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Whereas a variety of efficient learning algorithms have been recently proposed
to perform bipartite ranking tasks, cast as M -estimation problems, when
K ≥ 3, no method for optimizing the ROC manifold, or criteria summarizing
the latter such as its volume, the gold standard for assessing performance in
K-partite ranking, have been introduced in the statistical learning literature
yet. It is the main purpose of this paper to describe at length an efficient
approach to recursive maximization of the ROC surface, extending the
TreeRank methodology originally tailored for the bipartite situation (i.e.
when K = 2). The main barrier arises from the fact that, in contrast to the
bipartite case, the VUS criterion of any scoring rule taking K ≥ 3 values
cannot be interpreted as a cost-sensitive misclassification error and no method
is readily available to perform the recursive optimization stage. The learning
algorithm we propose, called TreeRank Tournament, breaks it and builds
recursively an ordered partition of the feature space, defining a piecewise
scoring function whose ROC manifold can be remarkably interpreted as a
statistical version of an adaptive piecewise linear approximant of the optimal
ROC manifold. Rate bounds in sup norm desccribing the generalization ability
of the scoring rule thus built are established and numerical results illustrat-
ing the performance of the TreeRank Tournament approach, compared
to that of natural competitors such as aggregation methods, are also displayed.
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1. Introduction

The multipartite ranking problem refers to the situation where an ordinal label Y , taking
its values in {1, . . . , K} with K ≥ 2 say, is assigned to any random observation X
and the goal is to learn, based on a training sample composed of independent labelled
observations, how to rank new data in the same order as their (temporarily hidden) labels.
Though of great simplicity, this formulation covers a wide variety applications: design of
diagnosis support tools in medicine, credit-risk screening in finance, etc. Motivated by
this broad range of applied problems, multipartite ranking has been the subject of a good
deal of attention these last few years in the machine-learning literature. In particular, it
is much documented in the bipartite situation, where the learning problem can be cast
as ROC curve optimization or AUC maximization and for which theoretical results and
specific learning algorithms are available, see Clémençon and Vayatis (2009), Agarwal
et al. (2005) or Clémençon and Vayatis (2010) and the references therein for instance. In
the general K-partite situation, this learning problem has been generally tackled from
the perspective of pairwise classification or preference learning, see Clémençon et al.
(2008), Freund et al. (2003). Although the empirical risk minimization paradigm can be
applied to it with statistical guarantees (see Rajaram and Agarwal (2005)), no algorithm
dedicated to the optimization of the ROC manifold, the extension of the ROC curve in the
multipartite context, has been proposed in the statistical learning literature yet. Indeed,
recent approaches are based on reducing K-partite ranking to a collection of K − 1 (or
K(K − 1)/2) bipartite ranking tasks, see Hüllermeier et al. (2008) or Clémençon et al.
(2013).

It is the goal of this article to propose a multipartite ranking algorithm for recursive
optimization of the ROC manifold, extending the TreeRank approach originally intro-
duced in the bipartite setup, see Clémençon et al. (2011). As will be explained at length
in the following, in contrast with the bipartite case, the recursive optimization stage
cannot be formulated as a cost-sensitive classification problem, for which ”off-the-shelf”
methods can be used. In the algorithm we propose, called TreeRank Tournament,
local optimization of the ROC surface is performed by comparing the performance of
the possible updates obtained by implementing the optimization step of the TreeRank
algorithm applied to the bipartite ranking subproblems of the multipartite problem con-
sidered. This method is shown to produce a piecewise constant ranking rule, whose ROC
manifold can be viewed as a statistical counterpart of an adaptive piecewise linear ap-
proximant of the optimal ROC manifold. This point is worth paying attention to, insofar
as piecewise linear interpolants of the optimal ROC manifold are not ROC manifolds in
general, in contrast to the bipartite situation. Rate bounds are next established under
adequate assumptions. Beyond statistical grounds, numerical results are provided in or-
der to support the empirical performance of the TreeRank Tournament algorithm,
compared to that of its competitors.

The paper is structured as follows. A rigorous formulation of the multipartite ranking
problem is given in section 2 and basic concepts of ROC analysis are briefly recalled. Sec-
tion 3 describes at length the multipartite ranking algorithm we propose, called TreeR-
ank Tournament. An adaptive approximation scheme of the optimal ROC surface is
next introduced and analyzed in section 4. In particular, bounds for the error in sup
norm are proved. This result is the key to the study of the generalization ability of the
TreeRank Tournament algorithm in section 5. This theoretical guarantee is com-
pleted by numerical experiments illustrating the performance of the approach promoted.
Technical proofs are deferred to the Appendix section.



November 29, 2013 15:49 Journal of Nonparametric Statistics JNPS-TRT

Journal of Nonparametric Statistics 3

2. Background and Preliminaries

It is the purpose of this section to recall crucial notions inherent to the formulation of
the multipartite ranking issue and to performance evaluation in this context.

2.1. Multipartite Ranking

We start off with describing the probabilistic framework and setting out the main no-
tations of the paper. Let K ≥ 2. Here and throughout, Y is a discrete random vari-
able, taking its values in the finite ordinal set Y = {1, . . . , K} and X is a random
vector defined on the same probability space, which models some (hopefully useful)
observation for predicting Y . Typically, the r.v. X is valued in a subset X of a high-
dimensional euclidean space, Rd with d ≥ 1 say. The distribution of the pair (X,Y ) is
characterized by the marginal distribution of X, F (dx), and the posterior probabilities
(η1(x), . . . , ηK(x)) = (P{Y = 1 | X = x}, . . . , P{Y = K | X = x}), x ∈ X . We also set
pk = P{Y = k} and denote by Fk(dx) the conditional distribution of X given Y = k for
k = 1, . . . , K. Roughly speaking, the goal of K-partite ranking is to order all elements
of the set X through a (measurable) scoring function s : X → R transporting the natural
order on the real line onto X (namely, ∀(x1, x2) ∈ X 2: x1 ≤s x2 ⇔ s(x1) ≤ s(x2)), in
a way that Y and s(X) tend to increase or decrease together with largest probability.
Clearly, when K = 3 for instance, such a problem would be completely meaningless if one
could exhibit points x1 and x2 in X 2 such that, when passing from x1 to x2 for instance,
the quantity (dF3/dF2)(x) increases, while the likelihood ratio (dF2/dF1)(x) decreases.
As discussed at length in Clémençon et al. (2013), except in the bipartite situation, the
formulation of the multipartite ranking problem involves restrictive conditions on the
class distributions.

Condition 2.1: Let K ≥ 2. For any 1 ≤ k ≤ l < K, for all (x1, x2) ∈ X 2:

dFl+1

dFl
(x1) <

dFl+1

dFl
(x2)⇒ dFk+1

dFk
(x1) ≤ dFk+1

dFk
(x2).

