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ABSTRACT
Software metrics have been developed to measure the qual-
ity of software systems. A proper use of metrics requires
thresholds to determine whether the value of a metric is ac-
ceptable or not. Many approaches propose to define thresh-
olds based on large analyses of software systems. However
it has been shown that thresholds depend greatly on the
context: the programming language or the application do-
main of the project for example. Thus there is a need for an
approach that computes thresholds by taking into account
this context. In this paper we propose such approach with
the objective to reach a trade-off between representative-
ness of the threshold and computation cost. Our approach
is based on an unbiased selection of software entities and
makes no assumptions on the statistical properties of the
software metrics values. It can therefore be used by any
one, ranging from developer to manager, for computing a
representative metric threshold tailored to their context.

1. INTRODUCTION
Software metrics are measures that can be used as guide

in the decision-making process for improving software qual-
ity [13]. They can be roughly defined as mappings from the
empirical world (i.e. classes, methods, commits, develop-
ers) to the formal relational world (a value in R). Software
metrics need thresholds which give them semantics [15]. A
threshold makes a partition of software entities by creating
two distinct groups: the entities that have a good value and
the other ones that are considered to be risky[10].

For example, NOA and NOM are two metrics that re-
spectively measure the number of attributes and methods
of a class. These two metrics can be used to identify god
classes, which are classes that contain too many attributes
and methods and are therefore difficult to maintain [19]. The
identification of god classes by using the NOA and NOM
metrics requires the definition of a threshold. This thresh-
old must state how many attributes and methods at least
have to be declared in a class to consider it as a god class.
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Recently, Zhang et al. have shown that thresholds depend
on context and therefore cannot be generalized to all kinds of
software systems [27]. In particular, the programming lan-
guage or the domain of application are contexts that have
a strong impact on the thresholds. This further strengthens
the results of Nagappan et al. who have shown that thresh-
olds obtained by performing a correlation analysis are only
true for a limited set of similar software systems[21].

As there are too many contexts, thresholds cannot be com-
puted for all of them. Thus there is a need for an approach
that can, for a given context, compute automatically the cor-
responding threshold. With such an approach, a developer
or a manager could identify risky software elements by com-
puting thresholds for metrics assessing the quality of these
software elements. For example, if the manager of a 3 years
old Java project involving more than 10 developers wants to
use the NOA and NOM metrics, she will be able to know
what are the NOA and NOM thresholds for her context.

Computing thresholds for any given context raises two
main issues that are representativeness and efficiency. By
representativeness we mean that the threshold must truly
partition the software elements that fit to the context. By
efficiency we mean that the threshold must be computed
quite quickly as the intent is to use it as soon as possible
in order to identify risky software elements. These two is-
sues are antagonist. Increasing the representativeness of a
thresholds requires to analyze more software entities and
therefore requires more time, and vice-versa.

In this paper we propose an approach for computing thresh-
olds for any given context. Our approach aims to reach
a trade-off between representativeness and efficiency. It is
based on two main principles. The first one is a random se-
lection of both software projects and software entities. This
random selection, called double sampling, offers guarantees
of representativeness as it is unbiased and has good perfor-
mance as few software elements have to be analyzed [25].
The second principle follows Chidamber et al. principle[5]
and considers that a metric threshold can be derived from
a quantile of the distribution of metric values. Our process
then inputs the quantile to reach (80%, 90% or 95%) and re-
turns an estimation of the corresponding threshold. To com-
pute this estimation our process relies on Bootstrap, which
is a statistical approach proposed in the late 70’s [8]. Boot-
strap has the advantage of being adaptable to any statistic
and is independent of the distribution of metric values.

We have prototyped and validated our approach to gen-
erate different thresholds of metrics from software projects
hosted in GitHub, which is an open-source hosting plat-



form. Rather than the values we obtained for the thresholds,
the major results of our validation comes from the feedback
we obtained regarding the number of software entities and
projects that have to be analyzed and the time that is needed
by our process.

The rest of this paper is organized as follows. Section 2
starts by presenting the issues related to metrics thresholds
and then presents our process to compute threshold from a
statistical analysis. Section 3 presents a validation of our
process. Section 4 then presents a general discussion of the
advantages and the limits of our process. Section 5 then
presents the related work and the Section 6 presents our
conclusion.

