1, 3), γ2 = (2, 1, 2), γ3 = (2, 1, 1)), with red

contents; and the third (and last) pseudoperiod is (γ1 = (3, 1, 3), γ2 = (3, 1, 2), γ3 = (3, 1, 1)),

with green contents.

Lemma 5.3. 1. cont(γi) = cont(γi−1) − 1 for all i ∈ ~2, e�. In other terms, the contents of

the elements of the pseudoperiod are consecutive.

2. ci ≤ ci−1 for all i ∈ ~2, e�.

Proof. 1. Suppose there is a gap in the sequence of these contents. Then the pseudoperiod

must spread over e + 1 columns in the symbol Bs(λ). Denote by b the integer of Bs(λ)

corresponding to the last element of P(λ), and k the column where it appears. The

integer of Bs(λ) corresponding to the gap must be in column k + 1, and since λ is

cylindric, it must be greater than or equal to b+ e. In fact, it cannot be greater than b+ e

since the corresponding part is below a part of size α, and it has to correspond to a part

of size α, and there cannot be a gap, whence a contradiction.

2. Since the nodes of P(λ) are the rightmost nodes of parts of the same size α, together

with the fact s1 ≤ · · · ≤ sl, and point 1., γi is necessarily either to the left of γi−1 or in

the same component.

�

Remark 5.4. If α = maxi, j λ
i
j
, then the first pseudoperiod corresponds to a "period" in Bs(λ),

accordingly to [10, Definition 2.2] This is the case in Example 5.2. In the case where each

pseudoperiod corresponds to a period in the symbol associated to λ[k], one can directly re-

cover the empty l-partition and the corresponding multicharge using the "peeling procedure"

explained in [10]. However, in general, Bs(λ) might not have a period, as shown in the fol-

lowing example.

Example 5.5. e = 4, s = (5, 6, 8) and λ = (62.2.1, 3.23.12, 6.22.13). Then λ ∈ Cs but is

not FLOTW for e. It has the following Young diagram with residues:

λ =



5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
5 6
4 5
3 4
2
1

,

8 9 10111213
7 8
6 7
5
4
3



Then there is a 2-pseudoperiod and a 1-pseudoperiod. The first pseudoperiod of λ consists

of the nodes γ1 = (2, 2, 3), γ2 = (3, 2, 3), γ3 = (2, 2, 2) and γ4 = (3, 2, 2), with respective

contents 8, 7, 6 and 5. The 1-pseudoperiod is ((4, 1, 3), (5, 1, 3), (6, 1, 3), (4, 1, 1)).

1This means that one considers only the nodes of λ that are in parts whose rightmost node is not in P(λ), but without

changing the indexation nor the contents of these nodes.

15



Of course, one could also describe pseudoperiods on the s-symbol associated to λ. How-

ever, this approach is not that convenient, and in the setting of cylindric multipartitions, we

favour the "Young diagram with contents" approach, which encodes the same information.

Nevertheless, we notice this property, which will be used in the proof of Lemma 5.16:

Proposition 5.6. Let P(λ) be a pseudoperiod of λ. Denote by B the set of entries of Bs(λ)

corresponding to the nodes of P(λ). Then each column of Bs(λ) contains at most one element

of B. Moreover, the elements of B appear in consecutive columns of Bs(λ).

Proof. This is direct from the fact that the nodes of P(λ) are all rightmost nodes of parts of

the same size α, together with Lemma 5.3. �

We will now determine the canonicalU′q(ŝle)-crystal isomorphism for cylindric multipar-

titions. In the following section, we only determine the suitable multicharge. In Section 5.3,

we explain how to construct the actual corresponding FLOTW multipartition.

5.2 Determining the multicharge

In [10], Jacon and Lecouvey have proved that when λ =
•

λ is a highest vertex, then it suffices

to "peel" the symbol of λ in order to get an empty equivalent multipartition. We do not recall

here this procedure in detail, but it basically consists in removing all periods in the symbol of

λ (see Example 5.10).

When we start from a multipartition λ which is no longer a highest weight vertex, we can,

in general, no longer peel the symbol, for it does not necessarily contain a period anymore

(see Remark 5.4). However, the multicharge we look for is constant along the crystal, hence

entirely determined by the highest weight vertex
•

λ. Therefore, it is the representative in De of

the multicharge associated to the empty multipartition obtained after peeling
•

λ. We denote it

by ϕ(s).

Now, since |
•

λ, s〉 is already cylindric, it turns out that the period can be easily read in the

symbol of
•

λ. In fact, we have the following property:

Proposition 5.7. Let |λ, s〉 ∈ Cs such that Bs(λ) has a period P. Then each of the rightmost e

columns of Bs(λ) contains a unique element of P.

Proof. Since a period is nothing but a pseudoperiod whose width is the largest part in λ (cf.

