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Active Robustness of a Milk Manufacturing Workshop with Time 
Constraints 

 

Abstract   

This paper deals with the active robustness of a milk manufacturing workshop including 

time interval constraints. Such systems have robustness properties towards time 

disturbances. The robustness property can be a static property, but using a dynamic 

control strategy may increase the robustness value. 

Controlled P-time Petri nets are used as a modelling tool. Some definitions and a series 

of lemmas are cited in order to build a theory dealing with robustness problems. In 

order to avoid the death of marks at the synchronization transitions of the P-time Petri 

net model, a robust control strategy facing time disturbances is presented. The proposed 

approach tries to reject the disturbance as soon as it is observed. Furthermore, this 

approach is used by an algorithm computing an active robustness margin at a given 

node. It is illustrated step by step on an example of a milk manufacturing workshop. A 

comparison with the bound provided for the passive robustness is made. 

 
1 Introduction  
 
Manufacturing workshops with time constraints are Discrete Event Systems (DES), where a 
time validity interval is associated to each operation. Its lower limit indicates the minimum 
time necessary to execute the operation. The upper limit determines the maximum time not to 
exceed in order to ensure the quality of the manufactured products. Time windows constraints 
may be found in many industrial areas ( Collart-Dutilleul et al. 2007, Kats et al.  2008, Dohn 
et al.  2009 ). For example in the food industry, there are minimum operating times which 
integrate the process limitations. These workshops are generally modeled by Controlled P-
time Petri nets, to study the instants of beginning and ending for operations. Such systems 
have a robustness property towards time disturbances. 
 
The robustness is defined as the ability of the system to preserve the specifications facing 
some expected or unexpected variations. The robustness is interpreted into different 
specializations (M’Halla 2010a, Jerbi 2006). The passive robustness is based upon variations 
included in validity time intervals. There is no control to preserve the required specifications. 
On the other hand, active robustness uses observed time disturbances to modify the control 
settings in order to keep on satisfying the specifications. Various strategies can be 
implemented to manage time disturbances in production systems ( Jerbi et al. 2009, M’Halla 
et al. 2008, M’Halla et al. 2010b). In this paper, the control strategy corresponds to rejecting 
the disturbances by applying an inverse control loop: for a delay, sojourn times are set as 
small as possible; for an advance, sojourn times are as long as possible. 
 
The work presented in this paper focuses on the robustness of a milk manufacturing workshop 
regarding time disturbances. This paper begins by modelling the workshop. Controlled P-time 
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Petri nets are used for this purpose. A functional decomposition of the P-time Petri net into 
three sets is done. The second section begins by giving some basic definitions concerning the 
robustness of a manufacturing workshop including time constraints. The passive robustness 
(local robustness) of a given path in the milk manufacturing workshop is analytically built up; 
an algorithm allowing computing a lower bound of the passive robustness margin is 
presented. Afterwards, the control problem in critical time manufacturing systems is tackled. 
An approach for the robust control is presented. The proposed strategy tries to reject the 
disturbance as soon as it is observed using the control in order to preserve the specifications 
facing some expected or unexpected variations (Collart-Dutilleul et al. 2007). This approach 
is used by another algorithm computing a bound for the active robustness margin. An 
illustrative example is outlined and the results are discussed. Finally, some conclusions of this 
work are given.  

2 Modelling of a milk production unit 
2.1 Modelling tools of DES integrating time constraints  

2.1.1 P-time Petri nets  

The following section presents the basic definitions concerning P-time Petri nets. The reader 
interested by a theoretical semantic analysis may read (Boyer and Roux 2010). 

 

Definition 1. (Khansa et al. 1996): The formal definition of a P-time Petri net is given by a 
pair < R; I > where: 

 
� R is a marked Petri net, defined by (P,T, I, O, M, M  0) where 

o P is a set of places 
o T is a set of transition 
o IN is the set of input arcs of transitions  

IN: (P×T)→N (N is the set of natural numbers ) 
o O is the set of output arcs of transitions  

O:  (T×P)→N  
o M is the Marking application 
o M  0 is the initial value of the marking 

 
� IS: P  → Q + × (Q +  ∪  {+∞}) 

              pi → ISi = [ai, bi] with 0 ≤ ai ≤ bi. 
 

ISi defines the static interval of the staying time of a mark in the place pi belonging to the set 
of places P (Q+ is the set of positive rational numbers). A mark in the place pi is taken into 
account in transition validation when it has stayed in pi for a duration of at least ai and at most 
bi. After the duration bi the token will be dead. 
 
Définition 2 (Khansa et al. 1996): 
At a given instant, a state is defined by a pair < M, I > such that: 

- M is a marking application which assigns a given number of token to each place 
such that : 
( , ( ) );∀ ∈ ≥p P M p 0  

- I is an application "potential firing interval", which associates to each a token k in 

a place pi an interval [ ]a bi
k

i
k,

. It is called dynamic interval in order to make a 
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difference with the static interval which is associated to each place. Dynamic 
intervals depend on arrival instants of tokens in the considered place. Let us 
assume that a token k arrives in the place pi (which static interval is [ai,bi]) at a 
given instant c, at the instant c+d (ai ≤ d ≤ bi) the dynamic interval of k becomes: 
[ ] ( )[ ]dbdaba ii

k
i

k
i −−= ,0,max,    

 
Firing condition of a transition from states  
When the transition is enabled in the autonomous PN’s sense, its firing interval depends first 
on the potential interval associated with the tokens which are in its input. Then according to 
these intervals, an interval of "potential" firing is associated to it. Afterwards, its "real" firing 
interval is established according to the potential intervals of the tokens whose places aren’t 
input places of this transition. 
 
