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Traditional spintronics relies on spin transport by charge carriers, such as electrons in semicon-
ductor crystals. The challenges for the realization of long-range electron spin transport include rapid
spin relaxation due to electron scattering. Scattering and, in turn, spin relaxation can be effectively
suppressed in excitonic devices where the spin currents are carried by electrically neutral bosonic
quasi-particles: excitons or exciton-polaritons. They can form coherent quantum liquids that carry
spins over macroscopic distances. The price to pay is a finite life-time of the bosonic spin carriers.
We present the theory of exciton ballistic spin transport which may be applied to a range of systems
supporting bosonic spin transport, in particular, to indirect excitons in coupled quantum wells. We
describe the effect of spin-orbit interaction for the electron and the hole on the exciton spin, account
for the Zeeman effect induced by external magnetic fields and long range and short range exchange
splittings of the exciton resonances. We also consider exciton transport in the non-linear regime
and discuss the definitions of the exciton spin current, polarization current and spin conductivity.

PACS numbers: 71.35.-y, 03.75.Kk, 03.75.Mn, 73.63.Hs, 78.55.Cr

I. INTRODUCTION

Excitons are electrically neutral and have finite life-
times. These are two obstacles which make the develop-
ment of excitonic spintronics, or spin-optronics challeng-
ing. How possibly one can explore the current, which
is carried by neutral particles, and whose amplitude
changes with distance and time? - is a fair question
to ask. While electrons and holes have been consid-
ered as perfectly valid spin carriers, and exotic effects
like the spin Hall effect1 have been intensively studied
for them2–6, the spin currents carried by excitons7–9 and
exciton-polaritons10,11 over tens or even hundreds of mi-
crometers remained relatively less explored. There ex-
isted a huge imbalance of theoretical works on fermionic
and bosonic spin transport. This is changing now. A
number of phenomena have been observed and studied in
the field of bosonic spin currents recently7−26. To sum-
marize tens of publications in one sentence: bosonic sys-
tems bring new quantum coherent effects to the physics
of spin transport. For instance, stimulation23–25 and
amplification26 of spin currents are possible in exciton
and exciton-polariton Bose gases. Bosonic spintronics or
spin-optronics operates with electrically neutral spin car-
riers which makes control of spin currents carried by exci-
tons a non-trivial task. Fortunately, the exciton density
replaces charge in many aspects: the density currents
may be efficiently controlled by stationary or dynamic
potential gradients as demonstrated in recent works27,28.
Combined with evident advantages of bosonic amplifica-
tion and low dephasing, this makes spin-optronics a valu-
able alternative to fermionic spintronics. Besides bosonic
effects, exciton spin transport has another important spe-
cific feature: it is dissipative by its nature, as the spin
carriers have a finite (and short for excitons in regular

materials) life-time. In continuous wave optical experi-
ments stationary spin textures can appear: excitons are
injected in the structure, they propagate ballistically or
diffusively, and eventually disappear by radiative recom-
bination. Their polarization properties and spin are in-
herited by the emitted photons, that is why the polariza-
tion patterns observed in near field photoluminescence
experiments directly characterize exciton spin currents
in the plane of the structure.

The goal of this work is to define what the exciton
spin, magnetization and polarization currents are, and
to explain how they can be described within the most
frequently used spin density matrix (DM) approach and
mean-field 29,30 approximation. We consider a specific
system, namely a planar zinc-blend semiconductor struc-
ture containing quantum wells, where excitons can be
formed. This choice is motivated by recent experimental
results in GaAs/AlGaAs based coupled quantum wells.
We limit the scope of this paper to heavy-hole excitons,
however, our approach can be easily extended to light-
hole excitons or excitons in quantum wells of a different
symmetry. We do not speak here about the large vari-
ety of recent experimental results and application of the
formalism presented here to the description of one partic-
ular experiment, as this would make this paper too long
and too specific. For a direct comparison of theoretical
simulations with the experimental data we address the
reader to Ref. 8. The approaches formulated here are
suitable for the description of a variety of excitonic spin
effects in quantum wells.

The paper is organized as follows. In Section II we
introduce the spin DM formalism accounting for the dif-
ferent mechanisms of spin re-orientation and the relation
to electron and hole spin currents. In Section III we
present numerical results obtained within the spin DM
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formalism and analyze them. In Section IV we study the
non-linear spin dynamics of propagating excitons using
the Gross-Pitaevskii (GP) equations. The next three sec-
tions of the paper are devoted to exciton spin currents
and polarization currents. Conclusions are perspectives
are given in Section VIII.

II. THE SPIN MATRIX FORMALISM FOR

PROPAGATING EXCITONS

In zinc-blend semiconductor quantum wells (e.g. in the
most popular GaAs/AlGaAs system), the lowest energy
exciton states are formed by electrons with spin projec-
tions on the structure axis of +1/2 and -1/2 and heavy
holes whose quasi-spin (sum of spin and orbital momen-
tum) projection to the structure axis is +3/2 or -3/2.
Consequently, the exciton spin defined as the sum of the
electron spin and heavy-hole quasi-spin may have one of
four projections on the structure axis: +1,-1,+2,-2 31.
These states are usually nearly degenerate, while there
may be some splitting between them due to the short
and long-range exchange interactions. Only the states
with quasi-spin projections ±1 are coupled to the light,
these are so-called bright states. The states with quasi-
spin projections ±2 are called dark states.

It is important to note that the present formalism ad-
dresses the spin part of the exciton wavefunction, which
is a product of electron and hole spin functions. For ex-
ample, the probability to find the exciton in the spin state
+1 is given by a product of probabilities to find an elec-
tron in the spin state -1/2 and the heavy hole in the spin
state +3/2. The four component exciton wave-function
is:

Ψ = (Ψ+1,Ψ−1,Ψ+2,Ψ−2)

=
(

Ψe,− 1

2

Ψh,+ 3

2

,Ψe,+ 1

2

Ψh,− 3

2

,

Ψe,+ 1

2

Ψh,+ 3

2

,Ψe,− 1

2

Ψh,− 3

2

)

(1)

where Ψe,+ 1

2

and Ψe,− 1

2

are the components of the elec-

tron spinor wavefunction; Ψh,+ 3

2

and Ψh,− 3

2

are the com-

ponents of the heavy-hole spinor wavefunction.

To describe the dynamics of the system we will first
define the Hamiltonian (Section IIA) describing the dif-
ferent physical mechanisms of spin evolution. We then
introduce the spin DM (Section II B) for the description
of exciton spin states. We relate its components to the
observable Stokes’ vectors of light emitted by bright exci-
tons and use the Liouville equation to describe its evolu-
tion in time. From the DM one can describe the polariza-
tion state of excitons and thus exciton spin currents. It is
also instructive to consider the relationship with electron
and hole spin currents (Section IIC).

A. Hamiltonian

Here we derive the exciton Hamiltonian in the basis
of +1,-1,+2,-2 states, accounting for the spin-orbit inter-
action (Dresselhaus and Rashba effects)32,37, long- and
short-range exchange interactions33 and Zeeman effect,
but neglecting exciton-exciton interactions, which will be
discussed in the Section IV and neglecting magnetic field
effect on center-of-mass motion and internal structure of
exciton34–36. We consider excitons propagating ballisti-
cally in the plane of a quantum well. We shall character-
ize them by a fixed wave-vector, kex. We represent the
full exciton Hamiltonian Ĥtot

ex as a sum of three parts de-
scribing the spin-orbit and Zeeman effects on electrons,
Ĥe

ex, and holes, Ĥh
ex, and the exchange induced splittings

of exciton states, Ĥex
ex:

Ĥtot
ex = Ĥe

ex + Ĥh
ex + Ĥex

ex. (2)

1. Dresselhaus and Zeeman terms

We recall that the Rashba-Dresselhaus effect is a
momentum-dependent splitting of spin bands in two-
dimensional semiconductor systems. It originates from
a combined effect of the atomic spin orbit coupling and
asymmetry of the potential in the direction perpendicu-
lar to the two-dimensional plane. This asymmetry comes
either from the applied bias (which is described by the
Rashba term in the Hamiltonian) or from the intrinsic
asymmetry of the crystal lattice (described by the Dres-
selhaus term in the Hamiltonian). We shall separately
consider both the Dresselhaus term (in this sub-section)
and the Rashba term (in the next sub-section).

In order to build the 4×4 matrix Hamiltonian for exci-
tons, we start with simpler 2×2 Hamiltonians describing
the spin-orbit and Zeeman effects for electrons and holes.

