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Active Robustness of a Milk Manufacturing Workshop with Time Constraints

This paper deals with the active robustness of a milk manufacturing workshop including time interval constraints. Such systems have robustness properties towards time disturbances. The robustness property can be a static property, but using a dynamic control strategy may increase the robustness value.

Controlled P-time Petri nets are used as a modelling tool. Some definitions and a series of lemmas are cited in order to build a theory dealing with robustness problems. In order to avoid the death of marks at the synchronization transitions of the P-time Petri net model, a robust control strategy facing time disturbances is presented. The proposed approach tries to reject the disturbance as soon as it is observed. Furthermore, this approach is used by an algorithm computing an active robustness margin at a given node. It is illustrated step by step on an example of a milk manufacturing workshop. A comparison with the bound provided for the passive robustness is made.

Introduction

Manufacturing workshops with time constraints are Discrete Event Systems (DES), where a time validity interval is associated to each operation. Its lower limit indicates the minimum time necessary to execute the operation. The upper limit determines the maximum time not to exceed in order to ensure the quality of the manufactured products. Time windows constraints may be found in many industrial areas [START_REF] Collart-Dutilleul | Robust Dynamic Control of Multi-product Job-shops[END_REF][START_REF] Kats | Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence, setups, and time-windows constraints[END_REF][START_REF] Dohn | The manpower allocation problem with time windows and job-teaming constraints: A branch-and-price approach[END_REF]. For example in the food industry, there are minimum operating times which integrate the process limitations. These workshops are generally modeled by Controlled Ptime Petri nets, to study the instants of beginning and ending for operations. Such systems have a robustness property towards time disturbances.

The robustness is defined as the ability of the system to preserve the specifications facing some expected or unexpected variations. The robustness is interpreted into different specializations (M'Halla 2010a, [START_REF] Jerbi | Time Disturbances and Filtering of Sensors Signals in Tolerant Multi-product Job-shops with Time Constraints[END_REF]. The passive robustness is based upon variations included in validity time intervals. There is no control to preserve the required specifications. On the other hand, active robustness uses observed time disturbances to modify the control settings in order to keep on satisfying the specifications. Various strategies can be implemented to manage time disturbances in production systems [START_REF] Jerbi | Commande robuste des ateliers manufacturiers à contraintes de temps[END_REF], M'Halla et al. 2008, M'Halla et al. 2010b). In this paper, the control strategy corresponds to rejecting the disturbances by applying an inverse control loop: for a delay, sojourn times are set as small as possible; for an advance, sojourn times are as long as possible.

The work presented in this paper focuses on the robustness of a milk manufacturing workshop regarding time disturbances. This paper begins by modelling the workshop. Controlled P-time Petri nets are used for this purpose. A functional decomposition of the P-time Petri net into three sets is done. The second section begins by giving some basic definitions concerning the robustness of a manufacturing workshop including time constraints. The passive robustness (local robustness) of a given path in the milk manufacturing workshop is analytically built up; an algorithm allowing computing a lower bound of the passive robustness margin is presented. Afterwards, the control problem in critical time manufacturing systems is tackled. An approach for the robust control is presented. The proposed strategy tries to reject the disturbance as soon as it is observed using the control in order to preserve the specifications facing some expected or unexpected variations [START_REF] Collart-Dutilleul | Robust Dynamic Control of Multi-product Job-shops[END_REF]). This approach is used by another algorithm computing a bound for the active robustness margin. An illustrative example is outlined and the results are discussed. Finally, some conclusions of this work are given.

Modelling of a milk production unit 2.1 Modelling tools of DES integrating time constraints

P-time Petri nets

The following section presents the basic definitions concerning P-time Petri nets. The reader interested by a theoretical semantic analysis may read (Boyer and Roux 2010). Definition 1. [START_REF] Khansa | P-Time Petri Nets for Manufacturing Systems[END_REF]: The formal definition of a P-time Petri net is given by a pair < R; I > where: 

IS: P → Q + × ( Q + ∪ {+∞}) p i → IS i = [a i , b i ] with 0 ≤ a i ≤ b i .
IS i defines the static interval of the staying time of a mark in the place p i belonging to the set of places P (Q + is the set of positive rational numbers). A mark in the place p i is taken into account in transition validation when it has stayed in p i for a duration of at least a i and at most b i . After the duration b i the token will be dead.

Définition 2 [START_REF] Khansa | P-Time Petri Nets for Manufacturing Systems[END_REF]: At a given instant, a state is defined by a pair < M, I > such that:

-M is a marking application which assigns a given number of token to each place such that : ( , ( ) ); ∀ ∈ ≥ p P M p 0 -I is an application "potential firing interval", which associates to each a token k in a place p i an interval [ ]

a b i k i k ,
. It is called dynamic interval in order to make a difference with the static interval which is associated to each place. Dynamic intervals depend on arrival instants of tokens in the considered place. Let us assume that a token k arrives in the place p i (which static interval is [a i ,b i ]) at a given instant c, at the instant c+d (a i ≤ d ≤ b i ) the dynamic interval of k becomes:

[ ] ( ) [ ] d b d a b a i i k i k i - - = , 0 , max ,

Firing condition of a transition from states

When the transition is enabled in the autonomous PN's sense, its firing interval depends first on the potential interval associated with the tokens which are in its input. Then according to these intervals, an interval of "potential" firing is associated to it. Afterwards, its "real" firing interval is established according to the potential intervals of the tokens whose places aren't input places of this transition. 

i i i i k k i k i b a b a , , = I and [ ] φ ≠ i i i i b a ,
where k = 1, 2, ..., I(p i , t l ) .