2. THRESHOLDS PROCESS
This section starts by giving definitions for metrics and

thresholds with the intent to highlight the two major is-
sues that have to be faced by any process which goal is to
compute metrics thresholds for any given context. It then
presents how we propose to face these two issues and de-
scribes our process proposal.

2.1 Issues related to the definition of metrics
thresholds

A metric is a quantitative measure that is done on a soft-
ware entity (class, method, developer, commit, etc.)[13, 6].
For the sake of simplicity, we consider that a metric is a
function µ that is defined for a specific kind k of software
entity and that returns a real (see definition 1). For instance,
the NOA metric is a function which inputs a class and mea-
sures its number of attributes (NOA : UClass → R) and the
NOM metric inputs a class and measures the number of its
methods (NOM : UClass → R).

Definition 1 (Metric). Let k be a kind of software
entity such as Class, Method or Developer. Let Uk be the
set of all software entities of that kind. For instance, Uclass
is the set of all classes (such a set is conceptual and cannot be
computed). A metric µk is a function that measures entities
of a given kind by returning a real value. Therefore µk :
Uk → R

A threshold of a given metric is a value that splits the
software entities into two groups, the ones that have a metric
value that is lower or equal than the threshold and the ones
that have a metric value higher than the threshold[10] (see
definition 2).

Definition 2 (Threshold). A threshold of a given met-
ric µk is a value (tµk ∈ R) for that metric that splits the set
of software entities Uk in two groups (Low∪High = Uk and
Low ∩ High = ∅). All entities of Low (resp. High) have
a metric value that is lower or equal (resp. upper) than the
threshold (∀e ∈ Low, µk(e) ≤ tµk and ∀e ∈ High, µk(e) >
tµk).

As thresholds depend on context, any approach that aims
to compute a threshold must take into account the context.
A context defines the environment of the software entities of
interest. As all software entities belong to software projects,
we propose to define a context by a logic predicate that
applies to software projects to state whether or not they fit
to the context (see definition 3). For instance, the context
that identifies Java projects can be defined by a predicate

that checks whether the project contains at least one Java
file.

Definition 3 (Context). Let P be the set of all soft-
ware projects. A context c is a logic predicate that applies
to any software project and that states whether or not the
project fits to the context (c : P → B).

Any approach that aims to compute a threshold defines a
process that inputs a metric and a context and that return
the corresponding threshold (see definition 4).

Definition 4 (Computing thresholds). An approach
that computes thresholds for any given context defines pro-
cess that inputs a metric µk and a context c and that returns
the threshold tcµk

.

The main motivation of computing a threshold is to iden-
tify outliers of the context with the intent to consider them
as risky entities[10, 3]. An approach that computes thresh-
olds for any given context is representative if the thresholds
it generates truly identify the outliers of the given context.
In other words, the thresholds must at least identify outliers
of the context.

Further, we argue that the ones that will want to gener-
ate thresholds will probably want to quickly identify outliers
of their project. An approach that generates thresholds is
efficient if it takes few time to compute a threshold for a
given metric and a given context. Having no strong require-
ment on time, we propose to state that it should generate
thresholds in few minutes or few hours.

Nevertheless, the more entities of a context are analysed
for computing a threshold, the more representative the thresh-
old should be. This however takes many time. An approach
that aims to compute threshold for a given context must
then reach a trade-off between representativeness and effi-
ciency.

2.2 Quantile Based Process
Many approaches have been proposed to compute thresh-

olds but none of them was defined to compute thresholds for
any given context [15, 10, 5, 26, 1, 23, 2, 14].

We propose to follow the approach of Chidamber et al.
who define that a metric threshold can be derived from a
quantile of the distribution of the metric values with a lower
bound at the 80th percentile [5]. For instance, if one wants to
compute a threshold to identify god classes of Java projects,
she can consider that outliers are classes that fall above the
80% of small classes.

We argue that a percentile is adequate for computing
thresholds for any given context. First it is independent
of the distribution of the metrics and second it can be esti-
mated on a small sample of software entities. It is therefore
adequate to reach a trade-off between representativeness and
efficiency.

