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1. INTRODUCTION

An exact 100(1− α)% confidence interval method guarantees that its coverage
rate never falls below the nominal confidence level 1− α. For a binomial pro-
portion for instance, the Clopper-Pearson (1934) confidence interval is an early
and popular exact method. It is the only method that also guarantees that the
one-tailed probability of error is at most α/2, both for the lower and upper lim-
its. This interval, however, can lead to very conservative inferences. It can be
excessively wide and its coverage rate may be substantially greater than 1− α.

Various attempts have been made for implementing “optimal” exact confi-
dence intervals for one parameter discrete distribution: see especially Sterne
(1954), Crow (1956), Blyth & Still (1983), Casella (1986), Blaker (2000, 2001),
Kabaila & Byrne (2001), Hirji (2006). However these intervals are rarely used in
practice. A first reason is that they require very intensive computations and are
not always available for moderately large sample sizes. A second reason is that
they have undesirable, pathological, properties. So, the Sterne method may yield
two separate intervals rather than one. This is also the case for the “simple im-
proved” procedure proposed by Cai & Krishnamoorthy (2005). The Blyth-Still-
Casella and Kabaila and Byrne intervals may violate the natural nesting condi-
tion: if α < α′ then the 100(1− α′)% confidence interval should be included in
the 100(1− α)% interval (Blaker, 2000).

This has lead us to consider the exact confidence interval method for a discrete
parameter studied in details by Blaker (2000). We will call it the Blaker interval,
even if its principle was known before (e.g., Cox & Hinkley, 1974, page 79). The
Blaker interval does not present the above problems, but has also some “unde-
sirable behaviors”. The most serious of them is that it fails to be a monotonic
function of the sample size. For instance, if one success has been observed in a
binomial sample of size n, the Blaker method gives the following 95% intervals:
n = 9 [.0057,.4435] n = 10 [.0051,.4444] n = 11 [.0047,.4010]

So, if the sample size is increased from 9 to 10, and simultaneously the observed
success rate is decreased from 1/9 to 1/10, this does not result in a smaller upper
limit, as could be expected. The undesirable behaviors of the Blaker interval
have been discussed by Vos & Hudson (2008). They are inherent to discrete
distributions and are the price to pay for reducing the two-tailed probability of
error of the Clopper-Pearson interval.

The original algorithm for computing Blaker’s confidence limits (2000, 2001)
is based on a computationally very intensive method and is very far from being
optimal. In this paper, we will state new and general results that allow to imple-
ment an optimized accurate algorithm for one parameter discrete distributions.
The computation time is minimized, so that the interval can be easily computed
even for extremely large sample sizes. Moreover, this allows to implement an it-
erative procedure that systematically searches for non monotonicity and corrects
it. The resulting exact confidence interval is appropriate for situations where a
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coverage at least as large as 1− α must be guaranteed.
The paper will be organized as follows. Section 2 describes the Blaker interval

and the shortcomings of the original algorithm. Section 3 makes explicit general
assumptions for a discrete distribution indexed by a real-valued parameter. Then
new results for finding the Blaker’s confidence limits under these assumptions
are stated. Section 4 gives some numerical illustrations and comments. A sim-
ple correction for non-monotonicity is proposed. Section 5 states that the above
assumptions are satisfied for the usual binomial, negative binomial and Poisson
models. For each model, the specific results for implementing an efficient algo-
rithm are given. The hypergeometric model serves to illustrate the case of an
integer parameter. Proofs are given in Appendix.

2. EXACT BLAKER’S CONFIDENCE INTERVALS

Consider the same situation as in Blaker (2000). Let a statistic X have a discrete
distribution indexed by a real-valued parameter θ and let U∗ denote the upper
limit of the 100(1− α)% Blaker’s confidence interval for θ associated with the
observation X = x. Note that the lower limit L∗ can be computed as the upper
limit for an appropriate transformed parameter, for instance 1− θ or 1/θ. Con-
sequently, we will restrict our attention to the computation of the upper limit.

Let pθ(x) denote the probability mass function of X and
Pθ(x) = Prθ(X ≤ x)

denote its cumulative distribution function. Assume that X is stochastically in-
creasing, i.e. Pθ(x) is decreasing in θ for all x.

Let again
P ∗θ (y) = Prθ(X ≥ y) = 1− Pθ(y − 1)

and for any integer y such that y > x+ 1, consider the sum and the difference
Ξ(θ, x, y) = Pθ(x) + P ∗θ (y) and ∆(θ, x, y) = Pθ(x)− P ∗θ (y).

Note that for all θ, Ξ(θ, x, x+ 1) = 1, so that the case y = x+ 1 will be irrele-
vant, and consequently excluded in the following. This concerns in particular the
case in which X has a maximum finite value xmax and x = xmax. It follows that
U∗ is the maximum possible value θmax of θ0.