Observe that the condition above is void when K = 2. For K ≥ 3, it guarantees the ex-
istence of scoring functions s∗(x) that can be expressed as a strictly increasing transform
of the ratio dFk+1/dFk(x) for any k ∈ {1, . . . , K − 1}, see Proposition 1 in Clémençon
et al. (2013). Such scoring functions naturally form the set S∗ of optimal elements for
the K-partite ranking problem related to the monotone likelihood ratio collection of class
distributions {F1, . . . , FK}. Incidentally, we also recall that the regression function
η(x) = E[Y | X = x] belongs to the optimal set S∗ (see Assertion (3) in Proposition 1 of
Clémençon et al. (2013)). Provided that Condition 2.1 is fulfilled, the K-partite ranking
task consists of building from training data a scoring function that ”nearly” ranks data
in the same order as the elements of S∗. The concept of ROC surface/manifold described
below permits precisely to quantify performance in this context.

2.2. ROC Analysis

For any measurable scoring function s, we denote by Fs,k(t) = P{s(X) ≤ t | Y = k} the
conditional cumulative distribution function(cdf in short) of the random variable s(X)
given Y = k, for 1 ≤ k ≤ K. When s = η, we shall denote the previous functions by F ∗k .
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The ROC graphic of s is the set of points

Mt = (Fs,1(t1)− Fs,1(t0), . . . , Fs,K(tK)− Fs,K(tK−1)) ,

where −∞ = t0 < t1 ≤ . . . ≤ tK−1 < tK = ∞. We have Fs,K(tK) = 1 and Fs,1(t0) = 0.
Denoting by I{E} the indicator function of any event E , observe also that the coordi-
nates of the point Mt coincides with the diagonal entries of the confusion matrix of the
classification rule defined by thresholding s(X) at the levels tk, 1 ≤ k < K:

Cs,t(X) =

K∑
k=1

k · I{tk−1 < s(X) ≤ tk}.

We have indeed P {Cs,t(X) = k | Y = k} = Fs,k(tk)−Fs,k(tk−1) for all k in {1, . . . , K}.
By convention, all possible discontinuities (due to possible jumps of the distributions
Fk) are connected by parts of affine hyperplanes. The ROC graphic is then a continuous
manifold of dimension K − 1, referred to as ”ROC manifold”. For notational simplicity,
we mainly restrict our attention to the case K = 3. However, the subsequent analysis
can be straightforwardly extended to the general K-partite situation. When K = 2, the
ROC manifold is a curve, image by the transform (α, β) ∈ [0, 1]2 7→ (1 − α, β) of the
graph of a nondecreasing càd-làg1 mapping α ∈ [0, 1] 7→ ROC1, 2(s, α), defined by

ROC1, 2(s, α) = 1− Fs,2 ◦ F−1
s,1 (1− α)

at points α such that Fs,1 ◦ F−1
s,1 (1 − α) = 1 − α, denoting by W−1(u) = inf{t ∈] −

∞, +∞] : W (t) ≥ u}, u ∈ [0, 1], the generalized inverse of any cdf W (t) on R. Equipped
with these notations, the ROC surface can be then viewed as the graph of a function
(α, γ) ∈ (0, 1)2 7→ ROCs(α, γ), where

ROCs(α, γ) =
(
Fs,2 ◦ F−1

s,3 (1− γ)− Fs,2 ◦ F−1
s,1 (α)

)
+
,

at points (α, γ) such that Fs,1 ◦ F−1
s,1 (α) = α and Fs,3 ◦ F−1

s,3 (1 − γ) = 1 − γ, with
u+ = max(u, 0) for any u ∈ R. Notice incidentally that, with the convention above,
the ROC surface of a piecewise constant scoring function is piecewise planar. As proved
in Clémençon et al. (2013), the ROC surface of S∗’s elements, ROC∗ say, dominates
everywhere that of any other scoring function s under Condition 2.1: ∀(α, γ) ∈ (0, 1)2,
ROCs(α, γ) ≤ ROC∗(α, γ). Refer to Clémençon et al. (2013) for further details (see
Theorem 1 therein), as well as a list of properties of ROC surfaces. In particular, recall
that ROC∗ is concave. In this case, just like the ROC curve in the bipartite situation, the
criterion ROCs provides a way of measuring ranking performance and induces a partial
preorder on the set of scoring functions. A scoring function s1 will be said better than
another one s2 when ROCs1(α, γ) ≥ ROCs2(α, γ) for all (α, γ) ∈ (0, 1)2. This functional

1Recall that, by definition, a càd-làg function h : [0, 1] → R is such that lims→t, s<t h(s) = h(t−) < ∞ for all

t ∈]0, 1] and lims→t, s>t h(s) = h(t) for all t ∈ [0, 1[. Its completed graph is obtained by connecting the points

(t, h(t−)) and (t, h(t)), when they are not equal, by a vertical line segment and thus forms a continuous curve.
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criterion can also be summarized by the Volume Under the ROC Surface

VUS(s)
def
=

∫ ∫
ROCs(α, γ)dαdγ.

It can be interpreted in a probabilistic fashion as the ”rate of concording 3-tuples”,
through the formula (see Scurfield (1996)):

VUS(s) = P{s(X1) < s(X2) < s(X3)}+
1

2
P{s(X1) = s(X2) < s(X3)}

+
1

2
P{s(X1) < s(X2) = s(X3)}+

1

6
P{s(X1) = s(X2) = s(X3)}, (1)

where X1, X2 and X3 denote independent r.v.’s defined on the same probability space
with respective distributions F1, F2 and F3. See Appendix A for the extension of formula
(1) to the general multipartite setup. Statistical versions of the ROC surface and of
the VUS criterion are obtained by replacing the class distributions by their empirical
counterparts. Eq. (1) extends the well-known formula related to the Area Under the
ROC curve:

AUC1,2(s) =

∫
ROC1, 2(s, α)dα = P{s(X1) < s(X2)}+

1

2
P{s(X1) = s(X2)}.

We may now rephrase the ranking task in a quantitative manner. The goal is to build,
from training data, a scoring function s whose ROC surface is ”as close as possible” to
ROC∗. In such a functional framework, various ways of measuring ”closeness” can be
considered of course. In particular, we focus here on the following important cases:

d∞(s, s∗) = sup
(α,γ)∈(0,1)2

|ROC∗(α, γ)− ROCs(α, γ)|,

d1(s, s∗) =

∫ ∫
|ROC∗(α, γ)− ROCs(α, γ)|dαdγ = VUS∗ −VUS(s),

where s∗ ∈ S∗ and VUS∗
def
= VUS(s∗). We point out that the quantities above do not rep-

resent distances between the scoring functions but distances between their ROC surfaces.
Whereas minimization of d1(s, s∗) is clearly equivalent to maximization of VUS(s), ob-
serve also that minimization of d∞(s, s∗) can hardly be cast as a M -estimation problem,
no empirical counterpart of the criterion to optimize being available.