The electron Hamiltonian in the basis of (+1/2,-1/2)
spin states is:

Ĥe = βe (ke,xσ̂x − ke,yσ̂y)−
1

2
geµBBσ̂. (3)

Here ge is the electron g-factor, µB is the Bohr magne-
ton, B is a magnetic field, σ̂ is the Pauli matrix vector,
and βe is the Dresselhaus constant describing spin-orbit
interactions of electrons. The Pauli matrix operators are:

σ̂z =

[

1 0
0 −1

]

, σ̂y =

[

0 −i
i 0

]

, σ̂x =

[

0 1
1 0

]

.

(4)
Rewriting Eq. (3) and retaining only z-component of the
magnetic field, which corresponds to the Faraday geom-
etry, one can obtain:

Ĥe =

[

− 1
2
geµBB βe (ke,x + ike,y)

βe (ke,x − ike,y)
1
2
geµBB

]

=

[

− 1
2
geµBB βekee

iφ

βekee
−iφ 1

2
geµBB

]

, (5)
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where φ is the angle between kex and the chosen x-axis.
The exciton Hamiltonian needs to be written in the basis
of (+1,-1,+2,-2) exciton spin states, which correspond to
(-1/2, +1/2, +1/2, -1/2) electron spin states. The elec-
tron spin-flip couples +1 and +2 states as well as -1 and
-2 states. For each of these two couples of states we apply
the Hamiltonian [Eq. (5)], which results in the following
electronic contribution to the 4× 4 exciton Hamiltonian:

Ĥe
ex =









1
2
geµBB 0 βekee

−iφ 0
0 − 1

2
geµBB 0 βekee

iφ

βekee
iφ 0 − 1

2
geµBB 0

0 βekee
−iφ 0 1

2
geµBB









(6)

2. Rashba terms

We note that another possible spin-orbit contribution
to the Hamiltonian may come from the Rashba effect,
which takes place in biased quantum wells. The Rashba
term to be added in Eq. (3) is αe (σ̂xke,y − σ̂yke,x), where
αe is a constant proportional to the Rashba field. The
contribution of the Rashba term to the electron Hamil-
tonian, in the basis of (+1/2,-1/2) electron spin states,
can be re-written:

Ĥ′

e =

[

0 iαekee
−iφ

−iαekee
iφ 0

]

. (7)

Using the same procedure as for Dresselhaus terms, this
gives an additional contribution to the exciton Hamilto-
nian, in the basis of (-1/2, +1/2, +1/2, -1/2) electron
spin states:

Ĥe′
ex =









0 0 −iαekee
iφ 0

0 0 0 iαekee
−iφ

iαekee
−iφ 0 0 0

0 −iαekee
iφ 0 0









(8)
Unless stated explicitly, we will for simplicity omit the
Rashba terms in the rest of this paper and consider only
the Dresselhaus terms. Note that there are no linear in
wave-vector Rashba terms for heavy holes in zinc-blend
quantum wells grown along the (001)-axis.

3. Heavy-hole contribution (Faraday geometry)

The heavy hole contribution to the Hamiltonian can
be calculated with the reasoning similar to the electron
case. The heavy-hole Hamiltonian written in the basis of
(+3/2,-3/2) states is:

Ĥh = βh (kh,xσ̂x + kh,yσ̂y)−
1

2
ghµBBσ̂z. (9)

Here gh is the heavy-hole g-factor and βh is the Dressel-
haus constant for heavy holes32,37. Note that the Dressel-
haus Hamiltonian is different for heavy holes formed by

p-orbital states and for conduction band electrons formed
by s-orbital electronic states in a zinc-blend crystal lat-
tice. The resulting from Dresselhaus coupling effective
magnetic fields acting upon electron and heavy hole spins
are oriented differently as well. Re-writing Eq. (9), we
obtain:

Ĥh =

[

− 1
2
ghµBB βh (kh,x − ikh,y)

βh (kh,x + ikh,y)
1
2
ghµBB

]

=

[

− 1
2
ghµBB βhkhe

−iφ

βhkhe
iφ 1

2
ghµBB

]

, (10)

The hole spin-flip couples +1 and -2 states as well as -1
and +2 states. For each of these two couples of states we
apply the Hamiltonian (10), which results in the following
hole contribution to the 4× 4 exciton Hamiltonian:

Ĥh
ex =









− 1
2
ghµBB 0 0 βhkhe

−iφ

0 1
2
ghµBB βhkhe

iφ 0
0 βhkhe

−iφ − 1
2
ghµBB 0

βhkhe
iφ 0 0 1

2
ghµBB









(11)

4. In-plane magnetic field (Voight geometry)

If the magnetic field is applied in the plane, it splits
electron and hole states polarized in the plane of the
quantum wells. Suppose that the field is applied in the
x-direction. In the electron and hole basis the Zeeman
Hamiltonian is in this case:

Ĥe,h = −1

2
ge,hµBBσ̂x =

[

0 − 1
2
ge,hµBB

− 1
2
ge,hµBB 0

]

.

(12)
Note that the hole g-factor in plane of the quantum well
is different from the g-factor in Faraday configuration,
in general. This maps into the (+1,−1,+2,−2) exciton
basis as a Zeeman Hamiltonian of the form:

ĤZ = −µBB

2











0 0 ge gh
0 0 gh ge
ge gh 0 0
gh ge 0 0











(13)

5. Exchange terms

Besides the contributions from electron and hole spin
orbit interactions and Zeeman splitting, there may be a
purely excitonic contribution to the Hamiltonian, which
is composed from the Hamiltonian for bright excitons
written in the basis (+1,-1):

Ĥb = EbÎ − δbσ̂x =

[

Eb −δb
−δb Eb

]

(14)
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and the Hamiltonian for dark excitons written in the ba-
sis (+2,-2):

Ĥd = EdÎ − δdσ̂x =

[

Ed −δd
−δd Ed

]

, (15)

where Î is the identity matrix. The terms with δb and
δd describe the splittings of bright and dark states polar-
ized along x and y axes in the plane of the structure due
to the long-range exchange interaction. The structural
anisotropy is virtually inevitable even in the best qual-
ity epitaxially grown quantum wells. It arises from the
reduced symmetry of heterointerfaces, from local strains
and from islands of quantum well with fluctuations elon-
gated in certain crystallographic directions. Eb − Ed is
the splitting between bright (+1 and -1) and dark (+2
and -2) exciton states due to the short-range exchange
interaction. In microcavities, this splitting is addition-
ally enhanced due to the vacuum field Rabi splitting of
exciton-polariton modes formed by bright excitons and a
confined optical mode of the cavity38.
The origin of Eqs. (14) and (15) can be easily seen from

the exciton Hamiltonian written in the basis of linear x

and y polarizations. For example, for the bright excitons:

ĤXY =

[

Eb − δb 0
0 Eb + δb

]

(16)

Ĥb = Ĉ−1ĤXY Ĉ, (17)

where:

Ĉ =
1√
2

[

1 1
i −i

]

, Ĉ−1 =
1√
2

[

1 −i
1 i

]

(18)

are the transformation matrices from the linear to circu-
lar polarization basis and vice versa39. The same reason-
ing can be applied to the dark excitons as well.

The sum of Hamiltonians Ĥb and Ĥd, written in the
4× 4 exciton spin basis is:

Ĥex
ex =







Eb −δb 0 0
−δb Eb 0 0
0 0 Ed −δd
0 0 −δd Ed






(19)

Now, the full exciton Hamiltonian can be written as:

Ĥtot
ex = Ĥe

ex + Ĥh
ex+̂Hex

ex

=









Eb +
1
2
(ge − gh)µBB −δb βekee

−iφ βhkhe
−iφ

−δb Eb − 1
2
(ge − gh)µBB βhkhe

iφ βekee
iφ

βekee
iφ βhkhe

−iφ Ed − 1
2
(ge + gh)µBB −δd

βhkhe
iφ βekee

−iφ −δd Ed +
1
2
(ge + gh)µBB









. (20)

For the translational motion of an exciton as a whole
particle the exciton momentum is given by Pex =
(me +mh)vex , where me and mh are in-plane effective
masses of an electron and of a heavy hole, respectively;
vex is the exciton velocity. Having in mind that the ex-
citon translational momentum is a sum of electron and
hole translational momenta given by Pe,h = me,hve,h,
where ve and vh are the electron and hole velocity, re-
spectively, one can easily see that vh = ve = vex.
Having in mind that Pex = ~kex and Pe,h = ~ke,h,
we have kex = kh + ke, with ke = me

me+mh

kex and

kh = mh

me+mh

kex. Thus, Ĥtot
ex depends on the exciton cen-

ter of mass wave-vector kex and on the angle φ between
this angle and one of the structure axes (e.g. (100)-axis).

