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ABSTRACT

This paper presents a novel method for deforming the skin of 3D characters in real-time using an underlying set

of muscles. We use a geometric model based on parametric curves to generate the various shapes of the muscles.

Our new model includes tension under isometric and isotonic contractions, a volume preservation approximation

as well as a visually accurate sliding movement of the skin over the muscles. The deformation of the skin is

done in two steps: first, a skeleton subspace deformation is computed due to the bones movement; then, vertices

displacements are added due to the deformation of the underlying muscles.

We have tested our algorithm with a GPU implementation. The basis of the parametric primitives that serve for the

muscle shape definition is stored in a cache. For a given frame, the shape of each muscle as well as its associated

skin displacement are defined by only the splines control points and the muscle’s new length. The data structure

to be sent to the GPU is thus small, avoiding the data transfer bottleneck between the CPU and the GPU. Our

technique is suitable for applications where accurate skin deformation is desired as well as video games or virtual

environments where fast computation is necessary.
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1 INTRODUCTION

While the rendering of static scenes can now be so re-

alistic that it is very often difficult to distinguish vir-

tual images from real photographs, the same isn’t true

for animation, especially for characters. Despite the

tremendous progress that has been made, anybody can

tell the difference between a video of a real person

in movement and a 3D character animation. This is

because a character is a complex object composed of

many different parts in interaction and a character is

familiar to human beings which leaves little room for

inaccuracy.

It is common practice to decompose the animation of a

character into two problems: the animation of the skele-

ton and the animation of what’s around it. In this paper,

we address the second one. By describing the individ-

ual layers composing an object rather than just its sur-

face, we believe that it is possible to generate more ac-

curate deformations of the outside skin layer.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

Figure 1: Various muscle shapes generated with our

Maya plugin. From left to right: original template

shape; non-linear sweeping spline; flat muscle; arbi-

trary muscles. The white line shows the position of the

muscle belly center C.

Anatomically based models have first been intro-

duced to Computer Graphics in 1992 by Chen and

Zeltzer [Che92a] who modeled an accurate frog’s

muscle using finite elements. Subsequent simpler

models have then been used with the sole goal of

enhancing 3D characters’ skin deformation through the

animation of individual muscles. In contrary to what

happens in real life, they deform as a response to bone

deformation and their only purpose is to obtain visually

more appealing deformations. Although that approach

has been used for movie production (Shrek, Lord of

the Rings [Gra]) and is included in recent versions of
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Autodesk Maya Software [May13a] it has remained

computationally too expensive and too difficult to set

up for a wider use including video games or virtual

environments. We propose a new muscle model that

addresses both problems.

We do not intend to model dynamic effects or wrinkles

that can be added as additional layers [Cap02a, Lar04a].

We do however provide a tension parameter that may

be used to control a soft tissues dynamics simulation

such as [Jam02a, Lar05a]. These additional layers are

outside the scope of this paper that aims at presenting

the muscle model and it’s GPU implementation.

Our muscle model is defined by a few parameters

that allow artists to express complicated shapes (see

figure 1). Although it is best suited for fusiform and

multipennate (broad origins and insertions) muscle

shapes, multi-belly muscles such as the pectoralis

mayor or the trapezius can be generated by grouping

several fusiform shapes like in [Sch97a].

Animating muscle deformation as a response to bone

movement has the advantage that it resembles the way

artists work, but this implies that skin deformation due

to the tension of the underlying muscles is not taken

into account. To overcome this problem, we intro-

duce a muscle tension parameter allowing the muscle

to change the shape of its cross-section while preserv-

ing its overall volume. In addition, we achieve a slid-

ing behavior of the skin over the muscles by restrict-

ing the displacement of each skin vertex to directions

perpendicular to the muscles’ fibers which visually im-

proves the results obtained by previous geometric mod-

els where the skin vertices were rigidly attached to the

muscles primitives.

To address the challenges of accurately animating

anatomically based character models in real-time, we

introduce (1) a new parametric fusiform muscle model

capable of both isometric and isotonic contraction

that preserves its overall volume (section 3), (2) a

new geometric algorithm for skin deformation that

achieves skin sliding behavior without the high cost of

a physically based simulation (section 4), and (3) a

GPU implementation of our model including normal

correction that is suitable for use in video games

(section 5). We achieve frame rates of 25 Hz on a dual

core 3.0 GHz Pentium 4 PC equipped with a GeForce

8800 GTX graphics board for 25 instances of a mesh

composed of 82000 triangles and 56 muscles, which

represents a computational overhead of 20 − 25%

compared to a smooth skinning only.