2.3. Bipartite Ranking and the TreeRank Algorithm

In Clémençon and Vayatis (2009) (see also Clémençon et al. (2011)), a bipartite ranking
algorithm optimizing directly the ROC curve in a recursive manner, called TreeRank,
has been proposed and thoroughly studied. It produces an oriented partition of the
feature space X (defining thus a ranking, for which elements of a same cell being viewed
as ties). The process is described by a left-to-right oriented binary tree structure, termed
ranking tree, with fixed maximum depth J ≥ 0. At depth j ≤ J , there are 2j nodes,
indexed by (j, k) with 0 ≤ k < 2j . The root node represents the whole feature space
C0,0 = X and each internal node (j, k) with j < J and k ∈ {0, . . . , 2j−1} corresponds to
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a subset Cj,k ⊂ X , whose left and right siblings respectively depict disjoint subsets Cj+1,2k

and Cj+1,2k+1 such that Cj,k = Cj+1,2k∪Cj+1,2k+1. At the root, one starts with a constant
scoring function s1(x) = I{x ∈ C0,0} ≡ 1 and after m = 2j + k iterations, 0 ≤ k < 2j ,

the current scoring function is sm(x) =
∑2k−1

l=0 (m − l) · I{x ∈ Cj+1,l} +
∑2j−1

l=k (m − k −
l) · I{x ∈ Cj,l} and the cell Cj,k is split in order to form an updated version of the scoring

function, sm+1(x) =
∑2k

l=0(m− l) · I{x ∈ Cj+1,l}+
∑2j−1

l=k+1(m−k− l) · I{x ∈ Cj,l} namely,
with maximum (empirical) AUC. Therefore, it happens that this problem boils down to
solve a cost-sensitive binary classification problem on the set Cj,k, see subsection 3.3 in
Clémençon et al. (2011) for further details. Indeed, one may write the AUC increment
as

AUC1,2(sm+1)−AUC1,2(sm) =
1

2
F1(Cj,k)F2(Cj,k)(1− Λ1,2(Cj+1,2k | Cj,k)),

where

Λ1,2(Cj+1,2k | Cj,k)
def
= F2(Cj,k \ Cj+1,2k)/F2(Cj,k) + F1(Cj+1,2k)/F1(Cj,k).

Setting p = F2(Cj,k)/(F1(Cj,k) + F2(Cj,k)), the crucial point of the TreeRank approach
is that the quantity 2p(1−p)Λ1,2(Cj+1,2k | Cj,k) can be seen as the cost-sensitive error1 of
a classifier on Cj,k predicting label 2 on Cj+1,2k and label 1 on Cj,k\Cj+1,2k with cost p (re-
spectively, 1−p) assigned to the error consisting in predicting label 2 given Y = 1 (resp.,
label 1 given Y = 2), balancing thus the two types of error. Hence, at each iteration of
the ranking tree growing stage, the TreeRank algorithm calls a cost-sensitive binary
classification algorithm, termed LeafRank, in order to solve a statistical version of the
problem above (replacing the theoretical probabilities involved by their empirical coun-
terparts) and split Cj,k into Cj+1,2k and Cj+1,2k+1. As described at length in Clémençon
et al. (2011), one may use cost-sensitive versions of celebrated binary classification algo-
rithms such as CART or SVM for instance as LeafRank procedure, the performance
depending on their ability to capture the geometry of the level sets of the likelihood
ratio dF2/dF1(x). The procedure is depicted in Fig. 1. In general, the growing stage is
followed by a pruning procedure, where children of a same parent node are recursively
merged in order to produce a ranking subtree that maximizes an estimate of the AUC
criterion, based on cross-validation usually (cf section 4 in Clémençon et al. (2011)).
Under adequate assumptions, consistency results and rate bounds for the TreeRank
approach (in the sup norm sense and for the AUC deficit both at the same time) are
established in Clémençon and Vayatis (2009) and Clémençon et al. (2011), an extensive
experimental study can be found in Clémençon et al. (2012).

2.4. Multipartite Ranking Algorithms

In contrast to the bipartite situation (see Clémençon and Vayatis (2010), Clémençon
and Vayatis (2009)), no algorithm optimizing the ROC surface directly and producing a
scoring function ŝn for which d∞(ŝn, s

∗)→ 0 in probability has been documented in the

1Let (X′, Y ′) be a random pair, where Y ′ takes binary values, in {1, 2} say, andX′ models some information valued

in a space X ′, hopefully useful to predict the label Y ′. A classifier is any measurable mapping g : X ′ → {1, 2}.
Let p′ = P{Y = 2}. Given a cost ω ∈ [0, 1], the cost-sensitive error of g is Lω(g)

def
= 2p′(1− ω)P{g(X′) = 1 | Y =

2}+ 2(1− p′)ωP{g(X′) = 2 | Y = 1}. The quantity L1/2(g) is generally referred to as the error of classifier g.
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Ranking Tree Split produced by LeafRank

Figure 1. Ranking Tree with LeafRank splits built through a cost-sensitive version of the CART
algorithm with a local cost depending on the rate of ”positive” instances within the node to be
split

literature. Beyond theoretical results guaranteeing the validity of empirical maximiza-
tion of the VUS criterion (see Rajaram and Agarwal (2005)), most methods proposed
rely on the optimization of an alternative (pairwise) criterion (Freund et al. (2003) and
Pahikkala et al. (2007)), or on the decomposition of the original multipartite problem into
bipartite subproblems combined with a final aggregation/consensus stage (Hüllermeier
et al. (2008) and Clémençon et al. (2013)) or still on plug-in approaches based on ordinal
regression (Waegeman et al. (2008)). In addition, it is far from straightforward to extend
the TreeRank algorithm recalled above because, when K ≥ 3, as a straightforward
computation based on Eq. (1) may show, the splitting step cannot be interpreted as a
learning problem which can be solved by means of off-the-shelf techniques, unlike the
bipartite case. Indeed, taking s(x) = I{x ∈ C} for some measurable set C ⊂ X , we have

VUS(s) = F3(C)(1− F1(C))/2 + (1− F1(C))(1− F2(C))(1− F3(C))/6

+ F1(C)F2(C)F3(C)/6. (2)

It is the goal of this paper to propose an alternative, letting splitting rule candidates,
corresponding to solutions of different bipartite subproblems, compete for VUS maxi-
mization in a tournament.
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3. The TreeRank Tournament Algorithm

We now describe the algorithm we propose to solve the multipartite ranking problem. We
place ourselves in the tripartite case for notational simplicity, but extension to the general
multipartite setting is straightforward, cf Appendix A. The algorithm is implemented
from a training dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} and recursively calls a cost-
sensitive binary classification algorithm L (e.g. SVM, CART, Random Forest, k-NN),
referred to as LeafRank. When ran on a set C ⊂ X , we denote by L(C) the collection
of subsets of C over which algorithm L performs optimization. For 1 ≤ k ≤ 3, set nk =∑n

i=1 I{Yi = k} and define, for any measurable set C ⊂ X , F̂k(C) = (1/nk)
∑n

i=1 I{Xi ∈
C, Yi = k}, and, for any measurable subset C′ ⊂ C with 1 ≤ k < l ≤ 3,

Λ̂k,l(C′ | C) = F̂l(C′)/F̂l(C) + F̂k(C \ C′)/F̂k(C).

As already pointed out in subsection 2.3, the quantity above can be seen as proportional
to the empirical cost-sensitive error of a binary classifier on the restricted input space
C which predicts label l on C′ and label k on C \ C′ with cost F̂l(C)/(F̂k(C) + F̂l(C))
(respectively, F̂k(C)/(F̂k(C)+ F̂l(C))) assigned to the error consisting in predicting label l
while the true label is k (resp., label k, while the true label is l), based on the data of the
original sample Dn lying in the set C with label k or l. We also introduce the quantity:

V̂USC(C′) = F̂3(C′)(F̂1(C)− F̂1(C′))/2 + F̂1(C′)F̂2(C′)F̂3(C′)/6

+ (F̂1(C)− F̂1(C′))(F̂2(C)− F̂2(C′))(F̂3(C)− F̂3(C′))/6,

which corresponds to the empirical VUS increase resulting from splitting the cell C into
left and right siblings C′ and C \ C′, cf Eq. (2).