Remark 5.4), this result is just a particular case of Proposition 5.6. �

Hence, deleting the first period (first step of the peeling)
•

λ, we get a multicharge s(1)

verifying

s
(1)

l
= sl − (sl − sl−1) = sl−1

s
(1)

l−1
= sl−1 − (sl−1 − sl−2) = sl−2

...

s
(1)

2
= s2 − (s2 − s1) = s1

s
(1)

1
= s1 − (e − (sl − s1)) = sl − e.

In other terms, we have s(1)
= ξ(s), where ξ is the cyclage operator defined in Section 4.2.

Applying this recursively, we obtain

Proposition 5.8. For all k ≥ 1, s(k)
= ξk(s), where s(k) denotes the multicharge associated

with the peeled symbol after k steps (with s(0)
= s).

Remark 5.9. It is possible that, at some step, a multicharge s(k) will not be in Se anymore.

However, for any k, one always has s
(k)

i
≤ s

(k)

j
for i < j, and s

(k)

l
− s

(k)

1
≤ e. Moreover, if

s
(k)

l
− s

(k)

1
= e, then s

(k+m)

l
− s

(k+m)

1
< e, where m ≥ 1 is the number of components of s(k) equal

to s
(k)

l
.

Note that this never happens if si < s j for all i < j.
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Example 5.10. e = 3, s = (3, 3, 4), λ = (32.2, 22.1, 3.12) =
•

λ. One checks that |λ, s〉 is cylindric

but not FLOTW. The associated symbol is


0 1 3 4 7

0 2 4 5

0 3 5 6



Peeling this symbol, we get successively


0 1 3 4

0 2 4 5

0 3

 and s(1)
= (1, 3, 3),


0 1 3 4

0 2

0

 and s(2)
= (0, 1, 3),


0 1

0

0

 and s(3)
= (0, 0, 1).

Note that s(2) < Se.

The following proposition is now easy to prove.

Proposition 5.11. Let s ∈ Se. There exists k ∈ Z such that ξk(s) ∈ De. In fact, we have

ϕ(s) = ξk(s).

Proof. Recall that ϕ(s) is the representative of the multicharge s′ associated to the peeled

symbol of
•

λ. Because of Consequence 5.8, s′ is obtained from s by applying several times

(say t times) ξ. In other terms, s′ = ξt(s). Now,

• if s′ ∈ De, then ϕ(s) = s′ and k = t.

• if s′ ∈ Se\De, then the representative of s′ in De is of the form ξv(s′) for some v ∈ Z.

Hence, ϕ(s) = ξk(s) with k = t + v.

• if s′ < Se, we are however ensured (see Remark 5.9) that there exists m ∈ ~1, e − 1�

such that ξm(s′) ∈ Se. We are then in the previous situation, i.e. there exists v ∈ Z such

that ξm+v(s′) ∈ De, and therefore ϕ(s) = ξk(s) with k = t + m + v.

�

Example 5.12. As in Example 5.10, take e = 3, s = (3, 3, 4) and λ = (32.2, 22.1, 3.12). Then

ξ3(s) = (0, 0, 1) ∈ De. Hence ϕ(s) = (0, 0, 1).

5.3 Determining the FLOTW multipartition

In order to compute the multipartition ϕ(λ), we need to introduce a new crystal isomorphism,

which acts on cylindric multipartitions. In fact, the only difference between a cylindric mul-

tipartition and a FLOTW multipartition is the possible presence of pseudoperiods. Therefore,

we want to determine an isomorphism which maps a cylindric multipartition to another cylin-

dric multipartition with one less pseudoperiod. Applying this recursively, we will eventually

end up with a FLOTW multipartition equivalent to λ.

Take s ∈ Se and λ ∈ Cs. Let α be the width of P(λ), the first pseudoperiod of λ.

Denote by ψ(λ) the multipartition µ charged by ξ(s) defined as follows:

• µc contains all parts λc
a of λc such that 1 ≤ λc

a < α, for c ∈ ~1, l�,

• µc contains all parts λc−1
a of λc−1 such that λc−1

a > α for c > 1, and µ1 contains all parts

λl
a of λl such that λl

a > α,

• µc contains all parts λc
a = αwhose rightmost node does not belong to P(λ), for c ∈ ~1, l�.

17



This naturally defines a mapping γ←→ Γ from the set of nodes of λ\P(λ) (see Definition

5.1) onto the set of nodes of ψ(λ). We then say that Γ is canonically associated to γ, and

conversely.

Example 5.13. Let us go back to Example 5.5. We had e = 4, s = (5, 6, 8) and

λ =



5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
5 6
4 5
3 4
2
1

,

8 9 10111213
7 8
6 7
5
4
3



,

where the bold contents correspond to the first pseudoperiod (whose width is α = 2).

Then ξ(s) = (4, 5, 6), and

ψ(λ) =



4 5 6 7 8 9
3 4
2
1

,

5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
5
4
3


= (6.2.12, 62.2.12, 3.13)

We observe that the contents of canonically associated nodes are unchanged, except for

the nodes of λ that lie in part of λl greater than α, whose content is translated by −e. More

formally, this writes:

Proposition 5.14. Denote ψ(λ) =: µ.

