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Abstract. The initialization problem, also known as naming, assigns onique
identifier (ranging froml to n) to a set ofn indistinguishable nodes (stations
or processors) in a given wireless netwoxk N is composed of. nodes ran-
domly deployed within a square (or a cuh&) We assume the time to be slot-
ted andN to be synchronous; two nodes are able to communicate if they a
within a distance at most of each other« is the transmitting/receiving range).
Moreover, if two or more neighbors of a processortransmit concurrently at
the same roundy. does not receive either messages. After the analysis of var-
ious critical transmitting/sensing ranges for connettivand coverage of ran-
domly deployed sensor networks, we design sub-linear raimal initialization

and gossip algorithms achievirig <n1/2 log (n)1/2> and© (nl/f’ log (n)2/3>
rounds in the two-dimensional and the three-dimensionakesarespectively.
Next, we propose energy-efficient initialization and gpsalgorithms running
in O <n3/4 log (n)1/4) rounds, with no station being awake for more than

o (n1/4 log (n)3/4) rounds.

Keywords. Coverage, connectivity; hop-diameter; minimum/maximuegrees;
transmitting/sensing ranges; analytical methods; enemsumption; topology
control; randomized distributed algorithms; fundametitaits of random radio
networks.

1. Introduction

Distributed, multi-hop wireless networks, such as ad hdawoks, sensor networks or
radio networks, are gaining in importance as subject ofnese with very many practical
real-life applications [32]. In the paper, wireless netkgoare a collection of transmitter-
receiver devices, referred to aedes stationsr processorsaccording to the context.

A wireless network\ consists in a group of nodes that can communicate with each
other over a wireless channel. The nodes (or processafg)aafme without ready-made
links and without any centralized controllé¥. can be modeled by itgachability graph
G, within which the existence of a directed edge» v means that can be reached from



u. If all transmitters/receivers have the same power, thiedging graphG is symmet-
ric. As opposed to traditional networks, wireless netwaiesoften composed of a num-
ber of nodes that can be several orders of magnitude higaettie size of conventional
networks [2]. Sensor nodes are often deployed inside a mediberefore, the positions
of these nodes need not be engineered or pre-determinedalldws random and rapid
deploymentin inaccessible terrains and suit well the $jpanteds to disaster-relief, law
enforcement, collaborative computing and other specigigae applications.

As customary [3,4,5,9,17,26,27] the time is assumed todieesl and nodes (pro-
cessors) can send messages in synchromousls(or time slot$. In each round, every
node can act either agi@nsmitteror asreceiver A nodeu acting as receiver in a given
round gets a message, if and only if, exactly one of its nedghis transmitting within
the same round. If more than two neighbors.adre transmitting simultaneoushy,re-
ceives nothing. More precisely, such a netwdfkhas no ability to distinguish between
the absence of message and at least one collision or coiiffict.assumption is moti-
vated by the fact that, in many real-life situations, they}idevices used do not always
have the collision detection ability. Moreover, even if Budetection mechanism were
present, it should be of limited value; especially in thespreee of some noisy chan-
nels. Therefore, itis highly desirable to design algoristthat work independently of the
existence/absence of any collision detection mechanisms.

We consider that the nodes ofV are initiallyhomogeneously scattereda square
X of size|X| (or in a cubeX of volume|X|). As in several applications, the users\of
can move, and therefore the topology is unstable. For thisoe we wish the algorithms
to refrain from assumptions about the topology\for about initial information that
processors may have concerning the topology. In the presgrar, we assume that no
processors has any topological knowledge, except the meésurface or volume)X|
of X, where they are randomly dropped. Besides, observe thatie)&| is known ex-
actly whilen is not (viz. exactly, or up to its order of magnitude= O(| X)), an equa-
tion such as Eqg. (6) in Theorem 2 (see below) allows to handddeschanges involved
betweerO(n) andO(| X |) and occurring in the constants hidden in the “big-Ohs”. More
over, these assumptions are strengthened by the fact thiagdhbeir deployment some
nodes can be faulty with unknown probability.

Methods to achieveself-configuratiorand/orself-organizationof networking de-
vices appear to be amongst the most important challenge$&é@bess computing [2].
Initialization is part of these methods: before networking, each node nawstdunique
identity (identifier or address) denotéd. A mechanism that allowd/ to create a
unique identity (ID) automatically for each of its partiaiing nodes is aaddress self-
configurationalgorithm. In the present paper, nodes are initiailyistinguishableThis
assumption arises naturally, since it may be difficult orasgible to get interface serial
numbers while on missions (see also [17,26,27]). Thus Dkef such self-configuration
algorithms must not rely on the existence of serial numbers.

The problem addressed here is to design and analféyalistributed algorithms
for the initialization problem. As far as we know, the iniization problem was first
handled in the seminal papers of Hayashi, Nakano and Olarii2§,27] for the case
whenG is complete. (For the sake of simplicity, we writé (a wireless network) fo&
(its underlying reachability graph) when appropriate.)

Note that the transmitting range of each station can be s&rte value: ranging
from 0 to ryax - Such a model is commonly used in mobile computing and raetwaork-



ing [7,19,33]. It is frequently encountered in many domafrem statistical physics to
epidemiology (see e.g., [16] for the theory of coverage gsses or [23] for percolative
ingredients). The random graphs generated in such a waylemrefirst considered in
the seminal paper of Gilbert [14] (almost simultaneoushgd and Rényi considered
the well-knownG (n, p) model [12]). The analysis of many properties of the so called
random geometric graphs mode(n, ), such as connectivity and coverage, have been
the subject of intense studies [15,24,28,29,30,31].

Fig. 1 shows devices randomly deployed on some field. Thectigpexamples sug-
gest that transmission ranges can play a crucial role whiging@rotocols at least for
randomly distributed nodes (stations). Other paramefdmsyortance are the number
of active nodes, the shape of the aPéavhere stations are scattered and the nature of the
communications to be established.

Figure 1. A typical radio network is generated according to the umifatistribution of coordinates of the
devices. The transmission ranges of stations are gradunaligasing from left to right. The last two pictures
show that if the graph obtained has more edges than neededuthber of colliding packets is more difficult
to control.

Considering the above observations, the design of efficd&gdrithms requires to
take into account and to exploit the structural propertied/o In our scenario, since
none of the nodes knows the numbepf stations in\/, our first task is to find dis-
tributed algorithms that allow a probabilistic countingtbése nodes. Then, by setting
the transmitting range parameter correci{can be self-initialized with high probabil-

ity!. This is achieved ir©® (n1/2 log (n)l/Q) rounds in the two-dimensional case and in

O (n'/3log (n)2/3 rounds in the three-dimensional casAs far as we know, this is

the first analysis of multi-hop initialization protocoldr(gle-hop protocols are treated
in [17,26,27,33]). Our algorithms are shown to take adwgetaf the fundamental char-
acteristics of\/. Such limits are computed with the help of fully distributgdorithms:
once known, an initialization algorithm is run to assigntea€ then stations (nodes)
one distinct ID ranging fronl to n. Whenever all IDs are assigned, and even though
the algorithm is probabilistic, one can chaddterministicallywhether each ID is unique
(if needed). For the purpose, deterministic linear alhong (for example) can be used,
such as the gossip protocol for symmetric networks in [22fiSe 5].

Under the conditions described above, Figures 2 and 3 suizertaiefly the input
and output of the distributed initialization algorithmepented.

IThroughout the paper, an evefyt is said to occuasymptotically almost sureif; and only if, the proba-
bility P (£5,) tends tol asn — co. We also say,, occurswith high probability(w.h.p. for short).
2In this paper]og denotes the natural logarithm.



INPUT: OUTPUT:

O 17
o o ° 19 11 4
. 5 6
. . 21 = 10
° 20
o o o ° 1371 7 8
L e o 218 3 15
® e . 22 54 5
° b 23 6
Figure 2. n indistinguishable processors Figure 3. Each of then processors (stations) is as-
randomly placed in the squasé. The only signed a unique ID ranging fromto n. The IDs can

knowledge required is the siz&’| of the support.  serve as IP address (hete= 24).

In order to implement the initialization problem, we use &gjp algorithm. Gos-
siping and broadcasting [8] are fundamental techniquesgogading out information,
and they represent naturally the most extensive studidulgnts in radio networks (see
for instance [9,22] and references therein). In the gaosgiproblem, every station is ini-
tially given one distinct message that needs to be sent tutedr ones. Under the same
assumptions as above, we design a randomized gossipingtlatgahat performs its

task w.h.p. in®O (n1/2 log (n)l/Q) andO (n1/3 log (n)2/3) rounds in the two and three

dimension cases, respectively.