3-There must be no token in this place whose upper bound of the dynamic interval is strictly smaller than the lower bound of interval [ ]

i i i i b a ,
. Otherwise there is a token that dies and consequently the net is said dead-tokens.

Controlled P-time Petri net

Definition 3. (Jerbi et al. 2004): The Controlled P-time Petri net is defined by a quadruplet Rpc= (Rp, U, U 0 ) such that:

Rp is a P-time Petri net which describes the opened loop system, U is the external control of the transitions (T) of Rp built on the predicates using the occurrence of internal or external observable events of the system: U: T → {0, 1}, U 0 is the initial value of the predicate vector.

NOTATIONS

p°i (respectively °pi ): the output transitions of the place p i (the input transitions of the place p i ), q ie : the expected sojourn time of the token in the place p i , q i : the effective sojourn time of the token in the place p i , St e (n): the n th expected firing instant of the transition t, St(n): the n th effective firing instant of the transition t, T C : the set of controllable transitions. T S : the set of synchronization transitions

Presentation of the workshop

Figure 1 shows a milk manufacturing unit composed of five machines (M 1 , M 2 , M 3 , M 4 , M 5 ) and six conveyors (T 1 , T 2 , T 3 , T 4 , T 5 , T 6 ), where (M'Halla et al. 2010c):

-M 1 is a bottle filling machine, -M 2 is a milk bottle capper, -M 3 is a time/date stamp, -M 4 is a labeling machine, -M 5 is a packaging machine.

For simplicity, we disregard the nature of the precise operations performed in the milk production unit, and therefore we represent a model of a generic workshop.

To manufacture the products (bottles of 1000 ml), empty bottles are placed on the conveyor T 1 to supply the bottle filling machine M 1 . The filled bottles are transported towards the capping machine M 2 by the conveyor T 2 . After capping, the bottles arrive directly on T 3 . This conveyor carries the bottles to the machine M 3 (time/date stamp) to print the manufacturing date and end date of consumption. Once this task is completed, the bottles move towards the labelling machine M 4 via the conveyor T 4 .

The bottles are then transferred to the packaging machine M 5 , where they will be wrapped by welding in a group of 6. Lastly, the finished products are deposited on the conveyor T 6 towards the stock of finished products SA.

Figure 1: Milk manufacturing unit

Functional decomposition

As the sojourn times in places have not the same functional signification when they are included in the sequential process of a product or when they are associated to a free resource, a decomposition of the Petri net model into three sets is made using (Long et al. 93): R U is the set of places representing the machines used, Trans C is the set of places representing the loaded transport resources, Trans NC is the set of places representing the unloaded transport resources (or the interconnected buffers).

C 1 M 2 T 1 M 1 M 3 M 4 T 4 T 3 T 2 SA T 6 T 5
M 5 e This functional decomposition (or a similar one) has been used many times in the scientific literature in order to study control and regulation problems in manufacturing workshops. This is not a proof that it can be applied on all workshop topologies. We can only say that it corresponds to a good decomposition for many manufacturing systems.

Figure 2 shows a P-time PN (G) modelling a milk production workshop and its functional decomposition. The obtained G is used to study the robustness of the considered manufacturing workshop (M'Halla et al. 2010b).

Robustness of a milk manufacturing workshop

In this milk manufacturing workshop, a time interval is associated to each operation. Its lower bound indicates the minimum time needed to execute the operation. The upper bound sets the maximum time to not exceed otherwise the quality of the product is deteriorated (M' Halla et al. 2010a). When time constraints are violated in a workshop which is manufacturing food products, it can affect the health of consumers. Thus, the detection of a constraint violation must automatically cause the stop of the production and an elimination of dangerous products (an overheating of milk bottles in a hydromat for example).

On the other hand, when taking into account the system robustness, it can be proven that this type of violation has not occurred despite an incident happened in the production line. In this case, we plan to maintain the production while describing it as production in a degraded mode. Of course, the product is not degraded, but the production mode is degraded because the deliveries moments of the products are not those planned initially. In this context, the robustness of a given path in the milk manufacturing workshop is analytically built up. Two algorithms for building respectively, an upper bound of the passive robustness margin and the active robustness margin at a given node, are presented. The proposed algorithms allow increasing the ability of the system to fulfil the specifications facing some expected or unexpected variations. IS61= [11,18]; q61e=15 IS62=[11,18]; q62e=14 IS63=[11,18]; q63e=13 IS64= [11,18]; q64e=12 IS65= [11,18]; q65e=16 IS66= [11,18]; q46e=15 IS111= [2,20]; q111e=10