It should be noted that in this consideration the wave-
vectors kex,kh,ke are related to the translational motion
of the exciton as a whole particle, with hole and electron
as its constituents. The wave-vector of relative motion
of the electron and hole “inside” the exciton is zero on
average but may be important for each given moment of
time. Recently, the effect of relative electron-hole motion
on the spin-orbit effects of excitons has been analyzed by

Vishnevsky et al40 . Their analysis confirms the presence
of linear in kex spin orbit terms in the exciton Hamilto-
nian introduced above.

B. Spin Density Matrix

Having constructed the Hamiltonian for excitons prop-
agating with a wavevector kex, we now consider the de-
scription of their spin state. We shall use the spin density
matrix, ρ̂ = |Ψ⟩ ⟨Ψ|, where Ψ = (Ψ+1,Ψ−1,Ψ+2,Ψ−2)
are the components of the exciton wavefunction projected
onto the four spin states, (|Ψ+1⟩ , |Ψ−1⟩ , |Ψ+2⟩ , |Ψ−2⟩).
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1. Relation to Stokes’ vectors and polarization degrees of
light

The exciton spin DM is given by:

ρ̂ = |Ψ⟩ ⟨Ψ|

=







Ψ∗

+1Ψ+1 Ψ∗

−1Ψ+1 Ψ∗

+2Ψ+1 Ψ∗

−2Ψ+1

Ψ∗

+1Ψ−1 Ψ∗

−1Ψ−1 Ψ∗

+2Ψ−1 Ψ∗

−2Ψ−1

Ψ∗

+1Ψ+2 Ψ∗

−1Ψ+2 Ψ∗

+2Ψ+2 Ψ∗

−2Ψ+2

Ψ∗

+1Ψ−2 Ψ∗

−1Ψ−2 Ψ∗

+2Ψ−2 Ψ∗

−2Ψ−2,






(21)

The elements of the upper left quarter of this DM are
linked to the intensity of light emitted by bright exciton
states, I = Ψ∗

+1Ψ+1 + Ψ∗

−1Ψ−1, and to the components
of the Stokes’ vector, Sx, Sy and Sz of the emitted light:

ρ11 =
I

2
+ Sz, (22)

ρ12 = Sx − iSy, (23)

ρ21 = Sx + iSy, (24)

ρ22 =
I

2
− Sz. (25)

These expressions can be summarized more succinctly
using the Pauli matrices as:

[

ρ11 ρ12
ρ21 ρ22

]

=
I

2
Î + S.σ̂, (26)

where S = (Sx, Sy, Sz) is the Stokes’ vector and we recall

that Î is the identity matrix. Note that the trace of the
spin density matrix is a number of particles in the system,
which is not conserved because of the finite lifetime, in
contrast with the full quantum optical density matrix
which has the trace equal to unity.
Often when studying the polarization structure of

fields with non-uniform intensity, it is useful to compare
the polarization degrees of emitted light, which can be
given by normalizing the Stokes’ vectors to the light in-
tensity. The circular polarization degree is:

ρc =
2Sz

I
=
ρ11 − ρ22
ρ11 + ρ22

. (27)

The horizontal-vertical linear polarization degree is:

ρl =
2Sx

I
=
ρ12 + ρ21
ρ11 + ρ22

. (28)

The linear polarization degree measured in the diagonal
axes (also referred to as a diagonal polarization degree)
is given by:

ρd =
2Sy

I
= i

ρ12 − ρ21
ρ11 + ρ22

. (29)

2. Liouville equation

The dynamics of the DM is given by the quantum Li-
ouville equation:

i~
dρ̂

dt
=

[

Ĥtot
ex , ρ̂

]

, (30)

where the Hamiltonian is composed from the electron,
hole and exciton contributions given by Eqs. (6), (11)
and (19) (considering the Faraday magnetic field config-
uration).

So far, we have neglected all relaxation or scattering
processes in the system. The commonly used way to ac-
count for these processes is through the introduction of
a phenomenological Lindblad superoperator to the Liou-
ville equation:

i~
dρ̂

dt
=

[

Ĥtot
ex , ρ̂

]

− L̂ (ρ̂) , (31)

where the Lindblad superoperator is introduced as:

L̂ (ρ̂) = i~







ρ11/τb ρ12/τb ρ13/τc ρ14/τc
ρ21/τb ρ22/τb ρ23/τc ρ24/τc
ρ31/τc ρ32/τc ρ33/τd ρ34/τd
ρ41/τc ρ42/τc ρ43/τd ρ44/τd






. (32)

τb is the bright exciton decoherence time, τd is the dark
exciton decoherence time and τc is the characteristic de-
coherence time of processes between dark and bright ex-
citons. Note that dissipation may be crucial in the de-
scription of exciton spin currents in realistic systems. In
particular, within this formalism, in the presence of dis-
sipation, the current conservation and flux conservation
conditions become valid if completed by exciton genera-
tion and decay in the continuity equation. In the rest of
this manuscript we shall neglect dissipation to simplify
the model system and to clarify the physical mechanisms
which govern the characteristics of exciton spin currents.
Namely, we shall assume L̂ (ρ̂) = 0. We stress that, in
the experiment, the magnitude of predicted spin currents
may be reduced by dissipation.

The formalism described so far, in sections IIA and
this section (II B), has been successfully applied in the
description of spin transport in gases of cold excitons in
coupled GaAs/AlGaAs quantum wells8. In this work,
cold excitons are generated within localized spots and
then fly away ballistically in radial directions. The ele-
ments of the DM, ρij , are dependent on the distance from
the excitation spot r = vext at time t and the polar an-
gle, φ. The propagation speed vex = ~kex/ (me +mh).
In this work, when solving the Liouville equation intro-
duced above, we shall refer to the experimental config-
uration of Ref. 8. In particular, this implies a specific
choice of the initial conditions for Eq. (30): we shall as-
sume that at zero time excitons are not moving. We shall
assume that they populate the eigenstates of the exciton
Hamiltonian Ĥtot

ex taken with kex = 0 following a thermal
distribution with a temperature T . We shall assume that
once created in the equilibrium state, the excitons start
moving apart in the radial direction. Thus, implicitly,
we account for a non-linear effect: dipole-dipole repul-
sion of excitons which makes them acquire a certain in-
plane velocity vex. This non-linearity is crucial to move
the system out of equilibirum. The rest of exciton prop-
agation and spin dynamics is modelled using the linear
equation (30), where the Hamiltonian Ĥtot

ex contains now
the off-diagonal terms proportional to kex.
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C. Electron and hole spin currents

We shall normalize exciton, electron and heavy-hole
functions to unity, namely:

Ψ∗

+1Ψ+1 +Ψ∗

−1Ψ−1 +Ψ∗

+2Ψ+2 +Ψ∗

−2Ψ−2 = 1 (33)

Ψ∗

e,+ 1

2

Ψe,+ 1

2

+Ψ∗

e,− 1

2

Ψe,− 1

2

= 1 (34)

Ψ∗

h,+ 3

2

Ψh,+ 3

2

+Ψ∗

h,− 3

2

Ψh,− 3

2

= 1 (35)

Now, the exciton spin DM (21) can be represented in
terms of electron and hole wavefunctions as:

ρ̂ =











Ψ∗

e,− 1

2

Ψe,− 1

2

Ψ∗

h,+ 3

2

Ψh,+ 3

2

Ψ∗

e,+ 1

2

Ψe,− 1

2

Ψ∗

h,− 3

2

Ψh,+ 3

2

Ψ∗

e,+ 1

2

Ψe,− 1

2

Ψ∗

h,+ 3

2

Ψh,+ 3

2

Ψ∗

e,− 1

2

Ψe,− 1

2

Ψ∗

h,− 3

2

Ψh,+ 3

2

Ψ∗

e,− 1

2

Ψe,+ 1

2

Ψ∗

h,+ 3

2

Ψh,− 3

2

Ψ∗

e,+ 1

2

Ψe,+ 1

2

Ψ∗

h,− 3

2

Ψh,− 3

2

Ψ∗

e,+ 1

2

Ψe,+ 1

2

Ψ∗

h,+ 3

2

Ψh,− 3

2

Ψ∗

e,− 1

2

Ψe,+ 1

2

Ψ∗

h,− 3

2

Ψh,− 3

2

Ψ∗

e,− 1

2

Ψe,+ 1

2

Ψ∗

h,+ 3

2

Ψh,+ 3

2

Ψ∗

e,+ 1

2

Ψe,+ 1

2

Ψ∗

h,− 3

2

Ψh,+ 3

2

Ψ∗

e,+ 1

2

Ψe,+ 1

2

Ψ∗

h,+ 3

2

Ψh,+ 3

2

Ψ∗

e,− 1

2

Ψe,+ 1

2

Ψ∗

h,− 3

2

Ψh,+ 3

2

Ψ∗

e,− 1

2

Ψe,− 1

2

Ψ∗

h,+ 3

2

Ψh,− 3

2

Ψ∗

e,+ 1

2

Ψe,− 1

2

Ψ∗

h,− 3

2

Ψh,− 3

2

Ψ∗

e,+ 1

2

Ψe,− 1

2

Ψ∗

h,+ 3

2

Ψh,− 3

2

Ψ∗

e,− 1

2

Ψe,− 1

2

Ψ∗

h,− 3

2

Ψh,− 3

2

,











(36)