2 RELATED WORK

The modeling and animation of individual muscles has

been an extensive topic of research for a few decades.

For a comprehensive state-of-the-art, the reader may re-

fer to [Lee12a].

Previous work range from anatomically accurate

models to models only vaguely faithful to the real

anatomy. On the one hand, we find the muscle

models that serve as a mean to move the bones of the

skeleton. Because they are difficult to control in their

actual state, those models are still marginal although

they continue to receive some attention [Lee06a]. A

complete biomechanical model of the upper body can

be found in [Lee09a]. On the other hand, we find

techniques that try to mimic some muscle deformation

of the skin although either no individual muscle is de-

fined [Wan02a, Moh03a, Cap07a] or the muscles do not

correspond to real ones [Pra05a]. The skinning based

techniques give nice results provided the user designs

accurate input shapes [Wan02a]. However, with only

anisotropic scaling [Cha89a, Wan02a, Moh03a] along

X, Y and Z-axis, it is very difficult to obtain realistic

muscle deformations. [Wan07a, Web07a, San08a]

present data driven techniques for synthesizing skin

deformations from skeletal motion. While the results

produced are definitely more accurate, those techniques

require a set of examples and thus cannot be applied to

characters that need exaggerated deformations or for

movements the actor did not perform or the animator

did not create.

The alternative is to define individual muscles that serve

as a mean to deform the outer skin layer but do not con-

trol the bones and the skeleton movement like in reality.

Our work fits into this paradigm. In 1997, Wilhelms

and Scheepers et al. [Wil97a, Sch97a] both proposed a

first generic muscle model based on ellipsoids. While

the results were visually appealing at that time, there

were several limitations to the model. Firstly, the shape

of the muscle belly and of the tendons was constrained

to elliptical ones which made it hard to cover all of the

body muscles, and even the biceps and triceps of the

arm could not be correctly approximated. Subsequent

parametric models [Wil97b, Lee07a] tried to solve the

setup problem. Parametric muscles that have been de-

signed for one character are easy to re-use onto another

character as only a few scalings need to be done. Our

muscle model is also based on the idea that only a small

set of parameters is sufficient to create a wide variety of

shapes. Moreover, unlike [Lee07a], our parameteriza-

tion is suitable for a GPU implementation.

More recently, physically based models of muscles

have been investigated. Whether they are based

on mass-spring systems [Ned00a, Aub00a], finite

elements methods [Zhu98a] or finite volume meth-

ods [Ter03a, Ter05a] they are difficult to set up and

several orders of magnitude slower than the model we

propose. In addition, the muscle shape is defined by

either a polygonal mesh or a volumetric decomposition

in tetrahedra which is totally unsuitable for the modern

GPU pipelines.
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To deform the skin and obtain a sliding effect of the skin

over the muscles, [Wil97b] uses masses and springs to

model the skin as well as to anchor the skin to the under-

lying muscles and bones. While this gives pleasing re-

sults, this step is very heavy in terms of setup (stiffness

and damping coefficients) and computation. Turner et

al. [Tur93a] use a physically based simulation of elas-

ticity to deform an elastic skin. We avoid the heavy

cost of a physically based simulation by proposing a

new geometric algorithm to displace the vertices of the

skin as a response to the muscles deformation, which al-

lows sliding effects. This is an improvement compared

to other geometric models where the skin is rigidly an-

chored to underlying components [Wil97b, Lee07a].

3 OUR MUSCLE MODEL

Similar to previous models [Wil97b, Ned00a, Aub00a,

Lee07a], we make the assumption that the force exerted

by the muscle follows a fictive action line A(t) that lies

on the main axis of the muscle shape. This action line is

anchored to the bones at the origin and insertion points,

thus elongating and shortening as the skeleton moves.

The muscle belly is attached through deformable ten-

dons at both ends.

