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The Raman spectrum of epitaxial graphene on SiC is generally obtained by simply subtracting a SiC

spectra from the experimental data, which results in noisy spectrum and negative intensity. By using

a Non-negative Matrix Factorization (NMF) method, we obtain pure graphene spectra, even for

monolayer graphene and sub-micron size patterned features, as well as in spatial mapping and depth

profile. We show that the NMF method is efficient in data smoothing and for signal deconvolution

with no assumption required for the functional form of the signals. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4830374]

As graphene is getting more attention as an electronic

material,1 so is the need for a better sample characterization.

Epitaxial graphene (EG) grown on 4H- or 6H-SiC can be pro-

duced with a very high structural quality on mono crystalline

semiconductor wafer allowing for large scale integration.2,3

Excellent electronic properties have been demonstrated in

epitaxial graphene, which most recently record high fre-

quency transistor operation4,5 and spin diffusion lengths for

spintronics.6 Smoothed-edge nanoscale ribbons2,7 can also be

produced on non-polar SiC facets that present exceptional

conducting properties7,8 and wide band-gap semiconducting

strips.9

A widely used primary characterization of graphene is

Raman spectroscopy.10,11 However, unlike graphene trans-

ferred to SiO2, the Raman spectra of EG on SiC consist of a

combination of signals from graphene and bulk SiC in the

spectral region of the graphene D- and G-peaks.12–16 This

significantly complicates the data interpretation. The Raman

spectra of SiC and graphene are usually separated by a sim-

ple subtraction of a SiC bulk spectrum.17,18 The signal result-

ing from subtraction is however poorly defined17,18 and is

often noisy, showing nonphysical negative intensity, spe-

cially when the SiC and graphene peaks are of similar inten-

sity, that is for very thin graphene films.

Another issue is related to the Raman spectroscopy of

patterned lm-scale electronic devices. Unless in the near-

field regime, Raman scattering mapping is limited by the

spatial resolution given by the laser beam size (at best about

lm spot). Spatial resolution can, in principle, be increased to

the sub-lm scale by data deconvolution, but the laser beam

profile (impulse response function) has to be known.

In this Letter, we demonstrate that the Raman spectra of

epitaxial graphene can be decomposed very well into pure

graphene and SiC spectra by using a recently developed Non-

negative Matrix Factorization19 (NMF) method (software

freely accessible20,21). The graphene and SiC Raman spectra

can be identified as the NMF components, and the resulting

graphene spectra are clean, well-resolved and smooth, even

in the spectral range where SiC and graphene peaks overlap.

We also apply the method to a patterned sample where

multilayers pads connect to single layer graphene and show

that spatial maps of the NMF spectral components correlate

with that of local electrostatic force microscopy (EFM)

images. We also show that the method can be used for data

smoothing. Finally, we demonstrate that NMF is a good alter-

native to signal deconvolution because the method does not

require a priori knowledge of an impulse response function.

As a further application, we propose an experimental tech-

nique to characterize the spatial spread of the laser beams.

We have used the NMF method to analyze Raman data

for 15 epitaxial graphene samples grown on SiC by the con-

finement controlled sublimation method.22 Here, we focus on

two representative samples, grown on the 4H-SiC(000�1)

carbon-face. The first sample is a C-face multilayer epitaxial

graphene (MEG) sample of �5 layers. For the second sample,

MEG was plasma etched away everywhere except in two

10� 10 lm2 MEG areas separated by a 0.9 lm wide channel.

A sub-single layer graphene was subsequently grown in the

channel and around the MEG areas. This provides three

regions on the same sample: �10 layer thick MEG pads, sin-

gle graphene layer, and bare SiC areas.

Raman scattering was excited by a k ¼ 532 nm laser

light with laser beam size of �1 lm2 (Horiba Jobin-Yvon

LabRam). The data were taken between 1000 cm�1 and

3600 cm�1 with a spectral resolution of 1 cm�1. We present

below 3 sets of experiments.

In the first experiment (Fig. 1), we demonstrate the

decomposition of the Raman spectra from the first MEG

sample onto a SiC and a graphene spectrum. For this m¼ 69,

Raman spectra were taken, each at a different focal plane of

the laser beam, between z¼ 10 lm above the surface down

to z¼�25 lm below, in steps of Dz ¼ 0:5 to 1 lm. The focal

plane can be adjusted with respect to the sample surface with

a precision of 60:25 lm. This allows to change the relative

intensity of the graphene and SiC signals. The exact z posi-

tion is not important as long as a sufficient number of spectra

are taken at the graphene plane and deep below it (i.e., where

the graphene or SiC signal prevails, respectively).