2.1. The exact upper limit

Consider the one-tailed test of H0 : θ = θ0 against H1 : θ < θ0 based on X . For
the observed value x, the P -value of this test is Pθ0(x). Define Uα/2 the upper
limit of the 100(1− α)% equal-tailed confidence interval for θ based on inverting
the above test, i.e. the largest accepted θ0. It can be computed by solving

PUα/2(x) = 1
2
α.

It is an exact upper limit in the sense that for all θ, 1− Pθ(Uα/2), the probability
that θ exceeds Uα/2, is at most α/2.
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2.2. The upper limit of the Blaker interval

The upper limit U∗ of the 100(1− α)% Blaker’s interval is based on inverting
the following one-tailed test of H0 : θ = θ0 against H1 : θ < θ0. Define the “ac-
ceptability function” ᾱ(θ0, x) of this test as

ᾱ(θ0, x) = min{Ξ[θ0, x, x
∗(θ0, x)], 1}

where x∗(θ0, x) is the smallest integer y such that y ≥ x and P ∗θ0(y) ≤ Pθ0(x),
i.e. ∆(θ0, x, y) ≥ 0. Note that when Pθ0(x) = P ∗θ0(x) then x∗(θ0, x) = x and
ᾱ(θ0, x) = 1.

The Blaker upper limit U∗ is the largest value accepted by the test at level α,
i.e. such that ᾱ(θ0, x) ≥ α. This ensures that U∗ is included between the exact
one-tailed upper limits Uα [PUα(x) = α] and Uα/2 [PUα/2(x) = α/2].

Blaker (2000, 2001) proposed an algorithm that computes the limit by suc-
cessive decrements. Starting from θ0 = Uα/2, the hypothesized value is decre-
mented by a small amount ε (which controls the precision) while ᾱ(θ0, x) < α.
This algorithm, based on a computationally intensive method, is very far from
being optimal. In particular, each decrement needs to compute a quantile func-
tion. Substantial numerical precision can only be achieved with very small ε-
decrements and is hardly attainable in practice. Moreover, the algorithm may
fail (see Klaschka, 2010) when ε is not sufficiently accurate. For instance, for
the binomial distribution, if 2 successes have been observed for a sample size of
123, the Blaker S-Plus function returns the right value 0.0575 for ε = .00001 but
0.0552 for ε = .0001.

In the case of the binomial distribution, Klaschka (2010) developed an alter-
native algorithm, free of most of the drawbacks of the above algorithm. However,
it does not avoid computing a non negligible number of quantile functions. More-
over, this algorithm is based on results specific to the binomial distribution and
is not available for other distributions.

3. NEW RESULTS AND PROCEDURE

Remark that
Ξ(θ0, x, y) = ᾱ(θ0, x)

if and only if y = x∗(θ0, x), i.e.
P ∗θ0(y) ≤ Pθ0(x) < P ∗θ0(y − 1)⇔ ∆(θ0, x, y) ≥ 0 and ∆(θ0, x, y − 1) < 0.

The principle of our algorithm is to use this equivalence, in order to avoid the
unnecessary computation of quantiles. Consider the following situation.

3.1. Assumptions

Assumption 1. Assume that Pθ(x) is a strictly decreasing continuous func-
tion of θ. It follows that P ∗θ (y) is a non decreasing continuous function of θ.
This implies that the difference ∆(θ, x, y) is a strictly decreasing function of
θ. An immediate consequence is that it exists a unique value θ̃(x, y), such that
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∆[θ̃(x, y), x, y] = 0.

When X has a maximum finite value xmax, it may occur that P ∗θ (y) = 0
for all θ, so that Ξ(θ, x, y) = ∆(θ, x, y) = Pθ(x). For instance, for the bino-
mial distribution Bin(n, θ), xmax = n and when PrUα/2(X = n) > PUα/2(x) then
x∗(Uα/2) = n+ 1, which implies to consider the case y = n+ 1, for which
P ∗θ (n+ 1) = 0 for all θ.

Assumption 2. Excluding the above particular case, assume that the sum
Ξ(θ, x, y) (y > x+ 1) has a unique minimum for θ̆(x, y) and that it is a strictly
decreasing continuous function when θ < θ̆(x, y) and a strictly increasing con-
tinuous function when θ > θ̆(x, y).

The above situation is illustrated in Figure 1 for a binomial distribution with
n = 20, x = 5 and y = 14. The proof that the binomial distribution satisfies the
two assumptions is given in Section 5.1. The half sum Ξ(θ0, 5, 14)/2 is dis-
played for more clarity. The minimum is attained for θ̆(5, 14) = .4735, close
to θ̃(5, 14) = .4740 (which is a general result).

FIGURE 1: Illustration: binomial distribution with n = 20, x = 5, y = 14, Pθ(5), P ∗
θ (14) and

Ξ(θ0, 5, 14)/2 as a function of θ0.