1. Let Γ = (A, B,C) be a node of µ with µC
A
> α. Denote by γ the node of λ canonically

associated to γ.

• If c > 1, then contµ(Γ) = contλ(γ).

• If c = 1, then contµ(Γ) = contλ(γ) − e.

2. Let Γ = (A, B,C) be a node of µ with µC
A
≤ α. Denote by γ its canonically associated

node in λ. Then contµ(Γ) = contλ(γ).

Notation 5.15. Let s be a l-charge in Se, λ ∈ Cs non FLOTW, and c ∈ ~1, l�. Set α to be the

width of the first pseudoperiod of λ. We denote:

• N>α
c the number of parts greater than α in λc,

• Nα
c the number of parts equal to α in λc that are deleted in λ to get ψ(λ) (i.e. parts whose

rightmost node belongs to the pseudoperiod).

Proof. Of course, it is sufficient to prove this for only one node in each part considered, since

the contents of all other nodes of the part is then determined. We prove it only for the leftmost

nodes, i.e. the ones of the form (A, 1,C).

1. This is clear since the multicharge associated to µ is simply the cyclage of s (that shifts

s "to the right" and maps s1 to sl − e), and the parts greater than α are similarly shifted

in λ to get µ.

2. Let Γ = (A, 1,C) be a node in µ such that µC
A
≤ α, so that γ = (a, 1, c) with c = C.

First, assume C > 1. Then

contµ(Γ) = sC−1 − N>α
C−1.

On the other hand,

contλ(γ) = sC − N>α
C − Nα

C .

Now by definition of P(λ), which is charged by ξ(s), we have

sC − sC−1 = N>α
C + Nα

C − N>α
c−1,

which is equivalent to

Nα
C = sC − N>α

C − sC−1 − N>α
C−1.

18



Hence we have

contλ(γ) = sC − N>α
C
− Nα

C

= sC − N>α
C
− (sC − N>α

C
− (sC−1 − N>α

C−1
))

= sC−1 − N>α
C−1

= contµ(Γ).

Now, assume C = 1. The argument is the same:

contµ(Γ) = sl − e − N>α
l , and

contλ(γ) = s1 − N>α
1 − Nα

1 .

Moreover, we have:

Nα
1
= e −

∑l
d=2 Nα

d

= e −
∑l

d=2(rd − rd−1)

= e − rl + r1

= e − (sl − N>α
l

) + (s1 − N>α
1

) using the above case,

which implies that

contµ(Γ) = sl − e − N>α
l

= s1 − N>α
1
− e + sl − N>α

l
− s1 + N>α

1

= sl − e − N>α
l

= contλ(γ).

�

We now aim to prove that the map ψ we have just defined is in fact a crystal isomorphism

between connected components of Fock spaces crystals (this is upcoming Theorem 5.20).

In order to do that, we will need the following three lemmas, in which we investigate the

compatibility between ψ and the possible actions of the crystal operators f̃i.

Lemma 5.16. Suppose that γ+ = (a, α + 1, c) is the good addable i-node of λ, with γ ∈ P(λ).

Then

• ∆+ = (a, α + 1, c + 1) is the good addable i-node of ψ(λ) if 1 ≤ c < l,

• ∆+ = (a, α + 1, 1) is the good addable i-node of ψ(λ) if c = l.

Proof. The proof first splits in three cases (which, in turn split in subcases), even though

ultimately, the argument is the same. In each case (and subcase), we determine a certain node

δ of λ which is not in P(λ). Then, we show that the node of ψ(λ) canonically associated to δ

is the node ∆ we expect.

1. Assume first that γ is the first element of P(λ). Denote by γe = (ae, α, ce) the last node

of P(λ). Then cont(γe) = cont(γ+) − e, and since γ+ is an i-node, then so is γe.

(a) Suppose that γe is removable (cf Example 5.17, 1.). Since γ+ is the good addable

i-node, the letter R produced by γe in the i-word must not simplify with the A

produced by γ+. This means that there exists an addable node γ̃+ in λc̃ with either

• c̃ > c and cont(γ̃+) = cont(γ+), or

• c̃ < ce and cont(γ̃+) = cont(γ+) − e (one cannot have c̃ = ce since otherwise

γe would not be removable).

In the first case, this means that there is an integer β in the c̃-th row ofBs(λ) which

is also in the c-th row and the same column. By the semistandardness of Bs(λ)

(because |λ, s〉 is cylindric), we are ensured that β is also present in the row d and

the same column for all d ∈ ~c, c̃�. This is equivalent to saying that there is a part

of size α in each component λd with d ∈ ~c, c̃� whose rightmost node γ̂ verifies

cont(γ̂) = cont(γ). We denote by δ the one located in the component λc+1. In

particular, δ+ is an i-node. Moreover, δ+ is an addable node of λ. Indeed, if it is

not, then there is a part of size α just above the part whose rightmost node is γ̃.
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Denote by γ its rightmost node. Then cont(γ) = cont(δ) + 1 = cont(γ) + 1. This

implies that γ must be in P(λ), which contradicts the fact that γ is the first element

of P(λ).