Finally, it is shown that botlsub-linearalgorithms (gossiping and initialization)
areasymptotically optimalsince they achieve (w.h.pQ(D logn) = O(DA) rounds,
whereA is the maximum degree ¢ and D its hop-diameter.

Outline of the paper. The paper is organized as follows. Section 2 presents a nando
ized distributed algorithrBEND for sending information in our settings. Next, this algo-
rithm is analyzed. In Section 3, we discuss how to set cdyréfee transmission range of
the nodes. Section 3 also provides results on the relatiptsitween the transmission
ranger, the number of active nodes the size ofX, the maximum degreA and the
hop-diameteiD of A/. These results and the use of the proce@isD allow to build a
broadcasting protoc@ROADCAST. The Section ends with the design and analysis of a
protocol name®FR (Search-For-Rangewhich serves to find the appropriate transmis-
sion range distributively. More precisely, by varying thensmission range, the protocol
SFRbroadly provides orders of magnitude of the charactesstig\”. Section 4 presents
the randomized gossiping algorithm specifically intendeddndom wireless networks.
This Section is organized as follows: we first present a remzed algorithm that colors
the nodes of\V in such a way that every pair of processéusv) within a distance of
at most two hops from each other is assigned two distinctrsokhough “greedy”, the
latter algorithm is shown to color the graph in polylogamiib rounds (depending amn)
usingO(A) = O(logn) colors. This efficient coloring algorithm treats the diracd



hidden terminal problems. Once it is obtained, fhkop coloration leads to a natural
scheduling of the communications to gossipglDA) rounds. In turns, the gossiping
algorithm is used to initializeV". This is easily done by means of a simple ranking ar-
gument. Section 4 ends with the proofs of correctness annohality of both algorithms
(gossiping and initialization protocols). Finally, Sexti5 presents a second initialization
algorithm based on an energy-efficient gossip algorithm.

2. Basic protocols for sending information

First, no deterministic algorithm can work correctly in eless networks when proces-
sors are anonymous. This is easily checked: conflict betiveeimdistinguishable nodes
can not be solved deterministically. Therefore, this ingiuitity result implies the use
of randomness (see [5]). Since processors do not havefigen(iDs), the first task is to
design a basic protocol for the nodes which compete localfictess the unique channel
of communication in order to send a given message. This cacliieved by organizing
a flipping coin game between them. Recall also that if thestrassion/receiving range
is set to a value, only neighbors within distance less thamre able to communicate
in the absence of conflicts. In [30], Penrose proves thaethgists a common radius of
transmission to achieve the connectivity of the reachglgliaph.

In the very simple following procedure this parameter ad aglthe duratior?” of
the trials must be taken into account.

Procedure SEND(msg,T,r)

For i from0toT do

With probability1/2¢ sendmsg to every neighborx to all processors at distanger x)
end

Note thatr is a parameter which can be tuned to a precise value. Agamciéar that
only neighbors within a distance of at mastan receive the message when there is no
conflict. Therefore, we have the following definition.

Definition 1 Given a transmission radius and a set of» nodes uniformly and inde-
pendently scattered in a squa’é of size| X| = O(n), a random graph is defined by
adding edge between any pair of nodesy), such that the Euclidean distance between
x andy is less than or equals te. Denote byrcoy the transmission range required to
have a connected graph. For a fixed radius of transmissjdet d,, (depending om, i.e.

d, = d,(r)) be the degree of any given node

Theorem 1 Letr > rcon be the current transmission range of the processors. S@ppos
that each of thel, neighbors o starts the execution dBBEND(m.sg, T', ) in the same
round. LetP(T,d,) be the probability that receives the messagesg at least once
between the time= 0 and the time = T'.

Then, there exists a functiof(T, d,) = O(d,/2T) + O(1/+/d,) such thatP(T, d,)
satisfies

8111 + f(T,d,) < P(T,d,) < 8113+ f(T,d,). (1)



Proof. The assumption that is connected ensures that, for any nedéhe degree of
is such thati, > 0.

. . dU
We haveP(T,d,) = 1 — [, (1 — (%) /27 (1 — 1/21) ) since only one of the
neighbors can succeedand all othewl,, — 1 nodes are kept silent. For any givgrand

forall i > iy, (1 —d)2 (1 - 1/2i) d) < (1 —d/2" exp (—d/21 (1 + 1/21'1))). So,

if 2 > d, by choosing; = [1/21log, d], we obtain after a bit of standard algebra

—P(t,d) < exp ngl ng <—d2—’?<1+o<%)>). )

1=11

Now, by Mellin transform asymptotics methods (see [13] & p. 131]), for any

m > 1,
£ (4 (0() - st
() o(E)

where thel0—° term is due to small fluctuations: the amplitude of the tingftioients
of the Fourier series occurring in Mellin transform asynijg®[13].

107°
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Next, sincem!/m™*2 < e=™/m whenm > 7,
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we derive

s m!
18869... < exp —gm < .18879... (4)

Similarly, for anyz € [0,1] andd > 1, (1 — z)¢ < e~ 9=,
Therefore,(1 —d/2° (1 — £)?) > 1 — d/2" exp(—d/2%), and this time we get

exp Z Z2m ( dT) < 1-P(t,d). (5)

m>1 1=11

Using the latter inequality yields Eq. (1) after computatigimilar to Egs. (3) and (4).
|



In [5], Bar-Yehudaet al. designed a randomized procedure calBECAY to send
information with probability of success larger thén{see for instance [5, p. 108-109]).

In our procedur&END, the proof of Theorem 1 (see also [13]) shows that, by chang-
ing the basis of the coin flipping game, viz. by substituting probabilityl /a’ for 1/2¢
in the algorithm for any constant> 1, the probability of success of tiétrials can be
made arbitrary close tb (also with a logarithmic number of rounds such that> d).

In the next Section, we turn to the problem of finding suitafalieies of transmission
range whenever the onéypriori knowledge of processors|X|.

3. Transmission ranges and characteristics oV’

The aim of this Section is to provide randomized distribuaégbrithms that allow the
stations of\ to find the required transmission range to achieve at leastamivity of
N. To this end, we need to know the relationships between #resimnission range,
the number of processorsand the measureX| of the support. Other characteristics of
interest, such as the minimum and maximum degraedA (resp.) and the hop-diameter
D of NV, are also fundamental for setting wireless algorithms [S8e Moreover, the
limits of the randomly generated netwahk help when designing such algorithms. We
refer here to [14,15,24,31,36,37] for works related to mamchetworks. Two distinct
problems are addressed in this Section.

e The first one (Subsection 3.1) concerns the characterigtitse reachability
graphG in the superconnectivity regime, i.e. when the radius ofgraission of
the stations grows much faster than the one required toxsch@nectivity of.

e Subsection 3.2 is devoted to the design and analysis ofrébdistd protocoBFR,
that will allow the nodes to approximate the aforementioctearacteristics.

3.1. Fundamental limits of a random graphs in the supercotivigy regime

Following Miles’s model [24], a great numberof devices are dropped in some ar€a
Asn — oo with n = O(]X]), the graph generated by the transmitting devices can be
well approximated with a Poisson point process (see e.{). [Biést of all, its extremén-
dependencproperty allows penetrating analysis. Next, Poisson meegremaimvari-
antif their points are independently translated (translatibaing identically distributed
with some bivariate distribution: direction and distanc®), the results may take their
importance fomoving stationgnd therefore, they are well suited to randomly deployed
mobile devices. Last, if with probabilitysuch thap n = O(| X|), some nodes afaulty

or intentionallyasleep(e.g. for saving batteries in energy-efficient algorithi2ig]], our
results remain valid. This is due to Poisson processes giepand in the latter scenario,
the number of nodes is simply replaced by = pn.

Among other results, Penrose [30] proved that/fX| = O(1) and X is a two
dimensional area, then

lim P (% Triey — log(n) < w) = exp(—e™Y), weR.

n—oo

Penrose’s result asserts that, by letting the radius o$tnigsion range grow as
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for any arbitrary functionv(n) tending to infinity withn, the graph obtained is a.a.s.
connected.

For our purpose, we need the following results related tad#grees of the nodes
according to the successive orders of magnitude of trasgmisange values.

