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ON THE GROUND STATE OF THE LAPLACIAN WITH A MAGNETIC FIELD CREATED BY A RECTILINEAR CURRENT

We consider the three-dimensional Laplacian with a magnetic field created by an infinite rectilinear current bearing a constant current. The spectrum of the associated hamiltonian is the positive half-axis as the range of an infinity of band functions all decreasing toward 0. We make a precise asymptotics of the band function near the ground energy and we exhibit a semi-classical behavior. We perturb the hamiltonian by an electric potential. Helped by the analysis of the band functions, we show that for slow decaying potential, an infinite number of negative eigenvalues are created whereas only finite number of eigenvalues appears for fast decaying potential. The power-like decaying potential determining the finiteness of the negative spectrum is different than for the free Laplacian.

' Physical context. We consider in R 3 the magnetic field created by an infinite rectilinear wire bearing a constant current. Let px, y, zq be the cartesian coordinates of R 3 and assume that the wire coincides with the z axis. Due to the Biot & Savard law, the generated magnetic field writes Bpx, y, zq " 1 r 2 p´y, x, 0q

where r :" a x 2 `y2 is the radial distance corresponding to the distance to the wire. Let Apx, y, zq :" p0, 0, log rq be a magnetic potential satisfying curl A " B. We define the unperturbed magnetic hamiltonian

H A :" p´i∇ ´Aq 2 " D 2 x `D2
y `pD z ´log rq 2 ; D j :" ´iB j initially defined on C 8 0 pR 3 q and then self-adjoint in L 2 pR 3 q. It is known (see [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF], and [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF] for a more general setting) that the spectrum of H A has a band structure with band functions defined on R and decreasing from `8 toward 0. Then the spectrum of H A is absolutely continuous and coincide with r0, `8q. In that case the presence of the magnetic field does not change the spectrum (i.e. SpH A q " Sp´∆q), that may be expected since the magnetic field tends to 0 far from the wire. In this article we study the ground state of H A and its stability under electric perturbation. These questions are related to the dynamic of spinless quantum particles submitted to the magnetic field B and perturbed by an electric potential. ' Comparison with the free hamiltonian. In general the spectrum of a Laplacian may be higher in the presence of a magnetic field (see [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]). As already said, in our model we still have SpH A q " R `. However the dynamics are very different from the free motion, see [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF] for a description of the classical and quantum dynamics of this model. As we will see, the behavior of the negative spectrum under electrical perturbation is also different that what happens without magnetic field.

If V is a multiplication operator by a real electric potential V such that V pH A `1q ´1 is compact then the operator H A,V :" H A ´V is self-adjoint, its essential spectrum coincides with the positive half-axis and discrete spectrum may appear under 0.

Let us recall that, due to the diamagnetic Inequality (see [2, Section 2]), the operator V pH A `1q ´1 is compact as soon as V p´∆ `1q ´1 is compact. Moreover, if N A,V pλq denotes the number of eigenvalues of H A ´V below ´λ ă 0, we have ([2, Theorem 2.15]):

(1.1)

N A,V p0 `q ď C ż R 3
V `px, y, zq 3 2 dxdydz, V `:" maxp0, V q.

In particular, H A ´V has a finite number of negative eigenvalues provided that V `P L 3 2 pR 3 q. But this condition, also valid for ´∆ ´V , is not optimal in presence of magnetic fields as the results of this article will show.

We will prove that the discrete spectrum of our operator H A ´V below 0 is less dense than for ´∆ ´V (see Theorem 1.3 and Corollary 1.4), more precisely for some V the operator ´∆ ´V has infinitely many negative eigenvalues whereas N A,V p0 `q ă `8. In some sense, that means that the absolutely continuous spectrum of H A near 0 is less dense that the one of the free Laplacian ´∆.