The firing condition is formally expressed as follows: 
A transition t l is potentially firable from a state S<M,IP> in the interval [a l b l ], if and only 
if: 

1- it is enabled in autonomous PN’s sense in this state : �∀ p∈  °tl : m(p) ≥  IN (p,t l) 

2- ∀ pi∈  °tl there is a number of token greater than  IN(pi,tl) verifying   

[ ] [ ]i
i

i
i

k

k
i

k
i baba ,, =I   and [ ] φ≠i

i
i
i ba ,  where k = 1, 2, ..., I(pi, tl) .  

3-  There must be no token in this place whose upper bound of the dynamic interval is 
strictly smaller than the lower bound of interval [ ]i

i
i
i ba ,  . Otherwise there is a token 

that dies and consequently the net is said dead-tokens. 
 

2.1.2 Controlled P-time Petri net  

Definition 3. (Jerbi et al. 2004):  The Controlled P-time Petri net is defined by a quadruplet 
Rpc= (Rp, U, U0) such that: 
 

� Rp is a P-time Petri net which describes the opened loop system,  
� U is the external control of the transitions (T) of Rp built on the predicates using the 

occurrence of internal or external observable events of the system: U: T → {0, 1}, 
� U0 is the initial value of the predicate vector. 
 

NOTATIONS   
� p°i (respectively °pi): the output transitions of the place pi (the input transitions of the 

place pi), 
� qie: the expected sojourn time of the token in the place pi, 
� qi : the effective sojourn time of the token in the place pi, 
� Ste(n): the nth expected firing instant of the transition t, 
� St(n): the nth effective firing instant of the transition t, 
� TC: the set of controllable transitions.  
� TS: the set of synchronization transitions 
 

2.2 Presentation of the workshop 

Figure 1 shows a milk manufacturing unit composed of five machines (M1, M2, M3, M4, M5) 
and six conveyors (T1, T2, T3, T4, T5, T6), where (M’Halla et al. 2010c): 

 
– M1 is a bottle filling machine, 
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– M2 is a milk bottle capper, 
– M3 is a time/date stamp, 
– M4 is a labeling machine, 
– M5 is a packaging machine. 
 
For simplicity, we disregard the nature of the precise operations performed in the milk 
production unit, and therefore we represent a model of a generic workshop. 

 
To manufacture the products (bottles of 1000 ml), empty bottles are placed on the conveyor 
T1 to supply the bottle filling machine M1. The filled bottles are transported towards the 
capping machine M2 by the conveyor T2. After capping, the bottles arrive directly on T3. This 
conveyor carries the bottles to the machine M3 (time/date stamp) to print the manufacturing 
date and end date of consumption. Once this task is completed, the bottles move towards the 
labelling machine M4 via the conveyor T4.  
 
The bottles are then transferred to the packaging machine M5, where they will be wrapped by 
welding in a group of 6. Lastly, the finished products are deposited on the conveyor T6 
towards the stock of finished products SA. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
Figure 1: Milk manufacturing unit 

 

2.3 Functional decomposition 

As the sojourn times in places have not the same functional signification when they are 
included in the sequential process of a product or when they are associated to a free resource, 
a decomposition of the Petri net model into three sets is made using (Long et al. 93): 

 
� RU is the set of places representing the machines used, 
� TransC is the set of places representing the loaded transport resources, 
� TransNC is the set of places representing the unloaded transport resources (or the 

interconnected buffers). 

C1 

M 2   
T1 

M 1   M 3   M 4   
T4  T3  T2  

SA   

T6 

 

  
T5 

M 5 
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This functional decomposition (or a similar one) has been used many times in the scientific 
literature in order to study control and regulation problems in manufacturing workshops. This 
is not a proof that it can be applied on all workshop topologies. We can only say that it 
corresponds to a good decomposition for many manufacturing systems. 

 
Figure 2 shows a P- time PN (G) modelling a milk production workshop and its functional 
decomposition. The obtained G is used to study the robustness of the considered 
manufacturing workshop (M’Halla et al. 2010b). 
 
3 Robustness of a milk manufacturing workshop 
 
In this milk manufacturing workshop, a time interval is associated to each operation. Its lower 
bound indicates the minimum time needed to execute the operation. The upper bound sets the 
maximum time to not exceed otherwise the quality of the product is deteriorated (M’Halla et 
al.  2010a). When time constraints are violated in a workshop which is manufacturing food 
products, it can affect the health of consumers. Thus, the detection of a constraint violation 
must automatically cause the stop of the production and an elimination of dangerous products 
(an overheating of milk bottles in a hydromat for example).  
 

On the other hand, when taking into account the system robustness, it can be proven that 
this type of violation has not occurred despite an incident happened in the production line. In 
this case, we plan to maintain the production while describing it as production in a degraded 
mode. Of course, the product is not degraded, but the production mode is degraded because 
the deliveries moments of the products are not those planned initially. In this context, the 
robustness of a given path in the milk manufacturing workshop is analytically built up. Two 
algorithms for building respectively, an upper bound of the passive robustness margin and the 
active robustness margin at a given node, are presented. The proposed algorithms allow 
increasing the ability of the system to fulfil the specifications facing some expected or 
unexpected variations. 
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Figure 2: A milk manufacturing unit modeled by a P-time Petri net 
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3.1 Basic definitions 

Preliminary definitions, useful for the rest of this paper, are given in order to study the 
robustness of a milk manufacturing workshop. 
 
Definition 3. (Collart-Dutilleul et al. 2003): The robustness is defined as the ability of the 
system to remain valid with respect to the specifications when facing some expected or 
unexpected variations. The robustness characterizes the global capacity to deal with 
disturbances.  
 
Definition 4 (Jerbi et al. 2004): A mono-synchronized subpath Lp is a path containing one 
and only one synchronization which is its last node. 
 
Definition 5. (Jerbi et al. 2004):  An elementary mono-synchronized subpath is a mono-
synchronized subpath beginning with a place p such that °p is a synchronization transition. 
 