3.2. Fundamental results

The algorithm must include a procedure for determining x∗(U∗, x). In what fol-
lows, we show that x∗(U∗, x) can only take one of the two values x∗(Uα/2, x)
or x∗(Uα/2, x)− 1. Recall that Uα ≤ U∗ ≤ Uα/2 and let x+ = x∗(Uα/2, x), x− =
x∗(Uα, x) and x∗ = x∗(U∗, x), so that x− ≤ x∗ ≤ x+. If assumptions 3.1 and 3.1
are satisfied, then the two following propositions hold.

Proposition 1. It exists a unique value θα ∈ [Uα, Uα/2] such that
Ξ(θα, x, x

+) = α. Moreover, If ∆(θα, x, x
+ − 1) < 0 then x∗ = x+ and

U∗ = θα. In the particular case Ξ(θ, x, y) = Pθ(x) for all θ, U∗ = Uα.
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Proposition 2. If x− < x+, it exists a unique value θ̃ ∈ [Uα, Uα/2[ such that
∆(θ̃, x, x+ − 1) = 0. If Ξ(θ̃, x, x+) < α then x∗ = x+ − 1 and U∗ = θ̃.

3.3. A simple procedure for computing U∗

For a given distribution, satisfying assumptions 1 and 2, com-
pute Uα, Uα/2 and x+. Determine the value θ̆(x, x+) for which
Ξ(θ0, x, x

+) is minimum. In the particular case Ξ(θ, x, y) = Pθ(x)
= 1 (if it exists), U∗ = θmax. In the particular case Ξ(θ, x, y) = Pθ(x),
U∗ = Uα.

Otherwise, the upper limit is computed from the starting values α, Uα,
Uα/2, x, x+, θ̆(x, x+) and the relevant characteristics of the distribution
(for instance n for the binomial). If x− < x+ – i.e. ∆(Uα, x, x

+ − 1) >
0 – the equality ∆(U∗, x, x+ − 1) = 0 is solved on the interval [Uα, Uα/2].
Then if Ξ(U∗, x, x+) < α, x∗ = x+ − 1 and this gives the solution. Other-
wise, x∗ = x+ and the equality Ξ(U∗, x, x+) = α is solved on the interval
[Uα,min{θ̆(x, x+), Uα/2}], which is such that the function Ξ(U∗, x, x+) is strictly
decreasing. The desired accuracy is achieved by successive approximations until
|∆(U∗, x, x+ − 1)| or |Ξ(U∗, x, x+)− α| is less than a fixed value δ.

4. NUMERICAL RESULTS AND COMMENTS

From Figure 2, the algorithm can be illustrated in the binomial case, for n = 20
and x = 5. For α = .05, U.05 = .4556 and U.025 = .4910, with x+ = 15.

FIGURE 2: Illustration: for n = 20, x = 5 and α = .05, hence x+ = 15, the following values are plotted
as a function of θ: Pθ(5), P ∗

θ (15), Ξ(θ, 5, 15), P ∗
θ (14), Ξ(θ, 5, 14).

4.1. Numerical illustrations

Within the limits [.4556, .4910], the sum Ξ(θ0, 5, 15) strictly decreases from
.0574 to .0420, being equal to .05 for θ.05 = .4673. Note that the minimum of
Ξ(θ0, 5, 15), which is .4139, is attained outside the limits for θ̆(5, 15) = .5 >
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.4910. The difference ∆(.4673, 5, 14) = +0.0303 is positive, hence the condi-
tion ∆(θα, x, x

+ − 1) < 0 of Proposition 1 is not satisfied.
It exists a unique value θ̃ = .4740 > .4673 such that ∆(.4740, 5, 14) = 0 (i.e.

Pθ(5) = P ∗θ (14)). Since Ξ(.4740, 5, 15) = 0.0468 is smaller than .05, the condi-
tion Ξ(θ̃, x, x+) < α of Proposition 2 is satisfied. It follows that for x∗ = 14 and
U∗ = θ̃ = .4740. Note that the sum Ξ(θ, 5, 14) is always greater than .05, with
the minimum value 0.0705 attained for θ̆(5, 14) = .4735.

4.2. Undesirable behaviors

Figure 2 allows to illustrate some of the undesirable behaviors of the Blaker inter-
val. It can be easily verified that, for all α ∈ [Ξ(.4740, 5, 15),Ξ(.4740, 5, 14)] =

[.046823, .070542], x∗ = 14, so that the same limit U∗ = θ̃ = .4740 is obtained.
Consequently, the limit is not strictly monotonic in the confidence level. A related
result is that the limit is discontinuous in the confidence level at some points (See
Blaker, 2000, Corollary 1, page 786). So, for α > .070543, Uα/2 = 0.4739884 >

θ̃ = .4739888. Consequently, the equality ∆(θ0, 5, 14) = 0 cannot be satisfied
within the limits [Uα, Uα/2]. It results that, for α = .070543, x∗ = 15 and the limit
is U∗ = .4731, given by Ξ(U∗, 5, 15) = .070543. Nevertheless, the Blaker inter-
val satisfies the nesting condition: if α < α′ then the 100(1− α′)% confidence
interval is always included in (eventually equal to) the 100(1− α)% interval.

