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Observer-based control for linear systems with quantized output*

Francesco Ferrante, Frédéric Gouaisbaut, Sophie Tarbouriech

Abstract— This paper is devoted to the observer-based con-
trol design for linear systems with quantized output. To this
end, the output dynamic controller issued by the Luenberger
observer is considered. Thus, through appropriate sector condi-
tions which embed the quantization error, the global ultimate
boundedness stability problem is tackled for the closed-loop
system. Namely, to deal with the discontinuity induced by
the quantizer, the whole treatise is carried out considering
Krasovskii solutions to the closed-loop system. Furthermore, the
controller is designed via a convex optimization setup, providing
a constructive method that can be efficiently implemented.

I. INTRODUCTION

Nowadays, controlled systems are mainly heterogeneous
systems interconnected by digital communication networks.
The nature of these networks may often cause delays,
asynchronism, and also quantization of the transmitted
data (see [16] and references therein). In that sense, the
old paradigm of an infinite precision of the available
measures should be re-interpreted. Now, upstream from the
network, some devices encode the data to be transmitted
through the network and then re-encoded to be sent to
the actuators. All these operations are no more transparent
for the control and should be taken into account in the
design [9]. The quantization phenomenon, which may also
appears in some sensors used for position measurement
of mechanical devices (optical incremental encoders), is
a nonlinearity that transforms a signal with values in R
into a signal with values in a discrete set. Introduced into
a control loop, it often induces performance degradation,
like limit cycles or chaotic phenomena [8] and they may
even destabilize the closed-loop system. Thus in recent
years, many studies have been dedicated to the analysis,
control and observation of systems subject to quantization
in order to reduce their impact on the closed loop. Several
methods have been proposed in the literature depending on
the nature of the quantization. When the quantized measures
are without memory (also called uniform quantization), it
is usually (at least for an unstable open loop) impossible
to prove convergence to the origin. We can only show the
convergence to an attractive and invariant set [24], [25].
One first method is to use the techniques issued from the
robust control framework. The system is then modeled as a
nominal system submitted to an uncertainty whose size is
depending on the quantization precision. Quantization errors
are then encapsulated into sector conditions and classical
tools like small gain theorem or Lyapunov functions coupled
with ISS properties [7] or S-procedure [1] are used to prove
the ultimate boundedness of the states [11], [22]. These
approaches have been extended to the H8 control [18], L2
attenuation [21] and robust stabilization with respect to an
input delay [10]. In the case of quantizer with memory
(see [14] and references therein), as the precision of the
quantizer may be infinite when approaching the origin,
the stability properties of the closed loop can be obtained
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using controls based on hybrid modeling [14], [4]. In
that case, the quantization is scaled dynamically when
approaching the origin. Note that in all these techniques,
except in [15], it was assumed that all the states were
measured which may be quite restrictive. In this paper, we
focus on a linear system subject to output quantization and
we aim at building an observer-based control. Following
the methods of [15] and [2], we model the system as a
nominal system subject to a quantization error, which is
bounded. Afterwards, as shown in [11], this quantization
error is described by a specific nonlinearity which satisfy
some sector bound conditions. Then, by using a quadratic
Lyapunov function for the overall system, we prove that
the state converges to an ultimate bounded set surrounding
the origin, for every initial condition. The obtained criterion
is then expressed into an optimization procedure based on
LMI. This procedure determines automatically the gain of
the observer while reducing a measure of the size of the
ultimate set. Furthermore, the proposed optimization setup
can be also used to improve the closed-loop performance,
when a quantized state-feedback is exploited to control the
system. Although our work is related to the work proposed
by Liberzon, the way we adopt to deal with the quantizer
is different. Indeed in [15], for the quantizer an explicit
definition is not provided, that is the quantizer is assumed to
be a certain nonlinear map characterized by some properties,
conversely in our paper the uniform quantizer is a well
defined discontinuous nonlinear map and due to such a
discontinuity we rely on proper concept of solution for
discontinuous right-hand side differential equations. This
allows even to deal with sliding motions on the quantization
boundaries for the closed-loop system, which are often
disregarded. Another difference with respect to the work of
Liberzon is that we exhibit constructive results in the sense
that the conditions arising for this paper can be efficiently
implemented, thus the proposed approach represents a real
synthesis tool. Concerning this latter aspect we can consider
that, except for the saturation, our work represents an
extension of the work in [22]. Moreover, it is worthwhile
to point out that this paper provides a numerical procedure
to deal with Krasovskii solutions and this represents a
considerable novelty.
The paper is organized as follows. Section I presents the
system under consideration and the problem we intend
to solve. Section III is dedicated to the main theoretical
conditions solution to the stated control problem. In
Section IV, an algorithm procedure is proposed in order to
efficiently implement the proposed theoretical conditions.
In Section V, the effectiveness of the approach is illustrated
through some examples. Finally, a conclusion ends the paper.