3.1 Local passive robustness computations 

3.1.1 Preliminary definitions 

Definition 6. : Let us consider a discrete event system and G the associated Petri net model. 
Let us call B(G) the behavior of G corresponding to the trajectory of states successively 
reached. Let C(B(G)) be the schedule of conditions established on the system behavior B(G). 
C(B(G)) is materialized by a series of constraints which must be checked by B(G). A non 
respect of B(G) corresponds to a violation of C(B(G)). It is said that a subset SG of G is 
robust to a disturbance δ if and only if ∀ n∈ SG, the occurrence of the disturbance δ at the 
node n does not involve a violation of C(B(G)). 
 
Definition 7. (Collart-Dutilleul et al. 2007): Passive robustness is when the required 
specifications are met without any need for a change in the control settings, even in the 
presence of variations. 
 
Definition 8. (Jerbi et al. 2004): It is said that a path Lp has a local passive robustness on 
[δmin, δmax] if the occurrence of a disturbance δ∈ [δmin, δmax] at any place p∈ Lp does not 
involve a token death at the synchronization transitions of Lp. 

3.1.2 Passive Robustness computation  

To compute the local passive robustness interval, the concepts of compensable and 
transmissible margins are introduced. Let us denote by: ∆rck and ∆rtk respectively the 
compensable margin and the transmissible margin on the mono-synchronized subpath Lpk. 
The local passive robustness delay ∆rLpk can be calculated using formulas (1), (2) and (3) 
(Jerbi et al. 2004). 
With:          kkLp ∆rtrc∆r

k
+∆=  (1) 

 
)Trans(RLpp

)a  (q∆rc

NCNki

iiek

∪∩∈
−= ∑  (2) 

 

   Lpp
)OUT(Lpp
)q   min(b∆rt

ki

k
o
i

ieik

∉
=

−=  (3) 
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In table 1, we can highlight examples of the compensable margin and the transmissible 
margin associated to some mono-synchronized subpaths Lpk of the P-time Petri net model 
(figure 2).  
 

Table 1:  Compensable margin and transmissible margin associated to some mono-
synchronized subpaths of G 

 
Path 

k∆rt  k∆rc  

Lp0=(p9, t9, p18, t8) 6 689 
Lp1=(p9, t9, p101, t101) +∞  0 
Lp2=(p9, t9, p102, t102) +∞  0 
Lp3=(p9, t9, p103, t103) +∞  0 
Lp4=(p9, t9, p104, t104) +∞  0 
Lp5=(p9, t9, p105, t105) +∞  0 
Lp6=(p9, t9, p106, t106) +∞  0 
Lp7=(p111, t111, p191, t102) 56 5 
Lp8=(p112, t112, p192, t103) 41 3 
Lp9=(p113, t113, p193, t104) 28 3 
Lp10=(p114, t114, p194, t105) 19 2 
Lp11=(p115, t115, p195, t106) 12 4 
Lp12=(p116, t116, p196, t101) 71 36 
Lp13=(p71, t71, p81, t8) 15 0 

 

A/ Computation algorithm of the exact value of passive robustness for a delay in a milk manufacturing workshop  

In order to avoid the violation of schedule conditions, a recursive algorithm allowing 
computing an upper bound of the maximal time disturbances allowed in a given point of the 
milk manufacturing workshop is presented. The purpose of this algorithm is to decrease the 
number of false alarms. 
 
A-1/ Algorithm 1 
 
Let us denote:  
 
Cms: the set of mono-synchronized subpaths, 
 
Cse: the set of elementary mono-synchronized subpaths,  
 

i
i

LpL ∪= : the union of mono-synchronized subpaths    

∆rcj :  the compensable margin on the mono-synchronized subpath Lpj  

Res (L, Lp) : the maximal residue of disturbance on OUT(Lpi)  
δi  : the disturbance that propagates along a path (Lpi) parallel to the disturbance 

propagation path Lpj)  

E (L, Lp) = {L/ (OUT (L) =OUT (Lp)) )IN(LδLδ(Lpp (p))MLp (p)M( 00 =∧∈∧∈=∈∧ ∑∑ )} 

ϕ = {Lp j/ (n°=IN(Lpj))∧ (Lpj∈ Cms)∧ (Lpj∈ G)} 

Margin ⇐  min [∆rcj + F (G\Lpj, OUT (Lpj)°, min (bi−qie)       + δi )]  

                     j                                                poi= OUT(Lpj)    Max (Res(L,Lpi)) 

                                                                      poi∉ Lpj                     L /(pi∉ L)∧ (pi°=OUT(Lpj)) 

F (G*, p*, ∆rt)  
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{ 

  ϕ* = {Lp j/ (p*∈ Lpj)∧ (Lpj∈ Cse)∧ (Lpj ∈ G*)} 

  If (ϕ* == Φ ou ∆rt == 0) alors (F ⇐  ∆rt) 

  Else  

   {  

                  F ⇐ min {min [∆rt, (∆rcj + F (G*\ Lpj, OUT(Lpj)°, min (bi−qie)         +δi))]} 

                             j                                                                      po
i= OUT(Lpj)       Max (Res(L, Lpi) 

                                                                                                     po
i∉ Lpj                              pi∉ L ∧  pi°=OUT(Lpj) 

   } 
              } 

A-2/ Description of the algorithm 

The presented algorithm computes an upper bound of the maximal time disturbances allowed 
at a node n. It involves:  
 
- Selecting the node where we need to calculate the passive robustness margin, 
- Building the set of mono-synchronized subpaths (ϕ) defined as follows: 

ϕ = {Lp j/ (n°=IN (Lpj))∧ (Lpj∈ Cms)∧ (Lpj∈ G)} 

- Calculating the passive robustness margin associated to the set of subpaths ϕ, 
                     Margin ⇐  min[∆rcj + F(G\Lpj, OUT(Lpj)°, min (bi−qie)       + δi )] 

                                  j                                                po
i= OUT(Lpj)    Max (Res(L,Lpi)) 

                                                                      poi∉ Lpj                     L /(pi∉ L)∧ (pi°=OUT(Lpj)) 

(δi is the maximum disturbance that propagates along a path parallel to the disturbance 
propagation path Lpj). 