A straightforward variant of the TreeRank Tournament algorithm could consist
in running additionally the LeafRank algorithm for local cost-sensitive classification
problems related to the pair of labels (1, 3) and thus enlarging the set of competitors
(”extended tournament”). This would however increase the amount of computations
performed. In addition, just like for TreeRank algorithm in the bipartite context (see
Clémençon et al. (2011)) and for most other recursive partitioning methods, the ranking
tree growing procedure can be followed by a pruning stage, where children of a same
parent node can be merged recursively in order to maximize a (cross-validation based)
estimate of the VUS criterion. Bootstrap aggregating techniques relying on concepts
pertaining to the ranking consensus theory and randomization could also be considered
to design committee based multipartite ranking rules, possibly improving over single
ranking trees, as in Clémençon et al. (2013). Model selection analysis and aggregation
are however beyond the scope of the present article and will be dealt with in a future
work.

We also highlight the advantage of the TreeRank Tournament algorithm regarding
missing data: they can be handled in a straightforward fashion by assigning to a partially
observed instance x the empirical mean of each unobserved component within the cell
where it currently lies in the training stage or for prediction. Another advantage of
decision trees lies in their interpretability. Indeed, a ranking tree may be easily visualized
in two dimensions, see Fig. 1 and the related scoring function may be described through a
chain of simple rules. When designing medical diagnosis supporting tools or credit-scoring
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TreeRank Tournament

(1) (Input.) Training sample Dn, LeafRank algorithm L, ranking tree depth
J .

(2) (Initialization.) Set C0,0 = X and s0(x) ≡ 1.

(3) (Iterations.) For m = 1, . . . , 2J , define j = 〈logm/ log 2〉 and l = m−2j ,
and then

a) (LeafRank runs.) For all k ∈ {1, 2}, run algorithm L in order to
output

C̃(k) = arg max
C∈L(Cj,l)

Λ̂k,k+1(C | Cj,l).

b) (Tournament.) Compute

Cj+1,2l = arg max
C̃(k), k=1, 2

V̂USCd,l(C̃(k)),

and set Cj+1,2l+1 = Cj,l \ Cj+1,2l.

(4) (Output.) Compute the piecewise constant scoring function :

s2J (x) =
2J−1∑
l=0

(2J − l) · I{x ∈ CJ,l}.

rules in banking for instance, it is essential to interpret the score s(x) and determine which
attributes contribute the most to its variation. Possible monitoring tools (e.g. variable
importance, partial dependence plots) can be immediately deduced from those discussed
in section 5 of Clémençon et al. (2011) in the bipartite case, replacing the AUC criterion
by the VUS criterion.

Before providing theoretical guarantees for the TreeRank Tournament algorithm
of the form of rate bounds for di(s2J , s∗) with i ∈ {1, ∞}, we shall now analyze an
adaptive piecewise linear approximation scheme to recover the optimal ROC surface with
a controlled error rate, which is somehow mimicked by the learning algorithm above.

4. Adaptive Piecewise Planar Approximation of ROC∗

This section is dedicated to the analysis of an adaptive approximation scheme of the
optimal ROC surface, which outputs a piecewise planar approximate of ROC∗ that is
itself the ROC surface of a piecewise constant scoring function. In order to describe it at
length, further notations are required.

4.1. Further Notations and Preliminaries

Let P = (Cj)1≤j≤N be an ordered partition of the input space X counting N ≥ 1 cells.
The adjective ordered means here that, for any 1 ≤ i ≤ j ≤ N , instances lying in Ci are
expected to have higher labels than those in Cj , in a way that P is related to the scoring
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function

SP(x) =

N∑
i=1

(N − i+ 1) · I{x ∈ Ci}.

We point out that in the tripartite case, SP ’s ROC surface is piecewise planar with N2

pieces. More precisely, it is the polytope that connects the points1−
i∑
l=1

F1(Cl),
i∑

l=j+1

F2(Cl),
j∑
l=1

F3(Cl)

 ,

where 0 ≤ j ≤ i ≤ N , with the convention that empty summation equals zero. In
order to provide a closed analytical form for the latter, set αj = 1 − F1(∪jl=1Cl) and

γj = F3(∪jl=1Cl) for j = 1, . . . , N and 1 − α0 = αN+1 = γ0 = 1 − γN+1 = 0 by
convention. Set also

φ(α, α′, α′′) =
α− α′

α′′ − α′
I{α ∈ [α′;α′′]}

for all α′ ≤ α ≤ α′′ and consider the hat functions defined by

φi(α) = φ(α, αi−1, αi)− φ(α, αi, αi+1),

ϕj(γ) = φ(γ, γj−1, γj)− φ(γ, γj , γj+1),

as well as the tensorial products Φi,j(α, γ) = φi(α)ϕj(γ) for 1 ≤ i, j ≤ N , which are the
basis functions used in the Finite Element Method to approximate real valued functions
defined on [0, 1]2. Equipped with these notations, the ROC surface of SP can be written
as

ROCSP (α, γ) =
∑

1≤j≤i≤N
F2

 i⋃
l=1+j

Cl

Φi,j(α, γ). (3)

4.2. An Implicit Tree-Structured Recursive Interpolation Scheme

Here, we describe a recursive approximation scheme to build a piecewise constant scoring
function S∗P∗ whose ROC surface can be viewed as a piecewise planar interpolant of
ROC∗, corresponding to a mesh grid adaptively chosen. As shall be seen below, the
related oriented partition P∗ can be represented by means of a left-to-right oriented
binary tree structure {C∗j,l : j ≤ J, l = 0, . . . , 2j − 1} and its cells coincide with certain

bilevel sets of the regression function η(x). In addition, as shall be seen below, the distance
(in sup-norm) between ROCS∗P∗

and ROC∗ can be bounded as a function of the number
of iterations (i.e. of the number of cells of P∗) under the following assumptions.

Assumption 4.1: The class distributions F1, F2 and F3 are equivalent and the likelihood
ratios Φ2,1,Φ3,1,Φ3,2 are bounded.
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Assumption 4.2: The distribution of η(X) is absolutely continuous with respect to
Lebesgue measure. Let F ∗k (x) and F ∗k (dx) = f∗k (x)dx be the conditional cdf and df of
η(X) given Y = k, with 1 ≤ k ≤ 3.

In particular, these hypotheses guarantee that the optimal ROC surface exhibits a
minimum amount of smoothness, as stated in the proposition below.

Proposition 4.3: Under Condition 2.1, Assumptions 4.1 and 4.2, the mapping
(α, γ) ∈ [0, 1]2 7→ ROC∗(α, γ) is differentiable. On the set I∗ = {(α, γ) ∈ [0, 1]2 :
F ∗2 ◦ F

∗−1
3 (1− γ) ≥ F ∗2 ◦ F

∗−1
1 (α)}, the first partial derivatives of ROC∗ are given by:

∂

∂α
ROC∗(α, γ) = −f

∗
2

f∗1
(F ∗−1

1 (α)),
∂

∂γ
ROC∗(α, γ) = −f

∗
2

f∗3
(F ∗−1

1 (1− γ)).