Theorem 2 Letr denote the transmission range of thexodes randomly distributed in
the squareX of size|X| = O(n). Then, in the following three regimes, the graph G is
connected with high probability:

(i) Forfixed values ok, thatisk = O(1), if 772 n/| X | = log n+k log log n+w(n),
then G has a.a.s. a minimum degree k.

(i) Letk = k(n) andl < k < logn/loglogn.
If 7r2n/|X| = logn + k(n) loglogn, then the minimum and the maximum
degree are a.a.9. = k(n) andA = e logn, respectively.

(iii) If mr2n/|X| = (1 + ¢)logn with ¢ > 0, then each node of G has a.a.sd,

neighbors with
- OB oflogm) < d, € - —B" o(logn). (6)
Wi (~zct) Wo (=)

whereW_; and W, denote the two branches of the Lambert W funétighich
are detailed in [10]. Moreover, in the case when® n/| X | = (1 + /) log n with
¢ > 0, each geographical point of the suppdttis also recovered b (logn)
disks of transmission.

Sketchproof. For the proof of Theorem 2, we refer to [33], where asymptoticerage
as well as connectivity properties are treated in detailgife ranges of transmission
considered in Theorem 2.

Observe that in th8-dimensional case (with a cube instead of a square), singtaits
hold with the same assumptions as in Theorem 2: every ocumgef the surfacen(?)
being replaced by the volume (3 7). For example, to have each point of the cube
recovered byd(logn) balls, it is sufficient to set the transmission radius to theie

r = {/3(1+¢)logn|X|/4mn. In this case, w.h.p. the degrég of each node also
satisfies Eq. (6).

In the remainder of the paper, we mainly concentrate ountidie on results re-
lated to the2-dimensional case, since there exist direct corresporegewith the3-
dimensional case, such as the one mentioned above.

Next, we derive an upper-bound of the hop-diamddein the superconnectivity
regime.

3The Lambert W function is usually considered as a “speciattion” and its computation has been imple-
mented in mathematical softwares such as Maple.



Theorem 3 Let D = D(r) be the hop-diameter of G. Suppose that the transmission
range meets the condition= /3 (1 + ¢)logn | X|/4mn, with ¢ > 0. Then

(i) If £> 4=z,

™
1 < —— e .
nlin;OP <D =3 (1+2) logn + O(l)> 1 (7)
(ii) If ¢ < 42,
™
1 < _— e .
nlirI;OP (D <5 050 logn + (’)(1)) 1 (8)

Proof. Split the squareX into j* equal subsquare$, Ss, ..., S;2. Each of the sub-

squares has a sidg|X|/j and an are&X|/;2. Choosej such that each subsquase
can entirely contain a disk of radiusas depicted below.

Subdivision ofX VIX1/25 =1 = /A +{)logn|X][/mn.
q So,j = 1/2+/mn1/(1 + £)logn. For the
X1/ N sake of simplicity but w.l.0.g., assunjdo

be a non negative integer. By Theorem 2
(property (iii) ), there are©(logn) nodes
inside the disk with high probability.

.

Size|X|ﬁ2

Any pair of nodes inside the same disk neatimost2 hops to get connected, since
they are within a distance of at maat and since each subgraph inside such a disk is
a.a.s. connected.

Lemma 4 Communications between two adjacent subsquéieand S, viz. between
any nodex € S; and any nodé < S,, need at most (w.h.p.)

a) 6 hops wherf > =2 = 0.7519....and

b) 10 hops whert < ==,
Proof. Consider adjacent subsquares as depicted in Figs. 4, 5 and 6.
A bit of trigonometry shows that each lens-shaped regioh s15d.; (in Fig. 4) has a
surface|L;| = 1/6 (47 — 3/3)r2.
L represents the intersection of two disks of equal radinbose centers are at distance
r. Therefore, there is no node inside the lens-shaped rdgiavith probability

< |L1|>" _ <1 _ %(M—Z%\@%)n

X
exp (—%(zm —-3V3)(1 + E)n).

IN
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Figure 4. Horizontal transmission. Figure 5. Diagonal transmission.
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Figure 6. “Indirect” transmission.

Since each subsquare has at mb#nses of sizeL,|, none of these regions is
empty with probability at least

(1—exp (—6(4w—3\f )1+ 0) ))

nl—&@r—3v3)(1+6)
P ~2- (1+20)logn ' ©

Hence, with probability tending td asn — oo, there is at least a node in every lens-
shaped region of siz& ;| . So, 6 hops at most are needed to transmit a message between
two horizontally (or vertically) adjacent subsquares Bg 4), and whence) holds.

To proveb), we consider lenses suchbgdepicted in Fig. 5. The size of such region
is |Ls| = r? (7 — 2)/2, which measures the area of the intersection of two equls di
radiusr and at distance/2 r. With arguments similar to Eq. (9)1 + ¢)(7 — 2)/2 > 1
must hold for every lens of siZé.;| to be non-empty (w.h.p.). This condition holds only
when?¢ > 2/(m —2) — 1 = 0.7519.... For values off < 0.7519..., transmissions
are sent horizontally and then vertically (or vice-ver&ajch transmissions can required
up to 10 hops (cf. Fig. 6). The proof of the Theorem is now easily cartgal by simple
counting arguments. |

In the 3-dimensional case, we have the following result.



Theorem 5 Suppose that sensor nodes are randomly deployed in a cubic region of
volume| X | according to the uniform distribution. If their common tsamission range is
settor = {/3 (1 +¢) logn |X|/4mn with ¢ > 11/5, then the diameteb of \ satisfies

/ ™
1 < 3/ - = 1].
nlLII;OP [D < 12 T 1 (10)

Proof. See [33]. |

3.2. BROADCAST and SFR (Search-For-Range) protocols

Subsection 3.1 gives almost sure characteristicd/ofNow, we have to verify and
to exchange such information by means of distributed algms. Two procedures are
needed. The first one is the protod8iROADCAST. In this algorithm, some stations
(called source$ try to scatter a given message to all other noded/inlt makes sev-
eral calls of SEND. The second is the protoc8FR (Search-For-Rangelt is used to
adjust the correct transmission range of the nodes, in dodéake control” of the main
characteristics al/. SFRworks as follows.

Each station starts with the maximum range of transmissitien, at each step,
the transmission range is reduced gradually, till some @hitdes are disconnected. At
this stage, all newly isolated nodes readjust their trassiom range to get reconnected.
Each of them uses the protod®ROADCAST to sped out its “disconnection” message
informing all other nodes inV. A node quits the protocol in two cases only: either
whenever it broadcasts the “disconnection” message owcoanected after isolation, or
after reception of a “disconnection” message containifgrmation about the adequate
transmission range.

3.2.1. The broadcasting protocol

The procedurd8ROADCAST is similar to the one designed in [5] except for the use of
SEND to transmit messages.

Procedure BROADCAST (msg,e,A,r,N)
k := 2[log, A] (x A is an upper-bound of the maximum degxge
7 := [logy (N/e)] (x N is an upper-bound of the number of nodé¢s
Wait until receiving a messagesg
For i from1tor do
Wait until T ME modk = 1 (* to synchronize)
SEND(msg, k, 1) (x attempt to senehsg x)
end.

In the above procedure, > 0 can be made arbitrarily small\ is a parameter
representing the maximum degree gt or an upper bound on the maximum degree
(according to the regime, Theorem 2 makes it possible to cbeal for a given value of
the transmission range) is an upper-bound on the number of active nodesve is a
protocol which allows any given node to get the current tif@lowing the proof given
in [5, Theorem 4], we have



Theorem 6 Bar-Yehuda, Goldreich, Itai [5].
Suppose that > rcon is the actual transmission range of the nodes and et
be an upper-bound on the maximum degree and N an upper-bourtdeonumber
of nodes ofN. Also assume that some initiators (or sources) start thecgulore
BROADCAST (msg,e,A,r,N) whenTi ME = 0.
Ifwe letT = 2D + 5 max (\/1_), Vog (N/e)) x \/Tog, (N7/e), then, all the nodes

receive the message afteflog, A7 rounds with probability> 1 — 2¢. Furthermore,
with probability> 1 — 2, all nodes terminate by tinlog, A1 (T + [log,(N/€)]).