When the limit U∗ is the solution θ̃ of ∆(θ0, x, x
+ − 1) = 0 (x∗ = x+ − 1),

due to the U-shaped form of the Ξ function, it may exist two values such that
Ξ(θ0, x, x

+) = α that are both smaller than θ̃ (even if it is not the case in our
example). This implies that the Blaker interval may contain values such that
ᾱ(θ0, x) < α, which are consequently rejected by the acceptability function.

4.3. A simple correction for non-monotonicity

As emphasized in introduction, the most serious undesirable property of the
Blaker interval in the case of the binomial model is that U∗ may be a non-
monotonic function of the sample size. Our fast algorithm allows for systemati-
cally searching and identifying non-monotonicities for a given x, by computing
the limit for n+ 1, n+ 2, . . . So, for the 505 000 upper limits of all 95% bino-
mial confidence intervals obtained for n varying from 1 to 1000, 1 080 cases of
non-monotonicities were found. Then a simple correction can be applied. If, for
given x and n, a larger limit is found for x and n+ k, it is taken as the limit for
x and all sample size from n to n+ k. The search process can be stopped when
Uα/2 for n+ k is smaller than the larger Blaker limit previously found. The cov-
erage rate of the resulting corrected for non-monotonicity interval is virtually
unchanged. For instance, if one success has been observed for a sample size of
295, the upper limit of the Blaker 95% interval is .01759. It decreases until 313
(.0166) and increases for 314 (.01762). Consequently, the upper limit is changed
to .01762 for all n from 295 to 313.
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Note that systematic searches with the negative binomial and Poisson mod-
els have revealed no case of non-monotonicity. For the hypergeometric model,
non-monotonicities only occur for sufficiently large population size N , when the
sampling distribution is close to the binomial distribution. So, for x = 1, the up-
per limit for the number of events in the population is smaller for n = 10 than for
n = 9 when N ≤ 2722, while these two limits are respectively 1205 and 1210
when N = 2723.

5. SPECIFIC RESULTS FOR SOME USUAL SAMPLING MODELS

We will give here all the practical results needed for implementing our algorithm
for the binomial, negative binomial, Poisson and hypergeometric models.

5.1. Binomial model

LetXi (i = 1, . . . n) be independent Bernoulli random variables having the same
parameter θ. DefineX =

∑n
i=0Xi,X has a binomial distribution Bin(n, θ). Due

to the relationship between the binomial and beta cumulative distribution func-
tions (Johnson, Kemp & Kotz, 1993, page 117), the following equalities hold
Pθ(x) = Prθ(X ≤ x) = Bn,θ(x) = 1− IBθ(x+ 1, n− x)
P ∗θ (y) = Prθ(X ≥ y) = 1− Pθ(y − 1) = 1−Bn,θ(y − 1)

= IBθ(y, n− y + 1),
where Bn,θ(x) denotes the binomial cumulative distribution function and
IBθ(a, b) is the regularized incomplete beta function. It results that for 0 ≤ x <
n, Pθ(x) is a strictly decreasing from 1 (for θ = 0) to 0 (for θ = 1) continuous
function of θ. In practice Uα/2 and Uα can be computed from the inverse incom-
plete beta function. For instance, Uα/2 = IB−1

1−α/2(x+ 1, n− x).
The particular case x = n, for which U∗ = Uα/2 = 1, can be excluded. The

value x+ associated with Uα/2 can be computed from the quantile function of
the binomial distribution as x+ = B−1

n,Uα/2
(1− α/2) + 1. The value θ̆(x, x+) is

given by the following lemma.

Lemma 1. Assuming 0 ≤ x < n− 1 and x+ 1 < y ≤ n, the sum Ξ(θ, x, y) is
a continuous U-shaped function, varying from 1 (for θ = 0) to 1 (for θ = 1). Its
minimum is attained for

θ = ρ
1+ρ

where ρ =
(
B(y,n−y+1)
B(x+1,n−x)

)1/(y−x−1)

=
(

Γ(y)Γ(n−y+1)
Γ(x+1)Γ(n−x)

)1/(y−x−1)

.

In the particular case x+ = n+ 1, compute PrUα(X = n). If PrUα(X =
n) ≥ α, then U∗ = Uα. Note that when x = n− 1, which implies x+ = n+ 1,
PrUα(X = n) = α. Otherwise, compute U∗ following the procedure given in
Section 3.3. For the lower limit L∗, replace x with n− x and apply the same
procedure, which gives the upper limit for 1− θ, i.e. 1− L∗. This result follows
from the equalities

P1−θ(n− x) = P ∗θ (x) = 1− IB1−θ(n− x+ 1, x)
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P ∗1−θ(n− y) = Pθ(y) = IB1−θ(n− y, y + 1).

5.2. Negative Binomial model

Consider a series of independent Bernoulli random variables Xi having the same
parameter θ. let T be the number of non-events before s events are observed with
probability θ. T has a negative binomial distribution.