- Removing the elementary mono-synchronized subpath for the construction of the whole ϕ* 
defined as follows:  

ϕ* = {Lp j/ (p*∈ Lpj) ∧ (Lpj∈ Cse) ∧ (Lpj ∈ G*)} 

- Computing for each mono-synchronized subpath of ϕ*, the passive robustness margin F 
defined as follows: 

F ⇐  min{min[∆rt, (∆rcj + F(G*\ Lpj, OUT(Lpj)°, min (bi−qie)         +δi))]} 

   j                                                                   poi= OUT(Lpj)       Max (Res(L, Lpi) 

                                                                                                            po
i∉ Lpj                            pi∉ L ∧  pi°=OUT(Lpj) 

- Stopping the algorithm if the following condition is satisfied: 
               (ϕ* == Φ or ∆rt == 0) then (F ⇐  ∆rt) 
 

Note: When we remove a mono-synchronized subpath of G, this is done only for the 

construction of ϕ*. The places for which we seek mono-synchronized subpaths belong 
simply to G. The places adding constraints on a synchronization transition are taken into 
account even if they belong to an eliminated mono synchronized subpath. 
  
A-3/ Justification of the algorithm 
The above algorithm applies the passive robustness formula on all sequences of mono-
synchronized sub-path. This formula was proved in (Jerbi et al. 2004). 
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The algorithm is based on a function F which is called recursively using a part of the net 
which is more and more restricted. When the robustness of a mono-synchronized sub-path is 
computed, it is removed from the net to be treated in the next call of the function F. As the 
number of mono-synchronized sub-paths is finite, the convergence of the considered 
algorithm is proved, because the function stops when the sub-net to be studied becomes 
empty: ϕ* == Φ. 
At the level of a given mono-synchronized subpath Lp, a part of the disturbance is rejected 
and the other is transmitted. The transmitted value computed by Algorithm 1 is lower than the 
real maximal value, because it does not take into account the compensation which is provided 
by a time disturbance of the same nature. The proof of this property can be found in (Jerbi et 
al.  2009). As a consequence, the margin calculated by this algorithm is a lower bound of the 
effective margin. 
 
The polynomial computation time of this algorithm can be proved such a way: 

- The computation of the extreme firing instants for a given mono-synchronized 
subpath is less complex than the same computation on the whole Petri net structure 
which can be performed using an O(n3) time computing algorithm, where n 
correspond to the number of transition of the graph (Khansa 1997). In the works of 
Khansa, the P-Time Petri nets running in repetitive mode are transformed into 
equivalent co-graphs. These co-graphs are some bi-valued graph using negative 
values. 

- The number of mono-synchronized subpath is smaller than the number of 
transitions. Consequently, the complexity of the computing time of all margins is 
smaller than O(n4). 

All the margin values are compared (3 subtractions for a given path) to a given disturbance 
value less than n times (n corresponds to the number of transitions): this last effort is not 
significant with regards to the cost of a O(n4) time computation. The worst case computation 
time is smaller than O(n4). 
 

B/ Illustrative example  

Let us take the P-time Petri net example, figure 2, associated to a milk manufacturing 
unit. The application of algorithm 1 at the node t9, figure 4, allows computing a lower bound 
of passive robustness margin equal to 16 (Margin=16).  

 

In fact, according to the recursive algorithm, the set of mono-synchronized subpaths (ϕ) is 
defined as follows, figure 4:  
ϕ = {Lp j / (n°=IN(Lpj))∧ (Lpj∈ Cms) ∧  (Lpj∈ G)} 

ϕ={Lp 0=(p9,t9,p18,t8); Lp1=(p9,t9,p101,t101); Lp2=(p9,t9,p102,t102); Lp3=(p9,t9,p103,t103); 
Lp 4=(p9,t9,p104,t104); Lp5=(p9,t9,p105,t105); Lp 6=(p9,t9,p106,t106)}   
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Figure 4:  Example of disturbance propagation: case of passive robustness 
 
The full set of margin associated to each mono-synchronized subpath is summarized in table 2. 
The application of algorithm 1 at the node t9, figure 4, allows to compute an upper bound of 
passive robustness margin equal to 16 (F⇐  min [Margin 0, Margin 1, Margin 2, Margin 3, 
Margin 4, Margin 5, Margin 6]).  

 
Table 2: Passive margin associated to propagation through mono-synchronized subpaths 

  Margin Expression  Value 
Margin 0 Margin 0  ⇐  min [∆rc0+ F(G\Lp0, OUT(Lp0)°, min (b81−q81e))       + δδδδ0 ] Margin0=695 
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δδδδ1 

δδδδ2 

δδδδ3 

δδδδ4 

δδδδ5 

δδδδ5 

Lp1 

Lp2 

Lp3 

Lp4 

Lp5 

Lp6 

δδδδ0 

δδδδ0 



 
 

 

 

13 

   j                                 po
81= OUT(Lp0)     Max (Res(L, Lp13))  

                                                        po
81∉ Lp0                L/(po81∉ L)∧ (po

81=OUT(Lp0))   
(δδδδ1 is the residue of a disturbance that propagates along the path Lp13)  (see table 1) 
Margin 0  ⇐  min [689+ F(G\Lp0, p9, 6) ] 

Margin 1 Margin 1  ⇐  min [∆rc1+ F(G\Lp1, OUT(Lp1)°, min (b196−q196e))   + δδδδ1] 
    j                 po196= OUT(Lp1)   Max (Res(L, Lp12)) 

                                                                             po196 ∉  Lp1            L/(po196∉ L)∧ (po
196=OUT(Lp1)) 

(δδδδ1 is the residue of a disturbance that propagates along the path Lp12) (see table 1) 
Margin 1  ⇐  min [0+ F(G\Lp1, p111 , +∞)] 