For the second sample, we identify three regions of var-

ious graphene thicknesses. In this case, we acquired

m¼ 828 spectra by mapping the surface at constant

z¼ 0 lm. The surface area 3.4� 9 lm2 was scanned with aa)jan.kunc@physics.gatech.edu
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lateral resolution 0.2 lm (18 and 46 steps in x and y lateral

direction, respectively).

In short, the NMF is a multivariate analysis tool provid-

ing data categorization as K-means23 and spectral decompo-

sition on a basis of eigenvectors (decomposition known as

Principal Component Analysis (PCA)). In contrast to PCA,

which decomposes data into an orthonormal basis, NMF

imposes non-negativity constraint, thus facilitating the inter-

pretation of the basis functions. (The Raman spectral inten-

sity cannot be physically negative.) We use freely accessible

implementation of NMF20,21 using both Block Principal

Pivoting and Active Set21 minimization algorithms. Beside

non-negativity constraints, constraints on sparsity24 and reg-

ularity20 of the basis functions and/or linear coefficients have

been applied.

In both experiments, all the spectra were normalized by

their global maximum (maximal Raman scattering intensity

within all 69 or 828 spectra, respectively), and a local con-

stant background was subtracted from each spectrum sepa-

rately. The data were organized as columns of matrix Vexp.

The matrices Vexp were decomposed by NMF giving ele-

mentwise non-negative matrices H and W such that

Vexp¼WHþE. The error matrix E, which Frobenius norm is

minimized by the NMF algorithm, contains the noise infor-

mation and the matrix V¼WH the smoothed experimental

data. Data smoothing by NMF is discussed at the end of this

Letter (Fig. 3). The columns of matrix W are the basis func-

tions (the EG and SiC spectra for instance) and rows of ma-

trix H are the corresponding linear coefficients ascribing the

weight of the basis function in each experimental spectrum.

The matrices W and H are therefore of rank n� k and k�m,

respectively, where k is the number of basis functions, n is

the number of data points in each experimental spectrum,

and m is the number of experimental spectra. The number of

basis functions k is determined by the number of largest sin-

gular values of the matrix Vexp factorized by Singular Value

Decomposition (SVD).

A few representative Raman spectra as a function of the

relative position z for the first MEG sample are shown in

Fig. 1(a). Each spectrum has a different SiC relative to gra-

phene weight. When the excitation beam is focused at the

sample surface (z¼ 0 lm in Fig. 1(a) and blue curve in Fig.

1(b)), the Raman spectrum consists of a combination of 2nd
order bulk SiC Refs. 25 and 26) and G, GþA2u, 2D, and G*

graphene Raman peaks.11,27 The missing graphene D-peak

indicates good quality graphene. Note the single 2D gra-

phene peak indicating that the 5 layers in the MEG sample

are not stacked like in graphite, as previously discussed.12,17

As expected, the overall Raman signal intensity is weak

when the focal plane is high above the sample ðz > 0Þ and

increases when approaching the surface ðz! 0 lmÞ.
Lowering the focal plane below surface leads to attenuation

(enhancement) of the graphene (SiC, respectively) signal.

Far below the surface ðz < �10 lmÞ, the SiC signal intensity

slightly reduces due to light absorption in the SiC substrate.

The first 13 principal values of matrix Vexp obtained by

SVD are plotted in Fig. 1(c). The two largest principal values

represent the two principal components, as seen in Fig. 1(c),

the others have negligible contribution. The matrix Vexp is

then factorized with NMF of rank k¼ 2, giving two non-

negative basis functions (columns of matrix W) plotted in

red and black in Fig. 1(b). The basis functions are attributed

to the SiC and graphene Raman spectra. The linear coeffi-

cients (the 2 rows of matrix H, plotted in Fig. 1(d)) show the

relative contributions of SiC (black dots) and graphene (red

dots) to the measured Raman spectra (Fig. 1(a)) as a function

of z. As expected, the graphene signal is maximized for

z¼ 0, i.e., when the excitation laser beam is focused at the

sample surface.