IS9=[1480,1650] q9e=1530 IS18=[1,+∝[ q3e=690 IS71=[2,12]; q71e=6 IS171=[0,+∝[;q171e=4 IS72=[2,12]; q72e=5 IS172=[0,+∝[;q172e=5 IS73=[2,12]; q73e=7 IS173=[0,+∝[; q173e=3 IS174=[0,+∝[;q174e=4 IS75=[2,12]; q75e=8 IS175=[0,+∝[;q175e=2 IS76= 
IS192=[0,+∝[;q192e=3 IS112=[2,20]; q112e=12 IS114=[2,20]; q114e=7 IS194=[0,+∝[; q194e=2 IS116=[2,20]; q16e=10 IS196=[0,+∝[; q196e=36 IS115=[2,20]; q115e=3 IS195=[0,+∝[; q195e=4

Robustness margin on t9

: Propagation of the disturbance

Basic definitions

Preliminary definitions, useful for the rest of this paper, are given in order to study the robustness of a milk manufacturing workshop.

Definition 3. [START_REF] Collart-Dutilleul | Performance and tolerance evaluation[END_REF]: The robustness is defined as the ability of the system to remain valid with respect to the specifications when facing some expected or unexpected variations. The robustness characterizes the global capacity to deal with disturbances.

Definition 4 [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]): A mono-synchronized subpath Lp is a path containing one and only one synchronization which is its last node.

Definition 5. [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]): An elementary mono-synchronized subpath is a monosynchronized subpath beginning with a place p such that °p is a synchronization transition. Definition 8. [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]): It is said that a path Lp has a local passive robustness on [δ min , δ max ] if the occurrence of a disturbance δ∈[δ min , δ max ] at any place p∈Lp does not involve a token death at the synchronization transitions of Lp.

Local passive robustness computations

Passive Robustness computation

To compute the local passive robustness interval, the concepts of compensable and transmissible margins are introduced. Let us denote by: ∆rc k and ∆rt k respectively the compensable margin and the transmissible margin on the mono-synchronized subpath Lp k .

The local passive robustness delay ∆r Lpk can be calculated using formulas (1), ( 2) and (3) [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]). With:

k k Lp ∆rt rc ∆r k + ∆ = (1) ) Trans (R Lp p ) a (q ∆rc NC N k i i ie k ∪ ∩ ∈ - = ∑ (2) Lp p ) OUT(Lp p ) q min(b ∆rt k i k o i ie i k ∉ = - = (3)
In table 1, we can highlight examples of the compensable margin and the transmissible margin associated to some mono-synchronized subpaths Lp k of the P-time Petri net model (figure 2). In order to avoid the violation of schedule conditions, a recursive algorithm allowing computing an upper bound of the maximal time disturbances allowed in a given point of the milk manufacturing workshop is presented. The purpose of this algorithm is to decrease the number of false alarms. the compensable margin on the mono-synchronized subpath Lp j

Res (L, Lp) : the maximal residue of disturbance on OUT(Lp i ) δ i : the disturbance that propagates along a path (Lp i ) parallel to the disturbance propagation path Lp j )

E (L, Lp) = {L/ (OUT (L) =OUT (Lp)) ) IN(L δ L δ ( Lp p (p)) M L p (p) M ( 0 0 = ∧ ∈ ∧ ∈ = ∈ ∧ ∑ ∑ )} ϕ = {Lp j / (n°=IN(Lp j ))∧(Lp j ∈C ms )∧(Lp j ∈G)} Margin ⇐ min [∆rc j + F (G\Lp j , OUT (Lp j )°, min (b i -q ie ) + δ i )] j p o i = OUT(Lp j ) Max (Res(L,Lp i )) p o i ∉Lp j L /(p i ∉L)∧(p i °=OUT(Lp j )) F (G*, p*, ∆rt) { ϕ* = {Lp j / (p*∈Lp j )∧(Lp j ∈C se )∧(Lp j ∈G*)} If (ϕ* == Φ ou ∆rt == 0) alors (F ⇐ ∆rt) Else { F ⇐min {min [∆rt, (∆rc j + F (G*\ Lp j , OUT(Lp j )°, min (b i -q ie ) +δ i ))]} j p o i = OUT(Lp j ) Max (Res(L, Lp i ) p o i ∉Lp j p i ∉L ∧ p i °=OUT(Lp j ) } } A-2/ Description of the algorithm
The presented algorithm computes an upper bound of the maximal time disturbances allowed at a node n. It involves:

-Selecting the node where we need to calculate the passive robustness margin, -Building the set of mono-synchronized subpaths (ϕ) defined as follows:

ϕ = {Lp j / (n°=IN (Lp j ))∧(Lp j ∈C ms )∧(Lp j ∈G)} -Calculating the passive robustness margin associated to the set of subpaths ϕ,

Margin ⇐ min[∆rc j + F(G\Lp j , OUT(Lp j )°, min (b i -q ie ) + δ i )] j p o i = OUT(Lp j ) Max (Res(L,Lp i )) p o i ∉Lp j L /(p i ∉L)∧(p i °=OUT(Lp j ))
(δ i is the maximum disturbance that propagates along a path parallel to the disturbance propagation path Lp j ).