This representation allows us to obtain useful links be-
tween the elements of exciton, electron and hole density
matrices, in particular:

ρ̂e = |Ψe⟩ ⟨Ψe| =
[

Ψ∗

e,+ 1

2

Ψe,+ 1

2

Ψ∗

e,− 1

2

Ψe,+ 1

2

Ψ∗

e,+ 1

2

Ψe,− 1

2

Ψ∗

e,− 1

2

Ψe,− 1

2

]

=

[

ρ22 + ρ33 ρ24 + ρ31
ρ13 + ρ42 ρ11 + ρ44

]

(37)

ρ̂h = |Ψh⟩ ⟨Ψh| =
[

Ψ∗

h,+ 3

2

Ψh,+ 3

2

Ψ∗

h,− 3

2

Ψh,+ 3

2

Ψ∗

h,+ 3

2

Ψh,− 3

2

Ψ∗

h,− 3

2

Ψh,− 3

2

]

=

[

ρ11 + ρ33 ρ14 + ρ32
ρ23 + ρ41 ρ22 + ρ44

]

(38)

We know that the components of electron and hole den-
sity matrices are linked with the projections of electron
and hole spins as:

ρ̂e =

[

1
2
+ Se,z Se,x − iSe,y

Se,x + iSe,y
1
2
− Se,z

]

(39)

ρ̂h =

[

1
2
+ Sh,z Sh,x − iSh,y

Sh,x + iSh,y
1
2
− Sh,z

]

, (40)

where, for the heavy hole we have assigned spin +1/2 to
the state +3/2 and spin -1/2 to the state -3/2 accounting
for the orbital momentum of these states of +1 and -1,
respectively.
The z-component of the spin polarization carried by

electrons can now be expressed as:

Se,z = (ρ22 + ρ33 − ρ11 − ρ44) /2. (41)

Similarly, the z-component of the spin polarization car-
ried by holes can now be expressed as:

Sh,z = (ρ11 + ρ33 − ρ22 − ρ44) /2. (42)

The in-plane component of electron and hole spins can
be extracted from the off-diagonal elements of the DM.
Namely, the x-component of electron spin is given by:

Se,x = (ρ13 + ρ31 + ρ24 + ρ42) /2, (43)

while the x-component of the hole spin is given by:

Sh,x = (ρ14 + ρ23 + ρ32 + ρ41) /2. (44)

The y-component of electron spin is given by:

Se,y = i (−ρ13 + ρ31 + ρ24 − ρ42) /2, (45)

while the y-component of the hole spin is given by:

Sh,y = i (ρ14 − ρ23 + ρ32 − ρ41) /2, (46)

III. NUMERICAL RESULTS IN THE DENSITY

MATRIX FORMALISM

Figure 1 shows the numerical results obtained within
the DM formalism for a model system with the same pa-
rameters as those of coupled double quantum wells stud-
ied in Ref. 8. The parameters are summarized in Table I.

TABLE I: Parameters for numerical calculations.

Electron mass me 0.07 m0

Heavy hole mass mh 0.16 m0

Electron Dresselhaus coupling βe 2.7 µeVµm

Heavy-hole Dresselhaus coupling βh 0.92 µeVµm

Bright exciton XY splitting δb 0.5 µeV

Dark exciton XY splitting δd −13 µeV

Bright-dark exciton splitting Eb − Ed 5 µeV
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FIG. 1: (color online) (a) Dispersion of the excitonic states
calculated using the set of parameters from Table I (green
lines) and reduced set of parameters with Eb − Ed = 0, δb =
0, βh = 0 (red symbols). Black arrows indicate the values
of the wavevectors used in (b)-(d) kex = 15.3µm−1 and (e)
kex = 5µm−1. Double-ended arrows indicate the energies of
oscillations between the eigenstates which appear in spatial
polarization patterns. (b) Linear polarization degree along x-
axis calculated with the simplified set of parameters. (c) Same
as (b) but for the full set of parameters from the Table I. (d)
Circular polarization degree with parameters from Table I.
(e) Same but at kex = 5µm−1. The source area was taken
circular with a radius of 4µm.

The dispersion of bright and dark exciton modes ob-
tained by diagonalisation of the Hamiltonian Ĥtot

ex (20)
is shown in Fig. 1(a) by green solid lines. The mo-
mentum has been chosen along the x direction, but the
anisotropy of the band structure remains small. The
initial splittings of dark and bright states makes these
dispersion curves qualitatively different from those pre-
sented by Vishnevsky et al40. Note also, that Ref. (40)
accounts for the exciton kinetic energy which we neglect
in Ĥtot

ex , leaving only the spin-dependent contributions to
the energy. The numerically calculated linear and circu-
lar polarization degrees are shown in Figs. 1(c) and (d),
respectively. To stay close to the experimental conditions
of Ref.8, we have chosen as initial condition the circular
source area with a radius of 4 µm, where cold excitons are
generated within localized spots. In Fig.1(c), four lobes
are unambiguously observable in the pattern of the lin-
ear and diagonal (not shown) polarizations. This pattern
is a consequence of the Dresselhaus spin-orbit coupling
for electrons, and it is characteristic of the chosen initial
state at the source: four split eigen-states with zero in-
plane wave-vector are occupied. Relative occupation of
these states corresponds to the Boltzmann distribution
at temperature T = 0.1 K. This choice of initial condi-
tions leads to a variety of polarization patterns observed
in experiment8. In the absence of the damping this pat-
tern is periodic and infinite in the radial direction.

In order to reveal the mechanism of formation of the
polarization patterns it is instructive to consider a sim-
plified version of the Hamiltonian 20. In the absence
of magnetic field, zero Dresselhaus effect for holes, zero
splitting of bright excitons and zero splitting Eb−Ed be-

tween bright and dark excitons this Hamiltonian can be
rewritten as:

Ĥ = −δd











0 0 ξe−iφ 0

0 0 0 ξeiφ

ξeiφ 0 0 1

0 ξe−iφ 1 0











(47)

where ξ = −βeke/δd. In other words, here we only take
into account linear splitting of dark exciton states which
inevitably results from structural anisotropy even in the
best quality samples, and the Dresselhaus field acting
on the spin of electron, bound to the hole. We will see
that at sufficiently low temperature these two ingredients
provide the in-plane asymmetry that ultimately results
in the formation of linear polarisation patterns. Indeed,
the eigenvalues of this Hamiltonian can be obtained an-

alytically : E = ± 1
2
δd ± 1

2
δd
√

1 + 4ξ2. This corresponds

to two dispersion branches at low energy ∝ ±ξ2 and
two branches at high energy ∝ ±(1 + ξ2) for ξ ≪ 1.
These branches are shown by red squares in Fig. 1(a).The
eigenvectors, starting from the lowest energy and taking
δd < 0, can be approximated for small ξ by:











ξe−iφ

−ξeiφ
−1

1











,











e−iφ

eiφ

−ξ
−ξ











,











e−iφ

−eiφ
ξ

−ξ











,











ξe−iφ

ξeiφ

1

1











. (48)