Margin 1=29 
 

Margin 2 Margin 2  ⇐  min [∆rc2+ F(G\Lp2, OUT(Lp2)°, min (b191−q191e))+ δδδδ2] 
   j                po191= OUT(Lp2)   Max (Res(L, Lp7)  

po
191 ∉  Lp2             L /(po191∉ L)∧ ( po

191=OUT(Lp2))   
(δδδδ2 is the residue of a disturbance that propagates along the path Lp7) (see table 1)  
Margin 2  ⇐  min [0+ F(G\Lp2, p112 , +∞)] 

Margin 2=24 
 
 

Margin 3 Margin 3  ⇐  min [∆rc3+ F(G\Lp3, OUT(Lp3)°, min (b192−q192e)) + δδδδ3] 
   j                 po192= OUT(Lp3)  Max (Res(L, Lp8) 

 po
192 ∉  Lp3            L /(po192∉ L)∧ ( po

192=OUT(Lp3)) 
(δδδδ3 is the residue of a disturbance that propagates along the path Lp8) (see table 1)     
Margin 3  ⇐  min [0+F(G\Lp3, p113, +∞ )] 

Margin 3=21 
 
 

Margin 4 Margin 4  ⇐  min [∆rc4+ F(G\Lp4, OUT(Lp4)°, min (b193−q193e))   + δδδδ4] 
   j                                po

193= OUT(Lp4)   Max (Res(L, Lp9)    
                                                                             po193 ∉  Lp4            L /(po193∉ L)∧ ( po

193=OUT(Lp4))   
(δδδδ4 is the residue of a disturbance that propagates along the path Lp9) (see table 1)  
Margin 4  ⇐  min [0+ F(G\Lp4, p114 , +∞ )] 

Margin 4=18 
 
 

Margin 5 Margin 5  ⇐  min [∆rc5+ F(G\Lp5, OUT(Lp5)°, min (b194−q194e))   + δδδδ5] 
j                                                  po

194= OUT(Lp5)    Max (Res(L, Lp10)                           
                                                   po

194 ∉  Lp5              L /(po194∉ L)∧ ( po
194=OUT(Lp5))  

(δδδδ5 is the residue of a disturbance that propagates along the path Lp10)  (see table 1)   
Margin  5 ⇐  min [0+ F(G\Lp5, p115 , +∞ )] 

Margin 5=16 
 
 

Margin 6 Margin 6  ⇐  min [∆rc6+ F(G\Lp6, OUT(Lp6)°, min (b195−q195e))  + δδδδ6] 
 j                 po195= OUT(Lp6)   Max (Res(L, Lp11)   

                  po195 ∉  Lp6             L /(po195∉ L)∧ ( po
195=OUT(Lp6))  

(δδδδ6 is the residue of a disturbance that propagates along the path Lp11) (see table 1)    
Margin 6 ⇐  min [0+ F(G\Lp6, p116 , +∞ )] 

Margin 6= 
106 

 
 

 
C/ Discussion  
 
The computed bound can be used to filter some alarms generated by the workshop during 
production. However, as the exact value is not known, some false alarms may go through the 
filtering system. 
It may be interesting to evaluate the quality of the computed bound with regard to the exact 
static robustness value. For now, it is proposed to extend the robustness range using a 
dynamic control. 

 
Actually, when a disturbance is going over the static robustness bound, changing the control 
may produce a change in the system which increases its tolerance.  
Therefore, various strategies are implemented to manage time disturbances in production 
systems (Jerbi et al.  2004), (Collart-Dutilleul et al.  2007).  
For this application, the chosen control policy tries to reject the disturbance as soon as it has 
been observed. The suggested strategy allows building a global control providing an active 
global robustness towards a given disturbance. A recursive algorithm is proposed to compute 
a bound of the active robustness towards a delay at a given node of the graph. 
 

3.2 Active robustness computation 

3.2.1 Definitions 
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Definition 9. : A temporal control is the modification of transitions firing instants using 
controlled P-time Petri net. 

Definition 10. :  An active robustness is a robustness ensured by the temporal control of the 
process transitions. 

Definition 11. : A time disturbance δ is locally rejected by a path Lp if the effective firing 
instant of its last transition (t) is equal to the expected one: St(n)=Ste(n). 

Definition 12. (Jerbi et al.  2004): The time interval of the passive rejection capacity of a path 
Lp is RC(Lp)=[Ca(Lp), Cr(Lp)] where: 
                                                      

)Trans(RLpp

,)b (qCa(Lp)

NCNi

iie

∪∩∈

−= ∑                                                  (4) 

)Trans(RLpp

).a (qCr(Lp)

NCNi

iie

∪∩∈

−= ∑                                                   (5)     

 
Ca(Lp) (respectively Cr(Lp)) is called the time interval of the passive rejection capacity for an 
advance (respectively a delay) time disturbance occurrence. 
 
Definition 13. (M’Halla et al. 2010d) : The available control margin for an advance, fa(pi), 
and the available control margin for a delay, fr(pi), associated to the place pi are defined as: 
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Definition 14. : A transition t constitutes an elementary subpath locally controllable on  

t         p
))](pmin(f

 t         p
 )),(pmax(f[

i

ir

i

ia

=°=°
 if t∈ TC.   

Example 1 

Let us suppose that the transition t102, figure 5, is controllable (t102∈ TC). The transition t102 is a 
synchronization transition (t102 ∈ TS). 
 
  
 
 
 
 
 
 
 
 
 

Figure 5: Case of controllable synchronization transition  
 Indeed      
      p°191=t102 ⇒ fa(p191)=0−5= −5 et fr(p191)= + ∞ 

 

(6) 

 
 
 
(7) 

 

IS102=[3, 76] 
 q102e=20 

 

p191 
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                                           p°102=t102 ⇒ fa(p102)= 3−20= −17 et fr(p102)= 56 

                                       55)7,1max())(pmax(f∆

021i tp   
iamin −=−−==

=°
 

                                      56)min(56,))(pmin(f∆

102i tp    
irmax =+∞==

=°
 

Consequently, the transition t102 constitutes an elementary subpath locally controllable on  
[−5, 56]. 
 