Overview The general shape of our muscle model is a

modified generalized cylinder defined by the sweep of

a thickness curve CT (t) along a sweeping curve CS(t).
CS(t) is a three-dimensional spline representing the pro-

file of the muscle. It is defined by two 3D points: the

origin O and insertion I. CT (t) is a one-dimensional

function representing the muscle’s thickness as a func-

tion of t. The muscle’s cross-section at t is thus de-

fined as an ellipse placed along CS(t) whose thickness

is given by CT (t) and a scaling factor sf. sf is applied in

a user-chosen direction
−→
Sd perpendicular to the action

line. This scaling is only applied to the sections, not to

the spline curves. See figure 2 for a sketch.

To avoid intersections between sections and to simplify

the volume conservation computation detailed in sec-

tion 3.2.1, the sections do not follow the curvature of

CS(t) but are always perpendicular to the action line

A(t).

Modeling We have implemented a Maya plugin that

allows the user to modify the curves control points, the

scaling factor sf as well as the scaling direction
−→
Sd. As

we will see in section 3.1, the control points are con-

strained and cannot be freely moved, which reduces the

number of variables to control. In addition, the muscle

belly center C can be displaced along the segment OI.

It is thus possible to obtain a wide variety of asymmet-

rical shapes. See figure 1 for examples.

3.1 Shape Computation

CS(t) and CT (t) Bézier curves defining the muscle

shape are each composed of two cubic spline segments

Figure 2: Top: thickness curve CT (t) ; center: sweep-

ing curve CS(t) ; bottom: muscle’s longitudinal section

resulting from the sweeping of CT (t) along CS(t) with

CS(t) represented in dashed line.

CO
S (t̂), CI

S(t̂) and CO
T (t̂), CI

T (t̂) respectively called origin

and insertion segments, joined with G 1 continuity.

Mapping between t and t̂ is explained later. CT (t) is a

piecewise one-dimensional function which represents

the varying thickness of the muscle at a parametric

point t ∈ [0,1] along CS(t).

Each Bézier cubic spline segment is defined by four

control points p j, j ∈ [0,3] and the cubic Bernstein

polynomials B3
j(t̂) by:

C(t̂) = ∑
3
j=0 p jB

3
j(t̂)

= (1− t̂)3p0 +3t̂(1− t̂)2p1+
3t̂2(1− t̂)p2 + t̂3p3

(1)

Henceforward we will write pO
0−3 and pI

0−3 the four

control points of the origin and insertion spline seg-

ments respectively, regardless of their dimension.

G 1 continuity is obtained by merging pO
3 and pI

0 and

aligning pO
2 , pO

3 and pI
1 in the cubic spline segments for

both the thickness and the sweeping curves (see figure

2). pO
0 , pO

1 , pI
2 and pI

3 can take any arbitrary values

chosen by the user.

The action line A(t) defined by the origin O and the

insertion I of the muscle can be expressed by the fol-

lowing parametric equation:

A(t) = O+ t(I−O) t ∈ [0,1] (2)

Let
−→
S be the unit vector perpendicular to both

−→
Sd and

A(t):

−→
S =

−→
OI×−→

Sd

‖−→OI×−→
Sd‖

(3)
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The orthogonal basis B = {−→S ;
−→
Sd;

−→
OI} defines the sec-

tion space. Each of CS(t) control points, pO
S,0−3 and

pI
S,0−3, can be defined in section space by projecting

them onto B orthogonal vectors.

Efficient skin vertices displacement as a response to

muscles deformation such as described in section 4.2

relies on having a direct mapping of the parametric

space of the action line onto the parametric space of the

spline segments. This is simply obtained by making lo-

cal Bézier parameter t̂ linearly dependent on t. Thanks

to the linear precision property of the Bézier spline, uni-

formly distributed control points on a straight line pro-

duce that straight line:

n

∑
j=0

j

n
Bn

j(t) = t (4)

In our case n = 3. The control points pO
S,0−3 on CO

S (t)

are spaced by ‖−→OC‖/3 along its t coordinate and the

control points pI
S,0−3 on CI

S(t) are spaced by ‖−→CI‖/3. In

section space,
−→
OI coordinate is t, so pO

S,0−3 and pI
S,0−3

positions can be expressed with only two coordinates

plus t.

Let C = A(tc) be the muscle belly center such as tc =

‖−→OC‖/‖−→OI‖. The local t̂ is obtained by:

t̂ =

{

t/tc if t <= tc,

(t − tc)/(1− tc) if t > tc.
(5)

and used in CO
S (t̂), CO

T (t̂) and CI
S(t̂), CI

T (t̂) respectively

to define the shape of the muscle as a function of t along

the action line.