As mentioned already, at low temperatures kBT ≪ |δd|,
the lowest energy state with zero momentum is given by
[0, 0,−1, 1] and is a linearly polarized dark exciton. By
linearly polarised dark exciton we mean the dark state
which has a dipole moment oriented in a certain way, and
which has a zero spin projection to the grows axis of the
structure. After an acceleration due to dipole repulsion,
this initial state is no longer an eigenstate and oscillates
as a function of time between the two eigenstates of the
Hamiltonian with which the initial state is not orthogo-
nal, namely the first and the third eigenstates listed in
Eqs. 48. Among these two states, only the third gives a
significant contribution to the observed polarization as it
is essentially “bright” (has large projections to +1 and
−1 exciton states). The linear and diagonal polarizations
originating from this state are readily given by − cos(2φ)
and − sin(2φ) respectively. This reproduces the essential
features of the numerical results for the linear polariza-
tion pattern, as one can see comparing the images cal-
culated with the reduced Hamiltonian (Fig. 1(b)) and
the full Hamiltonian (Fig. 1(c)). In the particular case
considered here (initial state formed essentially by lin-
early polarized dark excitons) the Dresselhaus spin-orbit
term for electrons leads to formation of the linear polar-
ization vortex: the polarization plane is always perpen-
dicular to the wave vector direction. The linear polar-
ization vortex has been observed experimentally by High
et al8,9. Rapid oscillations in radial direction are due
periodical change in the occupation of mainly dark and
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mainly bright states, indicated by double-ended arrows
in Fig. (1(b)).
We should emphasize that with a proper reordering of

the basis vectors, the simplified Hamiltonian 47 is analyt-
ically equivalent to the Hamiltonian of bilayer graphene.
In its simplest expression, the Hamiltonian of bilayer
graphene can be written as41:















0 vF ke
−iφ 0 0

vF ke
iφ 0 t⊥ 0

0 t⊥ 0 vF ke
−iφ

0 0 vF ke
iφ 0















. (49)

where vF is the velocity, k the amplitude of the mo-
mentum, φ the angle between the momentum and the
x axis, and t⊥ is the main coupling term between the
two graphene layers, which is given by hopping between
two carbon atoms that are superimposed. The four coef-
ficients of the associated wavevectors correspond to the
probability amplitudes on the two independent sublat-
tices of the two graphene layers. By permutation of the
basis vectors:1 → 1, 2 → 3, 3 → 4, 4 → 2, the Hamilto-
nian is rewritten as:















0 0 vF ke
−iφ 0

0 0 0 vF ke
iφ

vF ke
iφ 0 0 t⊥

0 vF ke
−iφ t⊥ 0















. (50)

which is equivalent to Eq. 47 with t⊥ ≡ −δd and
vF k/t⊥ ≡ ξ.
The 4 × 4 Hamiltonian of bilayer graphene is often

restricted to the subspace of the two low energy bands.
From Eq. 48, the corresponding eigenstates are:

[eiφ,±e−iφ]. (51)

We can then define a pseudospin vector, which represents
the relative phase between the two components of the
wavevectors. From Eq. 51, the pseudospin rotates two
times when the particle wavevector undergoes one full
rotation.
Adapting the terminology used for graphene, the polar-

ization pattern observed in Fig. 1(b,c) would be nothing
else than the fingerprint of the “pseudospin” rotation in
the exciton system. In the context of the exciton system
under consideration, the phase φ corresponds to the angle
between the exciton polarization vector and the chosen
x-axis of the structure.
The build up of circular polarization requires intro-

duction in the model of the splitting between linearly
polarized bright exciton states δb . This splitting acts as
an effective magnetic field applied to the Stokes vector
of light emitted by bright excitons, S = (Sx, Sy, Sz). In
particular, if the x-polarized exciton state has a lower
energy than the y-polarized exciton state, it creates an

effective magnetic field in the x-direction which rotates
the Stokes vector in the yz plane. This converts the diag-
onal polarization to the circular polarization and leads to
the appearance of right- and left-circularly polarized sec-
tors in the polarization map of exciton emission. Separa-
tion of spins due to linear-to-circular polarization conver-
sion is known in exciton-polariton systems as the Optical

spin Hall effect. This effect was theoretically predicted
in Ref. 12 and experimentally observed in polaritonic10

and excitonic systems8. For microcavity polaritons it
may be described in terms of beats between TE and
TM polarized polariton modes, while in the exciton sys-
tem studied here the effect is more complex due to the
mixture of four nearly degenerate (dark and bright) ex-
citon states. A recent theoretical paper40 predicts the
skyrmion formation in this case. Here we concentrate on
the circular polarization patterns appearing due to the
beats between linearly polarized exciton states mixed by
the exchange interaction. Note that the circular polar-
ization pattern is strongly sensitive to the chosen exci-
ton wave-vector, which governs the energies of the four
involved eigen-states. Figure 1(d) is calculated assum-
ing kex = 15.3µm−1. This corresponds to the crossing
point of the dispersion branches associated to the first
and second exciton eigen-states (see Fig 1(a)). For com-
parison, Fig. 1(e) shows the circular polarization pattern
calculated with kex = 5µm−1. One can see that the
four lobes pattern of circular polarization is washed out,
because the lowest energy state of the system remains
essentially dark. Rapid oscillations that show up, have
the period determined by the splitting between the two
lowest states.

Finally, let us underline that the dispersion curves
shown in Fig. 1(a) do not take into account the kinetic
energy of excitons. The kinetic energy would shift all

curves up by K =
~
2k2

ex

2mex

. Note that this does not affect
the splittings between exciton eigenstates and would not
affect the spin dynamics of excitons. In the spin density
formalism developed above we assign to all excitons the
same kinetic energy, K. In a realistic system, the kinetic
energy may be spread, in which case averaging of the
obtained polarization patterns over kex may be needed.
This averaging would smooth the fast oscillations seen on
the images Fig. 1 (c,d,e,f). In the next section devoted
to the non-linear spin dynamics we will fully take into
account the kinetic energy of propagating excitons.

The distribution of in-plane projections of electron and
hole spins for the same choice of parameters as above
is shown in Figs. 2(a-h). The left panels show electron
spins and the right panels show the hole spins. The di-
rection of in-plane spin component is shown by arrows,
while the length of each arrow is proportional to the com-
puted value of the transverse spin component. The up-
per panels, Figs. 2(a,b), show the spin distributions in
the absence of a magnetic field. In this case the electron
and hole spins are oriented along the effective Dressel-
haus fields which are oriented differently for electrons and
heavy holes, as we have discussed in the previous section.
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FIG. 2: (color online) Spatial distribution of electron and hole
spin components in the plane of the quantum well structure,
calculated at zero magnetic field and at B = 5 T at three
different orientations. The parameters are given in Table I,
at kex = 15.3µm−1 .The source area was taken circular with
a radius of 4µm.

The decrease of the in-plane spin component upon prop-
agation corresponds to the build-up of the z-component
of electron and hole spins (Figure not shown), due to ro-
tation of the exciton spin around the effective magnetic
field. The magnetic field strongly changes the spin distri-
bution in real space. The spin textures become strongly
anisotropic in the case of in-plane (x- or y-oriented) mag-
netic field. Note, that the in-plane isotropy in the system
is broken by the splitting between x- and y- polarized
exciton states, which is why switching of the magnetic
field between x and y axes strongly affects the distribu-
tion of electron and hole spins. It should be noted also
that electron and hole in-plane spin textures can hardly

be observed directly in optical experiments. However,
they can be deduced from fitting the exciton polariza-
tion maps, e.g., using the formalism described above.

FIG. 3: (color online) Spatial distribution of exciton linear
polarization ((a)-(d), length of the bars maps the intensity in
arbitrary units) and color maps of the exciton circular polar-
ization degree ((e)-(f)), same color code as in Fig. 1). Mag-
netic field B = 0 in (a), (e), and B = 5T along z in (b),(f),
x in (c),(g), y in (d),(h). Parameters are given in Table I,
kex = 15.3µm−1. The source area was taken circular with a
radius of 4µm.

Figure 3 shows how the magnetic field affects spatial
patterns of linear (a-d) and circular (e-h) polarization.
Switching the magnetic field orientation between the x-,
y- and z-axes one can dramatically affect the polarization
patterns. Having in mind that the exciton polarization
patterns can be directly observed in near-field photolu-
minescence experiments, fitting of these patterns to the
experimental data would allow extracting the Dressel-
haus constants and exciton exchange splittings, which,
in turn, allow to restore electron and hole spin textures8.