They are equal to zero on the complementary set [0, 1]2 \ I∗.

The subsequent analysis actually actually requires that a slightly stronger smoothness
assumption holds true.

Assumption 4.4: The mapping ROC∗ is twice differentiable with bounded second
derivatives given by: ∀(α, γ) ∈ I∗,

∂2

∂α2
ROC∗(α, γ) = −f

′∗
2 f
∗
1 − f∗2 f

′∗
1

f∗31

(F ∗−1
1 (α)),

∂2

∂γ2
ROC∗(α, γ) =

f
′∗
2 f
∗
3 − f∗2 f

′∗
3

f∗33

(F ∗−1
3 (1− γ)).

We now describe at length the approximation scheme.
Initialization. We set C∗0,0 = X , s∗1(x) ≡ 1 and 1 = α∗0,0 = 1− α∗0,1 = 1− γ∗0,0 = γ∗0,1 =
1− β∗0,0 = β∗0,1. Observe that F1(C∗0,0) = α∗0,0−α∗0,1, F2(C∗0,0) = β∗0,1− β∗0,0 and F3(C∗0,0) =
γ∗0,1−γ∗0,0. In the αγβ system of coordinates, the initial approximant of the surface ROC∗

is the planar piece connecting (1, 0, 0) = (α∗0,0, γ
∗
0,0, β

∗
0,0), (0, 1, 0) = (α∗0,1, γ

∗
0,1, β

∗
0,0) and

(0, 0, 1) = (α∗0,1, γ
∗
0,0, β

∗
0,1). It is the surface {(α, γ, R̃OC

∗
1(α, γ)) : (α, γ) ∈ [0, 1]2} with

R̃OC
∗
1(α, γ) = 1− α− γ.

Iterations. For j = 0, . . . , J − 1 and for k = 0, . . . , 2j − 1:

• Updates. Set α∗j+1,2k = α∗j,k, α
∗
j+1,2k+2 = α∗j,k+1, γ∗j+1,2k = γ∗j,k and γ∗j+1,2k+2 = γ∗j,k+1,

β∗j+1,2k = β∗j,k and β∗j+1,2k+2 = β∗j,k+1.

• Breakpoint candidates. Considering the curve formed by the intersection between
the current approximant of ROC∗ and the facet ”γ = 0”, define the point of coordinate

α
(1)
j+1,2k+1 = ROC

′∗−1
1,2

(
β∗j,k+1 − β∗j,k
α∗j,k − α∗j,k+1

)

on the α axis. This corresponds to the largest increase of the area under the
curve when adding a breakpoint between α∗j,k and α∗j,k+1, see Proposition 11 in
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Clémençon and Vayatis (2009). Incidentally, the resulting broken line is also opti-

mal in the sup norm sense. Observe also that α
(1)
j+1,2k+1 = α∗j+1,2k − F1(C(1)

j+1,2k),

where C(1)
j+1,2k = arg maxC⊂Cj,k Λ1,2(C | Cj,k). In addition, we have C(1)

j+1,2k =

{x ∈ X : F−1
Φ1,2,1

(αj+1,2k+1) < Φ1,2(x) ≤ F−1
Φ1,2,1

(αj+1,2k)}, where F−1
Φ1,2,1

(α) de-

notes the quantile of order α of Φ1,2(X)’s conditional distribution given Y = 1.

We also set β
(1)
j+1,2k+1 = β∗j+1,2k + F2(C(1)

j+1,2k) = ROC∗1,2(1 − α
(1)
j+1,2k+1) and

γ
(1)
j+1,2k+1 = γ∗j+1,2k + F3(C(1)

j+1,2k) = ROC∗1,3(1− α(1)
j+1,2k+1).

In the same fashion, considering the curve formed by the intersection between the current
approximate of ROC∗ and the facet ”α = 0”, define the point of coordinate

γ
(2)
j+1,2k+1 = ROC

′∗−1
2,3

(
γ∗j,k+1 − γ∗j,k
β∗j,k+1 − β∗j,k

)

on the γ axis. This corresponds to the largest increase of the area un-
der the curve when adding a breakpoint between γ∗j,k and γ∗j,k+1. We have

γ
(2)
j+1,2k+1 = γ∗j+1,2k + F3(C(2)

j+1,2k), where C(2)
j+1,2k = arg maxC⊂Cj,k Λ2,3(C | Cj,k). In

addition, we have C(2)
j+1,2k = {x ∈ X : F−1

Φ2,3,3
(γj+1,2k+1) < Φ2,3(x) ≤ F−1

Φ2,3,1
(γj+1,2k)},

where F−1
Φ2,3,3

(γ) denotes the quantile of order γ of Φ2,3(X)’s conditional distribution

given Y = 3. We also set α
(2)
j+1,2k+1 = α∗j+1,2k −F1(C(2)

j+1,2k) = 1−ROC∗3,1(γ
(2)
j+1,2k+1) and

β
(2)
j+1,2k+1 = β∗j+1,2k + F2(C(2)

j+1,2k) = ROC∗3,2(γ
(2)
j+1,2k+1).

• Tournament. For l ∈ {1, 2}, compute the quantity

VUSC∗j,k(C(l)
j+1,2k) = F3(C(l)

j+1,2k)(F1(C∗j,k)− F1(C(l)
j+1,2k))/2

+ F1(C(l)
j+1,2k)F2(C(l)

j+1,2k)F3(C(l)
j+1,2k)/6

+ (F1(C∗j,k)− F1(C(l)
j+1,2k))(F2(C∗j,k)− F2(C(l)

j+1,2k))(F3(C∗j,k)− F3(C(l)
j+1,2k))/6

= (γ
(l)
j+1,2k+1 − γ

∗
j+1,2k)(α

(l)
j+1,2k+1 − α

∗
j+1,2k+2)/2

+ (α∗j+1,2k − α
(l)
j+1,2k+1)(β

(l)
j+1,2k+1 − β

∗
j+1,2k)(γ

(l)
j+1,2k+1 − γ

∗
j+1,2k)/6

+ (−α∗j+1,2k+2 + α
(l)
j+1,2k+1)(−β(l)

j+1,2k+1 + β∗j+1,2k+2)(−γ(l)
j+1,2k+1 + γ∗j+1,2k+2)/6.