Notation: For every complex number ω, ℜpωq stands for the real
part of ω. In denotes the identity matrix whereas 1n denotes the vector
of dimension n with all components equal to 1, furthermore 0 denotes the
null matrix (equivalently the null vector) of appropriate dimensions. For a
matrix A PRnˆm, A1 and tracepAq denote the transpose and the trace of A,
respectively. HepAq “ A`A1. For two symmetric matrices, A and B, Aą B
means that A´B is positive definite. In partitioned symmetric matrices, the
symbol ‹ stands for symmetric blocks. The matrix diagtA1; . . . ;Anu is the



block-diagonal matrix having A1, . . . ,An as diagonal blocks. For a vector
x PRn, xpiq denotes the i´ th component and x1 denotes the transpose of x,
|x| is the vector given by the absolute value of each component of x, whereas
signpxq is the componentwise signum function for which signp0q “ 0. The
set ∆Zp is the set of the p-tuples of integers multiple of ∆. The symbol x¨, ¨y
denotes the standard Euclidean inner product. For a set U , IntpUq denotes the
interior of U . Let A1 . . .Am be some given sets,

Śm
i“1 Ai “ A1ˆA2ˆ . . .Am,

where ˆ stands for the standard Cartesian product.

II. PROBLEM STATEMENT

Consider the following continuous-time linear system with
quantized output:

9x“ Ax`Bu
y“ qpCxq

(1)

where x P Rn, u P Rm, y P Rp are respectively the state, the
input and the measured output of the system. A,B,C are
constant matrices of appropriate dimensions. Whereas, the
uniform quantizer is defined as follows:

q :

$

&

%

Rp Ñ ∆Zp

z ÞÑ ∆signpzq
Z

|z|
∆

^

(2)

where ∆ is an arbitrary strictly positive number which
represents the quantization error bound i.e., |qpziq´ zi| ď ∆

for all i “ 1, . . . , p. Throughout the paper, we consider that
system (1) is controlled through a dynamic output feedback
controller of the form:

"

9̂x“ Ax̂`Bu`Lpy´Cx̂q
u“ Kx̂

(3)

where x̂ P Rn, K and L are constant matrices of appropriate
dimensions to be designed.

Notice that the structure of the system (3) is based on a
Luenberger observer, and thus the state x̂ PRn can be viewed
as an estimate of the state x. Hence, the closed-loop system
(1)-(3) can be written as

"

9x“ Ax`BKx̂
9̂x“ pA`BK´LCqx̂`LqpCxq

(4)

Classically by defining the error ε“ x´ x̂ and the nonlin-
earity Ψpvq “ qpvq´v, the closed-loop system (1)-(3) reads:

"

9x“ pA`BKqx´BKε

9ε“ pA´LCqε´LΨpCxq.
(5)

Note that system (5), due the presence of the nonlinearity
Ψp¨q, is described by a discontinuous right-hand side differ-
ential equation. For this, as pointed out in [4], Carathéodory
solutions to system (5) may not exist, thus relying on a
suitable concept of solution is needed. Especially in this
paper we focus on Krasovskii solutions to system (5), the
existence of such solutions is guaranteed under very mild
conditions, which are naturally satisfied by the function Ψp¨q,
for an exhaustive treatise about these aspects, we invite to see
[6]. It seems to be suitable to recall that Krasovskii solutions
of (5) are Carathéodory solutions of the following differential
inclusion

„

9x
9ε



P

„

pA`BKqx´BKε

pA´LCqε´LK pΨpCxqq



loooooooooooooooomoooooooooooooooon

W px,εq

(6)

where the Krasovskii operator K p f pxqq is defined as

K p f pxqq “
č

δą0

cop f pBpx,δqqq.