3.2 Muscle Deformation

Muscle is an incompressible, anisotropic, hyper-elastic

material that undergoes two types of contractions: iso-

tonic and isometric. In both cases, the overall volume

of the muscle remains roughly constant [Wil97b].

In the case of an isotonic contraction, the bones move

but the tension of the muscle remains constant. The

change in shape is thus only due to the shorten-

ing/elongation of the muscle. If it shortens, the belly of

the muscle bulges. It decreases in the other case. The

action line, anchored to the bones at O and I, changes

length as the skeleton moves. In order to preserve the

volume of the muscle, we recompute the new belly

thickness while keeping tendons thicknesses constant.

This is detailed in section 3.2.1.

In the case of an isometric contraction, the bones do not

move and the muscle length doesn’t change. However,

the shape of the muscle is modified. When the tension

increases, the muscle bulges in one direction while nar-

rowing in the perpendicular dimension. Tendons also

bulge in the same direction and become more visible.

The muscle and the tendons all relax to the rest state

when the tension decreases. Again, the overall vol-

ume of the muscle remains constant. This is achieved

through a tension parameter tension that allows the

muscle to scale in the direction
−→
Sd chosen by the artist.

The inverse of that scale is applied in the perpendicular

direction
−→
S . This is detailed in section 3.2.2.

In real life, both types of contraction happen at the same

time. First, the tension of the muscle increases. When

it reaches a certain threshold, the bones start moving

while the tension decreases until the bones reach the

new position. By moving the bones and varying the

tension parameter of our model, it is possible to achieve

this natural behavior.

3.2.1 Volume Preservation

As muscle sections are parallel to each other along the

sweeping curve, two consecutive sections form the el-

liptic bases of an oblique truncated cone of height the

distance between the two sections. The volume of the

muscle is thus equal to the sum of an infinite number of

such cones of infinitely small height. The volume of an

oblique truncated cone is the same as the one of a right

cone, therefore we can compute the volume as if CS(t)
were straight and equal to A(t).

Cone volume computation is costly and we have found

that a very coarse discretization of the muscle’s volume

in only two truncated elliptic cones was a good and very

stable approximation (see figure 3). Indeed, it is more

important to keep the differential volume error low be-

tween the different muscle states (elongated, rest, com-

pressed) rather than having an exact volume. For the

muscles we used in our demos, we have measured an er-

ror of 10% in average with respect to the exact volume

computation but only a 1% error deviation between ex-

treme muscle states (150% elongated, 50% shortened).

This means that the volume remains constant with an

error of only 1%, which is negligible.

Let (aX ,bX ) be the axes of the three ellipses defining

the two cones at the origin O, center C, and insertion I

points. The aX axes are aligned with the scaling direc-

tion
−→
Sd and their length is aX . bX axes are perpendic-

ular to the aX ones and their lengths bX are defined as

bO = pO
T,0, bC = pO

T,3 = pI
T,O and bI = pI

T,3. The ratios

aX/bX = sf.

The total volume of the muscle is computed by equa-

tion (6) which, divided by sf, results in equation (7).

V = ‖−→OC‖π

(

2aCbC+aCbO+aObC+2aObO
6

)

+ ‖−→CI‖π

(

2aCbC+aCbI+aIbC+2aIbI

6

) (6)

V = πsf
3
(‖−→OC‖(bC

2 +bO
2 +bCbO)

+ ‖−→CI‖(bC
2 +bI

2 +bCbI))
(7)
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The initial volume is computed at rest state. To keep

a constant volume as well as a constant thickness for

the tendons (desired feature for muscles deforming un-

der isotonic contraction), bC needs to be recomputed at

each timestep. From (7), we obtain a quadratic equation

AbC
2 +BbC +C = 0 with:

A = ‖−→OI‖
B = ‖−→OC‖bO +‖−→CI‖bI

C = ‖−→OC‖bO
2 +‖−→CI‖bI

2 − 3Vinitial
πsf

(8)

It can be solved by taking its positive solution bC
′ =

−B+
√

δ

2A
with δ = B2 −4AC.

As mentioned in section 3.1, to keep the belly shape

continuous, pO
T,2, pO

T,3 and pI
T,1 must be kept collinear

as bC changes and the slope of segment pO
T,2pI

T,1 must

also be kept constant.