Definition 15. : A path Lp is locally controllable on the interval [∆min, ∆max] if one can 
generate by the control a variation δ∈ [∆min, ∆max] on its last node without causing any token 
death on the levels of its synchronization transitions 

3.2.2 Robust control strategy facing time disturbances 

In manufacturing workshops with time constraints, the determining parameter for quality and 
cost is the time, which must belong to a very strict validity interval. The control guarantees 
the respect of these specifications in order to avoid the violation of the constraint intervals 
associated to the various states. 
The active robustness is based on the control of transition firing instants using controlled P-
time Petri nets. This temporal control makes it possible, in certain cases, to avoid the death of 
tokens if the time disturbances exceed the bounds of the intervals associated to operations 
(Jerbi et al. 2009), (Declerck and Guezzi 2009). 
In the case of active robustness (the temporal disturbances exceed the bounds of the intervals 
associated to the operations) a robust control approach is proposed. The adopted strategy 
consists in rejecting the disturbance as soon as it has been observed in order to avoid the death 
of marks on the levels of synchronization transitions. Therefore, constraints violations are 
avoided. If the disturbance is a delay (respectively an advance), we generate advances 
(respectively delays) on the controlled transitions firing of the propagation path of the 
disturbance in order to avoid the constraints violation of the schedule conditions. 
Furthermore, this approach is consolidated by a computing algorithm of the robustness 
margin at various graph nodes.  

The control strategy which is applied in this paper is not the only one. Moreover, there is no 
proof that, the applied control is optimal. Some optimal control proposition may be found in 
the state of the art, but they still have to be adapted to the industrial context where transitions 
may be not controllable (Declerck 2011).  

 
A/ Algorithm 2 

 
This is a recursive algorithm allowing applying the approach of the rejection of the 
disturbance as soon as its observation, in a node n. In order to preserve schedule conditions, 
the presented algorithm makes it possible to compute a total delay margin available to be 
injected on a node n. 
 
Let us denote: 
- G the P-time Petri net model of the workshop, 
- δ a delay time disturbance in pi (node n), observed in a transition t (t∈ TO), 
- Cr(Lpj ): the time passive rejection capacity for a delay of the mono-synchronized subpath 
Lpj, 

- δC∈ [∆min, ∆max](resp δ’C): advances (respectively delays) generated on the controlled 
transition firings on the propagation path of the disturbance (for example if the disturbance δ 
is a delay, δC=∆min=max(fa(pi))) 
Using the above notations, the algorithm is specified as follows: 
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ϕ = {Lp j / (n = IN(Lpj)) ∧  (Lpj∈ Cms) ∧  (Lpj∈ G)} 

Active Margin ⇐  min[Cr(Lpj ) + E(G\Lpj, OUT(Lpj)°, min (bi−qie)     + δ’C)] 

                      j        poi=OUT(Lpj)    

                            pi∉ Lpj                  

F(G*, p*, ∆rt) 

{ 
  ϕ*  = {Lp j/ (p*∈ Lpj) ∧  (Lpj∈ Cse) ∧  (Lpj∈ G*)} 

  If  (ϕ*  == Φ or ∆rt == 0) then (F  ⇐  ∆rt) 

  Else  
        { 
            F ⇐  min{min[∆rt, Cr(Lpj) + E(G*\Lpj, OUT(Lpj)°, min (bi−qie)      + δC)]} 

            j                          po
i= OUT(Lpj)    

                                       pi∉ Lpj  

         } 
} 
 
B/ Description of the algorithm 
 
Epi (respectively EOUT(Lp)°) is the set of existing mono-synchronized subpaths containing the 
place pi (respectively OUT(Lp)°). 

δr the residue of the disturbance δ. 
   { 

E = {δr, OUT(Lp)} (F is a doublet composed by the residue of the disturbance and the 
output node of the path Lp) 
∀  Lp∈ Epi ⇒ δr =δ−Cr(Lp) 

If 
δr > (bi−qie)/ {p

o
i∈ TS ∧  pi∉ Lp ∧  po

i∈ Lp}, there is a control problem on po
i (we apply 

the robust control approach, which allows to generate a temporal shift, through the set 
of controlled transitions of the propagation path of the disturbance) 
Else  
δr < (bi−qie)/ {po

i∈ TS ∧  pi∉ Lp ∧  po
i∈ Lp}, we apply the same procedure for each 

element of EOUT(Lp)° 

    } 

Example 2  

Let us suppose that the transition tC1 and tC2, figure 6, are controllable. Let δ a delay time 
disturbance at the input of the mono-synchronized subpath Lp1 and δr its residue. 
 
 
 

 
 
 
 
 
 

Figure 6: Example of algorithm application  
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Two cases arise: 
1st case: 

If (bi−qie) ≥ δr ≥ δ then there is no death of a mark in pi. 
2nd case:  

If (bi−qie) < δr < δ then we should generate a temporal shift through the set of controlled 
transitions (tC1 and tC2) of the propagation path in order to avoid the death of mark on the level 
of transition ts (ts ∈ TS). 

C/ Discussion 

Concerning the program convergence, the behaviour of the second algorithm is so similar to 
the first one that a new convergence proof is not useful. The proof of the formula which is 
recursively applied by the algorithm can be consulted in (Jerbi et al. 2009). 
 