-Removing the elementary mono-synchronized subpath for the construction of the whole ϕ* defined as follows:

ϕ* = {Lp j / (p*∈Lp j ) ∧(Lp j ∈C se ) ∧(Lp j ∈G*)}

-Computing for each mono-synchronized subpath of ϕ*, the passive robustness margin F defined as follows:

F ⇐ min{min[∆rt, (∆rc j + F(G*\ Lp j , OUT(Lp j )°, min (b i -q ie ) +δ i ))]} j p o i = OUT(Lp j ) Max (Res(L, Lp i ) p o i ∉Lp j p i ∉L ∧ p i °=OUT(Lp j )
-Stopping the algorithm if the following condition is satisfied:

(ϕ* == Φ or ∆rt == 0) then (F ⇐ ∆rt)
Note: When we remove a mono-synchronized subpath of G, this is done only for the construction of ϕ*. The places for which we seek mono-synchronized subpaths belong simply to G. The places adding constraints on a synchronization transition are taken into account even if they belong to an eliminated mono synchronized subpath.

A-3/ Justification of the algorithm

The above algorithm applies the passive robustness formula on all sequences of monosynchronized sub-path. This formula was proved in [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]).

The algorithm is based on a function F which is called recursively using a part of the net which is more and more restricted. When the robustness of a mono-synchronized sub-path is computed, it is removed from the net to be treated in the next call of the function F. As the number of mono-synchronized sub-paths is finite, the convergence of the considered algorithm is proved, because the function stops when the sub-net to be studied becomes empty: ϕ* == Φ.

At the level of a given mono-synchronized subpath Lp, a part of the disturbance is rejected and the other is transmitted. The transmitted value computed by Algorithm 1 is lower than the real maximal value, because it does not take into account the compensation which is provided by a time disturbance of the same nature. The proof of this property can be found in [START_REF] Jerbi | Commande robuste des ateliers manufacturiers à contraintes de temps[END_REF]). As a consequence, the margin calculated by this algorithm is a lower bound of the effective margin.

The polynomial computation time of this algorithm can be proved such a way:

-The computation of the extreme firing instants for a given mono-synchronized subpath is less complex than the same computation on the whole Petri net structure which can be performed using an O(n 3 ) time computing algorithm, where n correspond to the number of transition of the graph [START_REF] Khansa | Réseaux de Petri p-temporels : Contribution à l'étude des systèmes à événements discrets[END_REF]). In the works of Khansa, the P-Time Petri nets running in repetitive mode are transformed into equivalent co-graphs. These co-graphs are some bi-valued graph using negative values. -The number of mono-synchronized subpath is smaller than the number of transitions. Consequently, the complexity of the computing time of all margins is smaller than O(n 4 ). All the margin values are compared (3 subtractions for a given path) to a given disturbance value less than n times (n corresponds to the number of transitions): this last effort is not significant with regards to the cost of a O(n 4 ) time computation. The worst case computation time is smaller than O(n 4 ).

B/ Illustrative example

Let us take the P-time Petri net example, figure 2, associated to a milk manufacturing unit. The application of algorithm 1 at the node t 9 , figure 4, allows computing a lower bound of passive robustness margin equal to 16 (Margin=16).

In fact, according to the recursive algorithm, the set of mono-synchronized subpaths (ϕ) is defined as follows, figure 4: 

ϕ = {Lp j / (n°=IN(Lp j ))∧(Lp j ∈C ms ) ∧ (Lp j ∈G)} ϕ={Lp 0 =(p 9 ,

C/ Discussion

The computed bound can be used to filter some alarms generated by the workshop during production. However, as the exact value is not known, some false alarms may go through the filtering system. It may be interesting to evaluate the quality of the computed bound with regard to the exact static robustness value. For now, it is proposed to extend the robustness range using a dynamic control.

Actually, when a disturbance is going over the static robustness bound, changing the control may produce a change in the system which increases its tolerance. Therefore, various strategies are implemented to manage time disturbances in production systems [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF][START_REF] Collart-Dutilleul | Robust Dynamic Control of Multi-product Job-shops[END_REF]. For this application, the chosen control policy tries to reject the disturbance as soon as it has been observed. The suggested strategy allows building a global control providing an active global robustness towards a given disturbance. A recursive algorithm is proposed to compute a bound of the active robustness towards a delay at a given node of the graph.

Active robustness computation

Definitions

Definition 9. : A temporal control is the modification of transitions firing instants using controlled P-time Petri net.

Definition 10. : An active robustness is a robustness ensured by the temporal control of the process transitions. Definition 11. : A time disturbance δ is locally rejected by a path Lp if the effective firing instant of its last transition (t) is equal to the expected one: St(n)=St e (n).

