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ABSTRACT 
The effect of confinement on the acoustic phonon 

dispersion relation and heat capacity in free-standing silicon 
membranes is investigated, with thickness values down ~ 8 nm. 
The discrete phonon branches are observed by angle-resolved 
inelastic light scattering spectroscopy. The fundamental flexural 
mode was observed to have a scattering intensity nearly two 
orders of magnitude larger than the fundamental dilatational 
mode, which is ascribed to its large out-of-plane density of 
states and quadratic dispersion. The quadratic dispersion also 
results in a reduction of the phase and group velocities of the 
fundamental flexural mode by more than one order of 
magnitude compared to bulk values. To investigate the effect of 
this behavior on the thermal conductivity, we perform 
calculations based on continuum elasticity theory to estimate 
corresponding changes in the heat capacity. This work provides 
a basis to investigate the effects of the frequency and dimension 
dependence of other phonon properties, in particular in the sub-
20 nm regime, where phonon-phonon relaxation times, density 
of states and thermal conductivity are expected to possess 
different spectral dependencies than for bulk materials. 

INTRODUCTION 
As channel widths of nanoelectronic devices scale well 

below 20 nm, large power-densities and phonon-limited 
electron mobility are two of the greatest challenges towards 
increasing device performance. At the same time, great 
progress has been made in recent decades towards 
understanding and controlling the spectral distribution and 
propagation of phonons, for example, in optomechanical 
cavities [1] and phononic crystals [2,3]. These findings have 
given great impetus to phonon engineering as a strategy to deal 
with nanoscale thermal management for nanoelectronics and 
novel thermoelectric materials. Whereas previous discussions 
relating to phonons in thermal transport have emphasised 
“dominant” phonon wavelengths and mean free paths, there is a 
growing body of evidence that suggests that it is important to 
consider the entire phonon spectral distribution [4–7]. 

One well-known effect of decreasing dimensions on phonon 
transport is the limitation of the phonon mean free path [8] 
which results in a corresponding decrease in thermal 
conductivity.  However, recent experimental work on 
periodically nanostructured silicon [6,7,9] has suggested that 
the decrease in thermal conductivity observed is not due to this 
mean free path reduction alone, and further understanding of 
the effects of the non-linear phonon dispersion relation is 
sought to elucidate the physics behind thermal transport in 
nanostructures. 

Nanomechanical resonators have also recently received 
much attention as ultrasensitive detectors of force [10], mass 
[11,12], charge [13,14] and spin [15], and as a platform for 
biosensing [16–18] and investigating quantum behaviour in 
extended objects [19,20]. Therefore, the understanding of the 

mechanical properties of these structures is of great importance. 
In the extreme sub- 10 nm regime, questions remain concerning 
the limits of validity of the continuum elasticity model and bulk 
elastic constants [21–23]. Non-contact experiments on 
structures in the nanoscale regime are an ideal method to 
investigate these fundamental questions. 

The first direct studies of confined acoustic modes in ultra-
thin free-standing silicon membranes were performed with 
Raman spectroscopy [24,25]. Silicon membranes with 
thickness values of thirty nanometers were investigated with 
inelastic light scattering (ILS) spectroscopy, with the use of a 
triple-grating Raman spectrometer, with many discrete modes 
observed. However, in-plane phonon propagation of these 
acoustic modes was not examined.  

In this work we investigate these issues further by 
measuring the changes in the acoustic dispersion in ultra-thin 
single-crystalline silicon membranes with thickness values 
down to ~ 8 nm. We then calculate the effect of this 
modification on the volumetric heat capacity for different 
phonon modes as a function of temperature. 

NOMENCLATURE 
An Flexural (Anti-Symmetric) mode of order n 
Sn Dilatational (Symmetric) mode of order n 
ILS Inelastic Light Scattering 
I Scattering intensity 
q// In-plane wavevector 

Free-standing single-crystalline silicon membranes are 
model systems for studies of phonon confinement, as they can 
be fabricated with precisely controlled dimensions and physical 
parameters, facilitating comparison with theoretical models. 
Moreover, being unsupported, a true, two-dimensional 
geometry is obtained and the analysis is free from any effects of 
a substrate.  