Concerning the complexity analysis, things may be different, because of the added control 
loop. The control strategy tries to create a similar disturbance on the parallel path… 
The number of parallel path is smaller than the number of transition. 
On a given parallel path, the computation of the margins which may be used on a given mono-
synchronized sub-path is reduced by an O(n3) time computing  algorithm as in (Collart-
Dutilleul et al. 2003). There are less mono-synchronized sub-paths than transitions in the net. 
The global control loop computation spend a O(n5) time for a given execution of the function 
F. This function has to be performed on all the mono-synchronized sub-paths, so the global 
time complexity of the algorithm 2 is less than O(n6) considering the number of transitions.  
 
The above analysis uses some rough approximations which aim to show that the computing 
time is reasonable. The choice of the upper-bound can be refined. The main contribution of 
this paper is to illustrate that the integration of the control loop may considerably increase the 
robustness value on a real industrial topology.  

D/ Illustrative example 

D-1/Active robustness computing 
 
The application of the algorithm at the node t9, figure 7, allows computing an active robustness 
margin. This P-time PN allows verifying the active robustness margin on t9 computed by 
algorithm 2 and the application of the robust control strategy to the milk production unit. 
Similarly, table 3 shows the full set of active margins associated to each mono-synchronized 
subpath. The application of the algorithm at the node t9, figure 7, allows computing an active 
robustness margin equal to 63. 
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Figure 7: Example of computing active robustness margin 
 

Table 3: Active margins associated to mono-synchronized sub-paths 
 

 Active Margin 1  
Active Margin 1 ⇐  min [Cr(Lp1)+ F(G\Lp1, OUT(Lp1)°, min (b196−q196e))   + δδδδ’C1] 

             j                  po
196= OUT(Lp1)    

                                                                                            po
196 ∉  Lp1             

(δδδδ’C1 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp1) 
Active Margin 1 ⇐  min [0+ F(G\Lp1, p111 , +∞)] 
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IS85=[10,70];q85e=22 

IS86=[10,70]; q86e=15 

 

IS101=[3,76];  
q101e=5 

IS102=[3,76];  
q102e=20 

IS103=[3,76];  
q103e=35 

IS104=[3,76];  
q104e=48 

IS105e=[3,76];  
q105e=57 

IS21=[3,76];  
q106e=64 

IS121=[5,130];q121e=65 

IS122=[5,130];q122e=48 

IS123=[5,130]; q123e=35 

IS124=[5,130]; q124e=25 

IS125=[5,130]; q125e=20 

IS126=[5,130];q126e=6 

IS193=[0,+∝ [; q193e=3 

IS113=[2,20]; 
q21e=10 

IS191=[0,+∝ [; q191e=5 

IS111= [2, 20]; 
q111e=10 

IS192=[0,+∝ [;q192e=3 

IS112=[2,20]; 
q112e=12 

IS114=[2,20]; 
q114e=7 

IS194=[0,+∝ [; q194e=2 

IS116=[2,20]; q16e=10 

IS196=[0,+∝ [; q196e=36 

IS115=[2,20]; q115e=3 

     : Propagation of the disturbance 

δδδδC 

Lp1 

Lp2 

Lp3 

Lp4 

Lp5 

Lp6 

δδδδC7 

δδδδC8 

δδδδC9 

δδδδC10 

δδδδC11 

δδδδC12 
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Active Margin 2  
Active Margin 2 ⇐  min [Cr(Lp2)+  F(G\Lp2, OUT(Lp2)°, min (b191−q191e))+ δδδδ’C2] 

               j                                    po
191= OUT(Lp2)    

                   po191 ∉  Lp2               
(δδδδ’C2 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp2) 
Active Margin 2 ⇐⇐⇐ ⇐  min [0+ F(G\Lp2, p112, +∞)] 
 

 Active Margin 2=65 
 
 

Active Margin 3  
Active Margin 3 ⇐  min [Cr(Lp3)+ F(G\Lp3, OUT(Lp3)°, min (b192−q192e)) + δδδδ’C3] 

              j                                  po
192= OUT(Lp3)   

                   po192 ∉  Lp3            
(δδδδ’C3 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp3) 
Active Margin 3 ⇐⇐⇐ ⇐  min [0+ F(G\Lp3, p113, +∞)] 
 

 Active Margin 3=67 
 
 

Active Margin 4  
Active Margin 4 ⇐  min [Cr(Lp4)+F(G\Lp4, OUT(Lp4)°, min (b193−q193e))   + δδδδ’C4] 

              j                                             po193= OUT(Lp4)      
                                                                                          po

193 ∉  Lp4           
(δδδδ’C4 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp4) 
Active Margin 4 ⇐⇐⇐ ⇐  min [0+ F(G\Lp4, p114 , +∞ )] 
 

 Active Margin 4=69 
 
 

Active Margin 5  
Active Margin 5  ⇐  min [Cr(Lp5)+ + F(G\Lp5, OUT(Lp5)°, min (b194−q194e)) + δδδδ’C5] 

          j                                                             po194= OUT(Lp5)               
                                                                        po194 ∉  Lp5                

(δδδδ’C5 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp5) 
Active Margin  5 ⇐  min [0+ F(G\Lp5, p115 , +∞ )] 
 

 Active Margin 5=71 
 
 

Active Margin 6  
Active Margin 6 ⇐  min [Cr(Lp6) + F(G\Lp6, OUT(Lp6)°, min (b195−q195e))  + δδδδ’C6] 

               j                   po
195= OUT(Lp6)     

                                    po
195 ∉  Lp6             

(δδδδ’C6 : advances (respectively delays) generated on the controlled transition 
firings of the propagation path Lp6) 
Active Margin 6 ⇐  min [0+ F(G\Lp6, p116 , +∞ )] 
 

 Active Margin 6=176 
 
 
 

D-2/ Illustration of the robust control strategy  

Let δ=63 a time disturbance in p9 (Hydromat) observed in t9, figure 7. The disturbance δ is 
propagated towards the six paths Lp1, Lp2, Lp3, Lp4, Lp5 and Lp6.  
 