Computing a percentile is a classic estimation of a value
based on measured data [25]. This requires at least three
steps. First, a sample of entities that fit the context (Ω ⊆
Uck) has to be built, second the metrics of the entities of
the sample have to be computed, and third a statistical ap-
proach has to be executed to compute the estimation of the
threshold. As the second step of this process is quite obvi-
ous, the main difficulties are then (A) the construction of
the sample Ω and (B) the computation of the estimation for
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Figure 1: Double sampling. The arrows indicate the
contains relationship between primary units and in-
dividuals, the dotted lines mean selected at random.
The rectangles indicate the selected samples.

the threshold thanks to a statistical approach. The follow-
ing two sections explain how our approach tackles these two
issues.

2.2.1 Building Ω

To build a precise estimation from a sample Ω, the sample
must be representative of the whole set of software entities
that fit a context. Representativeness means that each entity
of the population Uck should have the same probability to be
part of the sample. In other words, all entities of a sample
should be selected randomly with the same probability. For
example, if the population is finite and contains N entities,
the probability to select one entity in the sample must be
P (e) = 1/N .

In software engineering, software entities that fit a con-
text, such as Java classes of large project for example, can-
not be directly randomly selected. However, the software
projects in which they are defined can be selected randomly,
at least if the population of projects is known.

This is quite similar to an imaginary situation where one
wants people to answer a questionnaire but he/she only can
drive a car to reach the people and to get their answers.
He/she therefore has to go from city to city to get the an-
swers. In such a case, the representativeness of the selected
people but also the cost of the selecting process are the key
factors. Needless to say that if he/she goes to one of the big
cities and interview all of its inhabitants the cost will be low
but the answers won’t be representative. In the contrary,
if he/she plan to visit all the cities to interview very few
of their inhabitants, this will definitively be too costly and
maybe not so representative.

To face the issue of representativeness and to randomly
create samples our process is based on a double sampling.
It then starts by randomly selecting a set of software projects
to fit a context from a given set of known projects. Then
it creates a finite population that contains all software enti-
ties contained in the selected projects. Finally, it randomly
selects entities in this finite population to build the sam-
ple Ω. The Figure 1 presents the three steps of the double
sampling.

The double sampling has the major advantage to be purely

based on random selection. Projects and entities are selected
randomly. Moreover, it has the double advantage to include
entities from different projects and to not include all entities
that belong to a same project. As a consequence, the dou-
ble sampling does not suffer from the bias of having many
entities that share similar properties, which may be the case
when they are contained in a same project.

The double sampling can be configured with two options:
the number of projects contained in the first sample and
the number of software entities contained in the returned
sample. These two options have an impact on the quality of
the estimation. Section 3 will present the effect of these two
options on the quality of the returned threshold of different
metrics.

The main drawback of the double sampling is its cost as it
has to select several projects and has to build a population.
Further, the number of selected projects has to be chosen
carefully depending on the size of the wanted sample. A
large number of projects have to be selected to be repre-
sentative of the diversity of all software projects. However,
the larger the set of projects, the larger the population and
therefore the cost is more expansive.

2.2.2 Estimation for the threshold
The computation of the estimation requires to choose a

statistical approach. Even if we choose to reduce the esti-
mation of a threshold to the estimation of a quantile, there
are still many statistic approaches that can be used. Fur-
ther, it should be noted that it is better to know the distri-
bution of a metrics to use the adequate one. Some metrics,
such as NOA and NOM, follow a power law for most of the
projects, but not for all [16]. In the general case, the distri-
bution is unknown and therefore statistical approaches that
are robust regardless of the distribution have to be used.

Whatever the statistical approaches, an estimation aims
to reflect a real value and provides an error margin. This
error margin is often represented as a confidence interval
[a; b] with an error probability α (or a confidence coefficient
1 − α). Our process uses intervals with a 95% confidence
coefficient, which means that there is a 95% chance that the
real value is between a and b (included).

Among the existing statistical approaches, we choose to
base our process on bootstrap. Bootstrap was introduced
in 1979 by Bradley Efron [8] as a method for estimating a
confidence interval for a statistics. Its principal advantage
is that it is available for many statistics such as quantile,
which is the basis of our process. Moreover, it is a computer-
based approach that can be easily used with the dedicated
R library [4].