' Magnetic hamiltonian and band functions. Several models with constant magnetic field have been studied in the past years. We recall some of them below. In most cases the system has a translation-invariance direction and the magnetic Laplacian is fibered through partial Fourier transform, therefore its study reduces to the study of the band functions that are the spectrum of the fiber operators. The spectrum of the hamiltonian is the range of the band functions (see [START_REF] Érard | The Mourre theory for analytically fibered operators[END_REF] for a general setting) and the ground state is given by the infimum of the first band function. The number of eigenvalues created under the essential spectrum by a suitable electric perturbation depends strongly on the shape of the band functions near the ground state as shown on the examples below:

For the case of a constant magnetic field in R n , the perturbation by electric potential is described for example in [START_REF] Sobolev | Asymptotic behavior of energy levels of a quantum particle in a homogeneous magnetic field perturbed by an attenuating electric field. I. In Linear and nonlinear partial differential equations[END_REF] or [START_REF] Raȋkov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF]. When n " 2, the band functions are constant and equal to the Landau levels. In [START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF] the authors deal with very fast decaying potential. In that case they prove that the perturbation by an electric potential even compactly supported generates sequences of eigenvalues which converge toward the Landau levels, that is very different from what happens without magnetic field where only a finite number of eigenvalues are created by compactly supported electric perturbation.

In general the band function associated with a Schrödinger operator are not constant. The case where the band functions reach their infimum is described in [START_REF] Raȋkov | Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential[END_REF] where the author study the perturbation of a Schrödinger operator with periodic electric potential and no magnetic field, whose band functions have non-degenerated minima, providing localization in the phase space. Let us come back to the case with constant magnetic field. When adding a boundary, the band functions may not be constant anymore. For example when the domain is a twodimensional infinite strip of finite width with constant magnetic field, it is proved that all the band functions are even with a non-degenerate minimum, see [START_REF] Geȋler | The structure of the spectrum of the Schrödinger operator with a magnetic field in a strip, and finite-gap potentials[END_REF]. In [START_REF] Briet | Spectral properties of a magnetic quantum Hamiltonian on a strip[END_REF], the authors investigate the behavior of the spectral shift function near the minima of the band functions, providing the number of eigenvalue created under the ground state when perturbing by an electric potential. Other examples of such a situation is the case of a half-plane with constant magnetic field and Neumann boundary condition, see [START_REF] Bruneau | Dirichlet and neumann eigenvalues for half-plane magnetic hamiltonians[END_REF]Section 4], the case of an Iwatsuka model with an odd discontinuous magnetic field, [START_REF] Hislop | Spectral analysis of Iwatsuka "snake" hamiltonians[END_REF]Section 5] and also the case of the Dirichlet Laplacian on a twisted wave guide, [START_REF] Briet | Eigenvalue asymptotics in a twisted waveguide[END_REF].

The case of a half-plane with a constant magnetic field and Dirichlet boundary condition is more intriguing and somehow closer to our model: in that case the bottom of the spectrum of the magnetic Laplacian is the first Landau level, but the associated band function does not reach its infimum. In [START_REF] Bruneau | Dirichlet and neumann eigenvalues for half-plane magnetic hamiltonians[END_REF], the authors gives the precise behavior of the counting function when perturbing by a suitable electric potential. Analog situations based on Iwatsuka models are described in [START_REF] Bruneau | Discrete spectrum of quantum Hall effect Hamiltonians I. Monotone edge potentials[END_REF] or [START_REF] Hislop | Edge currents for quantum Hall systems. I. One-edge, unbounded geometries[END_REF].

All the above described situations deal with constant magnetic field. In this article we deal with a three dimensional variable magnetic field going to 0 far from the z-axis and invariant along this axis, therefore the situation is quite different-one may think roughly that the variations of the magnetic field will create non-constant band function as the addition of a boundary does in the case of a constant magnetic field. Moreover in the above described models the band functions are well separated near the ground state in the sense that the infimum of the second band function is larger than the ground state. In our case there are infinitely many band functions that accumulate toward inf SpH A q, see Figure 1, adding a technical challenge when studying the ground state.