For further details see [3] and [4]. Especially, in this case
for i “ 1 . . . p, the above mentioned Krasovskii operator, by
continuity arguments, applied to the i-th component of the
nonlinearity ΨpCxq provides the following inclusion:

K pΨpiqpCpiqxqqĎ

$

&

%

ΨpiqpCpiqxq if Cpiqx‰ ∆Zzt0u,

tλsignpCpiqxq∆, λ P r´1,0su otherwise,
(7)

Figure 1 depicts the right-hand side of the above inclusion in
the scalar case. Notice also that, as shown in [17] Theorem

(a). The function Ψpvq

(b). The set-valued map K pΨpvqq

Fig. 1. Comparison between the function Ψp¨q and the associated set-valued
map K pΨpvqq

1, for every v P Rp, one has

K pΨpvqq Ď
p

ą

i“1

K pΨpvpiqqq. (8)

Moreover, it should be noticed that due to the dead-zone
effect induced by the quantizer, achieving the asymptotic
stability property of the origin for closed-loop system (4)
(and then equivalently for system (5)), with respect to
Krasovskii solution, is not possible if the matrix A is not
Hurwitz. Indeed, there exists a neighborhood B of the origin
such that qpCxq “ 0, @x P B then system (4) behaves locally
as the linear system described by:

„

9x
9̂x



“

„

A BK
0 A`BK´LC

„

x
x̂



(9)



which is unstable if A is not Hurwitz. Nevertheless, assuming
A to be Hurwitz is too much restrictive and we aim at
establishing a practical stability property for the closed-loop
system. To this end, we rely on the ultimate boundedness
property proposed in [13]. Hence, the problem we intend to
solve is summarized as follows:

Problem 1 (Practical stabilization): Determine the gains
K and L and characterize a set Su ĂR2n such that for every
initial condition rx1p0q ε1p0qs1 P R2n the resulting Krasovskii
solutions to closed-loop system (5) are ultimately bounded
in Su.

III. MAIN RESULT

In order to solve Problem 1, we firstly show some sector
conditions for Ψp¨q, which will be useful in the sequel.
Concerning the function Ψpvq defined in (2) the following
Lemma holds:

Lemma 1: The function Ψpvq satisfies the following con-
ditions:

Ψ
1pvqS1Ψpvq´∆

211pS11p ď 0, @v P Rp (10)
Ψ
1pvqS2 pΨpvq` vq ď 0, @v P Rp (11)

for any diagonal positive definite matrices S1,S2 P Rpˆp.
Proof: According to the definition of Ψpvq one gets:

Ψ
2
i pvpiqq´∆

2 ď 0 (12)

then taking p positive arbitrarily scalars s1
1, . . . ,s

1
p it follows

that s1
i Ψ2

i pvpiqq´∆2s1
i ď 0 for every i “ 1, . . . , p. Hence by

summing for i “ 1, . . . , p, by defining S1 “ diagts1
i ; . . . ;s1

pu,
from the foregoing relation, one gets (10). Concerning re-
lation (11), take p positive arbitrarily scalars s2

1, . . . ,s
2
p and

set S2 “ diagts2
i ; . . . ;s2

pu. Then, by noticing that for every v
belonging to Rp, Ψpiqpviqpvi`Ψpiqpviqq ď 0, for i“ 1, . . . , p,
by similar arguments as in the former case, it follows that
(11) holds.

Remark 1: Notice that, even if the sector conditions pro-
vided by the foregoing Lemma concern the single-valued
map Ψp¨q, it turns out that such conditions, as pointed out
by Figure 1, can be exploited to deal with the set-valued
map K pΨpvqq as well. Indeed, it can be easily shown that
for every v P Rp and for every i P t1, . . . , pu, every element
of the set

Śp
i“1 K pΨpvqpiqq satisfies inequalities (10) and

(11) and due to the inclusion reported in (8), it follows that
every element of the set K pΨpvqq satisfies (10) and (11) as
well.