Definition 12. [START_REF] Jerbi | Robust Control of Multi-product Job-shops in Repetitive Functioning Mode[END_REF]): The time interval of the passive rejection capacity of a path Lp is RC(Lp)=[Ca(Lp), Cr(Lp)] where:

) Trans (R Lp p , ) b (q Ca(Lp) NC N i i ie ∪ ∩ ∈ - = ∑ (4) ) Trans (R Lp p ). a (q Cr(Lp) NC N i i ie ∪ ∩ ∈ - = ∑ (5)
Ca(Lp) (respectively Cr(Lp)) is called the time interval of the passive rejection capacity for an advance (respectively a delay) time disturbance occurrence.

Definition 13. (M'Halla et al. 2010d) : The available control margin for an advance, f a (p i ), and the available control margin for a delay, f r (p i ), associated to the place p i are defined as: 

       ≤ ≤ < < - ≤ - = → - b q q si 0 q q a si q q a q si q a ) (p f p Q P : f i i ie ie i i ie i i i ie i i a i a a { }      ≤ < - ≤ - = ∞ + ∪ → + i i ie i i ie i ie i i r i r b q q si q b q q si q b ) (p f p Q P :
i i r i i a = °= ° if t∈T C .

Example 1

Let us suppose that the transition t 102 , figure 5, is controllable (t 102 ∈T C ). The transition t 102 is a synchronization transition (t 102 ∈T S ). Definition 15. : A path Lp is locally controllable on the interval [∆ min , ∆ max ] if one can generate by the control a variation δ∈[∆ min , ∆ max ] on its last node without causing any token death on the levels of its synchronization transitions

Robust control strategy facing time disturbances

In manufacturing workshops with time constraints, the determining parameter for quality and cost is the time, which must belong to a very strict validity interval. The control guarantees the respect of these specifications in order to avoid the violation of the constraint intervals associated to the various states. The active robustness is based on the control of transition firing instants using controlled Ptime Petri nets. This temporal control makes it possible, in certain cases, to avoid the death of tokens if the time disturbances exceed the bounds of the intervals associated to operations [START_REF] Jerbi | Commande robuste des ateliers manufacturiers à contraintes de temps[END_REF], [START_REF] Declerck | Trajectory tracking control of a timed event graph with specifications defined by a p-time event graph[END_REF]. In the case of active robustness (the temporal disturbances exceed the bounds of the intervals associated to the operations) a robust control approach is proposed. The adopted strategy consists in rejecting the disturbance as soon as it has been observed in order to avoid the death of marks on the levels of synchronization transitions. Therefore, constraints violations are avoided. If the disturbance is a delay (respectively an advance), we generate advances (respectively delays) on the controlled transitions firing of the propagation path of the disturbance in order to avoid the constraints violation of the schedule conditions. Furthermore, this approach is consolidated by a computing algorithm of the robustness margin at various graph nodes.

The control strategy which is applied in this paper is not the only one. Moreover, there is no proof that, the applied control is optimal. Some optimal control proposition may be found in the state of the art, but they still have to be adapted to the industrial context where transitions may be not controllable [START_REF] Declerck | From Extremal Trajectories to Token Deaths in P-time Event Graphs[END_REF].

A/ Algorithm 2

This is a recursive algorithm allowing applying the approach of the rejection of the disturbance as soon as its observation, in a node n. In order to preserve schedule conditions, the presented algorithm makes it possible to compute a total delay margin available to be injected on a node n.

Let us denote: -G the P-time Petri net model of the workshop, -δ a delay time disturbance in p i (node n), observed in a transition t (t∈T O ), -Cr(Lp j ): the time passive rejection capacity for a delay of the mono-synchronized subpath Lp j , -δ C ∈[∆ min , ∆ max ](resp δ' C ): advances (respectively delays) generated on the controlled transition firings on the propagation path of the disturbance (for example if the disturbance δ is a delay, δ C =∆ min =max(f a (p i ))) Using the above notations, the algorithm is specified as follows:

ϕ = {Lp j / (n = IN(Lp j )) ∧ (Lp j ∈C ms ) ∧ (Lp j ∈G)} Active Margin ⇐ min[Cr(Lp j ) + E(G\Lp j , OUT(Lp j )°, min (b i -q ie ) + δ' C )] j p o i =OUT(Lp j ) p i ∉Lp j F(G*, p*, ∆rt) { ϕ* = {Lp j / (p*∈Lp j ) ∧ (Lp j ∈C se ) ∧ (Lp j ∈G*)} If (ϕ* == Φ or ∆rt == 0) then (F ⇐ ∆rt) Else { F ⇐ min{min[∆rt, Cr(Lp j ) + E(G*\Lp j , OUT(Lp j )°, min (b i -q ie ) + δ C )]} j p o i = OUT(Lp j ) p i ∉Lp j } } B/ Description of the algorithm E pi (respectively E OUT(Lp)°)
is the set of existing mono-synchronized subpaths containing the place p i (respectively OUT(Lp)°).

δr the residue of the disturbance δ.