3.2.2. Adjusting the transmitting range: the proto&iR

The stations need to know bounds of the value of the numhbsrthe nodes. Ifpg =
|log, n| then2re < n < 2P0t

Thus, by setting?(2?) = /(log (2?) + 2log 2) | X| /727, the values of?(27) decrease
whenp increases. In the protoc8FR, we increment the values pfone by one, starting
from a value close to the maximal transmission range of @t#osis. Wheneves passes
throughpy — 1, po andpg + 1, there are some new isolated nodes w.h.p. Actually, it is

easily shown that/2 logn | X |/7n < R(2P01).

We are now ready to present the proto8BR. ProcedureSFR maintains just one
variablee representing the tolerance parameter and it is run in ghiafleach station.

( LO) Procedure SFR(e)
(L1) BEGIN
(L2)  Ri= o fUen)izlond) X,

(L3) B:::C»—>24{logx><(,/%—i—x—logz(e))w;
(x B(z) is the broadcast time,)
(L4) DISCONNECTED := false;

( L5) b= [IOgg (TMAX )] ;
(L6) REPEAT

(L7) counter := 0,

(L8) t1=100 x ([ Togy ()| + [ 1og (2/0)]);

(L9) For i from1tot Do

(L10) SEND(p, i, R(p));

(L11) Upon reception of a message —, R(p)) Do
(L12) counter := counter + 1;

(L13) EndFor

(L14) If counter = 0 Then

(L15) For j from 1 to [logQ (%)} Do

(L16) BROADCAST (“Disconnectiorp”, €,3p,R(p — 1),2P+1);
(L17) EndFor

(L18) DISCONNECTED := true;

(L19) Else



(L20) Wait for a message up t{olog2 (%)W x B(p — 1) rounds;

(L21) Upon reception of the “disconnection messape”
(L22) Scan the value gf and seDISCONNECTED := true;
(L23) Elsep :=p+1;

(L24) EndIf

(L25) UNTIL DISCONNECTED := true;

When reaching the valug,, the isolated nodes, whose transmission ranges are now
set tor = R(po), can increase their transmission rangeRt@, — 1) in order to get
reconnected. Next, such nodes have to inform all otherstabewpper-bounds om, A
andD, respectively given by

1

2P0 < ;< 2P0+1’ <
=" = SWo(—e1/2)

logn < 3po and

T 2P0

11
(po+1) 10g2 (11)

where we use Theorems 2 and 3 for boundgndD, with £ = 1, and the transmission
range set to

log (270~ 1) | X|
(2ro—1)

The message of disconnection can be sent and receivedthpbemeans of mul-
tiple calls to the protocdBROADCAST, provided sufficient rounds are given (cf. (L20))
to the broadcasting stations, in order to let all others barawf the bounds given by
Eqg. (11). The message broadcasting the above informatespecial one, saypPiscon-
nectionpy”, which contains the correct value p§.

Taking Eq. (11) into account, the “broadcast time” given bdye®rem 6 is less than

2[logy AT X (2D + 5 max (\/_ \/logy (N/e) ) log, (N/e) + ﬂogg(N/eﬂ) , with
probability greater thah — 2e.

This is strictly less thag4 log (po) (\/2170/170 + po — log, (e ))

Given these descriptions, the proto&sIR has the following properties.

Theorem 7 Assume that the network randomly deployed is an instandsfisag
Eq. (11). For anye > 0 there exists a constami > 0 such that with probability at
leastl — 1/n°, the protocolSFR(1/n°) terminates in at mosP (D log n) rounds. After
this time, every node is aware of the upper-bouddand D on the values ofi with
probability at leastl — 1/n°.

Proof. In lines (L9)-(L13), the inner loop is repeatetmes. Consider a nodepicked at
random. By Theorem 1, for any given nodes soon asin line (L9) meets the condition
2¢ > d,, the probability of success of each call3ENDis at leasts . .. By Theorem 2,
and under the assumption that the graph satisfies the alomespsoperties of a random
network, ifp = po = |log, (n)], d, < 3po. Therefore, by setting as in line (L8), we



ensure that if the node is still connected, it receives more than one message from it
neighbors with probability at leagt— ¢/2. Similarly, by making the just disconnected
nodes repeat sufficient calls BROADCAST and also have sufficient rounds to send the
“disconnection message” to all others, then, w.h.p., atiets of the whole network are
allowed to learn the correct upper-boundsofand thusA andD).

Note that both constantsandc; that appear in Theorem 7 do exist, since one can always
choose: of the forme = 1/n°* in order to get probabilities of failure of ordéyn°. W

According to these results and throughout the remainddrepaper, we have the
following definition.

Definition 2 A random graph G (or a random wireless netwd} is said typical if, and
only if,

(i) Theorem 2 and Theorem 3 hold, and

(i) for any constant; > 1, after one invocation of protoc@FR(1/n!), every node of
G (or N) knows the same value pf satisfying Eq. (11).

Remark. Let G(n,p) denote the random binomial graph [12], where each of(g")e
edges of the complete graphki, is present with probability. The results described
above can be compared to the (almost sure) characterigtios binomial random graph
of Erdds-Rényi(n, p) [12] as shown in the following table, whetgn) is any function
tending to infinity withn. In the tablep = n/|X| represents the expected number of
points per area.

Euclidian random graph Erdds-Rényi random graph

MODELS with intensityn /| X |
G(n,r) G(n,p)
PARAMETERS Radius:r = r(n, X) Edge probabilityp = p(n)
COMMON PROPERTIES Required value formn /| X| Required value fonp
Connectivity Inn+w(n) Inn+w(n)
Total coverage ofX: Hamiltonicity:
Minimum degree= 2 Inn+Inlnn + w(n) Inn+Inlnn + w(n)

Multiple coverage ofX
and if X is a square

Minimum degree= j + 1 j-connectivity: j-connectivity:

Inn+jlnlnn+ w(n) Inn+jlnlnn + w(n)

Quasi-regularity:
all nodes have degree w(n) | w(n)lnnwithw(n) < & | w(n)Innwithw(n) < 2

Inn Inn

For instance, one can read from th& row of the table that the value required for
r?2n/|X| is Inn + w(n) to obtain, with high probability, a connected geometric-ran
dom graphG(n,r). And similarly for np in the case of a connected random graph
G(n, p)) (Erdds-Rényi). In both cases The connectedness propecty®almost surely
iff w(n) — oo with n.



4. Afirstinitialization algorithm in random radio networks

Section 3 solved the problem of determining the correcsiraasion range for the nodes
of a random networld/. Typically, A" has the characteristics (mainly maximum degree
and hop-diameter) dictated by Theorems 2 and 3. Probéabilipper-bounds on such
characteristics can also be established with the protseB! In [4], Bar-Yehudeet al.
propose algorithms for efficient emulation of a single-hepaork with collision detec-
tion in multi-hop radio networks,provided the number oftistas (nodes), the diameter
and the maximum degree &f (or upper-bounds on them) are known. Combining the
results in [4] and [26] with the results in Section 3 leads teew initialization protocol.
More precisely, we can emulate a complete network (withisiolh detection) using the
methods in [4]. Therefore, any broadcasting protocol withitlakano-Olariu algorithms
in [26] makes it is possible to build an initialization prot in time O(nB), whereB
denotes the broadcast time of ordee= O(D logn) (see for instance [5,9,22]).

Instead, we first color the graph in a specific manner: the teyo-coloration. In
this problem, the nodes @¥ are colored in such a way that every pair of stations)
within a hop-distance of at mo8tfrom each other are assigned different colors (codes
or “channel assignment”). This specific coloration gives ¢glnaph a natural scheduling
of the communications which avoid&ect and hidden terminal problemBvery pair of
nodes(u, v) at hop-distance< 2 from each other is assigned one pair of color (code)
(cu, ¢v), With ¢,, # ¢, When a statiom (or v) decides to transmit in the exact round that
directly matches its own codes (or ¢, resp.), then it is easily seen that such scheduling
is collision-free

4.1. Choice of temporary IDs

Since the stations are supposed to be indistinguishaleldirsf goal is to allocate them
distinct temporary IDs. If an upper-boudd on n is known, it can be done in one pass
by assigning each station an integer uniformly picked frbenrange[l, N3} .

Procedure TMPI DS(N)
Each node chooses uniformly at random an integer rangimg frtw N3
end.

The above very simple procedure has the following property.

Theorem 8 Suppose thadV is an upper-bound on the number of nodeknown by all
the stations. After one invocation ®ivpl Ds(V), with high probability, every station of
N has a unique ID ranging frorh to N2 and no pair of stations share the same ID.