Then, determine

l∗ = arg max
l=1, 2

VUSC∗j,k(C(l)
j+1,2k)

and set C∗j+1,2k = C(l∗)
j+1,2k and C∗j+1,2k+1 = C∗j,k \ C

(l∗)
j+1,2k. Fig. 2 below depicts this

step of the approximation scheme. In addition, define α∗j+1,2k+1 = α∗j+1,2k − F1(C∗j+1,2k),

β∗j+1,2k+1 = β∗j+1,2k + F2(C∗j+1,2k) and γ∗j+1,2k+1 = γ∗j+1,2k + F3(C∗j+1,2k).
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Figure 2. Tournament selection of the ”best” breakpoint

Output. Compute the approximate given by: ∀(α, γ) ∈ [0, 1]2,

R̃OC
∗
J(α, γ) =

∑
1≤l≤i≤2J−1

(
β∗J,i − β∗J,l

)
Φ∗i,l(α, γ),

where, for 1 ≤ i, l ≤ 2J − 1, we have set Φi,l(α, γ) = φ∗i (α)ϕ∗l (γ) with φ∗i (α) =
φ(α, α∗J,i−1, α

∗
J,i) − φ(α, α∗J,i, α

∗
J,i+1) and ϕl(γ) = φ(γ, γ∗J,l−1, γ

∗
J,l) − φ(γ, γ∗J,l, γ

∗
J,l+1). Ob-

serve that it is the ROC surface of the scoring function:

s∗2J (x) =
2J−1∑
l=0

(2J − l) · I{x ∈ C∗J,l}.

Indeed, we have: R̃OC
∗
J(α, γ) = ROCs∗J (α, γ) for all (α, γ) ∈ [0, 1]2.

It is noteworthy that the interpolant of the optimal ROC surface produced by the algo-
rithm above is itself a (concave) ROC surface. Obviously, this is not the case in general,
cf Eq. (3) above. This strikingly differs from the bipartite case, where any interpolant
of the optimal ROC curve is the ROC curve of a piecewise constant scoring function,
constant on certain bilevel sets of the likelihood ratio related to the class distributions,
see subsection 3.1 in Clémençon and Vayatis (2010).

The following result provides guarantees for the approximation scheme described above.

Proposition 4.5: Under Condition 2.1, Assumptions 4.1, 4.2 and 4.4, there exists a
constant C < +∞ such that:

∀J ≥ 1, d∞(s∗, s∗2J ) ≤ C × 2−2J .
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Now, the TreeRank Tournament algorithm can be clearly viewed as a statistical
version of the interpolation scheme above. It will mimic it well, provided that each
tournament yields a splitting rule closed to that based on the true VUS increment. This
is the key to establish the rate bounds displayed in the next section.

5. Main results

It is the goal of this section to display results of statistical and empirical nature, so
that the TreeRank Tournament algorithm can be grounded in a strong validity
framework. Beyond an analysis of its generalization ability, numerical experiments have
been carried out in order to compare the performance of the method proposed to that
of alternative techniques documented in the literature.

5.1. Learning rate bounds

The following noise assumption, used in Clémençon et al. (2013) and generalizing that
introduced in Clémençon et al. (2008) in the bipartite setup, shall be involved in the
analysis.

Assumption 5.1: For k ∈ {1, 2}, the (pairwise) posterior probability given by
ηk+1(X)/(ηk(X) + ηk+1(X)) is a continuous random variable and there exist c < ∞
and a ∈ (0, 1) such that

∀x ∈ X , E

[∣∣∣∣ ηk+1(X)

ηk+1(X) + ηk(X)
− ηk+1(x)

ηk+1(x) + ηk(x)

∣∣∣∣−a
]
≤ c . (4)

As revealed by the theorem below, equipped with this additional hypothesis, one may
connect the performance of the splitting rule winner of the empirical tournament to that
of the winner of the tournament based on the true VUS increment. The result is then
established by following line by line the argument of Theorem 15 in Clémençon and
Vayatis (2009), see the sketch of proof given in the Appendix section.

Theorem 5.2 : Assume that Condition 2.1, Assumptions 4.1, 4.2, 4.4 and 5.1 hold.
Suppose that the class L(X ) of subsets candidates is of finite VC dimension V , contains
all level sets {x ∈ X : η(x) ≥ t}, t ∈ R, of the regression function (or of optimal scoring
functions equivalently) and that L(X ) ∩ C = L(C) for all C ∈ L(X ). Then, there exists a
constant c0 and universal constants c1 and c2 such that, for all δ > 0, with probability at
least 1− δ, we have: for all J ≥ 1 and n ≥ 1,

d1(s2J , s∗2J ) ≤ cJ0
{(
c2

1V/n
) aJ

2(1+a)J +
(
c2

2 log(1/δ)/n
) aJ

2(1+a)J

}
.

Combined with Proposition 4.5, the result stated above provides rate bounds in the
ROC space. Naturally, because of the hierarchical structure of the oriented partition pro-
duced by the TreeRank Tournament algorithm, slow rate bounds were expected. We
point out however that the bounds exhibited hold true under very general assumptions
and correspond to confidence regions in sup norm (analogous results in terms of VUS
immediately follow).
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5.2. Experimental results

We now investigate the numerical performance of the TreeRank Tournament algo-
rithm (referred to as ”TRT” in the tables below), on toy and real datasets.

Here, the LeafRank procedure is a locally weighted version of the algorithm
CART. Routines of the R package available at http://treerank.sourceforge.net, are
used to implement TreeRank Tournament (with ”default” parameters minsplit= 1
, maxdepth= 4). For comparison purpose, we also ran ranking algorithms, stand-
ing as natural competitors: RankBoost (when aggregating 30 stumps, see Rudin
et al. (2005), called ”RBpw”) and SVMRank (with linear and Gaussian kernels
with respective parameters C = 20 and (C, γ) = (0.01), see Herbrich et al. (2000),
called respectively ”SVMl” and ”SVMg”), using the SVM-light implementation
available at http://svmlight.joachims.org/. We have also used the RankRLS method
(http://www.tucs.fi/RLScore, see Pahikkala et al. (2007), called respectively ”RLSl”
and ”RLSg”) that implements a regularized least square algorithm with linear kernel
(”bias = 1”) and with Gaussian kernel (γ = 0.01), selection of the intercept on a grid
being performed through a leave-one-out procedure.

Mixtures of Gaussian distributions. Consider Z a q-dimensional random vec-
tor from a Gaussian distribution drawn N (µ,Γ), and a Borelian set C ⊂ Rq. We denote
by NC(µ,Γ) the conditional distribution of Z given Z ∈ C. Equipped with this notation,
we can write the class distributions used in this example as:

φ1(x) = N[0,1]2

((
0
0

)
,

(
1/4 0
0 1/4

))
φ2(x) = N[0,1]2

((
1/2
1/2

)
,

(
1/4 0
0 1/4

))
φ3(x) = N[0,1]2

((
1
1

)
,

(
1/4 0
0 1/4

))
When p1 = p2 = p3 = 1/3, the regression function is then an increasing transform of
(x1, x2) ∈ [0, 1]2 7→ x1 + x2, given by:

η(x) =
2.79 · e−(x1+x2)2 + 2 · 1.37 · e−(x1+x2−1)2 + 3 · 2.79 · e−(x1+x2−2)2

2.79 · e−(x1+x2)2 + 1.37 · exp−(x1+x2−1)2 +2.79 · e−(x1+x2−2)2
.

For this distribution we choose n = 3000 as the size of a dataset and a simulated dataset
is plotted in Fig. 3a, while some level sets of the regression function are represented in 3b.