The dispersion relations of the confined phonons were 
measured by angle-resolved Brillouin scattering spectroscopy. 
This technique has been shown to be an ideal method for 
characterising the acoustic properties of thin supported [26–28] 
and free-standing films [29–31] in a non-contact, non-
destructive manner. The thickness values were obtained from 
reflectance measurements performed with a FilmTek 2000 
spectroscopic reflectometer (Figure S1). The measurements 
were performed at four points around the membranes to reveal 
any thickness variation which was found to be less than 0.1 - 
0.5 nm. The measured thickness values of the ultra-thin 
membranes investigated ranged from 7.8 +/- 0.1 to 31.9 +/- 0.2 
nm. The accuracy of the measurements is estimated to be better 
than one nanometer. For comparison, membranes with 
thickness values up to 400 nm were also investigated. 

The measurements were performed in a backscattering 
configuration, with the incident wave vector, k, making an 
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angle   to the surface normal of the sample as shown in Fig. 
1(a). Due to the in-plane momentum conservation, light of free-
space wavelength  is scattered inelastically by phonons with a 
in-plane wavevector component, q// given by:  



 sin4

// q  (1) 

The dispersion relation (q//) can then be measured by 
observing the spectral components of the inelastically scattered 
light as a function of the incident angle.  

The spectral components of the inelastically scattered light 
were analyzed with a high resolution multipass (3+3) Tandem 
Fabry-Perot Interferometer from JRS Scientific Instruments. 
The incident radiation was provided by a Diode Pumped Solid 
State Laser (DPSSL) from Oxxius, with a free-space 
wavelength, , of 532.6 nm. This was focused on to the sample 
to a spot size of 12.5 m measured at Full-Width-Half-Max 
with an Olympus 10x microscope objective, with a numerical 
aperture of 0.5. The measurements were performed at room 
temperature and the incident power was kept below a maximum 
of 5 mW for the ~30 nm membranes, corresponding to a flux of 
less than 0.66 W/m2, and below a maximum of 1 mW for the 
~ 10 nm membranes corresponding to a flux of 0.125W/m2, 
in order to avoid unwanted effects due to laser heating.  

The acoustic dispersion relations in the membranes were 
calculated by solving the anisotropic acoustic wave equation  
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subject to stress-free boundary conditions on the 
membrane surfaces (iz = 0, i = x,y,z; z = +/- d/2), where  is 
the mass density, U is the acoustic displacement, and Cijkl is the 
elastic constant tensor. Solutions for the system were found 
using the partial wave method [32], and numerical solutions to 
the analytic equations were found using the procedure 
developed by Gazis et al. for surface acoustic waves on cubic 
crystals [33]. The elastic constants of Si used were C11 = 165.7 
GPa, C44 = 63.9 GPa, and C12 = 79.6 GPa [34]. Anti-symmetric 
(A), symmetric (S) and shear horizontal (SH) solutions are 
found. The anti-symmetric and symmetric modes are also 
referred to as flexural and dilatational modes respectively, due 
to the nature of their characteristic displacements. Along high-
symmetry directions, these modes can be considered as a 
coupling of the shear-vertical and longitudinal acoustic modes 
due to the boundaries of the membrane. The shear horizontal 
modes are uncoupled from the other modes along high 
symmetry directions. 

To introduce the effects of confinement on the acoustic 
dispersion relation, we present ILS spectra for a 400 nm silicon 
membrane for incident angles between 15 and 60 degrees (Fig. 
2(a)). Many spectral features are observed in comparison to the 

bulk case, for which only peaks corresponding to the 
longitudinal, transverse and surface acoustic waves can be seen 
[35]. The calculated dispersion relations of the flexural and 
dilatational modes in the [110] direction are shown in Fig. 2(b). 
From comparison with the calculated dispersion relation, the 
first two peaks nearest the central quasi-elastic peak are 
identified as the zero-order flexural and dilatational modes. 

(a) 

(b) 

FIG. 1. (a) Scattering geometry and wavevector 
conservation. The measurements were performed in 
backscattering configuration, with a 10x Olympus microscope 
objective used both to focus the incident light and collect the 
inelastically scattered light. Wavevector conservation is also 
indicated as explained in the text. (b) Optical microscope image 
of the 30 nm Si membrane. The direction of the scattering 
wavevector, q//, was kept in the [110] crystalline direction. 