(ϕ={Lp 0=(p9,t9,p18,t8) ;Lp 1=(p9,t9,p101,t101);Lp 2=(p9,t9,p102,t102) ;Lp3=(p9,t9,p103,t103) ;Lp 4=(p9,t9
,p104,t104) ;   Lp 5=(p9,t9,p105,t105) ; Lp6=(p9,t9,p106,t106)}   
 
Let us suppose that the transitions t101, t111, t102, t112, t103, t113, t104, t114, t105, t115, t106 and t116 are 
controllable. According to definition 14, each transition constitutes a subpath locally 
controllable on

t         p
))](pmin(f

 t         p
 )),(pmax(f[

i

ir

i

ia
=°=°

. 

Table 4 gives the available control margin for an advance, fa(pi), and the available control 
margin for a delay, fr(pi), associated to each place pi . 
 

Table 4:  Available control margin for an advance and for a delay associated to place pi 
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Path fa(pi) fr(pi) 
Lp1=(p9, t9, p101, t101) fa(p101)= −2 fr(p101)=71 
Lp2=(p9, t9, p102, t102) fa(p102)= −17 fr(p102)=56 
Lp3=(p9, t9, p103, t103) fa(p103)= −32 fr(p103)=41 
Lp4=(p9, t9, p104, t104) fa(p104)= −45 fr(p104)=28 
Lp5=(p9, t9, p105, t105) fa(p105)= −54 fr(p105)=19 
Lp6=(p9, t9, p106, t106) fa(p106)= −61 fr(p106)=12 

Lp7=(p111, t111, p191, t102) fa(p111)= −8 fr(p111)=10 
Lp8=(p112, t112, p192, t103) fa(p112)= −10 fr(p112)=8 
Lp9=(p113, t113, p193, t104) fa(p113)= −8 fr(p113)=10 

Lp10=(p114, t114, p194, t105) fa(p114)= −5 fr(p114)=13 
Lp11=(p115, t115, p195, t106) fa(p115)= −1 fr(p115)=17 
Lp12=(p116, t116, p196, t101) fa(p116)= −8 fr(p116)=10 

 
– On the path Lp1, the disturbance changes passively the firing instant of the transition t9 and 
also the sojourn time in the place p9: St9 (n) =St9e (n) +63 and q9=q9e+63 =1593. (Active 
Margin 1 ⇐  min [0+ F(G\Lp1, p111 , +∞)]) 
– After the crossing of the transition t101, the disturbance is transmitted to two paths, Lp7= 
(p111, t111, p191, t102) and Lp13=( p111, t111, p121, t12) through the starting place p111. (ϕϕϕϕ*1= {Lp 7, 
Lp 13}) 
 
On the path Lp7, the disturbance is partially rejected in p191 (Cr(Lp7) =5) and the mark is 
available in p191 with a delay equal to 58. (E1 ⇐⇐⇐ ⇐  min [+∞, 5 + F (G\Lp1\Lp 7, p112, min (b102-
q102) + δδδδC1 +δδδδC7)]) 
 
If the transition t101 and t111 are not controllable, there is a death mark in p102 since the 
available control margin for a delay accepted is equal to 56. By injecting by the control an 
advance on the firing instant of the two transitions t101 (St101(n)=St101e(n)+ δC1 =St101e(n)−2) 
and t111 (St111(n)=St111e(n)+ δC7 =St111e(n)−8), the death of the mark in p102 is then avoided and  
the residue δr=48 is transmitted to the two paths Lp8=(p112, t112, p192, t103) and Lp14=( p112, t112, 
p122, t12) through the place p112. The same control methodology is then applied on Lp8 and Lp14 

and their downstream mono-synchronized paths in order to deal with the disturbance 
propagation.  
 
The paths Lp2, Lp3, Lp4, Lp5 and Lp6 are locally controllable (see table 4). The token deaths 
are avoided on all their disturbance propagation paths using the same method.   
 
To sum up, the active robustness margin computed by the recursive algorithm 2 is superior to 
the upper bound of passive robustness margin computed by algorithm 1. It is to be noted that 
the first robustness value is 16 when the second is equal to 63. Consequently the range 
[16, 63] corresponds to the set of delay values where an alarm does not have to be generated. 
When a delay is bigger than 63, nothing can be claimed about its correctness. Roughly 
speaking, integrating a control policy in the robustness range computation allows multiplying 
by 3.9375 the range of alarm filtering. 

4 Conclusion 
 
This paper deals with the robustness of manufacturing workshops with time constraints. The 
Controlled P-time Petri Net model of a given workshop topology is used to elaborate several 
results regarding the robustness problem of manufacturing milk unit. 
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One of the main contributions of this work is a robust control strategy facing time 
disturbances. This strategy consists in generating by the control a temporal shift which 
compensates the disturbance on its propagation path in order to avoid the death of marks at 
the level of synchronization transitions of the P-time Petri net model. The suggested approach 
is consolidated by a recursive algorithm allowing computing an active robustness margin 
allowed at a given node. The results obtained in the illustrative example show that this 
algorithm is effective when temporal disturbances exceed the intervals of passive robustness. 
In this case, the computed active robustness margin allows increasing the system’s ability to 
preserve the specifications facing some expected or unexpected variations. 
 
Let us remember that the active robustness interval is really larger than the passive robustness 
interval and provides more possibilities to continue the production in a degraded mode. On 
the considered milk manufacturing workshop analysed in this paper, the active robustness 
value is about four times the passive one. 
 
This degraded functioning mode makes it possible to keep on producing while providing an 
acceptable quality for the products. However, when the disturbance is outside of the active 
robustness range, the quality of the workshop products is not guaranteed any more. In this 
case, a production alarm is generated. 
 
In future works, the state of this art may be used to improve the efficiency of the control, 
because there are some optimal control propositions (Declerck 2011). 
The control proposed in this paper assumed that all transition can be observed.   There is a 
need for an algorithm, built upon the lemmas results, providing localisation or partial 
localisation of time disturbances in order to extend the application range of this approach. 
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