Mixture of uniform distributions. We consider a mixture of uniform distri-
butions on the unit square[0, 1]2, divided into 9 equal parts. The optimal ordering is
depicted in Fig. 5.2 b. Table 5.2 displays the values of the regression function η(x)
and those of the functions η2(x)/(η1(x) + η2(x)) and η3(x)/(η3(x) + η2(x)) (increasing
transforms of Φ12(x) and Φ23(x) respectively) on each of the nine cells, showing that
Condition 2.1 is fulfilled. In this case, the size of a dataset is n = 10000 .

For each one off the distribution, we simulated 50 training samples of size n and
a test set of size n. Ranking algorithms have been ran on each training set and the
empirical VUS of the resulting scoring rule has been computed on the test set. We
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a. Pooled sample: red circles represent instances with label
”1”, green diamonds those with label ”2” and blue stars

those with label ”3”

b. Optimal level sets.

Figure 3. First example - Mixture of Gaussian distributions

φ∗1,2 φ∗2,3

0.00001 0
0.4000 0
0.8000 0.6000
1.0000 0.8000
1.2500 1.0000
2.5000 1.0000
5.0000 1.6667
∞ 2.5000
∞ 1000

Table 1. Likelihood ra-
tios Figure 4. Optimal scoring function s∗

Dataset TRT RBpw SVMl SVMg RLSl RLSg

VUS 0.4326 0.4238 0.4334 0.4328 0.4337 0.4330
σ̂ 0.0073 0.0069 0.0012 0.0036 0.0015 0.0029

Table 2. VUS test (optimal VUS∗ = 0.4342)

also calculated the empirical standard deviation over the 50 test ROC surfaces. The
results are summarized in Tables 2 and 3. For the gaussian mixture, the TreeRank
Tournament is as efficient as the kernels procedures whereas the shape of the level-
sets is more difficult to catch with its tree-based structure. For the uniform mixture, the
TreeRank Tournament outperforms all the competitors and attains a performance
close to the optimal one.

Real datasets. We also applied the TreeRank Tournament algorithm on real data,
the Cardiotocography Data Set considered in Frank and Asuncion (2010) namely: 2126
fetal cardiotocograms (CTG’s in abbreviated form) have been automatically processed
and the respective diagnostic features measured. The CTG’s have been next analyzed by
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Dataset TRT RBpw SVMl SVMg RLSl RLSg

VUS 0.5783 0.2984 0.2972 0.3472 0.2969 0.4552
σ̂ 0.0102 0.0035 0.0004 0.0708 0.0002 0.0018

Table 3. VUS test (optimal VUS∗ = 0.5926)

Name sample size features space dimension number of classes

Cardio 2126 20 3
ERA 1-9 1000 4 9
ERA 1-7 951 4 7
ESL 3-7 451 4 9
LEV 0-4 1000 4 5
LEV 0-3 973 4 4
SWD 2-5 1000 10 4
SWD 3-5 978 10 3
MQ2007 69623 46 3
MQ2008 15211 46 3

Table 4. Description of the real datasets

three expert obstetricians and a consensus ordinal label has been then assigned to each of
them, depending on the degree of anomaly observed: 1 for ”normal”, 2 for ”suspect” and
3 for ”pathologic”. We also carried out experiments based on four datasets with ordinal
labels (ERA, ESL, LEV and SWD namely), considered in David (2008). Because of the
wide disparity between some class sizes, data with certain labels are ignored (in the ESL
dataset for instance, the class ”1” counts only two observations).

In addition, we considered the LETOR benchmark datasets, available at
research.microsoft.com/en-us/um/people/letor/. More specifically, we used the
two query sets MQ2007 and MQ2008, where pairs ”page-query” assigned to a discrete
label ranging from 0 to 2 (i.e. ”non-relevant” - ”relevant” - ”extremely relevant”) are
gathered. In both datasets, 46 features are collected, over 69 623 instances in MQ2007
and over 15 211 instances in MQ2008. In these experiments, an estimate of the VUS
has been computed through 5 replications of a five-fold cross validation procedure, the
results (mean and standard error) are reported in Tables 5. Certain algorithms could not
be ran on such datasets, the corresponding programs crashing because of computational
difficulties. In this case, ”–” is reported in the table. The TreeRank Tournament per-
forms slightly better than its competitors on the LETOR datasets and far outperforms
them on the Cardiotocography dataset. Whereas the TreeRank Tournament approach
involves estimation of ROC surfaces, most of its competitors require to estimate the
regression function. Due to the curse of dimensionality, one may naturally expect that
the TreeRank Tournament method performs better (respectively, worse) than regression-
based techniques when the number of labels (namely, the dimension of the ROC manifold
minus one) is small (respectively large) compared to the dimension of the feature space.
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Dataset TRT RBpw SVMl SVMg RLSl RLSg

Cardio 0.8569 0.7165 0.4450 0.2791 0.7788 0.6205
ERA 1-9 0.0023 0.0029 0.0034 0.0020 0.0034 0.0029
ERA 1-7 0.0074 0.0082 0.0088 0.0088 0.0090 0.0080
ESL 3-7 0.6412 0.5745 0.6337 0.6074 0.6387 0.6342
LEV 0-4 0.3003 0.2884 0.3124 0.2847 0.3122 0.3215
LEV 0-3 0.4819 0.4842 0.4968 0.4870 0.4983 0.4954
SWD 2-5 0.4029 0.3304 0.3278 0.3612 0.3316 0.3680
SWD 3-5 0.5674 0.5619 0.5493 0.5599 0.5483 0.5616
MQ2008 0.4115 0.4084 0.4113 – 0.4073 –
MQ2007 0.3172 – 0.2971 – 0.3071 –

Table 5. Comparison of the V̂US

6. Conclusion

To the best of our knowledge, the present paper is the first to propose a multipar-
tite ranking algorithm that aims at optimizing directly the ROC manifold/surface. As
soon as the number K of labels exceeds 3, the challenge arises from the impossibility
of interpreting the summary VUS criterion as a cost-sensitive error and multi-class clas-
sification algorithms cannot be readily used to optimize local versions of the VUS, in
contrast to the bipartite situation. Another difference with the case K = 2 lies in the
fact that piecewise affine interpolants of the optimal ROC surface are not ROC sur-
faces in general, making the design of learning algorithms for ROC surface optimization
mimicking adaptive approximation schemes very challenging. However, this is precisely
what the TreeRank Tournament algorithm introduced in this article achieves: the
”Tournament” stage involved in the recursive step of the algorithm permits to extend
all the desirable features of the bipartite TreeRank algorithm originally proposed in
Clémençon and Vayatis (2009). Beyond theoretical statistical guarantees of the form of
rate bounds, the relevance of the TreeRank Tournament algorithm is supported by
strong empirical results, displayed here.

Appendix A. VUS formula in the general case

Let K ≥ 2 and consider independent random variables X1, . . . , XK defined on the same
probability space, taking their values in the same space X and drawn from distributions
F1, . . . , FK fulfilling Assumption 1. Consider a scoring function s : X → R. For any
k ∈ {1, . . . , K − 1}, set Ek(0) = {s(Xk) < s(Xk+1)} and Ek(1) = {s(Xk) = s(Xk+1)}.
The volume of its ROC manifold is given by:

VUS(s) =
∑

u∈{0, 1}K−1

P{E1(u1) ∩ · · · ∩ EK−1(uK−1)}
Du

, (A1)

whereDu = (1+(τ1−2)I{τ1 > 1})×
∏Ku

j=2(τj−τj−1−1)×(1+(K−2−τKu
)I{τKu

< K−1}),
Ku = K − 1 −

∑K−1
k=1 uk, τ1 = inf{k ≥ 1 : uk = 0} and τj = inf{k > τj−1 : uk = 0}
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for 1 < j ≤ Ku. The TreeRank Tournament algorithm can be straightforwardly
extended to the general K-partite ranking setup, considering a tournament between
K − 1 (or K(K − 1)/2) splitting rule candidates based on the empirical counterpart of
(A1).