The bootstrap approach inputs a sample Ω = (y1, ..., yn)
and returns a confidence interval for a given statistic that is
computed with the following algorithm:

1. BuildB independent bootstrap samples, noted Ω∗1, ...,Ω∗B .
These samples are drawn from Ω using random sam-
pling with replacement. In other words, these samples
contain members from Ω, some appearing zero time,
some appearing once and some more than once. This
part of the algorithm is illustrated in Figure 2. The
number of independent bootstrap samples (B) can be
configured but we choose to create 10000 of them, to
ensure that bootstrap will find a confidence interval
as accurate as possible. Although the literature uses
a number of bootstrap replicates around B = 2000,
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Figure 2: The bootstrap algorithm1

we experimented cases where bootstrap was unable to
compute a confidence interval with this value. Further-
more, computers are more powerful now than when
theses studies were conducted and using 10000 boot-
strap samples only produces an overhead of some min-
utes with samples having thousands of values, which
perfectly acceptable in our case.

2. For each sample, compute a replication of the statistic
θ̂∗(b) = f(Ω∗b). In our case its the computation of the
quantile.

3. From the B replications of the estimated statistic, use
one of bootstrap’s algorithms to obtain a confidence
interval. Several algorithms are defined but we choose
to use the BCA procedure [9], which offers quite accu-
rate confidence intervals and is implemented in the R
boot library [4].

2.2.3 Our process
As presented in the last two sections, our process is based

on a double sampling and on the bootstrap approach. It in-
puts a metric µk and a description of a context c and returns
the threshold that corresponds to the 80th percentile. An
overview of our process is presented in Figure 3. It first cre-
ate a sample of software entities using a double sampling.
Then it computes all the metrics for the software entities
contained in the sample. Then it uses Bootstrap to com-
pute an interval for the threshold. As Bootstrap guarantees
with 95% of confidence that the threshold belongs to the
interval, we choose to return the mean of the boundaries of
the interval.

Several options can be used to tune our process. The first
one is the list of projects that will be used to create the sam-
ple. This list defines the whole population and has to be cho-
sen carefully as the threshold returned by our approach will
be representative of that population. If the context targets

1 Figure under Creative Commons license, original work by
Germain Salvato-Vallverdu

Compute the metric values
 foreach element from the sample of software entities

Estimate threshold
with statistical inference based on Bootstrap

Double Sampling
Random selection of Software Entities

sample of software entities

sample of metric values

Metric Threshold 
(mean of bootstrap interval) 

Configuration
- List of projects (population)
- kind of entities (k)
- Number of selected projects
- Number of selected entities
- Percentile (80%, 90%, 95%)

Inputs
- Metric (μ)
- Context (c)

Figure 3: Overview of the proposed process for com-
puting metrics thresholds

Open Source projects, we usually choose a hosting platform
such as Sourceforge or GitHub for this option. If the context
targets industrial projects, we usually choose all the project
that have been realized by the company that is asking for a
threshold. Our process will then choose repositories in the
population and consider them as projects. We apply a filter
to select only some of the repositories of the population that
do fit the context. For instance, one may want to analyse
only repositories that contain more than 100 Java classes,
or repositories using a particular configuration management
system such as Maven, or even repositories that exist for
more than two years. The second option is the kind k of
software entities that will be part of the sample Ω. This op-
tion has to be defined with a fetch function that can extract
all software entities of the given kind that are contained in
a project. This function will be used to create the sample
of software entities.

Further, as presented in the previous section, the double
sampling has to be configured. The two options are the num-
ber of projects and the number of software entities. These
two options have an impact on the quality of the returned
threshold but their values depend on the metrics and on
the population. The section 3 presents an analysis of these
options for the GitHub platform and for some well-known
metrics.

Finally, the reached percentile can be configured too. We
mainly follow the 80% principle but if one wants a stronger
threshold, she can choose either 90% or even 95% as a target
percentile.

It should be noted that the Bootstrap approach can be
configured too but we chose to propose a fixed configura-
tion. As presented in the previous section, bootstrap takes



as input an integer B, which is the number of bootstrap sam-
ples. The larger the value, the more accurate the result will
be. However, increasing this value also increase bootstrap’s
computation time and memory usage. With modern com-
puters, it is although possible to have a large number of
bootstrap samples. We arbitrary choose to use B = 10000.
The other value which can be configured is the confidence
coefficient of bootstrap. If this value is too high (e.g. 99%),
the resulting intervals will be very large. On the contrary, a
lower confidence coefficient will provide narrower confidence
intervals, but they may not be accurate. As stated above,
we use a 95% confidence coefficient. Finally, bootstrap re-
quires an algorithm to obtain a confidence interval. For that
option, we choose to use the BCA one.