CO I

bC

bO bI

aC

aO aI Sd

Figure 3: The volume of the muscle is approximated by

the volume of two elliptic cones defined by (O,aO,bO),
(C,aC,bC) and (C,aC,bC), (I,aI ,bI).

3.2.2 Tension Parameter

From equation (7) it is straightforward that to maintain

a constant volume, the scaling factor sf should be kept

constant. As sf = aX/bX , this can be achieved by mul-

tiplying axes lengths aX by tension while dividing axes

lengths bX by the same amount at the origin, center and

insertion points.

The new axes lengths ãX and b̃X when the muscle is

under isometric contraction can thus be expressed as

follows:
ãX = aX ∗ tension

b̃X = bX/tension
(9)

Figure 4 shows a muscle in isometric contraction for

different values of the tension parameter. At rest state

(left), tension = 1. The muscle is under tension for

tension > 1, and, for increasing values of tension, the

muscle bulge is more noticeable (middle and right).

At any time during animation, both types of contraction

are involved. The volume of the muscle is preserved by

first applying equation (7) that accounts for changes in

length of the action line, then equation (9) that takes the

strain into account.

Figure 4: Varying tension parameter. From left to right:

tension = 1, tension = 1.15 and tension = 1.3.

4 SKIN DEFORMATION & RENDER-

ING

The skin/clothes layer is the only visible layer on a

character. The muscles serve as an underlying tool to

help deform the skin in a more accurate way. We use

a two-steps approach. First, the skin layer is modi-

fied using a linear blend skinning as a response to the

skeleton’s movement. Note that other skinning tech-

niques [Kav05a, Kav07a, Kav08a] can be used. The

skin layer is subsequently deformed as a response to

the muscles deformation by applying a displacement to

each influenced vertex. We perform this step on the

GPU.

The way a muscle deforms the surrounding skin is cru-

cial to obtain good results. As the relationship between

the skin and the muscle can be very different depend-

ing on the part of the body affected, we introduce a

weighted deformation scheme as well as a fat layer that

allow the animator to adjust the skin deformation. The

fat layer is in charge of keeping a distance between the

skin and the underlying muscle and more or less attenu-

ates the deformation due to the muscle bulging depend-

ing on the chosen weighting system (section 4.1).

To achieve a skin sliding behavior over the muscles, we

propose a vector oriented vertices displacement (sec-

tion 4.2).

4.1 Muscle Influence

A skin vertex is influenced by a muscle if it lies in its

neighborhood. This influence together with an associ-

ated weight are evaluated at the bind pose. In exist-

ing commercial programs or muscle-dedicated plugins

the user paints the vertices influences by hand for each

muscle. We provide an automatic way to assign nor-

malized weights varying from 0 to 1 to skin vertices, a

weight of 0 meaning no influence at all, and 1 meaning

full muscle influence.

The influence computation is achieved by projecting

perpendicularly each vertex of the concerned limb Vi

onto the action line A(t) of each muscle. If the projec-

tion point lies outside OI, then this particular vertex is

not influenced by the muscle. In the other case the mus-

cle’s influence depends on a neighborhood template as-

signed by the user.

Journal of WSCG

Volume 21, 2013 111 ISSN 1213-6972



We provide three neighborhood templates:

Radial template: all of the vertices that lie within a

given distance from the action line are influenced.

Half-space template: all of the vertices that lie on the

upper side of the plane defined by the action line and

having
−→
Sd as a normal are influenced.

Fitted template: similar to the half-space template

but with the additional restriction that the ray (Vi,−
−→
Sd)

must intersect the muscle shape for the vertex Vi to be

influenced.

The user chooses a template depending on how he

wishes the skin to be influenced by the muscle. Exam-

ples of the three templates are shown on figure 5, top

row, for a given muscle.

If the vertex Vi is influenced by the muscle, its weight

wi is obtained depending on an automatic weighting

system chosen by the user. We have implemented two

of them:

Binary weighting system: the weight wi of Vi is set

to 1 if the vertex Vi is influenced by the muscle and 0

in the other case.

Spline-based weighting system: the weight is ob-

tained by dividing the muscle thickness CT (t) at Vi by

max(pO
T,2,p

O
T,3,p

I
T,1). We obtain weights wi ∈ [0,1] that

depend on the local thickness of the muscle.