In the second case, there is an integer β in the c̃-th row of Bs(λ) which is also

in the ce-th row and the same column, say column k. Again, since the symbol is

semistandard, the elements bd,k appearing in row d, with d ∈ ~1, c̃�, and in column

k verify bd ≥ bd′ ≥ β for 1 ≤ d′ < d < ce. But the cylindricity property also

implies that bl,k+e ≥ b1,k + e. Actually, the (k + e)-th column of the symbol is also

the column that contains the integer corresponding to the first node of P(λ), since

pseudoperiods have length e. Moreover, this element is equal to β + e. In other

terms, bc,k+e = β + e. By semistandardness again, one must have β + e ≥ bd,k+e ≥

bd′,k+e for all c ≤ d < d′ ≤ l. To sum up, we have

β+e = bc,k+e ≥ bc+1,k+e ≥ · · · ≥ bl,k+e ≥ b1,k+e ≥ · · · ≥ bce−1,k+e ≥ bce,k+e = β+e,

thus all inequalities are in fact equalities. As in the first case, this means in partic-

ular that there is a part of size α in λc+1 (if c < l) or in λ1 (if c = l) whose rightmost

node δ verifies cont(δ) = cont(γ) − e. In particular, δ+ is an i-node. Moreover,

δ+ is an addable node of λ. Indeed, if it is not, then there is a part of size α just

above the part whose rightmost node is γ̃. Denote by γ its rightmost node. Then

cont(γ) = cont(δ)+ 1 = cont(γ)− e+ 1 = cont(γe). This implies that γ must be the

last element of P(λ) instead of γe, which is a contradiction.

(b) Suppose that γe is not removable (cf Example 5.17, 2.). This means that there

exists a part of size α below the part whose rightmost node is γe. Note that the

rightmost node γ̃ of this part has content cont(γ̃) = cont(γe) − 1. By the same

cylindricity argument used in 1.(a), this part of size α spreads in all components

of λ. This means that there exists a part α in λc+1 (if c < l) or in λ1 (if c = l) with

rightmost node δ verifying cont(δ) = cont(γ) (if c < l) and cont(δ) = cont(γ)−e (if

c = l). In particular, δ+ is an i-node. Moreover, if δ+ is addable, unless, of course,

it is in the component λce . This can be seen using the exact same argument as in

1.(a).

2. Assume now that γ is the last element of P(λ). First of all, note that if l > 1, one can

never have c = l. Indeed, in this case γ+ would not be an addable node.

(a) Suppose that sc+1 > sc (cf Example 5.17, 3.). Then, using Proposition 5.6, we can

claim that there exists a part of size α in the componentλc+1. Denote γ̃ its rightmost

node. By Lemma 5.3, cont(γ̃) = cont(γ) + 1 = cont(γ+), and γ̃ is an i-node. Now,

if γ̃ is removable, then γ̃ and γ+ yield an occurence of RA which contradicts the

fact that γ+ is the good i-node of type A. Hence, there is necessarily a part α below

the part whose rightmost node is γ̃. Denote by δ its rightmost node, so that δ+ is

an i-node.

(b) Suppose now that sc+1 = sc (cf Example 5.17, 4.). Consider the previous node

in P(λ), denote it by γe−1. By Lemma 5.3 again, cont(γe−1) = cont(γ) + 1 =

cont(γ+), so that γe−1 is an i-node. Besides, since γ+ is addable, γe−1 is removable

unless there is a part α below the part whose rightmost node is γe−1. But if γe−1 is

removable, then there exists an addable i-node γ̃ in λc̃ with c̃ ∈ ~c+ 1, . . . , c1 − 1�,

where c1 is the component of λ which contains the first node of P(λ) (otherwise

γ+ and γe−1 yield and occurence RA and γ+ cannot be the good addable i-node).

Then, by the cylindricity argument again, there is a part α in each component λd

with d ∈ ~c + 1, . . . , c̃�, whose rightmost node has content cont(γ). In particular,

this is true for d = c + 1. We denote δ the one located in the component λc+1.

Now if γe−1 is not removable, i.e. if there exists a part α below the part whose

rightmost node is γe−1, then again the cylindricity implies that this parts spreads to

all components λd with d ∈ ~c+ 1, . . . , ce−1 − 1�, where ce−1 is the component of λ

which contains γe−1, and have the same contents. Again, we denote δ the rightmost

node of the part α of λc+1 which has content cont(δ) = cont(γ).

3. Assume finally that γ is neither the first nor the last node of P(λ). Again, c cannot be

equal to l because then it would be the first node of P(λ).
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(a) Suppose that sc+1 > sc (cf Example 5.17, 5.). We can use the same arguments as

in 2.(a), and define δ in the exact same way.