These are observed as independent peaks only at small 
wavevectors, and quickly become indistinguishable. The zero-
order flexural and dilatational modes may be thought of as 
interacting surface acoustic waves on either surface of the 
membrane. The flexural mode corresponds to when these 
modes are in-phase, resulting in a flexing of the membrane. The 
dilatational mode occurs when these waves are out-of-phase, 
thus resulting in a dilatational motion of the membrane. These 
modes can then be thought of as bonding and anti-bonding 
states of the surface acoustic modes, in analogy with bonding 
and anti-bonding states of molecular orbitals. The joining of 
these modes at large angles, or large values of q//, is a 
consequence of the fact that at small wavelengths, the surface 
waves are confined to either surface and do not interact, thus 
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behaving like a bulk surface acoustic waves. As the spectra 
were acquired in the [110] direction, these waves tend to the 
Pseudo Surface Acoustic (PSAW) wave velocity in silicon of 
5085 m s−1. 

At normal incidence, the modes that are observed at higher 
frequencies correspond to confined longitudinal and transverse 
standing waves, analogous to the confined modes in an open-
ended pipe. The frequency separation between these modes for 
normal incidence is given by 

fL,T  = vL,T / 2d (3) 

where vL,T represents the speed of sound of either 
longitudinal or transverse waves in the direction perpendicular 
to the membrane surface ([001] direction), and d is the 
thickness of the membrane. At finite angles, these modes then 
acquire an in-plane component and exhibit dispersive 
behaviour. The frequency spacing between the higher-order 
modes scales inversely proportional to the thickness. Though 
all of the higher-order modes increase in frequency with a 
reducing value of the thickness, the zero-order flexural mode 
(A0) is the exception to this rule as it decreases in frequency for 
thinner membranes. This may be considered to be a 
representation of the fact that less energy is required to flex a 
thinner membrane.  

FIG. 2. (a) Typical Brillouin spectra acquired for a free-
standing Si membrane with thickness of 400 nm, as a function 
of the incident angle. A peak at 30.5 GHz unrelated to the 
sample has been removed for clarity. (b) Calculated dispersion 
relation for flexural (black lines) and dilatational (red lines) 
modes, compared with experimental data (black squares).  

Figure 3(a) shows high resolution spectra of the 30.7 nm 
thick silicon membrane. The peaks in the spectra are identified 
as the A0 modes of the membrane. The dispersion of this mode 
for ultra-thin membranes of various thickness values is shown 
in Fig. 3(b). The calculated dispersions, with no adjustable 
parameters, follow closely the experimental data. The most 
striking features are the quadratic dispersion and the reduction 
of phonon frequency of the flexural mode with decreasing 
thickness of the membranes: 2

//Adq , where A is a
proportionality constant. 

(a) 

(b) 

FIG. 3. (a) Spectra of the fundamental flexural (A0) mode 
of the 30.7 nm membrane for difference angles of incidence. 
The ILS spectra are shown for incident angles ranging from 30 
to 80 degrees with respect to the sample normal as shown in 
Fig. 1(a). The measurements are performed with a resolution of 
~100 MHz. (b) Dispersion of the fundamental flexural modes 
(A0) in membranes with thickness values from 7.8 to 31.9 nm. 
The dispersion relations are found to have a quadratic form, 
resulting in a larger density of states D() with decreasing 
thickness. 
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This quadratic dispersion results in a large density of states 
which, combined with the out-of-plane polarization, results in a 
large scattering amplitude [36]. To illustrate the relative 
magnitude of the out-of-plane density of states of this mode, a 
spectrum of the 30.7 nm membrane for a larger free spectral 
range is shown in Fig. 4, where both the fundamental flexural 
and dilatational modes are observed. The intensity of the peak 
assigned to the fundamental flexural (A0) mode is measured to 
be more than two orders of magnitude more intense than that of 
the fundamental dilatational (S0) mode. The quadratic 
dispersion relation also results in a reduction in phase velocity 
with thickness, //Adqv ph  , down to 300 ± 40 m s-1 for the 
7.8 nm membrane, which is commensurate with the reduction 
in the group velocity, //2Adqvg  , down to 600 ± 80 m s-1. 