Figure 4(a-d) illustrates a peculiar regime where the
Dresselhaus fields for electrons and holes are taken to be
zero and there is no magnetic field applied, but electrons
are subjected to the Rashba field (the Rashba field for
heavy holes is zero). Figure 4(a) shows the electron spin
distribution in space, where the spins are clearly aligned
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FIG. 4: (color online) Spatial distribution of electron (a) and
hole (b) in-plane spin component calculated at B=0 in the
absence of the Dresselhaus field βe = 0; βh = 0, but including
Rashba field αe = 2.7µeVµm;. Other parameters are given in
Table I, kex = 15.3µm−1. The source area was taken circular
with a radius of 4µm. Corresponding patterns of linear (c)
and circular (d) exciton polarization degree are shown with
the same color code as in Fig. 1.

along the Rashba field force lines. Interestingly, the hole
spins become polarized as well, while no effective field
acts on them (Figure 4(b)). This is an illustration of the
exciton effect: bound in excitons by Coulomb interaction
and subject to the exchange induced exciton effects, the
holes acquire in-plane spin polarization. The non-zero
spin polarization of heavy holes is possible due to the ex-
citon exchange effects. Figure 4(c,d) shows the resulting
linear and circular exciton polarization patterns. One can
see that the Rashba effect induces polarization patterns
strongly different from those induced by the Dresselhaus
effect, which is why from the shape of polarization pat-
terns one can conclude on the nature of spin-orbit cou-
pling in the system.

IV. NON-LINEAR SPIN DYNAMICS OF

PROPAGATING EXCITONS AND

EXCITON-POLARITONS

In the previous section we operated with a spin density
matrix which is very convenient for the description of par-
tially coherent and partially polarized exciton gases. The

quantum Liouville equation (31) is a very efficient tool for
the description of effects linear in the exciton density. On
the other hand, one cannot straightforwardly incorporate
non-linear interaction terms in this equation. The treat-
ment of non-linear effects in a partially coherent system
is a non-trivial task. Much simpler is the treatment of
non-linear effects in a perfectly coherent system, such as a
condensate at zero temperature. In this case, the ensem-
ble of excitons can be described by a single 4-component

wave function Ψ = (Ψ+1,Ψ−1,Ψ+2,Ψ−2)
T
. The linear

dynamics of this wave-function for ballistically propagat-
ing excitons having a wavevector kex is described by the
Schrödinger equation:

i~
d

dt
|Ψ⟩ = Ĥ |Ψ⟩ , (52)

where the Hamiltonian is the same as in Eq. (20). This
equation represents a set of four coupled linear differen-
tial equations for four exciton spin components. Non-
linear effects lead to the condensate evolution in real and
reciprocal space.

From now on we shall consider the exciton spin dynam-
ics in real space (2D), so that the wave function Ψ will be-
come coordinate-dependent and will not be restricted to
one single value of kex. The non-linear interaction terms
for multi-component exciton gases are introduced and
discussed in detail in Ref. 42. Here we expand Eq. (52)
by introducing the kinetic energy (to describe the real
space dynamics) and the interaction terms. On the other
hand, we neglect the magnetic field, for simplicity. This
results in a system of four non-linear Schrödinger or GP
equations42–44:

i~
dΨ+1

dt
= −~

2∇̂2

2mex

Ψ+1 +
βeme

mex

(

k̂x − ik̂y

)

Ψ+2

+
βhmh

mex

(

k̂x − ik̂y

)

Ψ−2 + α1 |Ψ+1|2 Ψ+1

+ α2 |Ψ−1|2 Ψ+1 + α3 |Ψ+2|2 Ψ+1

+ α4 |Ψ−2|2 Ψ+1 +WΨ∗

−1Ψ+2Ψ−2, (53)

i~
dΨ−1

dt
= −~

2∇̂2

2mex

Ψ−1 +
βeme

mex

(

k̂x + ik̂y

)

Ψ−2

+
βhmh

mex

(

k̂x + ik̂y

)

Ψ+2 + α1 |Ψ−1|2 Ψ−1

+ α2 |Ψ+1|2 Ψ−1 + α3 |Ψ−2|2 Ψ−1

+ α4 |Ψ+2|2 Ψ−1 +WΨ∗

+1Ψ+2Ψ−2, (54)

i~
dΨ+2

dt
= −~

2∇̂2

2mex

Ψ+2 +
βeme

mex

(

k̂x + ik̂y

)

Ψ+1

+
βhmh

mex

(

k̂x − ik̂y

)

Ψ−1 + α1 |Ψ+2|2 Ψ+2

+ α2 |Ψ−2|2 Ψ+2 + α3 |Ψ+1|2 Ψ+2

+ α4 |Ψ−1|2 Ψ+2 +WΨ∗

−2Ψ+1Ψ−1, (55)
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i~
dΨ−2

dt
= −~

2∇̂2

2mex

Ψ−2 +
βeme

mex

(

k̂x − ik̂y

)

Ψ−1

+
βhmh

mex

(

k̂x + ik̂y

)

Ψ+1 + α1 |Ψ−2|2 Ψ−2

+ α2 |Ψ+2|2 Ψ−2 + α3 |Ψ−1|2 Ψ−2

+ α4 |Ψ+1|2 Ψ−2 +WΨ∗

+2Ψ+1Ψ−1. (56)

Here k̂x,y = −i∇̂x,y, mex = me + mhh. To make this
system more compact we have omitted the terms de-
scribing exchange induced exciton splittings given by the
Hamiltonian (20). We do not discuss here the nature
and value of the interaction constants α1,2,3,4 and W . In
the system of indirect excitons in coupled GaAs/AlGaAs
quantum wells, as a zeroth approximation, one can take
α1 = α2 = α3 = α4. Note also that in microcavities,
where the lower exciton-polariton mode is strongly de-
coupled from dark excitons, the dark exciton states may
be almost empty at low temperatures. If this is the case,
the spin dynamics of the exciton-polariton condensate is
given by the first two of the four GP equations (53 and
54) with α3,4 = W = 0. The remaining constants α1,2

have been widely discussed in literature45.
The GP equations are widely used for the description

of coherent propagation of exciton-polaritons in micro-
cavities46. They allow for the studying of interesting
topology effects such as: quantum vortices47–52; half-
quantum vortices53–55; bright56 and dark51,57–60 solitons.
The polarization of light emitted by an exciton or

exciton-polariton condensate can be obtained as:

ρc =
2Sz

I
=

|Ψ+1|2 − |Ψ−1|2

|Ψ+1|2 + |Ψ−1|2
, (57)

ρl =
2Sx

I
=

2Re
{

Ψ∗

+1Ψ−1

}

|Ψ+1|2 + |Ψ−1|2
, (58)

ρd =
2Sx

I
= −2Im

{

Ψ∗

+1Ψ−1

}

|Ψ+1|2 + |Ψ−1|2
. (59)

These expressions easily follow from the definition of the
spin density matrix.
A significant limitation of the GP equations as a theo-

retical tool is that they assume a coherent state of the sys-
tem. If one is interested in the spin structure of the zero
temperature ground state of excitons in a Bose-Einstein
condensate43, then this assumption is fulfilled by defini-
tion. However, in real systems there is an incomplete co-
herence that, strictly speaking, requires a description of
statistical mixtures, perhaps involving density matrices.
Furthermore, Eqs. (53-56) have been written assuming
an infinite lifetime for the particles (be they excitons or
exciton-polaritons), which is never the case of real non-
equilibrium systems. Often pumping and radiative decay
terms are introduced into Eqs. (53-56) phenomenologi-
cally30,44. While in the case of a resonant coherent pump,
one can imagine that the exciton/exciton-polariton dis-
tribution inherits coherence directly, it is less obvious how
an incoherent pump can be modelled. A phenomenologi-

cal model introduced by Wouters and Carusotto61 of in-
coherent pumping has allowed the modelling of the first
order coherent fraction observed in many experimental
configurations based on condensation26,62–65. While the
GP model cannot model the phase transition during for-
mation of a condensate and/or superfluid, it can offer a
suitable description of spin currents once spatial coher-
ence has formed.

Here we will consider a localized source of the four-
component indirect exciton system, as corresponds to the
localized bright spot sources generating exciton conden-
sates9. We focus our attention on the possible spin po-
larization textures of coherent excitons propagating away
from the source. We do not attempt to describe the par-
tially coherent state within the source, noting that in
exciton-polariton systems spin currents have been gen-
erated from both coherent66 and incoherent11 tightly fo-
cused spots utilizing the optical spin Hall effect12 in a
similar way. Since the Gross-Pitaevskii equations are
only valid for coherent excitons, we restrict the exciton
wavefunction to lie outside of the source area. The ef-
fect of the source is then characterized by the chosen
boundary condition along the edge of the source area.
Given that dark excitons have lower energy than bright
excitons [due to the exchange splitting of Eq. (19)], it is
reasonable to expect the source to provide linearly po-
larized dark excitons. By fixing the values of the exciton
wavefunction along the edges of the source area, which
is assumed circular, to such a distribution the bound-
ary condition acts as an effective source for the exciton
wavefunction outside the source area.