Now, considering closed-loop system (5), the following
result provides a solution to Problem 1.

Proposition 1: If there exist two symmetric positive def-
inite matrices P1,P2 P Rnˆn, two diagonal positive definite
matrices S1,S2 PRpˆp, two matrices K PRmˆn and L PRnˆp

and a positive scalar τ such that:

M1 ă 0 (13)

where M1 is defined in (15) (at the top of next page), then
K, L and

Su “ trx1 ε1s1 P R2n : x1P1x` ε
1P2εď 1u (14)

are solution to Problem 1.

Proof: Consider the following quadratic Lyapunov
function

V px,εq “ x1P1x` ε
1P2ε

with P1 “ P11 ą 0 and P2 “ P12 ą 0. Define

9V px,εq “ x∇V px,εq, f y, @ f PW px,εq

where W px,εq is defined in (6). We want to prove that there
exist two positive scalars β̄1 and β̄2 such that

9V px,εq ď ´β̄1x1x´ β̄2ε
1
ε, @rx1 ε1s1 P R2nz IntpSuq. (16)

where the set Su is defined in (14). By using S-procedure
argument in order to prove relation (16) it suffices to prove
that there exists a positive scalar τ such that for every rx,εs P
R2n and for every f PW px,εq

9V px,εq´ τp1´ x1P1x´ ε
1P2εq ď ´β̄1x1x´ β̄2ε

1
ε. (17)

To this end, notice that:

9V px,εq “ x1
`

pA`BKq1P1`P1pA`BKq
˘

x`

` ε
1
`

pA´LCq1P2`P2pA´LCq
˘

ε`

´2x1P1BKε´2ε
1P2Lw, @w PK px,εq.

(18)

Moreover, since for every w PK px,εq relations (10) and
(11) are satisfied, then once again according to S-procedure
arguments, to show relation (16) it suffices to show that there
exist some diagonal positive definite matrices S1,S2 and a
positive scalar τ such that:

9V px,εq´2w1S2Cx´2w1S2w´w1S1w`11pS11p∆
2

´ τp1´ x1P1x´ ε
1P2εq ď ´β̄1x1x´ β̄2ε

1
ε @rx,εs P R2n.

(19)

Now, defining ξ“ rx1 ε1 w1 11ps1 the right hand side of relation
(19) can be re-written equivalently as follows:

ξ
1M1 ξ (20)

where M1 is defined in (15). Therefore, the satisfaction of
relation (13) implies that there exist four positive real scalars
β1,β2,β3,β4 such that

ξ
1M1ξď´ξ

1 diagtβ1In;β2In;β3Ip;β4Ipuξ. (21)

Then, by the virtue of definition of ξ, one has

ξ
1M1ξď´β̄1x1x´ β̄2ε

1
ε (22)

hence relation (19) holds implying that inequality (17) is
satisfied as well as inequality (16). Thus according to [3]
and [13], it follows that the Krasovskii solutions to (5)
are ultimately bounded in the set Su defined in (14) which
concludes the proof.

Classically, it appears in Proposition 1 that the gains K
and L cannot be computed simultaneously through a convex
problem [20]. However, an adequate change of variable
allows us to compute the gain L as described below.

Corollary 1: If there exist two symmetric positive definite
matrices P1,P2 P Rnˆn, two diagonal positive definite matri-
ces S1,S2 PRpˆp, two matrices K PRmˆn and J PRnˆp and
a positive scalar τ such that:

M2 ă 0 (23)

with M2 defined in (24) (at the top of next page), then K,
L“ P´1

2 J and Su defined in (14) are solution to Problem 1.
Proof: Setting P2L“ J in (15), the result immediately

follows from Proposition 1.