3. VALIDATION
This section aims to validate our process and to answer

the research questions of the introduction. We first present
the prototype we built to perform this validation. Then we
detail the evaluation method we use to find the best config-
uration for our process. We then exhibit the effect of the
number of projects and entities. Finally we take look at the
efficiency of our process when computing metrics thresholds.
The source code of our process, as well as the generated sam-
ples and the results obtained for our validation are available
on-line.

3.1 Prototype
The research prototype we developed to conduct this study

is composed of three parts that respectively implement the
three steps of our process. This tool was built on top of
Harmony which is an open source research platform de-
signed to ease the development of tools that mine software
repositories.

The first part implements the double sampling. It uses the
population of projects hosted on GitHub. This population
has been obtained by querying the GitHub API to obtain
its full list of stored projects. We selected a wide context:
Java projects that do not come from a project fork. GitHub
stores many forked projects and considers them as different
projects but still knows that they are forked projects. While
performing the study we found that around 40% of Java
projects stored in GitHub were marked as forked projects.
However some developer make manual copies of repository.
In this case we are not able to detect them and thus these
copies of projects are still included in our population. This
layer inputs three parameters: the context (project age, lan-
guage, size, ...), the size of the sample of projects and the
size of the sample of software entities, here Java classes.

The second part aims to compute the metrics values. It is
defined as an Harmony analysis (see [11] for more details).
The analysis runs on the Java classes selected during the
previous step.

The third part uses the R language to compute the thresh-
old. This layer inputs the target quantile and the metrics
values that have been computed by the Harmony analysis.
It finally returns the threshold.

All these three parts are integrated together and their exe-
cution can be chained to output directly metrics thresholds.

3.2 Representativeness
Double sampling and Bootstrap are two statistical meth-

ods that have been validated in a wide range of domains

[8, 25]. Thus rather than validating the representativeness
of these methods this section aims to search for their best
configuration as part of our process. Hence to evaluate the
threshold computed by our approach in order to find the
best configuration we selected the two following metrics as
a benchmark:

• NOA+NOM (Number Of Attribute, Number Of Method).
This combination of metrics counts the number of at-
tributes and methods of a class. It is useful to identify
code smells such as the God Class anti-pattern [19]
which highlights classes with to many features

• CBO (Coupling Between Object classes). This metric
represents the number of classes coupled to a given
class through method calls, field accesses, inheritance,
arguments, return types, and exceptions.

In order to assess the quality of a computed threshold we
use it in several projects to see if it split the population of
software entities according to the distribution we expected,
e.g. 90%. To make a robust comparison, we generate each
time 10 sets of 100 projects as a benchmark. We then mea-
sure the obtained percentage for each of this 10 sets. Finally
we use the root-mean-square error (RMSE) to measure the
difference between the 10 obtained quantiles with the tar-
geted one. In our validation we arbitrary selected 90% as
the target quantile.

The main goal of our validation is to measure the effect of
the number of projects and classes on the computed thresh-
olds. This analysis is a classical empirical analysis that has
two independent factors (the number of projects and the
number of classes) and one dependent variable (the obtained
error). Other independent variables we didn’t modify are
the quantile, the population of projects and the configura-
tion of bootstrap. The object of the analysis is to generate
a threshold for two known metrics.

For the treatments of the number of projects, we decided
to use a logarithmic scale as we thought that the effect was
more important for small numbers of projects. As the num-
ber of projects is a natural, we decided to use Fibonacci
numbers for treatments and deliberately decided to start
with 3 projects and to stop with 377.

For the treatments of the number of projects, we decided
to use a linear scale with a step of 200 classes. We delib-
erately decided to start with 200 classes and to stop with
2,000 classes.

The tables 1 and 2 present the results we obtained re-
spectively for the NOA+NOM and CBO metrics. ∅ means
that no sample of classes could be constructed because the
selected projects contained too few classes.