(b) Suppose that sc = sc+1 (cf Example 5.17, 6 .). Then since γ+ is not the first node

of P(λ), there exists a part α in a component λc̃ with c̃ > c whose rightmost node γ̃

has content cont(γ̃) = cont(γ) + 1. If c̃ = c + 1, then we can use the previous case

3.(a). If c̃ > c + 1, then:

• if γ̃ is removable, then there exists a part α in a component c̄ with c < c̄ < c̃

whose rightmost node has content cont(γ), otherwise γ̃ produces, together

with γ+, an occurence RA, whence the usual contradiction. By cylindricity,

such a part α also exists in the (c + 1)-th component of λ. We denote δ its

rightmost node.

• if γ̃ is not removable, then there exists a part α below the part whose rightmost

node is γ̃, with rightmost content equal to cont(γ). Again, by cylindricity, it

also exists in the (c + 1)-th component of λ, and we denote δ its rightmost

node.

It is obvious, but important to notice, that δ is not a node of P(λ). Hence, there is a node

∆ of ψ(λ) which is canonically associated to δ. By Proposition 5.14, contψ(λ)(∆) = contλ(δ)

and in fact ∆ = (a, α, c + 1) if c < l and ∆ = (a, α, 1) if c = l. In particular ∆+ is an i-node.

Moreover, it is addable in ψ(λ) since δ+ is either addable in λ, or the rightmost node of a part

above which sit parts that are deleted after applying ψ.

In fact, ∆+ is the good addable i-node of ψ(λ). Indeed, consider the i-word for ψ(λ).

Denote it by w
ψ

i
, and denote wi the i-word for λ. By construction of ψ(λ), the subword of wi

corresponding to the rightmost nodes of the parts that are either greater than α (respectively

smaller than or equal to α but not in P(λ)) is also a subword of w
ψ

i
. The only differences that

are likely to appear are the following:

• The letters R and A that correspond to nodes in P(λ) vanish. Note that we have assumed

that there is always such a letter A in wi (since γ is in P(λ)).

• The parts of size α that are below a part whose rightmost node is in P(λ) give a new

letter A in ψ(λ).

Now by construction of δ:

1. If δ+ gives a letter A in wi, then it is adjacent to the letter A encoding γ+, to its left.

Hence, since the A encoding γ+ is no longer in w
ψ

i
, the letter A corresponding to ∆+ in

w
ψ

i
plays the same role as the one corresponding to γ+ in λ: it is the rightmost A in the

reduced i-word of ψ(λ). In other terms, ∆+ is the good addable i-node of ψ(λ).

2. If δ+ does not give a letter A in wi, that is if there is an element of P(λ) just above δ, then

it is clear that, again, the A encoding ∆+ in w
ψ

i
plays the same role as the A encoding γ+

in wi, and that ∆+ is the good addable i-node of ψ(λ).

�

Example 5.17.

1. λ = (4.2, 22, 5.2), s = (2, 3, 4), e = 3 and i = 2.

2. λ = (62.2.13, 4.23.12, 6.22.14), s = (5, 6, 8), e = 4 and i = 1.

3. λ = (2.1, 13, 1), s = (3, 4, 5), e = 4 and i = 3.

4. λ = (1, 1, 13), s = (4, 4, 7), e = 4 and i = 1.

5. λ = (3.2.12, 4.2.1, 23), s = (2, 3, 4), e = 4 and i = 0.

6. λ = (22, 3.2, 2), s = (3, 4, 4), e = 3 and i = 0.

Lemma 5.18. Suppose that γ+ = (a, λc
a +1, c) is the good addable i-node of λ, with λc

a < α or

[λc
a = α and γ < P(λ)]. Then Γ+ = (a−D, λc

a+ 1, c) is the good addable i-node of ψ(λ), where

• D = N>α
c − N>α

c−1
+ Nα

c − Nα
c−1

if c ≥ 1,

• D = N>α
1
− N>α

l
+ Nα

1
− Nα

l
if c = 1 (see Notation 5.15).
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Proof. First, note that Γ is nothing but the node of ψ(λ) canonically associated to γ in the

definition of ψ. Besides, by definition of ψ(λ), together with Proposition 5.14, we are ensured

that Γ+ is in fact an addable i-node of ψ(λ). Moreover, w
ψ

i
is likely to contain new letters

A, namely the one corresponding to nodes η+ with η = (b, α, d) < P(λ) lying just below

a node of P(λ). Denote by H the node of ψ(λ) corresponding to η. Note that cont(η) ,

maxγ̃∈P(λ)(cont(γ̃)). Indeed, since there is a node of P(λ) just above η, it is not the first node

of P(λ) and hence it does not have maximal content. Since η < P(λ), there exists a node

γ̃ = (ã, α, c̃) ∈ P(λ) such that cont(γ̃) = cont(η), c̃ < d, and γ̃+ is addable. Hence H plays the

same role in ψ(λ) as γ̃ in λ. In particular, since the good addable i-node of λ is in a part of

size smaller than α, there is necessarily a letter R, encoding a node ρ, that simplifies with the

letter A encoding γ̃+. Now:

• If ρ is the rightmost node of a part of size different than α, then it is obviously not in

P(λ).