Appendix B. Technical proofs

Proof of Proposition 4.3

Let ∆J = max0≤k<2J{α∗J,k − α∗J,k+1, γ
∗
J,k+1 − γ∗J,k}. We have:

||ROC∗(., .)− ROC(s∗2J , ., .)||∞ ≤ −
∆2
J

8

{
inf

(α,γ)

∂2

∂2α
ROC∗(α, γ) + inf

(α,γ)

∂2

∂2γ
ROC∗(α, γ)

}
.

It thus suffices to establish that ∆J ≤ C2−J for some constant C > 0. This can be easily
established by induction, based on the next lemma. Details are left to the reader.

Lemma B.1: Let f : [0, 1] → [0, 1] be a twice differentiable, decreasing and concave
function such that m1 ≤ f ′ ≤M1 < 0 and m2 ≤ f” ≤M2 < 0.

(i) Let x0 < x1 and define x∗ such that f ′(x∗) = (f(x1) − f(x0))/(x1 − x0). For
C2 = 1−M2/2m2, we have:

max{x0 − x∗|, |x1 − x∗|} ≤ C2|x1 − x0|.

(ii) Let x0 < x′ < x1 such that max{|x0 − x′|, |x1 − x′|} ≤ C|x1 − x0| with C < 1. For
C1 = 1− (1− C)M1/m1, we have:

max
{
|f(x0)− f(x′)|, |f(x1)− f(x′)|

}
≤ C1|f(x1)− f(x0)|.

Proof of Theorem 5.2 (Sketch of)

We shall prove that, for all δ ∈ (0, 1), we have with probability at least 1 − δ: ∀(j, l) ∈
{1, . . . , J} × {0, . . . , 2J−1 − 1},

E
[
I{X ∈ C∗j,2l∆Cj,2l}

]
≤ C ×B

(
(1 + a)j/aj , n, δ

)
, (B1)

for some constant C < +∞, where B(d, n, δ) = (c2
1V/n)1/(2d) + (c2

2 log(1/δ)/n)1/(2d) and
∆ denotes the symmetric difference. We start with considering the first iteration. By
symmetry, we can assume that C1,0 = C̃(1). Using Lemma 19 in Clémençon and Vayatis
(2009), we have, with probability 1−δ: AUC1,2(s∗1)−AUC1,2(s1) ≤ κ1B(1, n, δ) for some
constant κ1 < +∞. By virtue of Lemma 1 in Clémençon et al. (2011), we have

0 ≤ AUC2,3(s∗2)−AUC2,3(s2) ≤ p3p2/(2(p3 + p2)) · E[I{X ∈ C1,0∆C∗1,0}].

Combining Assumption 5.1 with Hölder inequality, we get that

E
[
I{X ∈ C1,0∆C∗1,0}

]
≤
(

2(p1 + p2)

p1p2
AUC1,2(s∗2)−AUC1,2(s2)

) a

1+a

× c
1

1+a .
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Finally, since

|VUS(s∗2)−VUS(s2)| ≤ |AUC1,2(s∗2)−AUC1,2(s2)|+ |AUC2,3(s∗2)−AUC2,3(s2)|

(cf Theorem 2 in Clémençon et al. (2013)), we have with probability 1− δ,

|VUS(s∗2)−VUS(s2)| ≤ C · B((1 + a)/a,n, δ).

Now let j > 1 be fixed and suppose that the bound (B1) holds for l ≤ j − 1. We have

VUS(s∗2j)−VUS(s2j) ≤ |AUC1,2(s∗2j)−AUC1,2(s2j)|+ |AUC2,3(s∗2j)−AUC2,3(s2j)|.

Using the bound established in Clémençon and Vayatis (2009) (see Theorem 15’s proof
therein), we have

2|AUC1,2(s∗2j )−AUC1,2(s2j )| ≤
2j−1−1∑
l=1

{|F1(C∗j−1,l)F2(C∗j−1,l)Λ1,2(C∗j,2l | C∗j−1,l)

− F1(Cj−1,l)F2(Cj−1,l)Λ1,2(Cj,2l | Cj−1,l)|}.

By symmetry, we suppose that the winner of the (2j−1 + l)-th tournament is Cj,2l =

arg maxC∈Cj−1,l
Λ̃1,2(C|Cj−1,l), i.e. the solution of the subproblem 1 vs 2. We introduce

the set C̄j,2l = arg maxC⊂Cj−1,l
Λ1,2(C | Cj−1,l)|. We have

|F1(C∗j−1,l)F2(C∗j−1,l)Λ1,2(C∗j,2l | C∗j−1,l)− F1(Cj−1,l)F2(Cj−1,l)Λ1,2(Cj,2l | Cj−1,l)|

≤ |F1(C∗j−1,l)F2(C∗j,2l)− F2(C∗j−1,l)F1(C∗j,2l)− F1(Cj−1,l)F2(C̄j,2l) + F2(Cj−1,l)F1(C̄j,2l)|

+ |F1(Cj−1,l)F2(C̄j,2l) + F2(Cj−1,l)F1(C̄j,2l)− F1(Cj−1,l)F2(Cj,2l) + F2(Cj−1,l)F1(Cj,2l)|
def
= Aj,2l +Bj,2l.

Using VC inequality just like for the first iteration, we get that, with probability 1− δ,
the quantity Bj,2l is bounded by B((1 + a)/a, n, δ). Notice in particular that we have,
with probability 1−δ, E[I{X ∈ C̄j,2l∆Cj,2l}] ≤ C ·B((1+a)/a, n, δ). Reproducing exactly
the argument of Clémençon and Vayatis (2009),

Aj,2l ≤ |F1(C∗j−1,l)− F1(Cj−1,l)|+ |F2(C∗j−1,l)− F2(Cj−1,l)| ≤ B((1 + a)j−1/aj−1, n, δ)

using inequality (B1). Now, observe that

E[I{X ∈ C∗j,2l∆Cj,2l}] ≤ E[I{X ∈ C∗j,2l∆C̄j,2l}] + E[I{X ∈ C̄j,2l∆Cj,2l}].

Using Hölder inequality and Assumption (5.1), we have

E[I{X ∈ C∗j,2l∆C̄j,2l}] ≤ C|Aj,2l|
a

1+a ≤ C ·B((1 + a)j/aj , n, δ).

This establishes that inequality (B1) holds for any (j, l) and the desired bound then
immediately follows from this (repeating the argument involved at the first iteration).
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Clémençon, S., and Vayatis, N. (2009), “Tree-based ranking methods,” IEEE Transac-
tions on Information Theory, 55, 4316–4336.
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