Proof. The proof of this result is a simple application of the balsl &ins problem. By
throwingn balls (stations) intdV? bins (temporary IDs) independently and uniformly at
random, with probability greater thasp (—O(n?/N?)) every bin contains at most one
ball. |

4.2. The two-hop neighbor discovery protocol

Once the temporary IDs are allocated, each nedé N has to discover all other nodes
within distance at most hops. The protocdDl SCOVER below allows any given node



u of N to know the set of its direct and two-hop neighbors (i.e. heays of neighbors).
This algorithm appears to be extremely useful since thestare deployed in random
fashion and do not have any knowledge of their respectivghibeirhoods. In the fol-
lowing pseudo-codey still represent any known upper-bound on the number of nodes
n.

ProcedureDi SCOVER(N)
Begin
For each node, setL(u) := 0;
For k from 1 to (log V) Do (x Discovering direct neighborg
With probability1/log N, every node: transmits a message containing
its temporary ID: EMPID ;
Upon reception of a messagEeMPID), u stores the value AMPID in a local list:
L(u) := L(u) J {TEMPID};
EndFor
For k from 1 to (log N)3 Do ( Discovering2-hop neighbors)
With probability1/ log IV, every node: sends the lisf.(u) of its direct neighbors;
EndFor
End.

Theorem 9 Assume that\" is typical and the transmission range is set to =
V/2log (2r0)| X |/ (2pPo7) with py satisfying Eq. (11). The running time Bf SCOVER(2F0+1)
is O (log (n)3) and with high probability, after one invocation & SCovER(2Po+1),

(i) Every node: of N is aware of the list of all its direct and two-hop neighbors.
(i) For each node:, the number of such direct and two-hop neighboi@{tog n).

Proof. The proof of par{i) is closely related to the proofin [33, Theorem 7]. For clarit
here are the details. After the first loop of the above alparithe proof that every station
is aware of the list of all its neighbors relies on two facts.

First, the main characteristics of the random Euclideawosdt and second, the
number of iteration®)(log n)? in this loop are sufficient for each node to send itsaD
least onceo all its neighbors. For the first point, we have seen thatéftransmission
range is setta/(1 + £) logn| X |/mn (¢ > 0) for any nodev of \V, then the degree of
meets the condition w.h.p.

B {logn
Wo (~erim)

SetN = 2P0+l > . In the regime considered in Theorem 9, the maximum degréé of
is bounded by log n (w.h.p.), where: is some constant such thategz 2 Wy (—1/2¢)
(for any constant > 2). Using the latter remark, let us complete the proof of |irt

For any distinct paifi, j) of adjacent nodes and any round [1, log (N)g} , define the

dy <

+ o(logn).

random variablex ! . as follows:

1—]

# _ J 1 ifthe nodej does not receive the ID ofat timet € {1, log (N)?’} ,
Z_” 0 otherwise



In other terms, the set
{x0,i 5 #1.te [L1og (V] }.

denotes a set of random variables that counts the numbersf ar j such thatj never
received the ID of. Denote byX the r.v.

X=> X

i#]
whereX,_,; = 1iff Xfﬂj =1forallt € {l,log (N)?’}.

Now, the probability that does not succeed in sending its IDjtat timet is

() 1 1 1 i

t

P(x® —=1) = (1- —— ) + — _ _
( Lt 1) ( log(N)) log N (1 (1 logN) )

Therefore, considering the whole ran%je,log (N)?’} yields

P =1 = (1-0 (=)™ < exp(-Otogn)

which bounds the probability thathas never sent its ID tg for roundst in the range
[1, log (N)?’]
By linearity the expectation, and since the number of edge$ orderO(n logn),

E(X) < O(nlogn) exp (—O(logn)?). (12)

Thus,E(X) <« 1 asn — oo, by the first moment method [3], one completes the proof
that after the first loop of the procedure, every station iaravwof all its direct neighbors.

With similar methods, it is easily seen that the second Idlova the nodes to know
one after the other the-hop neighbors.

To prove parf(ii), observe that if- is the common transmission/receiving range of
the stations, all two-hop neighbors of a nadere inside a circle of radiu-. Hence, a
simple application of the Eq. (6) in Theorem 2 proves asse(ii) of Theorem9. N

4.3. Atwo-hop coloring algorithm

We need some more basic definitions for our coloring algorith

Definition 3 I'(u) « {neighbors of a fixed node}. Anyv € I'(u) is referred to as a
direct neighbors of..
def

The set oR-hop neighbors is given formally B (u) = Uvef(u) L'(v).
Recall thatA & max,, |T'(«)|. Similarly, define\, as A, & max,, |Ta(u)].



To assign codes (colors) to the noded\iflet us consider the following simple and
intuitive randomized protocol callefissi1 GNCoL OR. As defined above; (u) |J T2 (u)
is the set of neighbors af at hop-distance at mo8t At the beginning of the algorithm,
each node stores an initial list of colorg(u) (also referred to gsalettg of size|T'(u)|+
T2(u)] + 1 = A + Ay + 1 and starts uncolored. We can also assume that each node
has a distinct ID (this can be effective after one invocatdii Mpl Ds) and knows its
neighbors i (u) | JT'2(u) (by means oDl SCOVER).

Then, the protocohss! GNCOL OR proceeds in rounds. In each round, eaolol-
ored nodeu, simultaneously and independently picks a color at randsay¢, from
its palette. Next, the node attempts to send this information to its direct neighbors in
I'(u), and in its turn, each membere I'(u) tries to forward the information to every
w € Ta(u). Trivially, this “two-steps” attempt succeed$ there is no collision with
direct neighbors and also “no collision” withthop neighbors. Therefore, before abso-
lutely assigning its color (code)to u, every member of the s&{(u) | I'2(u) has to sent
one by one a message of reception.
Note that this can be dordeterministicallyas explained in details below. Therefote,
sends a message atknowledgemersind every member of I'(u) | J 'z (u) canupdate
its own palettep(u) and its own sef(u) |J Tz (u).

Hence, at the end of such an iteration the new colored nodecomes passive
during the remaining of the algorithm. (Note that the protdssi GNCoOL OR is simply
the “2-hop version” of the coloring algorithm presented in [33bSection 5.3].)

Assuming that the upper-bourd on the number of nodes satisfies Eq. (11), a brief
description of this procedure follows. Each step beloweepnts dasic iterationof the
main loop of the algorithm. By allowin@(log n)? iterations, the algorithm is shown to
color correctly the graph.

Basic iteration of the main-loop of AssI GNCOL OR

Step0 : Every node needs an initial palette of colors of §i2éu)| + [T'a(u)| + 1
and a set of active direct arzehop neighbors. The upper-bound on the number of
direct neighbors is set tA := 3[log,(V)]. Similarly, using Eq. (6) of Theorem
2, an upper-bound on the numberefiop neighborsis sett; = [8log (N)]—

A. Note that the constaBtreflects the fact that al-hop neighbors of;, are within
an Euclidean distance of at most twice the transmissionerénognu. Therefore,
Eq. (6) yields—3/Wy(—3e~1/4) ~ 7.14... < 8.

Stepl: Every nodeu picks a color from its palette and tries to send itEgu).

Step2 : Ifthe previous step succeeds, there is no collision and/evaev € T'(u)
receives correctly the message. SiBtescovER allowsw to know its neighbors,

u can rank them and in their turn, one after the other accolyliogheir relative
rank, they have to forward the message toxHep neighbors ofi, that is to any
w € I'a(u). This phase is deterministic and =synchronization reguikreounds.

Step3 : If the previous step works correctly, every membeigfu) receives the
message and, in its turn, sends it back. In order to avoidustori, each message
is specifically marked with: (the ID of the initial sender). This step can be per-
formed deterministically, since can also rank it&-hop neighbors. Thus, st&p
also requireg\, rounds.

Step4 : When all their messages are back, all nodes I'(x) need to informu,
one by one and in right order. So, stes performed inA rounds.



Step5 : Upon receiving all messages from all its direct anblop neighbors, the
nodew has to send them back a message of acknowledgement. Agaistep
is deterministic and require& rounds (only the direct neighbors are needed to
forward the acknowledgement message). The nodé&il J I'z(u) update their
palettes of colors by removing the colerwhich is now assigned ta, andu
becomes passivenode.