Assuming a Gaussian shape for the laser beam,28 the

z-dependence of the graphene signal can be fitted by

H1;i ¼ 1

1þðz=zRÞ2
. Here, H1,i is the row of linear coefficients for

graphene as determined by NMF, zR ¼ pw2
0

k ¼ 2:3 lm is a

Rayleigh parameter of the Gaussian beam, and 2w0 ¼ 1:2 lm

is the beam waist (i.e., the radial width). The beam Full

Width at Half Maximum FWHM¼ 1.2 lm confirms the

expected beam waist� 1 lm (Jobin Yvon specification).

Note that for performing spectral decomposition only,

the number of spectra (here m¼ 69) can be greatly reduced,

as long as the condition ðnþ mÞk < nm is fulfilled19

FIG. 1. (a) Representative 7 out of 69 Raman spectra used for the NMF

decomposition. The focal plane was changed from z ¼ 10 lm above ðz > 0Þ
down to z ¼ �25 lm below ðz < 0Þ the sample surface. (b) Black (SiC) and

red (graphene) decomposed spectra are compared with blue Raman spec-

trum at z ¼ 0 lm before decomposition. (c) First largest singular values of

69 Raman spectra used for NMF decomposition. (d) Linear coefficients (rel-

ative strengths) of graphene (red) and SiC (black) basis functions versus

focal plane distance from sample surface. The blue curve is a fit assuming

Gaussian beam of the excitation laser (Rayleigh parameter zR ¼ 2:3 lm).

201911-2 Kunc et al. Appl. Phys. Lett. 103, 201911 (2013)



(here, n¼ 1867 data points per spectrum). The large m was

only necessary here to get enough spatial resolution to char-

acterize the laser beam.

We now show how NMF can be used as an alternative

to deconvolution. The second (patterned) sample was

mapped with Atomic Force Microscopy (AFM), EFM (Fig.

2(a)), and Raman scattering. Three different graphene/SiC

areas are identified in the EFM image (Fig. 2(a)). The brown

areas in Fig. 2(a) (area 3) are the MEG pads, the light areas

(such as 1) are single layer graphene, and the dark one

(labelled 2) is non-graphitized SiC substrate. The normalized

Raman spectra measured at points 1, 2, and 3 are plotted as

dashed lines in Fig. 2(e). The D, G, and 2D graphene peaks

are clearly identified in the spectra, as well as the SiC

Raman peaks. The 2D peak in area 3 presents a double peak

structure which is sometimes observed in MEG sample. It

can be due to the contribution of AB stacked layers (about

10%–15% of the stacking29) or small graphitic areas.12

Because we clearly identified three regions, the Raman

spectra at each point of the mapping were decomposed by

NMF of rank k¼ 3. The three basis functions Wi,1, Wi,2, Wi,3

(columns of matrix W) are plotted in Fig. 2(f). The Wi,1 and

Wi,2 basis function can clearly be associated with single layer

graphene and bare SiC, respectively, whereas Wi,3 is more

complex. The linear coefficients H1,i, H2,i, and H3,i (rows of

matrix H) plotted in Figs. 2(b)–2(d) show that each basis

function Wi,1, Wi,2, and Wi,3 clearly dominates in a different

area of the sample. Particularly, area 2 shows well pro-

nounced minimum for both graphene related basis functions

Wi,1 and Wi,3.

The channel between the MEG pads (0.9 lm wide) is nar-

rower than the laser beam spot (1.2 lm, as determined above);

therefore, the Raman signal from the channel (areas 1 and 2)

gets contribution also from the MEG pads. The Raman spec-

tra of just the narrow channel can nevertheless be recon-

structed, by keeping only the largest contributions to the

Raman signal in each area. For this, we performed an inverse

data composition V¼WH by replacing the linear coefficients

in matrix H by H0, where H0ij ¼ Hij for Hij > Hth ¼ 0:3 other-

wise H0ij ¼ 0. Applying this threshold on the inverse data

composition gives the filtered Raman spectra of Fig. 2(e)

(solid lines). The graphene related signal in area 1 is still pres-

ent; however, the D, G, and 2D peaks are filtered out at point

2. Changing the threshold Hth sets the sensitivity of the filter-

ing. At low (high) value of Hth the measured data (basis func-

tions), respectively, are retrieved. The filtered Raman spectra

prove that area 1 is a single layer as shown by its weak

G-peak and narrow Lorentzian 2D peak (FWHM¼ 27 cm�1).