The indirect excitons are known to have very long life-
time, typically in the range of 10ns to 10µs67. This allows
them to cover distances of a few hundreds of µm with
negligible loss8. Consequently, when we focus on the be-
haviour of excitons in a small (10× 10µm2) area around
the source, the main loss of excitons is caused by their
escape from the area of interest rather than their decay
(recombination). To model the spin currents we thus em-
ploy an absorbing boundary condition to allow the solu-
tion of Eqs. (53-56) in a finite area. This allows a balance
between source and loss to achieve a steady state of the
non-equilibrium system (for a continuous pump), where
both source and loss appear as boundary conditions.8

The steady state solution of the system is independent
of the initial condition.

Exciton intensity and polarization distributions calcu-
lated within the GP approach are shown in Figs. 5 and
7. Note that all the plotted quantities are spatially av-
eraged over 1.5µm to account for the typical resolution
of experimental setups8. In principle excitons can dis-
play features on the scale of the de Broglie wavelength,
λ = 2π/|kex|. Such features are on the sub-micron scale
and are far beyond experimental resolution. We note also
that while in the DM approach we could consider exci-
tons having a fixed radial velocity, in the GP approach
we necessarily cover the whole range of wavevectors and
propagation velocities (the dispersion obtained from the
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GP approach is shown in Fig. 6). Also, exciton-exciton
interactions modify the exciton dispersion. For all these
reasons, the DM and GP approaches cannot give iden-
tical results, in principle. The DM approach is suitable
for the description of both coherent and partly coherent
exciton gases, while the GP approach better catches the
dispersive propagation features and accounts for nonlin-
ear effects. Both approaches are complementary, and it is
instructive to compare the results, obtained within these
two models.
The exciton density decreases as excitons travel away

from the source (Fig. 5a). This is not due to exciton
recombination, which is expected to be very slow, but
more simply due to the spreading out of excitons in all
directions. The intensity spread need not be perfectly
circularly symmetric due to the presence of the spin-orbit
(Dresselhaus terms), which can introduce a directional
dependence of the exciton velocity. Fig. 5b shows the
exciton brightness degree, defined as:

ρb =
|Ψ+1|2 + |Ψ−1|2 − |Ψ+2|2 − |Ψ−2|2

|Ψ+1|2 + |Ψ−1|2 + |Ψ+2|2 + |Ψ−2|2
. (60)

This quantity represents the degree to which the bright
exciton density exceeds the dark exciton density. There
is a conversion of dark to bright excitons as they spread
out from the source, which can be expected from the
presence of Dresselhaus coupling terms.

FIG. 5: (color online) Spatial distribution of the total exciton
density (a) and exciton brightness degree (b) [see Eq. (60)]
in the absence of a magnetic field. The parameters were the
same as those used for the DM calculations, given in Table I,
with: B = 0; W = 0.2α; mex was taken as 0.21 of the free
electron mass. The source area was taken circular with a ra-
dius of 1µm. The images are presented with spatial averaging
over 1.5µm. The scattering parameter α and intensity at the
source center were chosen such that the interaction energy,
α
(

|Ψ+1|
2 + |Ψ

−1|
2 + |Ψ+2|

2 + |Ψ
−2|

2
)

= 1µeV (being com-
parable to the other energy scales in the system, we are in a
nonlinear regime). The absorbing boundary condition used in
calculations appears outside of the plotted range, at a radius
of 15µm from the source center.

The polarization distribution is shown in Fig. 7 and can
be significantly influenced by non-linearity in the system.
The left-hand plots show the results for negligible non-
linearity (α = 0; W = 0), which is equivalent to a weak
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FIG. 6: (color online) Dispersion relation obtained from the
Gross-Pitaevskii equations, corresponding to Figs. 5 and 7b,d
and f. The dispersion is obtained by Fourier transform of the
wavefunctions in space and time, from which the grayscale
map of intensity is obtained. The curves show the bare dis-

persion, obtained from diagonalization of Ĥtot

ex + ~
2
k
2

2m
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pump intensity. Here the polarization distributions are
qualitatively similar to those calculated in the density
matrix formalism. In analogy to the (intrinsic) spin Hall
effect2,3 and the optical spin Hall effect10,12 the presence
of the spin-orbit coupling terms introduces a directional
dependence of the polarization. The patterns of the po-
larization degrees divide into quadrants. Some quantita-
tive differences with the DM calculations appear due to
the presence of different wavevectors.

The right-hand plots show the case of a moderate non-
linearity, with interaction strength comparable to the
other energy scales of the system. The most drastic
effect is on the circular polarization degree, which be-
comes higher and each quadrant of circular polarization
divides further giving an eight-lobed pattern to the po-
larization degree. The interaction terms that we have
introduced are all spin conserving and it can be noted
that we have considered the spin isotropic case. Even
theW nonlinear interaction term, which allows the inter-
conversion of bright and dark exciton pairs does not ap-
pear to directly change the spin polarization, conserving
both circular and linear polarizations upon scattering.
Still, the nonlinear interaction terms can have a drastic
effect on the polarization structure. This is because they
are able to shift (renormalize) the dispersion branches
in the system. Given that the potential energy of ex-
citons is fixed by their interaction energy at the source
and that this energy is converted into kinetic energy at
distances away from the source, any shifts in the disper-
sion branches can change the wavevector of propagat-
ing excitons. Even if the nonlinear induced shifts of the
dispersion branches were not polarization dependent, a
change in the wavevector of an exciton can allow it to
experience a different effect from the k-dependent spin-
orbit coupling terms. In this way, richer structures can
appear in the nonlinear regime. Note, that the build-up
of circular polarisation clearly seen in Fig. 7 (e,f) would
not yield 100% circularly polarised excitons, as it might
be expected in the ideal case of the optical spin Hall
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effect for exciton-polaritons12. In our system, the preces-
sion of electron and hole spins has different frequencies,
and the interplay between dark-to-bright and linear-to-
circular polarisation conversion prevents formation of a
purely circularly polarised state.

FIG. 7: (color online) Spatial distribution of the polarization
state of excitons in the absence of a magnetic field: horizontal-
linear polarization degree (a, b), diagonal polarization degree
(c, d) and circular polarization degree (e, f) for bright ex-
citons, which corresponds to the near field emission pattern
of light. The left-hand plots show results in the absence of
nonlinear interactions (α = 0; W = 0), while the right-hand
plots show the case of a moderate nonlinearity. The parame-
ters were the same as in Fig. 5

V. EXCITON SPIN CURRENTS

Consider an exciton state characterized by a wavevec-
tor kex and described by the DM ρ̂. Let us recall that the
elements of this matrix ρ11, ρ22, ρ33, ρ44 are the densities
of +1,-1,+2 and -2 spin polarized excitons, respectively.

The current of each of these densities is given by a prod-
uct of the exciton speed and the corresponding density:

ja =
~kex

mex

ρjj (61)

with j = 1, 2, 3, 4 for a = +1,−1,+2,−2, respectively.
Experimentally, one can measure the magnetization cur-
rent associated with the exciton density current. The
magnetization carried by propagating excitons can be
found as:

Mz = −µB

2~
[(gh − ge) (ρ11 − ρ22) + (gh + ge) (ρ33 − ρ44)]

(62)
This expression is obtained having in mind that an elec-
tron with a spin projection on the z-axis of ±1/2 con-
tributes to the magnetization projection on the z-axis
∓µB

2
ge, and a heavy hole with the spin projection of

±3/2 contributes to the magnetization ∓µB

2
gh. Hence,

the magnetization (spin) current produced by the exci-
tons having a wave-vector kex will be given by:

jM (kex) = −µBkex

2mex

[(gh − ge) (ρ11(kex)− ρ22(kex))

+ (gh + ge) (ρ33(kex)− ρ44(kex))] (63)

The total magnetization current in the exciton gas can
be obtained by integration over all wave-vectors:

jtotM = − A

(2π)
2

∫

jM (kex)dkex (64)

Here A is the area of the sample. This current may be
detected, for example, by spatially resolved Kerr rotation
spectroscopy.

FIG. 8: (color online) Spatial distribution of the exciton spin
current calculated in arbitrary units using the parameters
summarized in Table I at kex = 15.3µm−1 at B = 0 (a)
and B = 5T (b)-(d) along the z, x and y-axis, respectively.
The source area was taken circular with a radius of 4µm.