The corresponding pseudo-code of the protocol is as follows

(1) Protocol AssiI GNCOL OR(N)

(2) SetA := 3[log,(N)] andAs := [8log (N)] — A;  (x following Eq. (11)x)

(3) Each node is active with an initialpaletteof colorsp(u) = {c1, ¢2, ..., cAtA,+1}
along with a set of active neighborsli{u) and2-hop neighbors if's (u);

(4)  Fori:=1tolog(N)®Do

(5) For each node do

(6) e Pick a colore from p(u);

(7) e Send a message containingith probabilitym ;

(8) If no collisionThen (x 1-hop neighbors- forward tow € T's(u)x)

(9 Every stationy in T'(u) gets the message properly, one by one in order
(10) Every statiorv in I'(u) forwards a specific message . ¢”;

(x v is the ID of the current node. The step is synchronized byntig A roundsx)
(11) Endlf

(12) Upon receiving a message of the form “forward. ¢’ Do
(* 2-hop neighbors- just send back twice)
(13) Every membew of I';(u) one by one and in order
(14) sends back a message to the memb&¥ of.
(15) Such a message can be of the form “back ¢”;
(* This step can be synchronized by always allowxgroundsx)
(16) end
a7 Upon receiving a message of the form “bawku ¢” Do
(18) The node € I'(u) sends the message backialong with its own ID;
(* This step needA rounds of synchronizatiox)
(19) end
(20) If ureceives all thel's(u)| + |T'(u)| message$hen
(21) u sends a message atknowledgementhich is also forwarded
(22) by all members of (u) to the sef’s(u); u becomepassive
(23) Endlf
(24) Upon receiving aracknowledgement message
(25) every station i’ (u) | JI'2(u) removes the colos from its palette;

(x This step is synchronized i\, roundsx)
(26) EndFor
(27)End.

Theorem 10 Assume that the randomly deployed network is typical, waighttansmis-
sion range set te = /21log (270) | X |/(2Po7). Suppose also that the stations have dis-
tinct IDs. Then, after the execution 868s1 GNCoL OR(JV), with probability tending td
asn — oo, every pair of nodeéu, v) s.t.u € I'(v) | JT'2(v) receives two distinct codes
(colors). Moreover, the running time of thess1 GNCoL oR is O(log (n)*) rounds and
the protocol use®(log n) colors.




Proof. Though it is more difficult, the proof of Theorem 10 is very ganto the proof
in [33, Theorem 8]. Observe first that the only randomized phthe algorithm is the
attempt ofu to allocate a color (cf. line 7); after what, all steps areed®inistic. So,
whenever it is successful, such an attempt can easily b&etidny the initiator:, since
u maintains the list of nodes if(«) and inT'y(u). Precisely, the algorithm builds a new
graphin which each new edge is (virtually) added betweeryayadr of 2-hop neighbors.
For any nodey, recall thatl'(u) [ JT'2(u) represents the set of its direct adhop
neighbors and let,, denote the size of its current palette. Now, define the ranimn
ableY, as follows,

v — { 1 if the nodeuremains uncolored after theg N3 steps ofAssI GNCOL OR
“ 71 0 otherwise
(13)
LetT{" andl“ff?2 denote the set of direct arrdhopactiveneighbors ofu (resp.) at any
given iterationt of the algorithm. Suppose that we are in such an iteratidndepen-
dently of its previous attempta,remains uncolored with probability

DS 4+ |
1 1 1 u w,2
ut = | 1— + x 11— 7
Pt ( <A+pu>> (A +pu) ( ( <A+pv>>

(14)
where there is at leastdirect collision with a neighbow € T ora “2-hop collisiori
with a neighborw € T'{").

For allt, |F5f)| < A, |F7(z)2| < Ajand, forallv, 1 < |p,| < A+ Ay + 1. Of more
importance A = O(logn) andA, = O(logn). Thus,

D+
1 1) e e 1
wte < 1— ——— (< <1-0 :
<1 g (5) ) ()

Since there aré(log (n)*) iterations, there exists a constansuch that, with probabil-

ity at most
1 O(logn)®
(1 -0 (logn>> < exp (—a log (n)z),

u remains uncolored during the whole algorithm. The expeotgtiber of uncolored
vertices at the end of the protoocd$si GNCoOL OR is thus less than

E(Y)= Y E(Y.) < nexp(-0O(log(n)?)). (15)

Finally, by Markov inequality (cf. e.g. [3]), the proof of Eorem 10 follows. |



4.4. An optimal gossiping algorithm if(1/n log n) rounds

The 2-hop coloring process induces a natural schedulirgittign for gossip. The gossip
algorithm is very intuitive: onceV is colored, in each round every statiarnis allowed
to transmitiff its color¢, is such thafli ME mod ¢, = 0 (whereTI ME is a function
that returns the global current round). Procedbossi P below starts with a randomly
deployed set of stations and uses all the procedures dedgiBviously.

ProcedureGossi P
Step 1:Start estimating the main characteristics\6fwith SFR(1/|X);
Such procedure allows all stations to get estimates on dmstnission range,
the maximal degred, the hop diameteP and the number of active nodes
Step 2:Allocate temporary IDs to the stations withvPl DS(V);
(* N denotes a probabilistic upper-boundof)
Step 3:Color the graph withAssI GNCOL OR(V);
Step 4:Use the obtained colors as follows:
Repeat100 x y/N/log N times
For each noda with colorc,,
If T ME mod ¢, =0 Then
Transmit all known IDs;
Endlf
EndRepeat
End.

Since, Ass1 GNCoL OR assignsO(logn) distinct colors and the hop-diameter of
the NV is given byD = O(y/n/logn), we easily derive the following immediate but
important result.

Theorem 11 If the random plane network is typical, then the procedBessi P re-
quiresO(yv/nlogn) rounds and for every pair of statioits, v), u receives the temporary
ID of v with high probability.

4.5. An optimal initialization algorithm i©(DA) rounds

The initialization procedure below is a straightforwaradisequence of the above algo-
rithm.

Procedurel NI TI ALI ZATI ON(N)

Gossi P;

For each statiom, sort all received messages;

ID(u) := rank ofu in the sorted array of temporary IDs;
End.

Theorem 12 With high probability, the proceduréNi T1 ALI ZATI ON(|X|) assigns
each station of\ one unique identity ranging fromto n in O(y/nlogn) rounds.

Corollary 13 The gossiping and initialization algorithms presented abare asymp-
totically optimal.



Proof. This is an immediate consequence of the results of Kuskdlewid Mansour
in [21]. Since gossiping and initializing are harder thandstcasting, which requires
Q(Dlog (n/D)) rounds in graphs such as random plane networks, they botiireesat
leastQ(D log (n/D)) rounds. FortunatelypA and D log (n/D) have a same order of
magnitude (w.h.p) ioV. |

Note that all the above results remain valid wi@iin'/?(log n)?/?) is substituted
for O(y/nlogn), inside a cube (instead of a square).

5. Divide-and-conquer algorithms and energy-efficient préocols

In this Section, we present a randomized algorithm runnin(pi(rﬁ’/4 log (n)1/4)

rounds, with no station being awake for more tr{ar(nl/4 log (n)3/4 rounds. It

is shown that our sublinear and energy-efficient initiglza algorithm is at most
O (logn/ loglogn) far from optimality, with respect to the number of roundsuiegd.
In fact, the running time i©(D logn) = O(DA), whereA is the maximum degree of
N andD denotes its hop-diameter. Indeed, it was shown in [22] thalhe same setting,
the easiest broadcasting problem requi2é® log log n) rounds.

The main lines of the algorithms are given below.
In order to schedule all communications, the station&'afre colored in such a way that
any pair(u, v) of nodes within distance 2 are assigned two distinct colors. This color-
ing algorithm suggests a natural scheduling of all the cominations in our protocols.
This specific algorithm and some others are caRledPARATI ON protocols.

Next, the divide-and-conquer principle is applied. We tduthe graph (witlCL USTERI NG),
with a specific node called thduster headn each cluster. Every cluster is then locally
initialized (withLOCAL 1 NI TI ALI ZATI ON).

Finally, the global initialization steg3L OBAL | NI TI ALI ZATI ON) is carried out over
the graph of clusters. All communications are realized h@agpecific paths constructed
between neighboring clusters (by swapping over from onle fgafinother). A gossiping
algorithm between all cluster heads just followed by a ragkilgorithm complete this
last step.