M1 “

»

—

—

–

HepP1pA`BKqq` τP1 ‹ ‹ ‹

´K1B1P1 HeppP2pA´LCqq` τP2 ‹ ‹
´S2C ´P2L ´2S2´S1 ‹

0 0 0 S1∆2´
τIp
p

fi

ffi

ffi

fl

(15)

M2 “

»

—

—

–

HepP1pA`BKqq` τP1 ‹ ‹ ‹

´K1B1P1 HepP2A´ JCq` τP2 ‹ ‹
´S2C ´J ´2S2´S1 ‹

0 0 0 S1∆2´
τIp
p

fi

ffi

ffi

fl

(24)

IV. COMPUTATIONAL ISSUES

Relation (23) becomes linear with respect to the decision
variables if τ and K are fixed. In this case relation (23) is
linear in P1,P2,S1,S2,S3 and J.

The selection of τ is not a difficult task and it can be
selected through an iterative search. In our proposal, K is
supposed to be known and it allows us to compare our
solution with those obtained in the static state feedback
case, u “ K qpxq, which is treated in [22]. In fact, thanks
to the results shown in [22] and also in [10], one obtains a
stabilizing gain K and a set S K

u Ă Rn in which the resulting
closed-loop trajectories are ultimately bounded.

One idea is to compute the gain L (for Proposition 1 or
Corollary 1) aiming at reduce the size of the projection in
the x-coordinates of the set Su defined in (14). Another idea
is computing the gain L in order to reduce the chattering
behavior observed on the time evolution of the state and/or
the input of the closed-loop system, due to the presence of the
quantizer. In that case, the chattering phenomenon is reduced
by the filtering effect of the observer [23]. These two aspects
will be illustrated in the numerical examples.
Moreover, the conditions of Proposition 1 or Corollary 1 can
be used in a convex optimization setup allowing to minimize
the size of the set Su defined in (14). Several optimality
criteria can be considered, depending on the size criterion
chosen for measuring the set Su.

For example, as shown in [1], volume, minor axis and di-
rection of interests could be a good measure of an ellipsoidal
set. Among the various criteria provided by the literature,
we adopt a trace maximization criterion, in order to induce,
through the optimization procedure, an uniform contraction
on Su. Furthermore, it is important to note that we are more
specifically interested by minimizing the size of Su in the x-
direction. Hence, we consider the maximization of the trace
of P1. An optimization of the set Su can be achieved through
the following algorithm:

Algorithm 1:
‚ Step 1 Initializing K and τ. For example K can be

fixed at the value issued from the static state feedback
problem.

‚ Step 2 Given K and τ solve the following LMI opti-
mization problem:

min
P1,P2 S1,S2,J

´ tracepP1q

subject to (23), P1 ą 0, P2 ą 0, S1 ą 0;
S2 ą 0;

(25)

which gives L“ P´1
2 J.

‚ Step 3 Given K, L and τ solve the following LMI
optimization problem:

min
P1,P2 S1,S2

´ tracepP1q

subject to (13), P1 ą 0, P2 ą 0, S1 ą 0;
S2 ą 0;

(26)

The Step 3 is performed in order to shrink as much as
possible the ultimate set Su.

Remark 2: We could add in (25) and (26) a constraint
imposing that the projection along the x-direction of the set
Su defined in (14) is included in the set S K

u resulting of
the static state feedback case. To do this, supposing that S K

u
is defined from a symmetric positive definite matrix PK as
S K

u “ tx P Rn : x1PKx ď 1u, it suffices to add the constraint
P1´PK ě 0, being PK given1.

V. NUMERICAL EXAMPLES

Example 1: Consider the system (1) defined by the fol-
lowing data:

A“
„

0 1
1 ´1



, B“
„

1
1



C “ r1 0s , ∆“ 0.25.
(27)

By the conditions proposed in [22] one gets K “
r´1.7047 ´1.0566s then by fixing τ“ 0.8 the optimization
scheme proposed in (25) leads to L1 “ r10.618 6.5623s.

In Figure 2, several closed-loop trajectories converging in
a finite time in Su are plotted. As expected, the optimization
procedure leads to a small set Su, which represents to a good
estimation of the real ultimate set in which the closed-loop
system trajectories are captured.