For the upper limit, consider X = −T . Due to the relationship between the
negative binomial and beta cumulative distribution functions (Johnson, Kemp &
Kotz, 1993, page 210), the following equalities hold (x ≤ 0, y ≤ 0)
Pθ(x) = Prθ(X ≤ x) = Prθ(T ≥ −x) = 1−NBs,θ(−x− 1)

= 1− IBθ(s,−x)
P ∗θ (y) = Prθ(X ≥ y) = Prθ(T ≤ −y) = 1− Pθ(y − 1) = NBs,θ(−y)

= IBθ(s,−y + 1).
where NBn,θ(x) denotes the negative binomial cumulative distribution function.
It results that Pθ(x) is a strictly decreasing from 1 (for θ = 0) to 0 (for θ = 1)
function of θ. In practice Uα/2 and Uα can be computed from the inverse incom-
plete beta function. For instance, Uα/2 = IB−1

1−α/2(s,−x).
The particular case x = 0, for which U∗ = Uα/2 = 1, can be excluded. The

value x+ associated with Uα/2 can be computed from the quantile function
of the negative binomial distribution as x+ = −NB−1

s,Uα/2
(α/2) + 1. The value

θ̆(x, x+) is given by the following lemma.

Lemma 2. Assuming x < −1 and x+ 1 < y ≤ 0, the sum Ξ(θ, x, y) is a U-
shaped continuous function, varying from 1 (for θ = 0) to 1 (when θ = 1). Its
minimum is attained for

θ = 1−
(
B(s,−y+1)
B(s,−x)

)1/(x−y+1)

= 1−
(

Γ(−y+1)Γ(s−x)
Γ(−x)Γ(s−y+1)

)1/(x−y+1)

.

In the particular case x+ = 1, compute PrUα(X = 0). If PrUα(X = 0) ≥ α,
then U∗ = Uα. Note that when x = −1, which implies x+ = 1, PrUα(X = 0) =
α. Otherwise, compute U∗ following the procedure given in Section 3.3.

For the lower limit L∗, consider X = T . Then Pθ(x) and P ∗θ (y) can be ex-
pressed as functions of 1− θ (x ≥ 0, y > x)

Pθ(x) = Prθ(T ≤ x) = NBs,1−(1−θ)(x) = 1− IB1−θ(x+ 1, s)
P ∗θ (y) = Prθ(T ≥ y) = 1−NBs,1−(1−θ)(y − 1) = IB1−θ(y, s).

It results that Pθ(x) is a strictly decreasing continuous function of 1− θ. It can be
verified as previously that Ξ[θ, x, y] is a continuous U-shaped function of 1− θ.
Its minimum is attained for

1− θ =
(

B(y,s)
B(x+1,s)

)1/(x−y+1)

=
(

Γ(y)Γ(s+x+1)
Γ(x+1)Γ(s+y)

)1/(x−y+1)

.

Consequently, the upper limit for 1− θ is equal to 1− L∗.
Since in this case X has no maximum value, there is no particular case to

consider. Compute Lα/2 and Lα (the upper limits for 1− θ) from the inverse
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incomplete beta function, for instance Lα/2 = IB−1
1−α/2(x+ 1, s). Compute x+ as

NB−1
n,1−Lα/2

(1− α/2) + 1, and follow the procedure given in Section 3.3 with
the appropriate values for computing the upper limit of 1− θ.

5.3. Poisson model

Let Xi (i = 1, . . . n) be independent Poisson random variables having the same
parameter θ. Define X =

∑n
i=0 Xi, X has a Poisson distribution Pois(nθ).

Due to the relationship between the Poisson and gamma cumulative distribu-
tion functions (Johnson, Kemp & Kotz, 1993, page 160), the following equalities
hold

Pθ(x) = Prθ(X ≤ x) = Poinθ(x) = 1− IGnθ(x+ 1)
P ∗θ (y) = Prθ(X ≥ y) = 1− Pθ(y − 1) = 1− Poinθ(y − 1) = IGnθ(y)

where Poinθ(.) denotes the Poisson cumulative distribution and IGθ(k) is the
regularized incomplete gamma function. It results that Pθ(x) is a strictly decreas-
ing from 1 (for θ = 0) to 0 (when θ →∞) function of θ. In practice Uα/2 and
Uα can be computed from the inverse incomplete gamma function. For instance
Uα/2 = IG−1

1−α/2(x+ 1)/n.
The value x+ associated with Uα/2 can be computed from the quantile func-

tion of the Poisson distribution as x+ = Poi−1
nUα/2

(1− α/2) + 1. The value

θ̆(x, x+) is given by the following lemma.

Lemma 3. Assuming 0 ≤ x and x+ 1 < y, the sum Ξ(θ, x, y) is a U-shaped
continuous function, varying from 1 (for θ = 0) to 1 (when θ →∞). Its minimum
minimum is attained for

θ = 1
n

(
Γ(y)

Γ(x+1)

)1/(y−x−1)

.