Two main results can be extracted from this validation.
The first one concerns the effect of the number of selected
classes on the quality of the threshold. We see that globally
1,000 classes is a sufficient number. If we focus on values ob-
tained for 144 projects or more and for 1,000 classes or more
then the errors are very low (under 5%). We then have per-
formed ANOVA test and regression tests for this subsets of
values but no significant results were observed. This means
that once the size of the sample is sufficient to be represen-
tative, there is no need to include more data in it, or at least
this won’t improve the quality of the estimation. This cor-
responds to any statistical approaches that advice to build
a representative sample with a limited size. For instance,



Table 1: Root Mean Square Errors for estimated 90% thresholds of the NOA+NOM metric

Number of Classes

Number of Repositories 200 400 600 800 1000 1200 1400 1600 1800 2000

3 ∅ ∅ ∅ ∅ ∅ 2.09 ∅ ∅ ∅ ∅
5 3.57 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
8 ∅ 3.57 ∅ ∅ 2.09 ∅ ∅ ∅ ∅ ∅
13 3.57 5.47 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
21 7,63 5.33 6.40 ∅ ∅ ∅ 12.24 2.08 ∅ ∅
34 2.08 3.12 3.89 2.83 6.40 ∅ 6.40 3.62 ∅ ∅
55 4.96 3.57 2.32 5.33 2.05 ∅ 2.32 4.96 ∅ 3.57
89 3.89 7.63 3.57 6.40 2.83 5.33 2.83 4.33 2.45 2.09
144 2.08 3.38 2.84 6.40 2.84 2.08 3.12 2.09 2.32 2.45
233 2.08 2.08 2.05 2.08 2.45 2.08 2.04 2.45 2.08 2.45
377 3.38 3.38 6.40 2.45 4.12 2.56 2.56 2.08 2.45 2.83

Table 2: Root Mean Square Errors for estimated 90% thresholds of the CBO metric

Number of Classes

Number of Repositories 200 400 600 800 1000 1200 1400 1600 1800 2000

3 ∅ ∅ ∅ ∅ ∅ 3.23 ∅ ∅ ∅ ∅
5 3.23 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
8 ∅ 4.79 ∅ ∅ 3.30 ∅ ∅ ∅ ∅ ∅
13 7.26 5.74 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
21 10.55 4.42 10.55 ∅ ∅ ∅ 8.85 3.92 ∅ ∅
34 2.75 2.94 2.92 5.92 5.92 ∅ 4.79 4.71 ∅ ∅
55 5.73 2.72 4.79 3.92 7.26 ∅ 8.85 4.71 ∅ 5.91
89 5.37 3.31 3.92 3.31 7.26 3.92 2.75 4.79 3.87 2.94
144 3.51 3.51 2.92 8.85 3.23 3.31 4.17 3.23 3.87 2.91
233 3.23 2.72 3.87 2.72 2.94 2.72 2.92 4.79 3.92 3.31
377 3.92 3.23 2.92 2.75 4.71 3.51 3.87 2.72 2.94 2.72

lots of samples performed for questionnaire contains around
1,000 people.

The second result concerns the effect of the number of
selected project on the quality of the threshold. A mini-
mum number of projects need to be selected in order to find
enough classes. However we cannot give a general value as
it depends strongly on the context for which the threshold
is computed. For example here we selected all the Java
projects. Thus when selecting only 3 projects the sam-
pler will, according to the distribution of project in GitHub,
probably only select small projects and will not able to find
enough classes. However if in our context we had specified
that we wanted only projects with 2,000 classes then the
sampler would have able to find enough classes within the 3
projects.

As a minor result regarding the intent of our validation,
we can provide a threshold for the two metrics in the context
we selected (Open Source Java projects). In particular, for
the NOA+NOM metrics, the best precision is obtained with
233 projects and 1,400 classes (error = 2.04) that means that
the obtained quantile is 90% more or less 2.04%. The value
of the threshold is then 25. For the CBO metrics, the best
precision is obtained with 233 projects and 400 classes (error
= 2.72). The value of the threshold is then 27.