Example 2 (Furuta pendulum [12]): We consider a Fu-
ruta pendulum designed by Quanser [12]. In that case the
whole state vector is measured and exploited to control the
system. However, such a measure is performed by a device
that, through a digital post-processing of the data delivered
by an optical incremental encoder [19], provides a finite
resolution measure of the state. Such a phenomenon can be
modeled by a uniform quantization process characterized by
∆“ 2π{1024« 0.006. Specifically, the plant is controlled by
static state feedback by means of the quantized measured
state, that is:

u“ K qpxq (28)

1In order to prevent the occurrence of a too large value for the gain L
(high observer gain), one can add in (25) an additional constraint, specifying
a certain pole placement for the eigenvalues of the matrix A´ LC. For
example, one can impose that the eigenvalues of the matrix A´LC, denoted
by λi, belong to a strip of the complex plane as ´α ď ℜpλiq ă 0, α ą 0
[5].
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Fig. 2. Projection of the set Su on the px1,x2q plane (magenta) and plant
convergent trajectories obtained setting x̂p0q “ 0.

where:

K “ r1 ´24.9103 2.0751 ´3.6549s .

The considered plant model is nonlinear but it has been
linearized around the unstable equilibrium point, providing
the following linear model:

9x“

»

—

–

0 0 1 0
0 0 0 1
0 39.32 ´14.52 0
0 81.78 ´13.98 0

fi

ffi

fl

x`

»

—

–

0
0

25.54
24.59

fi

ffi

fl

u (29)

where x1,x2 represent respectively the base angle and the
pendulum angle, whereas x3 “ 9x1, x4 “ 9x2. Furthermore in
the studied case, we assume that the control system designer
has not access to the gain K, which cannot be modified2.
Thus in this situation one can attempt to improve the closed-
loop performances, exploiting the filtering action provided by
controller (3) on the measured variables. To this end, we want
to test our methodology considering C“ In and successively
comparing it to static state feedback controller (28), which
is analyzed by using conditions stated in [22]. Therefore, by
fixing:

τ“ 1.3

the proposed optimization procedure (25) provides the fol-
lowing observer gain:

L“

»

—

–

2.2351 ´3.3288 ´0.0365 ´13.4360
´0.1233 1.8923 0.0186 7.2954
´0.2198 3.3726 0.0332 13.0029
´0.9298 14.2687 0.1405 55.0124

fi

ffi

fl

.

The projections of the set Su on the pxi,x jq plane are
reported in Figure 3. Clearly, designing an observer allow
us to reduce the estimation of the ultimate set compared
with the static state feedback case. Furthermore, Figure 4
and Figure 5 depict respectively the time-evolution of the

2Notice that such situations are typical in control engineering practice, due
to the presence of technological constraints. Hence analyzing this example
is undoubtedly interesting. Namely, in the present case, the gain K results
from an LQ control setup performed on linear model (29) neglecting the
quantization effect.
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Fig. 3. Projections of the set Su on the pxi,x jq planes i, j P t1,2,3,4u , i‰ j:
static controller (dashed) and observer-based controller (plain)

state and the control values resulting from the static state
feedback controller (see Figure 4.a and Figure 5.a) and from
the observer-based controller (see Figure 4.b and Figure 5.b).
One can then observe that, effectively thanks to the filtering
action of the controller (3), the high frequency oscillations
affecting the state behavior is reduced in terms of magnitude
as well as the chattering phenomenon affecting the control
variable in the static state feedback case is alleviated (see
Figure 5). That highlights the real benefits provided in
using an observer-based control, even if whole the state is
measurable, confirming our guess.

VI. CONCLUSION

This paper proposed a methodology to design an observer-
based control for a linear system with quantized output,
in order to achieve the global ultimate boundedness sta-
bilization property of the closed-loop system with respect
to Krasovskii solutions. Furthermore, the observer design
is performed computing the observer gain by a convex
optimization setup, allowing to reduce the size of the ultimate
set. Moreover, numerical solutions have shown that, even if
a quantized measure of the state is available, adopting an
observer-based control can improve the closed-loop system
performance. This paper offers several sparks that could be
studied in future works. Among these, the design of a full-
order dynamic filter, with a different structure from that one
proposed in (3), should be addressed. Moreover, inspired
by the work of [22], one could analyze the observer-based
control design problem, for linear systems whose output
results in a sandwich between saturation and quantization
nonlinearity. Another open question consists of designing
also the gain K by a convex optimization setup.
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