In this paper, we give more precise description of the spectrum of H A near 0 with asymptotic expansion of the band functions. Then, we study the finiteness of the number of the negative eigenvalues of H A ´V for relatively compact perturbations V . On one hand, we display classes of potentials giving rise to an accumulation at 0, of an infinite number of negative eigenvalues, on the other hand, under a decreasing property of V `, we prove the finiteness of the discrete spectrum of H A ´V below 0. We obtain a class of polynomially decreasing potentials for which H A ´V has a finite number of negative eigenvalues while the negative spectrum of ´∆ ´V is infinite. 1.2. Main results. Using the cylindrical coordinates of R 3 , we identify L 2 pR 3 q with the weighted space L 2 pR `ˆp0, 2πq ˆR, rdrdφdzq and the operator H A writes:

H A " ´1 r B r rB r ´B2 φ r 2 `plog r ´Dz q 2 acting on functions of L 2 pR `ˆp0, 2πq ˆR, rdrdφdzq.
Let us recall the fibers decomposition of H A that can be found with more details in [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF]. We denote by F 3 the Fourier transform with respect to z and Φ the angular Fourier transform.

We have the direct integral decomposition (see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]Section XIII.16] for the notations about direct decomposition):

ΦF 3 H A F 3 Φ ˚:" À ÿ mPZ ż À kPR g m pkqdk
where the operator (1.2) g m pkq :" ´1 r B r rB r `m2 r 2 `plog r ´kq 2 is defined as the extension of the quadratic form

q k m puq :" ż R `ˆ|u 1 prq| 2 `m2 r 2 |uprq| 2 `plog r ´kq 2 |uprq| 2 ˙rdr
initially defined on C 8 0 pR `q and closed in L 2 r pR `q :" L 2 pR `, rdrq. For all pm, kq P Z ˆR the operator g m pkq has compact resolvent. We denote by λ m,n pkq the so-called band functions, i.e. the n-th eigenvalue of g m pkq associated with a normalized eigenvector u m,n pkq.

It is known ( [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF], see also Section 2. This asymptotics shows that all the band functions tend exponentially to the ground state and cluster according to their energy level, see Figures 1 and2.

Let us consider V , a multiplication operator such that V pH A `1q ´1 is compact. Considered in L 2 pR `ˆp0, 2πqˆR, rdrdφdzq, V is a function of pr, ϕ, zq and it is said axisymmetric when it does not depend of ϕ.

We want to know how reacts the ground state of H A under electrical perturbation. For potentials slowly decreasing with respect to r, we have an infinite number of negative eigenvalues of H A ´V :

Theorem 1.2. Suppose V is a potential such that V pH A `1q ´1 is compact and (1.4)
V px, y, zq ě xpx, yqy ´α v K pzq, α ą 0.

If α and v K satisfy one of the assumptions (i), (ii) below, then, H A ´V have a infinite number of negative eigenvalues which accumulate to 0.

(i) α ă 1 2 and v K P L 1 pRq such that ż R v K pzqdz ą 0.
(ii) v K ě Cxzy ´γ with γ ą 0 and α `γ 2 ă 1.

The proof uses a construction of quasi-modes based on the eigenfunctions associated with λ m,n pkq that leads to a one-dimensional operator in the z variable. The key point is a projection (in the r variable) of the potential V against the eigenfunctions of g m pkq that are localized near the wells of the potential plog r ´kq 2 for large k.

We also have conditions giving finiteness of the negative spectrum. Let us give some comments concerning the above results in comparison with known borderline behavior of perturbations of the Laplacian. It is not true in general that the number of negative eigenvalues of ´∆ ´V is larger than when adding a magnetic field, see Exemple 2 after Theorem 2.15 of [START_REF] Avron | Schrödinger operators with magnetic fields. I. General interactions[END_REF]. Theorem 1.2 is a case where the number of negative eigenvalues in presence of magnetic field is infinite as without magnetic field.