{ E = {δr, OUT(Lp)} (F is a doublet composed by the residue of the disturbance and the output node of the path Lp) ∀ Lp∈E pi ⇒ δr =δ-Cr(Lp)

If

δr > (b i -q ie )/ {p o i ∈T S ∧ p i ∉Lp ∧ p o i ∈Lp}, there is a control problem on p o i (we apply the robust control approach, which allows to generate a temporal shift, through the set of controlled transitions of the propagation path of the disturbance) Else δr < (b i -q ie )/ {p o i ∈T S ∧ p i ∉Lp ∧ p o i ∈Lp}, we apply the same procedure for each element of E OUT(Lp)°

} Example 2

Let us suppose that the transition t C1 and t C2 , figure 6, are controllable. Let δ a delay time disturbance at the input of the mono-synchronized subpath Lp 1 and δr its residue. 

δ Lp 1 Lp 2 t s δ t C1 (b i -q ie ) p i t C2 δr
Two cases arise:

1 st case: If (b i -q ie ) ≥ δr ≥ δ then there is no death of a mark in p i .

2 nd case: If (b i -q ie ) < δr < δ then we should generate a temporal shift through the set of controlled transitions (t C1 and t C2 ) of the propagation path in order to avoid the death of mark on the level of transition t s (t s ∈T S ).

C/ Discussion

Concerning the program convergence, the behaviour of the second algorithm is so similar to the first one that a new convergence proof is not useful. The proof of the formula which is recursively applied by the algorithm can be consulted in [START_REF] Jerbi | Commande robuste des ateliers manufacturiers à contraintes de temps[END_REF].

Concerning the complexity analysis, things may be different, because of the added control loop. The control strategy tries to create a similar disturbance on the parallel path… The number of parallel path is smaller than the number of transition. On a given parallel path, the computation of the margins which may be used on a given monosynchronized sub-path is reduced by an O(n 3 ) time computing algorithm as in [START_REF] Collart-Dutilleul | Performance and tolerance evaluation[END_REF]. There are less mono-synchronized sub-paths than transitions in the net. The global control loop computation spend a O(n 5 ) time for a given execution of the function F. This function has to be performed on all the mono-synchronized sub-paths, so the global time complexity of the algorithm 2 is less than O(n 6 ) considering the number of transitions.

The above analysis uses some rough approximations which aim to show that the computing time is reasonable. The choice of the upper-bound can be refined. The main contribution of this paper is to illustrate that the integration of the control loop may considerably increase the robustness value on a real industrial topology.

D/ Illustrative example D-1/Active robustness computing

The application of the algorithm at the node t 9 , figure 7, allows computing an active robustness margin. This P-time PN allows verifying the active robustness margin on t 9 computed by algorithm 2 and the application of the robust control strategy to the milk production unit. Similarly, table 3 shows the full set of active margins associated to each mono-synchronized subpath. The application of the algorithm at the node t 9 , figure 7, allows computing an active robustness margin equal to 63. Table 4 gives the available control margin for an advance, f a (p i ), and the available control margin for a delay, f r (p i ), associated to each place p i . and their downstream mono-synchronized paths in order to deal with the disturbance propagation.

The paths Lp 2 , Lp 3 , Lp 4 , Lp 5 and Lp 6 are locally controllable (see table 4). The token deaths are avoided on all their disturbance propagation paths using the same method.

To sum up, the active robustness margin computed by the recursive algorithm 2 is superior to the upper bound of passive robustness margin computed by algorithm 1. It is to be noted that the first robustness value is 16 when the second is equal to 63. Consequently the range [16,63] corresponds to the set of delay values where an alarm does not have to be generated. When a delay is bigger than 63, nothing can be claimed about its correctness. Roughly speaking, integrating a control policy in the robustness range computation allows multiplying by 3.9375 the range of alarm filtering.

Conclusion

This paper deals with the robustness of manufacturing workshops with time constraints. The Controlled P-time Petri Net model of a given workshop topology is used to elaborate several results regarding the robustness problem of manufacturing milk unit.

One of the main contributions of this work is a robust control strategy facing time disturbances. This strategy consists in generating by the control a temporal shift which compensates the disturbance on its propagation path in order to avoid the death of marks at the level of synchronization transitions of the P-time Petri net model. The suggested approach is consolidated by a recursive algorithm allowing computing an active robustness margin allowed at a given node. The results obtained in the illustrative example show that this algorithm is effective when temporal disturbances exceed the intervals of passive robustness. In this case, the computed active robustness margin allows increasing the system's ability to preserve the specifications facing some expected or unexpected variations.

Let us remember that the active robustness interval is really larger than the passive robustness interval and provides more possibilities to continue the production in a degraded mode. On the considered milk manufacturing workshop analysed in this paper, the active robustness value is about four times the passive one.

This degraded functioning mode makes it possible to keep on while providing an acceptable quality for the products. However, when the disturbance is outside of the active robustness range, the quality of the workshop products is not guaranteed any more. In this case, a production alarm is generated.

In future works, the state of this art may be used to improve the efficiency of the control, because there are some optimal control propositions [START_REF] Declerck | From Extremal Trajectories to Token Deaths in P-time Event Graphs[END_REF].

The control proposed in this paper assumed that all transition can be observed. There is a need for an algorithm, built upon the lemmas results, providing localisation or partial localisation of time disturbances in order to extend the application range of this approach.