These weighting systems must be used depending on

the expected deformation of the muscle on the skin (see

figure 5, bottom row). The first one is indicated for

very fitted zones with almost no fat, so the tendons can

be seen as well as almost the whole shape of the mus-

cle. Note that the skin deformation is continuous and

smooth because the muscle shape is G 1 continuous and

the skin follows that shape. The second one attenuates

the deformation of the skin with respect to the previ-

ous one, and is indicated for fatty zones were only a

small bulge due to the muscle is expected. The com-

puted weights are also smooth, so the deformation re-

mains continuous.

Figure 5: From left to right: radial influence template,

half-space template, and fitted template. Top row shows

the corresponding binary weights while bottom row

shows the spline-based weights.

4.2 Skin Vertices Displacement

Vector oriented displacement makes the skin slide over

the muscles by preserving a distance between them

without rigidly anchoring the skin vertices to the mus-

cles’ primitives. To explain the deformation technique

we first suppose that there is no fat layer and that all ver-

tices have a weight of 1. It results in the skin being dis-

placed to fit the muscles surfaces. How the fat layer and

weights affect the vertices displacement is explained in

section 4.3.

Let Vi be the current skin vertex we want to displace

onto the muscle’s surface V′
i. This vertex is displaced

in
−→
Sd direction defined by the user as the main direction

of bulging.

Figure 6: Skin vertices displacement algorithm: Vi is

displaced in order to lie on the muscle’s surface at V′
i.

The algorithm works as follows (see figure 6): we first

compute Pi = CS(ti) as the central point of a muscle

section on CS(t) curve. The muscle’s section on which

we solve the intersection now contains Pi and Vi. Let

CT (ti) be the thickness of the muscle at the point Pi

and
−→
S be the unit vector perpendicular to both the ac-

tion line A(t) and the displacement vector
−→
Sd (see equa-

tion (3)).

The point Qi is defined as the projection of Vi onto
−→
S .

The distance from Pi to Qi can simply be expressed as

a =
−−→
PiVi ·

−→
S . Because a and b (see figure 6) form a

right triangle, the new position of vertex Vi is given by

the two following equations:

b =
√

CT (tc)2 −a2 (10)

V′
i = Qi +

−→
Sd b (11)

At this point we have found V′
i for a circular muscle

section. To make the algorithm work with elliptical sec-

tions we only have to multiply b by sf and tension.

V′
i = Qi +

−→
Sd ·b · sf · tension (12)

4.3 Fat Layer and Weighted Deformation

We have introduced vertex weights wi ∈ [0,1] in sec-

tion 4.1 to attenuate the effect of muscles on the de-

formation of the skin. In the case where no fat layer
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exists, those weights directly influence the vertex dis-

placement ||
−−−→
ViV

′
i||. The new vertex position V′′

i is thus

given by:

V′′
i = Vi +

−−→
ViV

′
i wi (13)

However, muscles can deform the skin through a fat

layer. Our implementation of the fat layer consists in

calculating a distance Lfat between the muscle and the

skin at bind pose and keeping it constant during anima-

tion. To keep distance consistency Lfat must measure

vector oriented distance to the muscle.

In that case, the weights wi are applied to the fat layer

offset Lfat and the new vertex position V′′
i is given by:

V′′
i = Vi +

−−→
ViV

′
i

||
−−→
ViV

′
i||

(||
−−→
ViV

′
i||+Lfat wi) (14)

4.4 Normal Correction

Visual appearance of 3D characters is dramatically im-

proved by using several textures for diffuse lighting,

bump mapping, and specular mapping. To apply those

algorithms, it is necessary to have the normal and bi-

normal vectors for each mesh vertex. When a muscle

displaces a vertex Vi into a new position, the normal−→
Ni obtained from the previously applied bone skinning

technique must be recomputed (see figure 7).

Figure 7: Left: displaced wireframe mesh; center: same

mesh with texture applied but no normal correction;

right: same mesh with texture and normal correction.

As the normals of the muscle shape can’t be directly

mapped to the skin due to the fat layer and influence

weighting, the ideal solution is to recompute the skin

normals from vertex adjacency data. Current GPUs

only have edge adjacency available at the input of the

pipeline, so we have used a pre-calculated buffer that

contains the adjacency information for each vertex.