However due to the diamagnetic inequality, one might expect for most cases that the density of negative eigenvalues is more important for ´∆ ´V than for H A ´V . The above results illustrate this phenomenon, indeed we prove that the borderline behavior of the perturbation determining the finiteness of the negative spectrum of H A ´V is different than for ´∆ ´V : Corollary 1.4. Let V be a measurable function on R 3 that obeys cxpx, yqy ´αxzy ´γ ď V px, y, zq ď Cxpx, yqy ´αxzy ´γ , with α `γ ă 2, α ą 1 and γ ą 1 2 . Then the operator ´∆ ´V have infinitely many negative eigenvalues while the negative spectrum of H A ´V is finite.

Proof. Since xpx, yqy ´αxzy ´γ ě xpx, y, zqy ´pα`γq , according to [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]Theorem XIII.6] we know that for V px, y, zq ě xpx, yqy ´αxzy ´γ with α`γ ă 2, the operator ´∆´V has infinitely many negative eigenvalues. The corollary is then deduced from Theorem 1.

3.

A natural open question concern the existence of a borderline behavior of V which determine the finiteness of the negative spectrum of H A ´V . At the moment we can only say that, if it exists, such borderline potential V b satisfies:

C ´xpx, yqy ´α´x zy ´γ´ď V b ď C `xpx, yqy ´α`x zy ´γ`,
with 0 ă α ´ď maxp1 ´γ2 ; 1 2 q, γ ´ą 0 and α `ą 1, γ `ą 1 2 .

1.3. Organisation of the article. In Section 2 we recall basis on the fibers of the operator H A and their associated band functions λ m,n pkq. We give the localization of the associated eigenfunctions for large k and we prove Theorem 1.1. We also provide numerical computations of the band functions. In Section 3, we construct quasi-modes for the perturbed operator H A ´V that leads to study a one-dimensional problem and allows to prove Theorem 1.2.

Based on an uniform lower bound of the band functions, Section 4 combines the Birman-Schwinger principle with results of Section 2 to prove Theorem 1.3. The key point is an estimation of the Hilbert-Schmidt norm of Birman-Schwinger type operator associated with the perturbed hamiltonian.

DESCRIPTION OF THE 1D PROBLEM ASSOCIATED WITH THE UNPERTURBED

HAMILTONIAN

In this section we first recall results from [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF] on the behavior of the band functions k Þ Ñ λ m,n pkq. Then we give Agmon estimates on the associated eigenfunctions and we perform an asymptotic expansion of λ m,n pkq when k goes to `8. In Section 3 and 4 we will use these expansions to analyse the operator H A ´V .

Depending on the context we shall work with different operators all unitarily equivalent to the operator g m pkq written in (1.2). Table 1 gives a description of these operators and the notations we use.

Semi-classical point of view.

' Global behavior of the band functions. As in [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF], we introduce the parameter h :" e ´k such that log r ´k " logphrq. The scaling ρ " hr shows that g m pkq is unitarily equivalent to (2.1)

g m phq :" ´h2 1 ρ B ρ ρB ρ `h2 m 2 ρ 2 `plog ρq 2
acting on L 2 ρ pR `q :" L 2 pR `, ρdρq. We denote by pµ m,n phq, u m,n p¨, hqq ně1 the normalized eigenpairs of this operator and by q m h the associated quadratic form. We have µ m,n phq " λ m,n pkq and

u m,n pρ, hq " hu m,n ´ρ h , ´log h
where u m,n p¨, kq is a normalized eigenfunction associated with λ m,n pkq for g m pkq. Using the min-max principle and the expression (2.1), it is clear that h Þ Ñ µ m,n phq is non decreasing on p0, `8q and therefore k Þ Ñ λ m,n pkq is non increasing on R. It was already used by Yafaev (see [START_REF] Yafaev | A particle in a magnetic field of an infinite rectilinear current[END_REF]) who, moreover, shows (see [ µ m,n phq " `8 .

Note that these results are extended to more general magnetic fields in [25, Section 3].

' The fiber operator in an unweighted space. Sometimes it will be convenient to work in an unweighted Hilbert space on the half-line, therefore we introduce the isometric transformation

M : L 2 pR `, rdrq Þ ÝÑ L 2 pR `, drq uprq Þ ÝÑ ? r uprq
and we define r g m pkq :" Mg m pkqM ˚. This operator expressed as

(2.2) r g m pkq :" ´B2 r `m2 ´1 4 r 2 `plog r ´kq 2 ,
acting on L 2 pR `q and its precise definition can be derived from the natural associated quadratic form initially defined on C 8 0 pR `q and then closed to L 2 pR `q.