FIG 4. Comparison of the fundamental flexural (A0) and 
dilatational (S0) modes in the 30.7 nm thick membrane. The 
ILS spectrum was acquired at an incident angle of 70 degrees 
(q// =  22 m-1) with a resolution of ~500 MHz. Note the
intensity log scale.  

A further consequence of the quadratic dispersion 
associated to the fundamental flexural mode is that the density 
of states dD /1)(    increases with decreasing membrane 

thickness, and thus more energy,  dTfD BE  ),( )(   , 

is stored in this mode, where fBE is the Bose-Einstein 
distribution function and T the temperature. Therefore, the 
flexural mode could play a significant role in thermal transport 
in ultra-thin systems especially at low temperatures[37,38]. In 
the extreme case of graphene, this flexural mode was recently 
predicted to dominate the specific heat capacity and the lattice 
thermal conductivity[39].  

To investigate this effect for ultra-thin Si membranes, we 

performed calculations of the volumetric heat capacity based on 

continuum elasticity theory. The volumetric heat capacity Cv is 

defined as the amount of energy per unit volume to be supplied 

a system to increase its temperature by one degree Kelvin. The 

general form this quantity can be obtained by differentiation of 

the internal energy (E) with respect to the temperature [40] 
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where V is the volume and is the Bose-Einstein 

equilibrium phonon distribution function. In the membrane 

system we cannot integrate in over all q-space, due to the 

discretization of the out-of-plane component of the wavevector. 

Therefore, the heat capacity is expressed as an integral in-plane 

with an out-of-plane summation:   

(5) 

where is defined as the spectral density of the heat 

capacity, S is the total surface area of the membrane and d is 

the thickness and qmax is the maximum value of the in-plane 

wavevector limited by Debye cut-off  [41].  Figure 5 shows that 

the temperature dependence of the specific heat in the low-

temperature regime (T < 4 K) departs from ∝ T
3
 to ∝ T 

behavior for 10 and 5 nm thick membranes. The explanation for 

this departure is that the flexural polarization gives the highest 

contribution to the total volumetric heat capacity, as shown in 

Fig. 5(b) for a 10 nm thick membrane, which reflects the fact 

that the dispersion is quadratic. The contribution of shear waves 

becomes the most important above 4 K, with 38% of the total 

specific heat, increasing to a maximum of 43% at 30 K. Above 

T > 300 K we find a convergence of the contribution of all 

polarizations. Figure 5(a) shows that the specific heat of thin 

membranes in the low temperature regime increases 

significantly with reducing thickness. 
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(a) 

(b) 

FIG. 5. (a) Specific heat as a function of temperature for 
bulk (black line), 10 nm (dark grey line) and 5 nm (grey line) 
thick membrane. (b) Contribution of each polarization to the 
total specific heat for 10 nm thick membrane. The black, dark 
grey dashed and grey dotted lines represent the contribution of 
dilatational (CV,D), flexural (CV,F) and shear (CV,S)  waves 
respectively. 

In summary, the in-plane propagation of confined acoustic 
modes in ultra-thin silicon membranes has been investigated, 
with measured thickness values down to 7.8 nm, in agreement 
with a parameter-free elasticity model. The fundamental 
flexural mode, which exhibits an out-of-plane polarisation and 
quadratic dispersion, was observed to have a scattering 
intensity nearly two orders of magnitude larger than the 
fundamental dilatational mode, which exhibits primarily an in-
plane polarization and linear dispersion. We have shown that at 
low temperatures this modified phonon dispersion relation 
causes a significant deviation from bulk behaviour, due to the 
relatively high population of the quadratic flexural branch. At 
room temperature and above where most electronic devices 
operate, however, the volumetric heat capacity shows no 
significant departure from bulk behaviour, even for thin films 
down to 5 nm. In addition to this effect, further work is required 
to calculate the effects of modified dispersion on phonon 
lifetimes and thermal transport, including both the effects of the 
group velocity and the modified three-phonon scattering 

processes, which may play an important role for both thermal 
and electrical transport in nanoscale devices at room 
temperature.  
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