The character deformation is divided into two passes:

the first pass computes the mesh deformation due to the

skinning and the muscles; and the second pass renor-

malizes the normals by looking up in the adjacency

buffer and computing regular per vertex normals. We

need to recalculate the normals for the entire mesh

as skeleton subspace transformed normals are different

(see figure 8).

Figure 8: Arm example without muscles. Left: skele-

ton subspace normals calculation for the whole mesh;

center: a discontinuity can be seen when using differ-

ent normal calculation algorithms; right: normal calcu-

lation mask used in the central picture: in black, GPU

skeleton subspace normals calculation; in grey, renor-

malization by computing normals per vertex.

5 GPU IMPLEMENTATION AND RE-

SULTS

We have implemented the vertices displacements due to

muscle deformation on a vertex program on the GPU.

Two key points make our implementation run in real-

time: the use of a parametric muscle model that needs

to send little data to the GPU per frame, and the dis-

cretization of the Bézier spline basis to avoid high com-

putational cost.

5.1 CPU-GPU data transfer

Muscle volume preserving and movement due to the

skeleton animation is calculated on the CPU while the

vertex bone skinning, muscle displacement and normal

correction are computed on the GPU. Table 1 lists the

data sent per animation timestep to the GPU for each

muscle. While some of this data is redundant for reduc-

ing the amount of computation on the GPU, the total

size is of only 10 vectors per muscle per frame.

Type Information Symbol Size

(bytes)

float3 origin O 12

float4 unit side vector
−→
S 16

center point C

float4 action line
−→
OI, 16

and its size ‖−→OI‖
float4 unit scale direction,

−→
Sd, 16

scale amount sf

float4 CO
T control points pO

T,0−3 16

float4 CI
T control points pI

T,0−3 16

float4 CO
S control points X pO

S,0−3 16

float4 CO
S control points Y pO

S,0−3 16

float4 CI
S control points X pI

S,0−3 16

float4 CI
S control points Y pI

S,0−3 16

Total Size 152

Table 1: Size, in bytes, of the data sent to the GPU per

muscle, per frame.

CT (t) control points are one-dimensional and can be

stored in 2 vectors. CS(t) three-dimensional control
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points need 6 vectors. By using the linear precision

property (see equation (4)) we can save memory space

by encoding pO
S,0−3 and pI

S,0−3 points in the 2D basis

B = {−→S ;
−→
Sd}, the missing dimension is implicitly de-

fined by keeping a constant distance between pO
S,0−3 and

pI
S,0−3 as described in section 3.1. The B basis is very

efficient as the majority of GPU calculations are done

in section space.

Data containing the index of the muscle influencing

each vertex and the associated fat offsets Lfat is sent

to the GPU only once with the rest of per-vertex data.

5.2 Bézier Spline Basis Discretization

To speed-up the computation of C(t̂) (see equation (1)),

we store the basis functions of the spline on the GPU in

an array of size n. We discretize the basis for n values

ti of t̂ and we store the results in [1× 4] vectors of the

form:

[B3
0(ti),B

3
1(ti),B

3
2(ti),B

3
3(ti)] (15)

In practice, we have found n = 100 and ti = 1/n to pro-

duce smooth deformations. Increasing the discretiza-

tion only increases the buffer’s size but has no influence

on the computation time and doesn’t visually improve

the results.

During animation, the projection of each vertex Vi onto

the action line A(t) gives the value of t for this vertex.

We obtain t̂ from equation (5). The thickness at t̂ is the

result of the dot product of the closest ti spline basis

vector we have previously stored with vector pO
T,0−3 if

t <= tc and pI
T,0−3 otherwise. CS(t) in B basis is com-

puted in a similar way for each of the two dimensions.

Having CT (t) and CS(t) we compute V′
i by applying

equation (12). The final skin deformation is calculated

with equation (13) or (14). All these computations are

performed on the GPU.

5.3 Results

All of the timings and animations presented in this sec-

tion have been computed on a dual core 3.0 GHz Pen-

tium 4 PC equipped with a GeForce 8800 GTX graphics

board under Windows Vista using the DirectX 10 API.