In light of the previous Sections, we know thitsatisfies the following main char-
acteristics with high probability.
e There exist two constantg andC, such that the degre&, of any nodev meets the
condition

celogn < d, < Cylogn.

e N\ is (¢ logn)-connected.
e The hop-diameter (or diameter) .&f meets the conditio® = © (logn).

5.1. Clustering

The aim of this step is to design a randomized algorithm thditpns the set of nodes
into disjoint groups. The hop-diameter of each group rahgéseent and2k, wherek



is a parameter that will be fixed later in the analysis of tigeathm. In each cluster, there
is a specific node called thauster head CH for short). The principle of the clustering
algorithm is simple and intuitive.

At first, each node becomes a candidate cluster head withtairc@robability. If
two or more candidate cluster heads are too close from e&eh @tiz. they are within
distance less thah-hops ), all of them must be eliminated but one, which is abnsi
ered the true cluster head. This can be done by choosing titkdede with the biggest
TemPID amongst all others; eliminated candidates become nanodgs.

In the end of the algorithm, we have to collect@phannodes, that is all the nodes
which are not within &-hop neighborhood of the newly marked out CThe orphans
choose the nearestHCamong all the possible cluster heads in their respeetivbop
neighborhood. During the clustering protocol, every comioation is mainly performed
by using the2-hop coloration algorithm mentioned above.

This partitioning process is a key ingredient of our iniiation algorithm. After the
execution of the clustering protocol, each cluster can ltialized locally.

5.2. Local initialization

In order to initialize each cluster locally, the proto€ssi P is used. The idea is very
similar to those in [34]. The local initialization protodslexecuted distributively by all
the stations in all the clusters. Every noddirtransmits its EMPID to all other stations.
The gossiping protocol uses the collision-free schedllat the coloration algorithm
provides and when a station receives a messagg it appends its EMPID to msg
and transmits this new message to all its neighbors. Sirecedloration algorithm uses
O(logn) colors,afterO(klogn) rounds, all stations know theEmpIDs of all other
stations in their cluster. Finally, the rank of theiirID of a station simply becomes its
local ID (denoted locALID).

Upon termination of the local initialization step, eachtista owns two “IDs”: its tem-
porary ID (TEMPID) and its local ID (LocALID), according to the cluster it belongs
to.

5.3. Paths between the clusters

In the next step, the paths of communication between eastecimust be constructed.
The idea is as follows. During such communications, aligtatare intentionallasleep
to save their batteries, except the stations on such conuatiom paths. To avoid “energy
holes” (on the most crowded paths), we have to find out as migjoirt paths as possible
and swap over from one path to another.

5.4. Global initialization

The global initialization step is performed by means of asgmiag algorithm between
all cluster heads, just followed by a ranking algorithm. @dmmunications are carried
out via the disjoint paths between clusters, and by skipfsimg one path to the other.

Figures 7 and 8 describe and briefly summarize the main sfaps itialization pro-
tocol.
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Figure 7. Division of the graph into disjoint clusters and local ialization of each cluster. In the figure on the
right above,3 clusters are initialized with integers ranging frdnto 141, from 1 to 287, and from1 to 192,
respectively.
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Figure 8. After the paths construction between clusters (dashed)litiee global initialization is just executed
by means of the gossiping algorithm performed via thesespath

5.5. Detailed Algorithms and Analysis

In this Subsection, we are concerned with three basic dhgns which are fre-
quently used and discussed throughout the remainder of dperpFirst, the proto-
col Assi GNCOL OR is executed (see the design in [34, Section VA%SI GNCOL OR

requiresO(log (n)4) rounds and use® (logn) colors. After the execution of

Assi GNCOL OR, any two stations withi hops-distance receive two distinct codes (col-
ors) with high probability. Once it is well-coloredy is collision-free and we are now
ready to design the protocBROADCAST. (The pseudo-code is in Fig. 9.)

Itis easily seen that such an algorithm requit¥& log n) rounds, under the condi-
tion that the randomized coloring algorithm succeeds witbpbility 1 (i.e, it errs with
probability 0).

One can design a gossip algorithm based UPROADCAST. In the gossiping problem,
the task is to sped out the information contained in eacliostéb all others. Such a
protocol can be derived from the broadcasting one by charayfiew lines, as described
in Fig. 10.

Since there ar@(logn) colors andk steps, the execution time @ossi P(k) is the
same a88ROADCAST(k): O(klogn).



1 ProcedureBROADCAST(msg : messagé, : integer)

2 Begin

3 Repeat(100 x k x logn) times

4 For a node: colored withc,,, upon receiving a message of the fofmsg, k) Do
5 If (TIME mod ¢,)=0andk > 0Then

6 BROADCAST (msg, k — 1) EndIf

7 EndRepeat

8 End

Figure 9. The BROADCASTING protocol.

1 ProcedureGossi pP(k : integer)
2 Begin
3 Repeat(100 x k x logn) times
4 For each station with initial messagensg(u) and colored:,,
upon receiving any message of the fofmsg, k) Do
5 If(TIME mod ¢,)=0andk > 0Then
6 msg := append(msg, msg(u));
7 TRANSMI T(msg);
8 Gossi p(k — 1) EndIf;
9 EndRepeat
10 End

Figure 10. The GOSSIPING protocol.
5.6. Random clustering

In order to apply a divide-and-conquer algorithm, we detiigrprotocolCLUSTERI NG,
which works as follows.

At first, each station chooses to be a candidate cluster i@&#&dxith a certain probabil-
ity (to be specified later in the analysis). The protocol mée following specifications:

(i) each cluster has atG
(i) each node knows itsKG which is at most withirRk-hops distance;
(iif) any two G4s are at a distance of at least- 1 hops from each other.

Therefore, there exist randomly chosen candidates in thpastiareaX. In order to
satisfy specificatiofiii) , a few candidates which are too close from each other must be
eliminated.

By using a broadcasting algorithm at a distakqgvith BROADCAST), each candi-
date G4 can detect whether there exist some other candidateskrhit neighborhood.
The candidate with the biggestemprID becomes a true i€and all others are eliminated.
Finally, the orphans (nodes without adiCare collected as follows (witl€oLLECT).
Every (H executes a protocol, with a specific message that enablesgatan to choose
the nearest g in its 2k-neighborhood.



1 ProcedureCoLLECT(j : integer)

2 Begin

3  Foreach node Do

4 If u is a cluster hea@hen

5 Repeat(100 x j x logn) times
6 If (TIME mod ¢,) =0Then
7 TRANSMI T(TEMPID,1)

8

9

EndRepeat
Else
10 CLUsTER(u) := NIL, distance :=0;
11 Upon receiving a message of the fofffemMPID, radiug
12 EndIf

13 If distance> radiusThen

14 CLUSTER(u) := TEMPID, distance := radius;
15 Repeat(100 x j x logn) times

16 If (TIME mod ¢,) =0Then

17 TRANSMI T(CLUSTER(u),distance-1);
18 EndRepeat

19 EndIf

20 EndElse

21 End

[N

ProcedureCLUSTERI NG(k : integerp : float)

Begin

Step 1:Each station chooses to be a CANDIDATE cluster head with gindiby
p;

Step 2:For each CANDIDATE station ruBROADCAST(TEMPID, k);

Step 3: Upon receiving a broadcasting message, eliminate the datedi which
TeMPID is smaller than the ID(s) of some other(s) candidate(s).

Step 4:The remaining candidates are now cluster heads and brdddemsTEM-
PID by means ofCoL LECT(TEMPID,2k), to inform the stations &k-hop dis-
tance of their presence and status.

Step 5:For each node, CLUSTER(u) is set to the nearest cluster head among the
nodes that invocated the protocbL LECT.

8 End

w N

o b~

(o2}

~

From Section 3, we derive the following result.

Theorem 14 CLUSTERI NG(k,P) requiresO (max (k: logn,log (n)4)) rounds. After

the execution of the protoc@LUSTERI NG w.h.p. any station belongs to a specified
cluster and knows its cluster head, which is at a distance of@st2k hops.



Proof. By choosingP & 9/(k2(1 + £)log (n)), we make sure that the disks with ra-
diuskr that are centered at the candidate stations achieve a fidrage of the support
areaX . More precisely, let be the random variable counting the number of candidate
stations. The average number of candidate stations is giv&1{¢) = nP.