Compute U∗ following the procedure given in Section 3.3.There is no partic-
ular case to consider.

For the lower limit L∗, consider X = −
∑n

i=0Xi. Then Pθ(x) and P ∗θ (y) can
be expressed as functions of 1/θ (x < 0, x < y ≤ 0)

Pθ(x) = Prθ(−X ≥ x) = 1− Poin/(1/θ)(−x− 1) = 1− IGinv
(1/θ)/n(−x)

P ∗θ (y) = Prθ(−X ≤ y) = Poin/(1/θ)(−y) = IGinv
(1/θ)/n(−y + 1)

where IGinv
(1/θ)/n(k) = 1− IGnθ(k) is the regularized incomplete inverse gamma

function. It results that Pθ(x) is a strictly decreasing continuous function of 1/θ.
It can be verified as previously that Ξ[θ, x, y] (x < −1, x+ 1 < y ≤ 0) is a con-
tinuous U-shaped function of 1/θ. Its minimum is attained for

1
θ

= n
(

Γ(−x)
Γ(−y+1)

)1/(x−y−1)

.

Consequently, the upper limit for 1/θ is equal to 1/L∗.
Compute Lα/2 and Lα (the inverse of the upper limits for 1/θ) from the in-

verse incomplete gamma function, for instance Lα/2 = IG−1
α/2(−x+ 1)/n. The
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particular case x = 0, for which L∗ = Lα/2 = 0, can be excluded. The value x+

associated with Lα/2 can be computed from the quantile function of the Pois-
son distribution as x+ = −Poi−1

nLα/2
(α/2) + 1. In the particular case x+ = 1,

compute PrLα(X = 0). If PrUα(X = 0) ≥ α, then U∗ = Uα. Note that when
x = −1, which implies x+ = 1, PrUα(X = 0) = α. Otherwise, use the proce-
dure given in Section 3.3 with the appropriate values for computing the upper
limit of 1/θ.

5.4. Hypergeometric model

Consider a finite population of size N that contains M events and N −M non-
events. Let X be the number of events in a sequence of n draws without replace-
ment. X has an hypergeometric distribution with parameter M

PrM(X = x) = Γ(M+1)Γ(N−M+1)Γ(n+1)Γ(N−n+1)
Γ(x+1)Γ(M−x+1)Γ(n−x+1)Γ(N−M−n+x+1)Γ(N+1)

.
Due to the relationships between the hypergeometric, negative hypergeomet-

ric and beta-binomial cumulative distribution functions (Johnson, Kemp & Kotz,
1993, pages 254-255), the following equalities hold
PM(x) = PrM(X ≤ x) = HGN,n,M(x) = 1−BBx+1,n−x,N−n(M − x− 1)
P ∗M(y) = PrM(X ≥ y) = 1− PM(y − 1) = 1−HGN,n,M(y − 1)

= BBy,n−y+1,N−n(M − y),
where HGN,n,M(x) and BBa,b,K(t) respectively denote the hypergeometric and
beta-binomial (that replaces the beta) cumulative distribution functions. In this
form θ = 1/M (0 ≤ θ ≤ 1) can be considered as a real-valued parameter (even if
in practice it can take only a finite number of values). Then the upper and lower
limits for θ can be computed in the same way as for the binomial model. How-
ever, in practice, the confidence limits for the discrete parameter M can be com-
puted by a very simple procedure. In this case, the equalities Ξ(θ0, x, x

+) = α
and ∆(θ0, x, x

+ − 1) = 0 are replaced with inequalities. Starting from U =
Uα/2 (an integer value), decrement U until either Ξ(U, x, x+ − 1) ≥ α and
∆(U, x, x+ − 1) ≥ 0 or Ξ(U, x, x+) ≥ α) and ∆(U, x, x+ − 1) ≤ 0.

CONCLUDING REMARKS

FORTRAN and R codes implementing our algorithm are available upon requests
to the authors. We have favored simplicity and robustness. Some improvement
in speed could be achieved by refining the code. For all models, our algorithm
was systematically investigated, for various values of α. The accuracy parameter
δ was set to 10−6, 10−9 and 10−12. The results were compared to the original
Blaker algorithm with the decrement ε = .0001. This decrement was diminished
only in case of discrepancy. Following this procedure, all results agree with four
decimal places.

For the binomial model, our algorithm was compared to the Klaschka one.
The confidence limits were calculated for all intervals when n varied from 1 to
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1000 (501 500 intervals) for various values of α and δ. Both algorithms gave the
same results within the required precision. The execution times were compara-
ble, slightly smaller for our algorithm, and similar to those given in Klaschka
(2010, Table 4.1).