R

  is a marked Petri net, defined by (P,T, I, O, M, M 0 ) where o P is a set of places o T is a set of transition o IN is the set of input arcs of transitions IN: (P×T)→N (N is the set of natural numbers ) o O is the set of output arcs of transitions O: (T×P)→N o M is the Marking application o M 0 is the initial value of the marking

Figure 2 :

 2 Figure 2: A milk manufacturing unit modeled by a P-time Petri net

  Let us consider a discrete event system and G the associated Petri net model. Let us call B(G) the behavior of G corresponding to the trajectory of states successively reached. Let C(B(G)) be the schedule of conditions established on the system behavior B(G). C(B(G)) is materialized by a series of constraints which must be checked by B(G). A non respect of B(G) corresponds to a violation of C(B(G)). It is said that a subset SG of G is robust to a disturbance δ if and only if ∀ n∈SG, the occurrence of the disturbance δ at the node n does not involve a violation of C(B(G)).Definition 7.[START_REF] Collart-Dutilleul | Robust Dynamic Control of Multi-product Job-shops[END_REF]): Passive robustness is when the required specifications are met without any need for a change in the control settings, even in the presence of variations.

  the set of mono-synchronized subpaths, C se : the set of elementary mono-synchronized subpaths, mono-synchronized subpaths ∆rc j :
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 4 Figure 4: Example of disturbance propagation: case of passive robustness
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 5 Figure 5: Case of controllable synchronization transition Indeed p°1 91 =t 102 ⇒ f a (p 191 )=0-5= -5 et f r (p 191 )= + ∞

Figure 6 :

 6 Figure 6: Example of algorithm application
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 7 Figure 7: Example of computing active robustness margin

  The firing condition is formally expressed as follows: A transition t l is potentially firable from a state S<M,IP> in the interval [a l b l ], if and only if:

1-it is enabled in autonomous PN's sense in this state : ∀p∈ °tl : m(p) ≥ IN (p,t l ) 2-∀p i ∈ °tl there is a number of token greater than IN(p i ,t l ) verifying [ ] [ ]
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Table 1 :

 1 Compensable margin and transmissible margin associated to some monosynchronized subpaths of G

	Path	∆rt	k	∆rc	k
	Lp 0 =(p 9 , t 9 , p 18 , t 8 ) Lp 1 =(p 9 , t 9 , p 101 , t 101 ) Lp 2 =(p 9 , t 9 , p 102 , t 102 )	6 +∞ +∞	689 0 0
	Lp 3 =(p 9 , t 9 , p 103 , t 103 )	+∞	0	
	Lp 4 =(p 9 , t 9 , p 104 , t 104 )	+∞	0	
	Lp 5 =(p 9 , t 9 , p 105 , t 105 ) Lp 6 =(p 9 , t 9 , p 106 , t 106 )	+∞ +∞	0 0	
	Lp 7 =(p 111 , t 111 , p 191 , t 102 )	56	5	
	Lp 8 =(p 112 , t 112 , p 192 , t 103 )	41	3	
	Lp 9 =(p 113 , t 113 , p 193 , t 104 )	28	3	
	Lp 10 =(p 114 , t 114 , p 194 , t 105 )	19	2	
	Lp 11 =(p 115 , t 115 , p 195 , t 106 )	12	4	
	Lp 12 =(p 116 , t 116 , p 196 , t 101 )	71	36	
	Lp 13 =(p 71 , t 71 , p 81 , t 8 )	15	0	

A/ Computation algorithm of the exact value of passive robustness for a delay in a milk manufacturing workshop

  t 9 ,p 18 ,t 8 ); Lp 1 =(p 9 ,t 9 ,p 101 ,t 101 ); Lp 2 =(p 9 ,t 9 ,p 102 ,t 102 ); Lp 3 =(p 9 ,t 9 ,p 103 ,t 103 ); Lp 4 =(p 9 ,t 9 ,p 104 ,t 104 ); Lp 5 =(p 9 ,t 9 ,p 105 ,t 105 ); Lp 6 =(p 9 ,t 9 ,p 106 ,t 106 )}

Table 2 :

 2 Passive margin associated to propagation through mono-synchronized subpaths is the residue of a disturbance that propagates along the path Lp 13 ) (see table1) is the residue of a disturbance that propagates along the path Lp 10 ) (see table1)

	Margin	Expression		Value
	Margin 0 Margin 0 ⇐ min [∆rc 0 + F(G\Lp 0 , OUT(Lp 0 )°, min (b 81 -q 81e ))	+ δ δ δ δ 0 ]	Margin0=695

Table 3 :