Figure 8 shows the spin current density jM/ (2πr) cal-
culated for the system of indirect excitons which we con-
sidered above in the absence of external magnetic field
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(a) and in the presence of a magnetic field of 5T oriented
normally to the plane of the structure (b) and along x-
and y-axes (c,d). In all cases the current intensity de-
creases as one moves away from the excitation spot, as
the exciton density decreases inversely with the radius
r. One can see that the total spin (magnetization) of
propagating excitons experiences oscillations and has a
strong angular dependence. The spin currents are sup-
pressed by an in-plane magnetic field, which is not sur-
prising: jM describes propagation of the normal-to plane
spin component, which is strongly reduced by an in-plane
magnetic field. The images show the total spin carried
by both bright and dark excitons. They do not directly
correspond to the polarized photoluminescence map for
two reasons: first, dark excitons do not contribute to
the photoluminescence; second, the polarization degree
of photoluminescence does not experience the 1/r decay
characteristic of the total spin density. On the other
hand, the images presented in Figure 8 do correspond to
the signal of spatially resolved Kerr or Faraday rotation,
which is sensitive to the normal-to-plane magnetization.

VI. SPIN CURRENTS IN EXCITON

CONDENSATES

The approach formulated above can be extended to
the description of spin currents in coherent exciton (or
exciton-polariton) condensates accounting for particle-
particle interactions. In this case we need to replace the
momentum ~kex by a momentum operator p̂ = −i~∇̂
and the diagonal components of the DM ρ11, ρ22, ρ33,
ρ44 by the exciton densities |ψ+1|2, |ψ−1|2, |ψ+2|2, |ψ−2|2,
respectively, in the expressions 61 and 64. In this case
the density currents become:

jα = −i ~

mex

Ψ∗

α∇Ψα, (65)

and the total magnetization current can be expressed as:

jtotM =
iµB

2mex

[

(gh − ge)
(

Ψ∗

+1∇Ψ+1 −Ψ∗

−1∇Ψ−1

)

+ (gh + ge)
(

Ψ∗

+2∇Ψ+2 −Ψ∗

−2∇Ψ−2

)]

(66)

= −µB

2~
[(gh − ge) (j+1 − j−1)

+ (gh + ge) (j+2 − j−2)] (67)

The distribution of the spin density current, j+1, is
shown in Fig. 9 (a). The current density propagates out-
ward from the source in all directions, decreasing in in-
tensity. The apparent rotation of the current density is a
nonlinear effect coming from the interactions in the sys-
tem. The other spin density currents, j−1, j+2 and j+2,
display a similar behaviour.
The magnetization current is shown in Fig. 9 (b). The

current is stronger closer to the source, where the intensi-
ties are stronger. The magnetization current is predicted
to rotate around the source.

FIG. 9: (color online) Spatial structure of the spin density
current j+1 (a) and the total magnetization current jtotM (b).
The arrows show the directional dependence of the vector
fields in space, while the colour code illustrates the intensity.
The parameters were the same as in Fig. 5. Arbitrary units
are used for both the spin density and total magnetization
current.

One can also introduce the spin conductivity tensor
linking the components of the density current (65) with
the gradient of potential acting upon each of the exciton
spin components:

jα,l = σl,m
α,β∇Uβ,m, (68)

where l = x, y and m = x, y indicate the in-plane projec-
tions of the current and potential gradient, respectively.

One can see that σl,m
α,β is a 64-component tensor in the

general 2D case. The origin of the potential gradient
∇Uβ,m needs to be discussed separately. ∇Uβ,m can orig-
inate from the gradient of the quantum well width, gra-
dient of the barrier height, or it can be induced by exci-
tons themselves due to e.g. dipole-dipole repulsion. Indi-
rect excitons have built-in dipole moments, the laterally
modulated external electric field in the z-direction can
create an in-plane potential landscape and, in turn,∇U
for them. This was used in studies of transport of in-
direct excitons in various electrostatic potential land-
scapes including potential energy gradients28,68,69, cir-
cuit devices70–72, traps73 lattices74,75, moving lattices-
conveyers76, and narrow channels72,77,78.

VII. POLARIZATION CURRENTS

Spatially resolved measurements of the polarization de-
grees ρc, ρl and ρd of light emitted by excitons give access
to the exciton polarization currents. In terms of the DM
formalism, they can be defined as products of the exciton
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speed and the corresponding polarization degree:

jc (kex) =
~kex

mex

ρc =
~kex

mex

ρ11 − ρ22
ρ11 + ρ22

(69)

jl (kex) =
~kex

mex

ρl =
~kex

mex

ρ12 + ρ21
ρ11 + ρ22

(70)

jd (kex) =
~kex

mex

ρd =
~kex

mex

ρ12 − ρ21
ρ11 + ρ22

(71)

The total polarization currents can be obtained inte-
grating the expressions (69-71) over reciprocal space:

j
c,l,d
tot = − A

(2π)
2

∫

dkexjc,l,d (kex) (72)

The polarization currents in an exciton condensate can
be found from the GP equations (53-56) as:

jc = − i~

mex

(

Ψ∗

+1∇Ψ+1 −Ψ∗

−1∇Ψ−1

)

|Ψ+1|2 + |Ψ−1|2
(73)

jl = − i~

mex

(

Ψ∗

+1∇Ψ−1 +Ψ∗

−1∇Ψ+1

)

|Ψ+1|2 + |Ψ−1|2
(74)

jd = − ~

mex

(

Ψ∗

+1∇Ψ−1 −Ψ∗

−1∇Ψ+1

)

|Ψ+1|2 + |Ψ−1|2
(75)

The distributions of the polarization currents calcu-
lated within GP approach are shown in Fig. 10. A strik-
ing nonuniform structure appears due to the presence of
the spin-orbit coupling terms. Close to the source spot,
there is a strong circularly polarized current that rotates
around the source. This can be attributed to the rotating
circular polarization degree already observed in Fig. 7.
Away from the source, the circular polarization current
decays, which can be expected due to the decay of the
spin density current observed in Fig. 9. Along the ver-
tical axis (x = 0), a strong circular polarization current
remains due to the particularly fast change of the circular
polarization degree in this region. The linearly polarized
current can be stronger further away from the source than
at closer distances. This is attributed to an increasing
linear polarization degree further from the source. In ad-
dition, one can recall that while spin density currents are
generally weaker further from the source, there is some
compensation due to the conversion between dark and
bright excitons (as shown in Fig. 5b, the bright exciton
fraction increases further from the source).

VIII. CONCLUSIONS

Bosonic spin transport is a young and promising area of
solid-state physics. The theories of mesoscopic transport
of charge carriers and quantum transport are among the
most interesting chapters of modern physics. Substitu-
tion of fermions by bosons and of a scalar electric charge
by a spin vector cannot be formally done in these the-
ories. Basically, all mesoscopic and quantum transport

FIG. 10: (color online) Spatial structure of the polarization
currents jc (a) and jl (b). The arrows show the directional
dependence of the vector fields in space, while the colour code
illustrates the intensity. The parameters were the same as in
Fig. 5. Arbitrary units are used for the polarization currents.

effects need to be reconsidered if we speak about electri-
cally neutral bosonic spin carriers like excitons or exciton-
polaritons. This is why the area of “spin-optronics”
essentially remains terra incognita. Experimentally, di-
rect measurements of transport of indirect excitons and
exciton-polaritons in time-resolved imaging experiments
have become possible in recent years. In this work, we
have demonstrated that exciton polarization currents are
inseparably connected with electron and hole spin cur-
rents. The intensity and direction of exciton polarization
currents and electron and hole spin currents is governed
by an interplay of spin-orbit effects, Zeeman effects and
exciton exchange effects. In the non-linear regime, the
pattern of spin currents may also be affected by spin-
dependent exciton-exciton interactions.

We have developed two complementary approaches to
the description of exciton spin currents and textures. The
DM formalism allows for description of the spin transport
effects in both classical exciton gases and condensates
of non-interacting excitons, while the GP equations de-
scribe propagation of exciton condensates. We predict
non-trivial topologies of interacting exciton spin in con-
densates, and suggest tools of their control, such as ex-
ternal magnetic and electric fields, and source intensity.
We have demonstrated, that ballistic propagation of ex-
citons may result in a build up of polarization patterns,
which may be observed in near-field photoluminescence
spectra.
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23 M. H. Szymańska, F. M. Marchetti, and D. Sanvitto, Phys.

Rev. Lett., 105, 236402 (2010).
24 A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E.

del Valle, M. D. Martin, A. Lemâıtre, J. Bloch, D. N.
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