• If ρ is the rightmost node of a part of size α and cont(ρ) = cont(η+), then it is not in P(λ)

either. Indeed, there is a node of P(λ) just above η whose content is cont(η+), which

is therefore not of type R, and hence different from ρ, and since all nodes of P(λ) have

different contents, ρ is not in P(λ).

• If ρ is the rightmost node of a part of size α and cont(ρ) < cont(η+), then it is not in

P(λ) either, because the contents of the nodes of P(λ) are consecutive (cf. Lemma 5.3),

and because ρ does not have maximal content.

Therefore, the letter R encoding ρ is also present in w
ψ

i
, and simplifies with the A encoding H.

This implies that Γ+ is the good addable i-node of ψ(λ).

�

Lemma 5.19. Suppose that γ+ = (a, λc
a + 1, c) is the good addable i-node of λ, with λc

a > α.

Then

• Γ+ = (a, λc
a + 1, c + 1) is the good addable i-node of ψ(λ) if 1 ≤ c < l,

• Γ+ = (a, λc
a + 1, 1) is the good addable i-node of ψ(λ) if c = l.

Proof. As in Lemma 5.18, Γ is the node of ψ(λ) canonically associated to γ. Consider the

letter A encoding γ+. It is the rightmost letter A in wi and does not simplify. By Proposition

5.14, Γ+ is also encoded by a letter A which the righmost letter A in w
ψ

i
. It remains to show

that it does not simplify with any letter R either. In fact, as noticed in the previous proofs,

the deletion of the pseudoperiod, in the construction of ψ(λ), cannot yield any new letter R.

However, some letters A encoding nodes of P(λ) can vanish. Denote by η+ such a node.

Suppose first that η is not the first node of P(λ). Since η+ is addable, there cannot be

another element of P(λ) above η. Then denote by η1 the node of P(λ) which has content

cont(η1) = cont(η) + 1 (i.e. the previous node of P(λ)). Note that if η is in λd, then η1 is in

λd+1. Suppose now that η is the first node of P(λ). Then, similarly, consider the last node of

P(λ) and denote it by P(λ). In each case, either:

• there is a part α just below the part whose rightmost node is η1, in which case the node

just below η1 is not in P(λ) and yields an addable node in ψ(λ) which plays exactly the

same role in ψ(λ) as η in λ;

• or there is no node just below η1, in which case η1 is encoded by a letter R which

simplifies with the letter A encoding η+.

As a consequence, we are ensured that the letter A encoding Γ+ does not simplify in w
ψ

i
,

and hence Γ+ is the good addable i-node of ψ(λ).

�

We are now ready to prove the following key result.

Theorem 5.20. The map

ψ : Cs −→ Fξ(s)

λ 7−→ ψ(λ)

is a crystal isomorphism. We call it the reduction isomorphism for cylindric multipartitions.

22



Proof. We need to prove that for all i ∈ ~0, e − 1�,

f̃i(ψ(λ)) = ψ( f̃i(λ)). (8)

Thanks to the previous lemmas, we know precisely what f̃i(ψ(λ)) is. It remains to un-

derstand the right hand side of (8), by looking at the pseudoperiod of f̃i(λ). Let P(λ) =

(γ1, γ2, . . . , γe).

The operator f̃i acts on λ either by:

1. Adding a node to a part α whose rightmost node belongs to P(λ). This is the setting of

Lemma 5.16. Let γ = γk = (a, α, c) be the node of P(λ) such that γ+ is the good addable

i-node of λ. In this case, we have

P(ψ(λ)) = (γ1, γ2, . . . , γk−1, δ, γk+1, . . . , γe),

where:

• δ = (b, α, c + 1), with b = a + N>α
c+1
+ Nα

c+1
− N>α

c , if c < l, and

• δ = (b, α, 1), with b = a + N>α
1
+ Nα

1
− N>α

l
, if c = l.

Indeed, this node δ is the same as the one determined in the proof of Lemma 5.16 (and

whose canonically associated node is ∆). The value of the row b is simply computed

using the fact that:

(a) there is no part α above the part of rightmost node γ,

(b) all parts α above the part of rightmost node δ in f̃i(λ) have an element of P(λ) as

rightmost node.

But the part of f̃i(λ) whose rightmost node is γ+ is a part of size greater than α, and

is is therefore shifted to the (c + 1)-th component (if c < l), or the first component (if

c = l) when building ψ( f̃i(λ)). Hence, by deleting the elements of P(ψ(λ)) and shifting

the parts greater than α, we end up with the same multipartition as f̃i(ψ(λ)), whence the

identity f̃i(ψ(λ)) = ψ( f̃i(λ)). This is illustrated in Example 5.21 below.