 3 Active margins associated to mono-synchronized sub-paths C1 : advances (respectively delays) generated on the controlled transition firings of the propagation path Lp 1 ) Active Margin 1 ⇐ min [0+ F(G\Lp 1 , p 111 , +∞)] C2 : advances (respectively delays) generated on the controlled transition firings of the propagation path Lp 2 ) C4 : advances (respectively delays) generated on the controlled transition firings of the propagation path Lp 4 ) C5 : advances (respectively delays) generated on the controlled transition firings of the propagation path Lp 5 ) Active Margin 5 ⇐ min [0+ F(G\Lp 5 , p 115 , +∞ )] Let δ=63 a time disturbance in p 9 (Hydromat) observed in t 9 , figure 7. The disturbance δ is propagated towards the six paths Lp 1 , Lp 2 , Lp 3 , Lp 4 , Lp 5 and Lp 6 . (ϕ={Lp 0 =(p 9 ,t 9 ,p 18 ,t 8 ) ;Lp 1 =(p 9 ,t 9 ,p 101 ,t 101 );Lp 2 =(p 9 ,t 9 ,p 102 ,t 102 ) ;Lp 3 =(p 9 ,t 9 ,p 103 ,t 103 ) ;Lp 4 =(p 9 ,t 9 ,p 104 ,t 104 ) ; Lp 5 =(p 9 ,t 9 ,p 105 ,t 105 ) ; Lp 6 =(p 9 ,t 9 ,p 106 ,t 106 )} Let us suppose that the transitions t 101 , t 111 , t 102 , t 112 , t 103 , t 113 , t 104 , t 114 , t 105 , t 115 , t 106 and t 116 are controllable. According to definition 14, each transition constitutes a subpath locally controllable on

	Active Margin 1	Active Margin 1 ⇐ min [Cr(Lp 1 )+ F(G\Lp 1 , OUT(Lp 1 )°, min (b 196 -q 196e )) + δ δ δ δ' C1 ] j p o 196 = OUT(Lp 1 ) p o 196 ∉ Lp 1 (δ δ δ δ' Active Margin 1=63

Table 4 :

 4 Available control margin for an advance and for a delay associated to place p i On the path Lp 1 , the disturbance changes passively the firing instant of the transition t 9 and also the sojourn time in the place p 9 : St 9 (n) =St 9e (n) +63 and q 9 =q 9e +63 =1593. (Active Margin 1 ⇐ min [0+ F(G\Lp 1 , p 111 , +∞)]) -After the crossing of the transition t 101 , the disturbance is transmitted to two paths, Lp 7 = (p 111 , t 111 , p 191 , t 102 ) and Lp 13 =( p 111 , t 111 , p 121 , t 12 ) through the starting place p 111 . (ϕ ϕ ϕ ϕ* 1

	Path	f a (p i )	f r (p i )
	Lp 1 =(p 9 , t 9 , p 101 , t 101 )	f a (p 101 )= -2	f r (p 101 )=71
	Lp 2 =(p 9 , t 9 , p 102 , t 102 ) Lp 3 =(p 9 , t 9 , p 103 , t 103 )	f a (p 102 )= -17 f r (p 102 )=56 f a (p 103 )= -32 f r (p 103 )=41
	Lp 4 =(p 9 , t 9 , p 104 , t 104 ) Lp 5 =(p 9 , t 9 , p 105 , t 105 )	f a (p 104 )= -45 f r (p 104 )=28 f a (p 105 )= -54 f r (p 105 )=19
	Lp 6 =(p 9 , t 9 , p 106 , t 106 ) Lp 7 =(p 111 , t 111 , p 191 , t 102 )	f a (p 106 )= -61 f r (p 106 )=12 f a (p 111 )= -8 f r (p 111 )=10
	Lp 8 =(p 112 , t 112 , p 192 , t 103 ) Lp 9 =(p 113 , t 113 , p 193 , t 104 )	f a (p 112 )= -10 f a (p 113 )= -8	f r (p )=8 f r (p 113 )=10
	Lp 10 =(p 114 , t 114 , p 194 , t 105 ) Lp 11 =(p 115 , t 115 , p 195 , t 106 )	f a (p 114 )= -5 f a (p 115 )= -1	f r (p 114 )=13 f r (p 115 )=17
	Lp 12 =(p 116 , t 116 , p 196 , t 101 )	f a (p 116 )= -8	f r (p 116 )=10
	-		

= {Lp 7 , Lp 13 })

  On the path Lp 7 , the disturbance is partially rejected in p 191 (Cr(Lp 7 ) =5) and the mark is available in p 191 with a delay equal to 58.

(E 1 ⇐ ⇐ ⇐ ⇐ min [+∞, 5 + F (

G\Lp 1 \Lp 7 , p 112 , min (b 102 -

  If the transition t 101 and t 111 are not controllable, there is a death mark in p 102 since the available control margin for a delay accepted is equal to 56. By injecting by the control an advance on the firing instant of the two transitions t 101 (St 101 (n)=St 101e (n)+ δ C1 =St 101e (n)-2) and t 111 (St 111 (n)=St 111e (n)+ δ C7 =St 111e (n)-8), the death of the mark in p 102 is then avoided and the residue δr=48 is transmitted to the two paths Lp 8 =(p 112 , t 112 , p 192 , t 103 ) and Lp 14 =( p 112 , t 112 , p 122 , t 12 ) through the place p 112 . The same control methodology is then applied on Lp 8 and Lp 14

	q 102 ) + δ δ δ δ C1 +δ δ δ δ C7 )])