5.3.1 Male Gymnast

We have tested our algorithm on a male gymnast walk-

ing and jumping. The model is composed of 82000

triangles. We have attached 56 muscles to the arms,

legs, chest and neck of the character (see figure 9). It

took about a day for a non-skilled animator to shape the

muscles, attach them to the bones and choose appro-

priate skin influence templates. Note that the number

of triangles greatly exceeds the one of standard meshes

used in regular video games. This is due to the fact that

higher resolution meshes are needed to correctly appre-

ciate the muscles’ influences. We obtain real-time for

as many as 25 characters, which corresponds to a total

of 1400 muscles animated using both isometric and iso-

tonic contractions. We observe a loss of 20−25% in the

frame rate due to the use of muscles (17 fps) compared

to the use of a linear blend skinning only (26 fps).

Figure 9: From left to right: male gymnast model com-

posed of 82K polygons and 56 muscles (setup time

about 8 hours); 2 frames from the GPU real-time an-

imation.

5.3.2 Dinosaur Leg

We have also tested our algorithm on a simple dinosaur

leg. The model is composed of 7800 triangles to which

we have added 4 muscles (see figure 10).

Figure 10: Two frames of the dinosaur leg animation.

From left to right: design of 4 muscles under Maya

(setup time about 20 min); Animation on GPU without

muscles; Animation on GPU with muscles.
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5.3.3 Crowd Animation

Finally, we have tested our GPU algorithm on wider

crowds (see figure 11). Up to 200 instances for a total

of 11200 muscles could be animated in interactive time.

Note that no GPU instancing technique was used.

Figure 11: Crowd animation of 100 instances of the

male character which corresponds to 5600 muscles to-

tal. Frame rate is 4.3 fps mainly limited by the high

number of polygons: 8.2 millions.

Table 2 shows the frame rates obtained for different

numbers of instances used for the man and dinosaur leg

models.

Mesh # Total # Fps

of Instances of Muscles

Man (82K tri.) 20 1120 21

Man (82K tri.) 25 1400 17

Man (82K tri.) 50 2800 9

Man (82K tri.) 100 5600 4.3
Man (82K tri.) 200 14000 2.1

Leg (8K tri.) 100 300 32

Leg (8K tri.) 200 600 16

Leg (8K tri.) 400 1200 3.5

Table 2: Frames per second per animation for both

models and a number of instances varying from 20 to

400.

6 CONCLUSION AND FUTURE

WORK

We have presented a new parametric muscle model suit-

able for real-time character animation as well as a new

skin vertices displacement algorithm as a fast alterna-

tive to physically based simulation of elasticity. Our

model is suitable for both procedural animation and

GPU animation. The user is provided with 2 spline

curves that allow them to design a wide range of pos-

sible muscles shapes. We have thus reached our goals

of accuracy, efficiency and user’s usability. Compared

to previous muscles models, our model is complete in

the sense that all kinds of skeletal muscles can be gen-

erated (fusiform and flat); the skin layer is not rigidly

attached to the muscles but slides over them without re-

quiring the heavy cost of a physically based simulation;

both isometric and isotonic contractions can be simu-

lated thanks to our tension parameter; when deform-

ing, the muscle preserves its volume; we offer a normal

correction; our algorithm is suitable for Graphics Hard-

ware.

Currently, there are two limitations to our work. The

first one is that there is no muscle-muscle or muscle-

bone interaction. While it may seem incorrect from an

anatomical point of view, it may easily be overcome by

the fact that the anchor points of our muscles do not

need to be onto the bone. It is thus possible to keep

the anchor points, hence the action line, from a certain

distance to a bone or a muscle, which acts as if there

were interactions. The important muscles to be mod-

eled are the ones on the surface because they influence

the outside appearance of the skin.

The second shortcoming is the modeling time. While

adding muscles following an anatomy book is achiev-

able by most users, it still takes some time to shape

the muscles. One of our future work is to use medical

data [Ter05a] to compute the initial shape of our mus-

cles and provide retargetting, especially for characters

of the same species.

In addition, we plan on combining our model with a

model for dynamics of soft tissues whose behavior will

be controlled though our tension parameter (when mus-

cles are tense, the surrounding tissues jiggle less and

vice-versa). We believe it should not be directly part of

the muscle model because dynamics is not only due to

the muscles, but also to fatty tissues. Last but not least,

we would like to address the problem of automatically

computing the tension of all of the muscles of a charac-

ter given its animation through inverse dynamics.
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