2. Adding a node to a part ≤ α whose rightmost node does not belong to P(λ). This is the

setting of Lemma 5.18. In this case , we have P(ψ(λ)) = P(λ). It is then straightforward

that f̃i(ψ(λ)) = ψ( f̃i(λ)).

3. Adding a node to a part > α (whose rightmost node necessarily does not belong to

P(λ)). This is the setting of Lemma 5.19. Here, we also have P(ψ(λ)) = P(λ), as in the

previous point.

�

Example 5.21. We take the same example as 5.17, 5., namely λ = (3.2.12, 4.2.1, 23), s =

(2, 3, 4), e = 4 and i = 0. Then we have the following constructions:



2 3 4
1 2
0
-1

,
3 4 5 6
2 3
1

,
4 5
3 4
2 3


ψ

//

f̃0

��

(
0
-1

,
2 3 4
1

,
3 4 5 6
2 3

)

f̃0

��


2 3 4
1 2
0
-1

,
3 4 5 6
2 3 4
1

,
4 5
3 4
2 3


ψ

//

(
0
-1

,
2 3 4
1

,
3 4 5 6
2 3 4

)

The bold contents represent the pseudoperiods. This illustrates the commutation between

the operators ψ and f̃i.
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Remark 5.22. Note that the charged multipartition |ψ(λ), ξ(s)〉 that we get is not cylindric

anymore in general, because ξ(s) might not be in Se. If it is, then it is clear that ψ(λ) has one

pseudoperiod less that λ.

Remark 5.23. Interestingly, this isomorphism ψ can be seen as a generalisation of the cyclage

isomorphism ξ. Indeed, ξ would be the version of ψ for pseudoperiods of width 0 (which can

be found in any multipartition, considering that they have infinitely many parts of size 0).

By a simple use of the cyclage isomorphism, we can now easily determine a refinement

Ψ of the reduction isomorphism ψ which maps a cylindric multipartition to another cylindric

multipartition with one pseudoperiod less.

Let λ ∈ Cs. If ξ(s) < Se, denote by m the number of components of ξ(s) equal to ξ(s)l. By

Remark 5.9 and the proof of Proposition 5.11, ξ1+m(s) ∈ Se.

Define Ψ(λ) and Ψ(s) in the following way:

• If ξ(s) ∈ Se, then Ψ(λ) := ψ(λ) and Ψ(s) := ξ(s)

• If ξ(s) < Se, then Ψ(λ) := (ξm ◦ ψ)(λ) and Ψ(s) := ξ1+m(s).

We denote Ψ : |λ, s〉 7−→ |Ψ(λ),Ψ(s)〉. Then by construction, the following result holds:

Proposition 5.24. For all λ ∈ Cs, we have Ψ(λ) ∈ CΨ(s). Moreover, Ψ is a U′q(ŝle)-crystal

isomorphism, and Ψ(λ) has one pseudoperiod less than λ.

We can now determine the canonical crystal isomorphism ϕ for cylindric multipartitions.

Recall that we have already determined ϕ(s) in Proposition 5.11. It writes ϕ(s) = ξk(s) for

some k explicitely determined.

Remark 5.25. The integer t defined in the proof of Proposition 5.11 is simply the number of

pseudoperiods in λ.

Denote t the number of pseudoperiods in λ. Applying t times Ψ to λ, we end up with a

FLOTW multipartition, but charged by an element Ψt(s) which might not be in De. We now

simply need to adjust it by some iterations of the cyclage isomorphism ξ. Since Ψt(s) ∈ Se,

we are ensured that ϕ(s) = (ξu ◦Ψt)(s) for some u ∈ Z easily computable.

Hence, we set

ϕ(λ) := (ξu ◦Ψt)(λ),

and the following theorem is straightforward.

Theorem 5.26. The map

ϕ : Cs −→ Cϕ(s)

|λ, s〉 7−→ |ϕ(λ), ϕ(s)〉

is the canonicalU′q(ŝle)-crystal isomorphism for cylindric multipartitions.

Remark 5.27. Note that to determine ϕ(s), we could also have built first |Ψt(λ),Ψt(s)〉, and

found u such that ξu(Ψt(s)) ∈ De. Then, we would have set ϕ(s) = ξu(Ψt(s)). Clearly, this

construction would give the same multicharge as the construction of ϕ(s) in Section 5.2. The

point of Section 5.2 is to show that the suitable multicharge is directly computable using only

cyclages of s.

We can therefore express the canonical crystal isomorphism Φ in full generality. Starting

from any charged multipartition |λ, s〉, we first apply RS, we get λ′ = RS(λ). Then, according

to Section 4.3, there is an integer m such that (RS ◦ ξ)m(λ′) is cylindric. Finally, we use ψt to

delete all pseudoperiods and adjust everything using ξu so that we end up in the fundamental

domain De (Theorem 5.26).

