A strictly stationary $\beta$-mixing process satisfying the central limit theorem but not the weak invariance principle - Archive ouverte HAL
Article Dans Une Revue Stochastic Processes and their Applications Année : 2014

A strictly stationary $\beta$-mixing process satisfying the central limit theorem but not the weak invariance principle

Résumé

In 1983, N. Herrndorf proved that for a $\phi$-mixing sequence satisfying the central limit theorem and $\liminf_{n\to\infty}\frac{\sigma^2_n}n>0$, the weak invariance principle takes place. The question whether for strictly stationary sequences with finite second moments and a weaker type ($\alpha$, $\beta$, $\rho$) of mixing the central limit theorem implies the weak invariance principle remained open. We construct a strictly stationary $\beta$-mixing sequence with finite moments of any order and linear variance for which the central limit theorem takes place but not the weak invariance principle.
Fichier principal
Vignette du fichier
article_beta_mixing_nWIP_arxiv.pdf (423.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00911758 , version 1 (29-11-2013)
hal-00911758 , version 2 (14-10-2014)

Identifiants

Citer

Davide Giraudo, Dalibor Volný. A strictly stationary $\beta$-mixing process satisfying the central limit theorem but not the weak invariance principle. Stochastic Processes and their Applications, 2014, 124, pp.3769-3781. ⟨10.1016/j.spa.2014.06.008⟩. ⟨hal-00911758v2⟩
139 Consultations
487 Téléchargements

Altmetric

Partager

More