APPENDIX

Proof of Proposition 1. Two cases are to be considered.
(i) If Ξ(θ, x, x+) > Pθ(x) for all θ, the following inequalities hold

Ξ(Uα, x, x
+) = α + P ∗Uα(x+) > α

∆(Uα, x, x
+) = α− P ∗Uα(x+) > 0

and, because 0 < P ∗Uα/2(x+) ≤ α/2,

Ξ(Uα/2, x, x
+) = 1

2
α + P ∗Uα/2(x+) ≤ α

∆(Uα/2, x, x
+) = 1

2
α− P ∗Uα/2(x+) ≥ 0.

The U-shaped form of Ξ implies the existence and unicity of θα. Moreover,
for any hypothesized value θ0 such that θα < θ0 ≤ Uα/2, Ξ(θ0, x, x

+) < α. If
∆(θα, x, x

+ − 1) < 0 then
ᾱ(θα, x) = Ξ(θα, x, x

+) = α and ∆(θ0, x, x
+ − 1) < ∆(θα, x, x

+ − 1) < 0.
Since ᾱ(θ0, x) = Ξ(θ0, x, x

+) < α, θ0 is rejected and consequently x∗ = x+

and U∗ = θα. Note that Ξ(θ̆(x, x+), x, x+) ≤ α, which implies that U∗ ≤
min[θ̆(x, x+), Uα/2].
(ii) If Ξ(θ0, x, x

+) = Pθ0(x) for all θ0 ∈ [Uα, Uα/2], then Ξ(θ0, x, x
+) < α, ex-

cept for Uα: Ξ(Uα, x, x
+) = α. It results that θα = Uα.

�

Proof of Proposition 2. The existence and unicity of θ̃ follows from the two
following inequalities. Because 0 < P ∗Uα(x+ − 1) ≤ α (which is a consequence
of the inequality x− < x+),

∆(Uα, x, x
+ − 1) = α− P ∗Uα(x+ − 1) ≥ 0

and, because P ∗Uα/2(x+ − 1) > α/2,

∆(Uα/2, x, x
+ − 1) = 1

2
α− P ∗Uα/2(x+ − 1) < 0.

The inequality ∆(θ̃, x, x+) > 0 (see Proposition 1) implies that ᾱ(θ̃, x) =

Ξ(θ̃, x, x+ − 1). Since Ξ(θ̃, x, x+ − 1) = 2P ∗
θ̃
(x+ − 1) > 2P ∗Uα/2(x+ − 1) > α,

θ̃ is smaller than U∗. Moreover, assuming Ξ(θ̃, x, x+) < α, any θ0 such that θ0 >

θ̃ is rejected by the ᾱ acceptability function, either because Ξ(θ0, x, x
+) < α

(due the U-shaped form of Ξ), or because ∆(θ0, x, y) ≤ ∆(θ̃, x, y) < 0 for any
y < x+.

It follows that U∗ is the largest θ0 ∈ [Uα, Uα/2] such that either Ξ(θ0, x, x
+ −

1) ≥ α and ∆(θ0, x, x
+ − 1) = 0 or Ξ(θ0, x, x

+) = α and ∆(θ0, x, x
+ − 1) ≥ 0.

�
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Proof of Lemma 1. The result follows from the derivative of
Ξ[θ, x, y] = 1− IBθ(x+ 1, n− x) + IBθ(y, n− y + 1)

= 1− 1
B(x+1,n−x)

∫ θ
0
vx(1− v)n−x−1dv + 1

B(y,n−y+1)

∫ θ
0
vy−1(1− v)n−ydv,

which is Ξ′ = − 1
B(x+1,n−x)

θx(1− θ)n−x−1 + 1
B(y,n−y+1)

θy−1(1− θ)n−y. �

Proof of Lemma 2. The result follows from the derivative of
Ξ[θ, x, y] = 1− IBθ(s,−x) + IBθ(s,−y + 1)

= 1− 1
B(s,−x)

∫ θ
0
vs−1(1− v)−x−1dv + 1

B(s,−y+1)

∫ θ
0
vs−1(1− v)−ydv,

which is Ξ′ = 1
B(s,−y+1)

θs−1(1− θ)−y − 1
B(s,−x)

θs−1(1− θ)−x−1. �

Proof of Lemma 3. The result follows from the derivative of
Ξ[θ, x, y] = 1− IGnθ(x+ 1) + IGnθ(y)

= 1− 1
Γ(x+1)

∫ nθ
0
vx exp(−v)dv + 1

Γ(y)

∫ nθ
0
vy−1 exp(−v)dv

which is Ξ′ = 1
Γ(y)

(nθ)y−1 exp(−nθ)− 1
Γ(x+1)

(nθ)x exp(−nθ).
�
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R Code

This section gives the R code for computing Blaker’s confidence limits. We
have favored simplicity and robustness. Some improvement in speed could be
achieved by refining the code.