Hence, we have
Φ = ξu ◦ ψt ◦ (RS ◦ ξ)m ◦ RS

= ϕ ◦ (RS ◦ ξ)m ◦RS.
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6 Application to determining the highest weight vertex

Let s ∈ Zl and λ ∈ Fs.

In this short section, we explain how to determine the highest weight vertex
•

λ in B(λ)

using the canonical crystal isomorphism, and without having to find a path in the crystal

graph. Recall that we have denoted by Φ : |λ, s〉 7−→ |µ, r〉 the canonical crystal isomorphism.

In Section 4.3, we have seen how to find a cylindric multipartition equivalent to λ. In fact,

this uses only the crystal isomorphisms RS (Section 3.1) and ξ (Proposition 4.4). Then, after

defining the reduction isomorphism ψ in Section 5.3, we proved in Theorem 5.26 that the

canonical isomorphism ϕ for cylindric multipartitions consists only of iterations of ψ and ξ.

Hence, in the general case, there are only three different crystal isomorphisms needed

to construct Φ, namely RS, ξ, and ψ. Amongst them, ξ is the only map which is clearly

invertible. However, it is possible, keeping extra information, to make RS and ψ invertible.

6.1 Invertibility of the crystal isomorphism RS

First, it is well known (e.g. [4]) that the correspondence read(λ, s) 7−→P(read(λ, s)) becomes

a bijection if we also associate to read(λ, s) its "recording symbol", i.e. the symbol with the

same shape as P(read(λ, s)) =: P in which we put the entry k in the spot where a letter

appears at the k-th step. We denote by Q(read(λ, s)) or simply Q this symbol.

Example 6.1. Take s = (2, 0) and λ = (3.2, 32). Then

Bs(λ) =

(
0 4 5

0 1 2 5 7

)
.

We get read(λ, s) = 54075210. We can thus give the sequence of symbols leading to P ,

and, on the right, the corresponding recording symbols, leading to Q.

(
5
) (

1
)

(
4 5

) (
1 2

)

(
0 4 5

) (
1 2 3

)

(
0 4 5

7

) (
1 2 3

4

)

(
0 4 5

5 7

) (
1 2 3

4 5

)

(
0 4 5

2 5 7

) (
1 2 3

4 5 6

)

(
0 2 4 5

1 5 7

) (
1 2 3 7

4 5 6

)

P =

(
0 1 2 4 5

0 5 7

)
Q =

(
1 2 3 7 8

4 5 6

)

Therefore, this extra data Q turns RS into a bijection.

6.2 Invertibility of the reduction isomorphism

Recall that the multicharge charging ψ(λ) is nothing but ξ(s). Hence, the computation of s

from ψ(s) = ξ(s) is straightforward. Moreover, starting from ψ(λ), it is easy to recover almost

the l-partitions λ provided we know the width α of the pseudoperiod that has been deleted. In

fact:
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1. This data determines which parts will stay in the same component (namely the ones

smaller than or equal to α), and which will be shifted "to the left" (namely the ones

greater than α). Moreover, the property on the contents (Proposition 5.14), which says

that all nodes must keep the same content, ensures that we can keep the boxes filled in

with the same integers.

2. It remains to insert the e parts of the α-pseudoperiod at the right locations, i.e. so that

the diagram obtained is in fact the Young diagram of a charged multipartition (which is

possible thank, again, to Proposition 5.14).

Example 6.2. We take, as in Example 5.13, e = 4 and

ψ(λ) =



4 5 6 7 8 9
3 4
2
1

,

5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
5
4
3


,

and we suppose that we know the width of P(λ), namely α = 2. Then the two steps above

give:

1. Shifting the parts greater that α and keeping the same filling:



5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
3 4
2
1

,

8 9 10111213
5
4
3


.

2. Inserting coherently the 4 missing parts of size 2 (represented in bold type):



5 6 7 8 9 10
4 5 6 7 8 9
3 4
2
1

,

6 7 8
5 6
4 5
3 4
2
1

,

8 9 10111213
7 8
6 7
5
4
3



,

which is indeed equal to λ.

Hence, this extra data turns ψ into an invertible map.

6.3 Finding the highest weight vertex

Both RS and ψ being turned into bijections with the appropriate extra information, we can

turn the canonical crystal isomorphism Φ : B(
•

λ) −→ B(r) into an invertible map. We write

Φ
−1 : B(r) −→ B(

•

λ) for the inverse map.

Theorem 6.3. Let s ∈ Zl and λ ∈ Fs. Denote
•

λ the highest weight vertex in B(λ). Then

•

λ = Φ−1(∅).

Proof. Write
•

λ = ẽim . . . ẽi1 (λ). Then

Φ(
•

λ) = Φ(ẽim . . . ẽi1 (λ))

= ẽim . . . ẽi1 (Φ(λ))

= ∅,

and since Φ is invertible, this gives
•

λ = Φ−1(∅). �
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