3.3 Efficiency
The previous section has shown that once the sample is

big enough, the quality of the threshold is good at more or
less 5%. However, the more selected projects and classes,

the more time it takes to compute the threshold. Thus it is
important to be able to estimate the time required to com-
pute a threshold for a given context in order to configure
correctly the process. To that extent, we have measured the
time needed to compute a threshold by our process. In par-
ticular, we measured the time needed by the double sampling
and the time needed by Bootstrap. We have chosen not to
measure the time needed to compute the metrics for the enti-
ties of the sample as it depends on the metrics and on how it
has been implemented. All the measures have been recorded
on a computer equipped with a 2.90GHz Intel R©Core I7 pro-
cessor, with 8GB of RAM and running on a 64-bits Windows
7.

The Figure 4 presents the time needed by the double sam-
pling and clearly shows that it grows linearly with the num-
ber of projects but has almost no relationship with the num-
ber of classes. The reason is because the double sampling
requires to make a clone of the selected project to create
the limited population. Making a clone takes some time
as it requires to download the project from GitHub and to
extract it on the local disk. Even if there are much more
small projects than big ones in GitHub, it takes 10 minutes
to clone 100 projects in average. Once the selected projects
have been extracted, it takes almost the same time to select
randomly some classes from their latest revision, whatever
their number. This is why the time needed by the double
sampling does not depend on the number of classes.

The Figure 5 presents the time needed by Bootstrap and
clearly shows that it grows linearly with the number of classes
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Figure 4: Double Sampling Execution Time

but has almost no relationship with the number of projects.
The reason is because Bootstrap takes much more time to
create its samples when the original sample is big. In aver-
age, Bootstrap needs 25 seconds to create a threshold with
a sample of 1,000 classes. The number of projects has no in-
fluence on the time needed by Bootstrap as Bootstrap just
input the sample of classes, whatever how many projects
have been selected.

As a indication, if we want 233 repositories and select
1,200 classes from them it takes approximately half an hour
to compute the two thresholds introduced the previous sec-
tion.

4. DISCUSSION
Our approach aims to compute threshold of metrics thanks

to a statistical approach. Its main principles are based
on random selection and quantile computed by Bootstrap.
Each of these two principles are subjects to discussion.

4.1 Random selection
Random selection is the cornerstone of any approach that

is based on statistics. In our context, software entities must
be selected randomly to ensure representativeness of the
computed threshold. Nevertheless, studies frequently rely
on a manual selection of projects to compute thresholds [23].
To confirm the importance of random selection we built
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Figure 5: Bootstrap Execution Time

two samples composed of projects manually selected and
we compute the threshold of the metrics from them. Table
3 presents these two samples, composed of software projects
used in the literature. They contain about the same number
of classes.

We performed the same validation used in section 3 that
consists in looking on 10 sets of 100 projects on how a com-
puted threshold identify the entities. Then we can com-
pare the obtained quantile with the targeted one. Table 4
presents the results obtained for the NOA+NOM metrics.
This result shows that the errors are higher with thresholds
obtained with manual samples than with the threshold com-
puted with our process and with less data (144 projects and
1000 classes). Furthermore, when using manual sampling
no guarantee can be provided regarding the quality of the

Table 3: Manual samples of repositories

Sample Repository Number of Classes

MA
Eclipse Platform 744
Jetty 1630

MB

Vuze 365
Weka 1420
JWebMail 113



Table 4: Correctness of the thresholds based on
manual samples

Sample RMSE

MA 5.46
MB 6.67

Figure 6: Example of double sampling with large
and small projects. Classes of the sample belong to
large projects.

computed thresholds and no configuration can be tuned to
improve the obtained results.

If random selection is central to our approach, then the
population of projects from which random selection is per-
formed is crucial. As presented in the last section, we choose
to use all GitHub Java projects. As a consequence, the
thresholds computed by our approach are representative of
that population. Hence GitHub, our starting population
could be seen as one parameter of the context or it could be
considered that GitHub is a representative source for open
source projects.

In our experiment we did choose to put the project size
as a parameter of the context. One could argue that tak-
ing the corresponding population should not be considered
as it contains too many projects that are nearly empty.
Projects nearly empty contain few classes and therefore if
many of them are selected the population of classes will
contain much more classes belonging to large projects than
classes contained in small projects. To illustrate this, the
Figure 6 presents a sample of projects that contains only
one large project and four small projects. The double sam-
pling will however return a sample of classes that will mainly
belong to the large project. To ensure this behaviour, we
have computed a threshold for the NOA+NOM metrics with
144 projects and 1,000 classes coming from a population
composed only of Java projects containing more than 100
classes and with more than one year of history. The re-
turned threshold was the same than one obtained with the
whole population of GitHub projects.