By Chernov bounds, we know that, sinm — 00, =06 (#g(n))
w.h.p. Hence, standard calculus yields

P(3E() <& <2(9) <1- e (- OE(E)). (16)

Next, by virtue of the result in [25, Thm. 3.2],1f/3E(¢)k%r? > 2.83 | X| the disks
generated by the candidate stations ensure a full covefadge support areaX | w.h.p.
Then, it is easily seen that the elimination of two “colligfncandidate Gis can be
worked out by using thBROADCAST protocol. Similarly, any station which still needs
a cluster head is assigned the closesti€its 2k-hops neighborhood, by means of the
COLLECT protocol.

Finally, CLUSTERI NGis made ofAssI GNCoL ORandBROADCAST, which require

o (log (n)4) (cf. [34]) andO(k log n) rounds, respectively. Hence, the time complexity
of CLUSTERI NGis clearlyO (max (k logn, log (n)4)). |

5.7. Learning the neighborhood and local initialization

The aim of the protocol oT ALKNOWL EDGE is to allow each station to “learn” the topol-
ogy of itsi-hops neighborhood, whetds a parameter of the procedure. In order to con-
struct the adjacency matrix of its neighbors, a given nodebes the local procedure
APPENDTOADJACENCYMATRI X. It works as follows:

e Every nodeu (with degreel,,) maintains a local lis.(u), initialized to
L(u) := TEMPID (u) — NIL.

e Upon receiving the number of its direct neighbersus,. .. ,vq, , © updated. (u)
to

L(u) := TEMPID(u) — vy ---vg, — NIL

|
NIL --- NIL.

e Next, every neighbow, . ..,vq, sends its respective ligt(vy), ..., L(vq, ) thatu
appends to its current list and constructs its own neightimitfadjacency matrix.

Clearly, after; steps each participating node can build its awn i adjacency matrix,
which represents itshops neighborhood.

Procedurd oT ALKNOWL EDGE, Which runsAPPENDT OADJ ACENCYMATRI Xis as fol-
lows.



1 ProcedureTOTALKNOW. EDGE(: : integer)
2 Begin
3 Each node: with TEMPID (u) and colored:,
maintains a list.(u) := TEMPID (u);
4 t:=1q;
5 Repeat(100 x i x logn) times
6 If t >0and(TIME mod ¢,)=0Then
7 TRANSMI T(L(u),t);
8 ti=t—1;
9 EndlIf
10 Upon receiving a list Do L(u) :=APPENDTOADJACENCYMATRI X(L);
11 EndRepeat
12 End

The local initialization protocoLocALI NI T is the combination of the two protocols
CLUSTERI NGandToTALKNOW. EDGE

1 ProcedureLocALl NI T(i : integer)

2 Begin

3 TOTALKNOWL EDGE(%);

4 For each node belonging to CUSTER(u) LocID(u) := rank ofu
in the sorted array of IDs of all nodes in.GSTER(u);

5 End

5.8. Paths construction between clusters

Each stationu runs TOTALKNOW. EDGE(4k) independently. After whaty owns the
adjacency matrix of all itdk-hops neighbors. With this information, and the knowledge
of all its neighboring clusters, Bellman-Ford algorithneiecuted. Every node can thus
deterministically build the same routing table between heaghboring clusters; more
precisely, between any given pdir, t) of stations, each within its respective cluster, as
described in Fig. 11.

Therefore, the fact that all involved stations do have timeesehoice of the paifs, t)
is important of course. For example, the first pair of stationt) between two adjacent
clusters may be taken as the two smallest statiabsALIDs in both ones. If such an
(s, t)-path exists, the Bellman-Ford algorithm executed by thiégpating stations finds
it.
Observe that the latter algorithm is not run distributiv8lgsides, the choice of the pa-
rameterdk ensures that all these stations have the right required ety submatrix
(which size is at mostk x 2k).
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Figure 11. The choice ofi = 4k as parameter of oTALKNOWL EDGE allows the stations to construct all
paths deterministically, one after the other, between ayrteighboring clusters.

5.9. Gossiping over clusters and main results

Finally, a gossiping algorithm over disjoint paths of ldmgt mostdk, is performed over
the graph of clusters.

As shown in Fig. 12, the communication process between tvighbering clus-
ters is then worked out along the constructed disjoint patharder to synchronize the
communication between adjacent clusters, we cut up theititoé'phases” that arék
rounds long. Each such phase is actually made @@t communication delay time: it
serves as a kind of frame in the swap-over process from a giaénto a next disjoint
one. The gossiping algorithm is therefore deterministicl g&n each round every station
knows exactly whether sleeping or communicating.
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Figure 12. The square of surfac® (k2r2) and itsm regular strips frame, that link two half-covered neigh-
boring clusters for swapping over between the disjoint path

Lemma 15 Let CLUSTER(») and CLUSTER(v) be any two adjacent clusters. W.h.p.,
there exist at leasb (k?) disjoint paths betwee@LUSTER(u) and CLUSTER(v).



Proof. (Sketch)
Let c; k andcok be the hop-radius of two neighboring clusters. Clearkg ¢; < 2 and
1 < ¢ < 2. As shown in Fig. 12, there exists a squatef surface|S| = O (k%r?)
covering half of each two clusters. Spfitinto m regular (rectangular) strips; of equal
size|S;| = (9(%’;2) (1 € [1,m]), and letN; be the number of stations within each strip
Si If B2r? /m > 1, E(N;) = O (k*r%/m) > 1.

Now, by Chernov bounds, we know that there exist two constarandy:; for each
1 <4 < m, such that

k2 2 k2 2 k2 2
]P’<V1- " §Ni§,ui—r) > 1—exp<—(9< r>)
m m m

Next, fix i € [1,m] and denotecon, the transmission range required to have a
connected graph inside the sti$h. Among other results, Penrose proved in [30] that if
Ni/1Si| = O(1),

N; _
NliiglooP (ﬂ' S r2on — log (N;) < w> = exp ( —e “).
Finally, if we letm = (’)(lﬁ), then

%)W -0 (log (%)) = O(loglogn). 17)

In the present case, the transmission radius is such-that O(logn), and there-
fore, any subgraph withis; is connected with probability greater thaxp (—n@(l)).
Since the numbem of strips is at most polynomial im, it is growing much slower
than the above probability of any subgraphSinto be connected; and this holds for all
i =1, 2,...,m. Hence, w.h.p. the number of disjoint paths betweew$rer(u) and
CLUSTER(v) is at leastO(k?), and we are done. |

As an immediate consequence, we have the following mainrEned6.

Theorem 16 Let n stations be randomly deployed on a support a’éawith a linear
size|X| = O(n) and assume the radius of transmission of each station to be

VA + 0)log ()| X]/(mn).

For anyk < +/n/ logn, the initialization of the stations requiré3(k+/nIog n) rounds,
with no station being awake for more th&n (max (\/n logn/k, klogn,log (n)4))
rounds.

Proof. If each cluster is considered as a graph node, the runnirgdfrthe initialization
protocol isO(kDlogn) = O(ky/nlogn) rounds (whereD denotes the hop-diameter of
the graph). Swapping over from (disjoint) path to path betwadjacent clusters requires
that each station is used only evedyk?) rounds, and the result follows. |



Corollary 17 Under the assumptions of Theorem 16, there exists a ranédrmtial-
ization protocol running ir©® (n3/4 log (n)1/4) rounds, with no station being awake for

more than® (n1/4 log (n)3/4) rounds.

6. Conclusion

In the present paper, two performing algorithms for soluihg initialization problem
are designed and analyzed. The random geometric graph 8¢det) is used in both
algorithms as underlying reachability graph of the wirslastwork\. G(n, r) enjoys
plenty of fruitful properties for the design and analysiso€h algorithm.

The second initialization algorithm presented is time alsd anergy efficient. Its
running time, as well as the awake time per station are bathdly sublinear. More

precisely, the time complexity of our algorithm achie\lés<n3/4 log (n)1/4) rounds,

with no station being awake for more théh(n1/4 log (n)3/4) rounds.

It is also worth to emphasize the fact that choosing= O(1) yields an almost
time optimal algorithm. In such a case indeed, the running shrinks ta? (\/nlog n)
whereas the easier broadcast problem requires at&ﬁné —2— loglog n) rounds [9,

logn

22]. Hence, our result is at moSt (log’i’g‘n) far from optimality.

Finding the lower-bound on the awake time per station forititéalizing stations
in a random radio network is an open challenging problemtHéumore, an even more
challenging open problem remains of course the design aalgsis of an initialization
algorithm which could reach the latter lower-bound whilepimg a nearly optimal time
complexity.
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