Area 3 is covered by few layer graphene (strong G-peak, split-

ted 2D peak, that may come from layers of different strain or

doping in the MEG stack11,30 and attenuated intensity of SiC

Raman scattering16), as expected from the growth conditions.

Area 2 is bare SiC, showing that the regraphitization process

in the trench is only partial.

We have shown here that using a threshold Hth in signal

re-composition effectively removes non-local spurious signal

and plays a similar role as deconvolution. It is important to

note that, contrary to deconvolution, this method does not

require knowledge of the impulse response function.

We note however that the NMF spectral decomposition

is not unique. Each decomposition V¼WH can be replaced

by V ¼ ~W ~H ¼ WD�1DH, for any non-negative regular

square matrix D. The non-uniqueness can be dealt with by

adding constraints on the W or H matrices. The most com-

mon constraints are sparsness,20,24 regularity,20 orthogonal-

ity,31 and constraint on the minimum amplitude of the

recovered spectra.32 The orthogonality constraint has been

discussed32 to be often inconvenient due to possibility of

highly correlated signals composing the experimental data.

The constraint on the minimum amplitude of the recovered

spectra deals with the negative experimental data caused by

noise, however, since the noise level in our data was low

enough, we have not applied this method here. The ambigu-

ity of NMF is also reflected in our analysis. For instance, the

basis function Wi,3 (Fig. 2(f)) is a mixture of graphene and

SiC Raman signals. The mixed basis function Wi,3 can be

FIG. 2. (a) Electrostatic force microscopy image. Maps of the linear coeffi-

cients of (b) single layer graphene, (c) SiC and (d) multilayer graphene of

the same area on the sample. (e) Normalized data (dashed lines) measured at

points 1, 2, and 3 (shown in (a)-(d) by white and black numbered circles) are

compared to NMF filtered spectra (solid lines) using threshold 0.3. (f) Blue,

red and black spectra are basis functions corresponding to linear coefficients

in (b), (c), and (d), respectively.
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further decomposed either by applying different NMF con-

straints, by finding a transformation matrix D or by a Raman

depth analysis, as discussed above (Fig. 1).

Next, we use NMF for data smoothing. As explained

above, the exact NMF data decomposition is Vexp ¼ WH þ E,

where the Frobenius norm of matrix E is minimized by the

NMF algorithm. Therefore, matrix E contains mainly the

noise and the product V¼WH carries the smoothed experi-

mental data. We use the Raman spectra measured on the first

MEG sample to compare NMF smoothing with four most fre-

quently used smoothing algorithms (see Fig. 3). We define the

normalized data noise level by the ratio N ¼ Nsm=Nexp of the

standard deviation of the smoothed data Nsm to the standard

deviation of the experimental data Nexp. The smoothing pa-

rameters of Savitzky-Golay (SG), adjacent averaging (AA),

and Fast Fourier Transform high pass filter (FFT) are set so

that the data noise level is reduced to the level of NMF 2-

component smoothing N¼ 0.4. We compare the noise level in

a region of the spectrum with no peak in Fig. 3(b) and the in-

tensity of the sharp G-peak (that sits on top of the SiC peaks)

in Fig. 3(a). SG and AA smoothing already influence the in-

tensity of G-peak and high pass FFT filter does not reduce the

noise level below N¼ 0.58. Worse, slowly varying regions of

the Raman spectrum are modified also when the low-pass

FFT filter is used. PCA and NMF smoothing both reduce the

noise level to N¼ 0.4 and keep the sharp G-peak intensity.

Hence, both NMF and PCA provide the most efficient noise

reduction without modifying any information contained in a

Raman spectrum of graphene epitaxially grown on SiC.

The non-negative matrix factorization method was

applied to decompose the Raman scattering spectra of epi-

taxial graphene into pure graphene and SiC spectra. In con-

trast to simple commonly used SiC background subtraction,

the method provides well defined spectra, with much reduced

noise and non-negative intensity even for monolayer gra-

phene. The method provides also the relative contribution of

each spectrum, which is used for spatial mapping of pat-

terned samples and depth profile. In particular, pure Raman

spectrum of sub micron size graphene structures can be

extracted. Finally, we have demonstrated that NMF is effi-

cient for data smoothing and deconvolution, with no assump-

tion required for the functional form of the signals, and in

combination with two-dimensional nature of graphene

layers, it can be used as a method to characterize the laser

beam profiles.
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