1. The function “upperlimit”

The function “upperlimit” is common to all real-valued parameters.
upperlimit <- function(alpha,epsilon,u1,u2,thetamin,x,xp,arg){

# is x− < x+, i.e. Ξ(Uα, x, x
+ − 1) > 0 ?

pq <- sumdif(u1,arg,x,xp-1)
if (pq[2]>0){
# solve ∆(U∗, x, x+ − 1) = 0
umin <- u1
umax <- u2
pq[2] <- 1
while (abs(pq[2])>epsilon){
u <- (umin + umax)/2
pq <- sumdif(u,arg,x,xp-1)
if (pq[2]>0) {umin <- u} else {umax <- u} }

pq <- sumdif(u,arg,x,xp)
if (pq[1]¡alpha) return(u)}

# solve Ξ(U∗, x, x+) = α
umin <- u1
umax <- min(u2,thetamin)
pq[1] <- 2
while (abs(pq[1]-alpha)>epsilon){
u <- (umin + umax)/2
pq <- sumdif(u,arg,x,xp)
if (pq[1]>alpha) {umin <- u} else {umax <- u}}

return(u)}

2. The function “sumdif”

The function “sumdif” is specific to each model, for instance, for the upper limit
of the Poisson parameter.
sumdif <- function(theta,arg,x,y){

#Pθ(x) = Prθ(X ≤ x)
p <- ppois(x,arg*theta)
#P ∗θ (y) = Prθ(X ≥ y) = 1− Pθ(y − 1)
q <- 1-ppois(y-1,arg*theta)
#return Ξ(θ, x, y) and δ(θ, x, y)
sumdif <- c(p+q,p-q)}
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For the other cases, use the appropriate instructions for computing p and q,
for instance for the lower limit of the Poisson parameter

p <- 1-ppois(-x-1,arg/theta)
q <- ppois(-y,arg/theta)

3. The specific main functions

For each model, use appropriate main functions, for instance for the Poisson
parameter (this can be easily generalized to other models).
bpoissonsup <- function(epsilon,alpha,x,n)

#compute the uper limit of the Poisson parameter
#compute Uα and Uα/2
u1 <- qgamma(1-alpha,x+1)/n
u2 <- qgamma(1-alpha/2,x+1)/n

#compute x+

xp <- qpois(1-alpha/2,n*u2)+1
#compute the value of θ for which Ξ(θ, x, x+) is minimum
thetamin <- exp((lgamma(xp)-lgamma(x+1))/(xp-x-1)-log(n))

#use the function “upperlimit”
u <- upperlimit(alpha,epsilon,u1,u2,thetamin,x,xp,n)
return(u)

bpoissoninf <- function(epsilon,alpha,x,n){
#compute the lower limit of the Poisson parameter
#particular case x = 0

if (x==0) return(0)
#compute Lα and Lα/2
l1 <- qgamma(alpha,x)/n
#particular case x = 1
if (x==1) return(l1)

l2 <- qgamma(alpha/2,x)/n
#compute x+

xp <- qpois(alpha/2,n*l2)+1
#particular case x+ = 1
if (xp==1){
p <- dpois(0,n*l1)
if (p>alpha) return(l1)}

#compute the value of 1/θ for which Ξ(θ, x, x+) is minimum
if (xp < 1)
{invthetamin<- exp((lgamma(x)- lgamma(-xp + 1))/(-xp - x + 1) + log(n))
else {invthetamin <- 1/l1}

#use the function “upperlimit”
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u <- upperlimit(alpha,epsilon,1/l1,1/l2,invthetamin,-x,xp,n)
return(1/u)}

4. A specific function for the hypergeometric model

The function “bhyperG” computes the upper limit of the hypergeometric param-
eter by successive decrements. The quantile function of the beta-binomial dis-
tribution, which gives Uα/2, is not directly available, but can be computed from
the qghyper function in the SuppDists package.
bhyperG <- function(epsilon,alpha,x,N,n){

#particular case x = n
if (x==n) return(N)
#compute Uα/2
u2 <- x+qghyper(1-alpha/2,-x-1,N-n,-n-1)
#compute x+

xp <- qhyper(1-alpha/2,u2,N-u2,n)+1
#successive decrements
repeat{
#compute Pθ(x) = Prθ(X ≤ x)
p <- phyper(x,u2,N-u2,n)

#compute P ∗θ (x+ − 1) = Prθ(X ≥ x+ − 1) = 1− Pθ(x+ − 2)
q1 <- 1-phyper(xp-2,u2,N-u2,n)

#compute P ∗θ (x+) = Prθ(X ≥ x+) = 1− Pθ(x+ − 1)
q <- 1-phyper(xp-1,u2,N-u2,n)

#test the condition Ξ(U, x, x+ − 1) ≥ α
# and ∆(U, x, x+ − 1) ≥ 0 or Ξ(U, x, x+) ≥ α) and ∆(U, x, x+ − 1) ≤ 0
xi <- p+q
xi1 <- p+q1
delta1 <- p-q1
if ((xi1 >= alpha && (delta1 >= 0 || x+xp-1==n) )
|| (xi >= alpha && delta1 ¡= 0)) return(u2)}

u2 <- u2-1}}