4.2 Quantile computed by Bootstrap
We focused our validation on two metrics, NOA+NOM

and CBO, which follow a power law, as many other met-
rics [16]. Moreover, the values of these metrics have a some-
how quite large range. The Figure 7 shows that the NOA+NOM
metrics follow a power low and that its values range from
0 to 50 (and even more for outliers that do not appear in
the figure). However Bootstrap could also handle metrics
that do not follow a power law as it is not dependent of the

Figure 7: The NOA+NOM metric follows a power
law and its values range from 0 to 50.

distribution of metrics values.

5. RELATED WORK
In [1], Alves et al. identify three families of approaches to

compute threshold. The first family of approaches is based
on the knowledge of experts who define arbitrarily thresh-
olds according to their own experience. For instance, Mc-
Cabe defined 10 as a threshold for its cyclomatic complexity
metric [17]. The second family of approaches is based on a
correlation analysis performed to identify causality between
metrics and error proneness. In particular, D’Ambros et al.
have done an extensive comparison for such a family of ap-
proaches [7]. The third family of approaches, is based on a
statistic analysis of a large set of software entities. The main
idea is to measure a large set of entities and to define metrics
thresholds thanks to statistics [23, 14]. Our approach falls
in the third family as it uses statistics to compute threshold.

Regarding this third family, many approaches use different
kinds of statistics to compute thresholds[15, 10, 5, ?, 26, 1,
23, 2, 14, 12]. However all of these approaches aim at finding
generic thresholds that holds for all software systems. None
of them takes the context as an input and none of them
proposes an deep investigation of the representativeness and
efficiency issues.

Nagappan et al. have discussed about representativeness
in MSR studies [18, 20]. Based on a complete analysis of a
population of interest, they propose metrics to measure the
representativeness of a sample. Their intent is however to
discuss about coverage. The process they propose to com-
pute a sample outputs a small set of software entities where
each entity represents a group of similar entities. Such a
sample then covers all entities of a population but does not
represent their distributivity, which is needed for our con-
cern.

Finally, the theory of sampling in statistics has been the
subject of numerous studies in the literature. For detailed
analysis of the various existing techniques, we refer the reader
to the excellent book of Thompson [25]. The importance of



the size and the quality of the sample has been largely dis-
cussed, especially in the literature of health sciences [22, 24].

6. CONCLUSION AND FUTURE WORK
In this paper we propose a process that takes into ac-

count the context to compute thresholds of metrics. Our
process is based on two principles that are the use of the
double sampling and the use of quantile computed by Boot-
strap. The main advantages of the double sampling is first
to support random selection of both projects and software
entities, and second to not include all the software entities of
selected projects. It thus aims to avoid the impact of man-
ual selection and to minimize the bias of selecting all entities
of selected projects. The advantage of using quantile com-
puted by Bootstrap is to be independent of the distribution
law of the metrics and to provide a significant estimation.
We argue that a quantile is a good requirement to generate
a threshold based on a statistical approach.

We have provided a strong validation of our process by
computing thresholds of two metrics (NOA+NOM and CBO).
Our validation has been done on GitHub projects. The ob-
ject of our validation was to compute thresholds of metrics
by taking the 90th percentile as our target quantile. By an-
alyzing at least 144 projects and 1,000 classes our process
returns thresholds with a quite good quality (less than 5% of
error). Our validation has also shown that using much more
projects and classes provides no real benefit. Finally, our
validation has shown that our process needs approximately
half an hour to compute thresholds.

As a general concern, our study can be seen a first step
towards a thorough investigation of the importance of sam-
pling for the computation of summary statistics. Regarding
this general goal, our proposal pinpoints some of the ben-
efits and limitation of the double sampling and Bootstrap.
Secondly, it gives some feedback in terms of quality and ef-
ficiency.

In our future work, we aim at using our process not only
for computing thresholds of metrics but to get general sum-
mary statistics that are needed in some MSR studies. For
instance, our process can be used to measure the popular-
ity of programming languages or the frequency of commits.
Our objective is then to generalize the results that were ob-
tained. We also plan to realize a complete comparison of
other sampling designs that are defined in the literature.
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