2.2. Agmon estimates about the eigenpairs of the fiber operator. We write

g m phq " ´h2 1 ρ B ρ ρB ρ `V m h with V m h pρq :" logpρq 2 `h2 m 2 ρ 2 .
Let q h m denote the natural associated quadratic form. Assume that µ is an eigenvalue satisfying µ ď E `Ophq with E ě 0, the eikonale equation on the Agmon weight φ writes

h 2 |φ 1 | 2 " V m h ´E that is |φ 1 pρq| 2 " plog ρq 2 ´E h 2 `m2 ρ 2 . A solution is given by φ h pρq{h with (2.3) φ h pρq :" ˇˇˇˇż ρ 1 d ˆplog ρ 1 q 2 ´E `h2 m 2 ρ 1 2 ˙`dρ 1 ˇˇˇŤ
his function provides the general Agmon estimates:

Proposition 2.1. Let E ě 0 and C 0 ą 0. For all β P p0, 1q there exist CpE, βq ą 0 and h 0 ą 0 such that for all eigenpairs pµ, u µ q of g m phq with µ ď E `C0 h and u µ that is L 2 ρ -normalized there holds:

(2.4) @h P p0, h 0 q, }e β φ h h u µ } L 2 ρ pR `q ď CpE, βq and q h m ´eβ φ h h u µ ¯ď CpE, βq .
Proof. This proposition is an application of the well-known Agmon estimates for 1D Schrödinger operators with confining potential. First we have the following identity for any Lipschitz bounded function φ, see for example [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF], [START_REF] Agmon | Bounds on exponential decay of eigenfunctions of Schrödinger operators[END_REF] or [START_REF] Helffer | Puits multiples en limite semi-classique. II. Interaction moléculaire[END_REF]:

(2.5) xg m phqu, e 2φ uy L 2 ρ pR `q " q m h pe φ uq ´h2 }φ 1 e φ u} 2

L 2 ρ pR `q .
In particular when u " u µ is an eigenfunction associated with the eigenvalue µ we get

(2.6) ż R ``h 2 |B ρ pe φ u h q| 2 ``V m h ´h2 |φ 1 | 2 ´µ˘| e φ u h | 2 ˘ρdρ " 0 .
We now use this identity with φ " φ h {h where φ h is defined in (2.3). The remain of the proof is classical and can be found with details in [11, Proposition 3.3.1] for example.

Note that

φ h pρq ě φ 0 pρq " ˇˇˇż ρ 1 b pplog ρ 1 q 2 ´Eq `dρ 1 ˇˇť
hat does not depend neither on m nor on h. Therefore (2.4) remains true replacing φ h by φ 0 and we get L 2 estimates uniformly in m, in particular:

(2.7) @β P p0, 1q, @h P p0, h 0 q, }e β φ 0 h u m,n p¨, hq} L 2 ρ pR `q ď CpE, βq for all normalized eigenfunction u m,n p¨, hq of g m phq associated with any eigenvalue µ m,n phq satisfying µ m,n phq ď E `C0 h where C 0 ą 0 is a set constant.

When E " 0 (that means that we are looking at the low-lying energies) the Agmon distance φ 0 is explicit:

φ 0 pρq " ˇˇˇż ρ 1 | log ρ 1 |dρ 1 ˇˇ" |rρ 1 log ρ 1 ´ρ1 s ρ 1 | " |ρ log ρ ´ρ `1| .
Let us express this in the original cylindrical variable r " ρ h with the Fourier parameter k " ´log h. The associated Agmon distance writes (2.8) Φ 0 pr, kq :" φ 0 pρq h " e k φ 0 pre ´kq " rplogprq ´kq ´r `ek .

Writing the previous estimates in these variables we get that for k large enough:

(2.9) }e βΦ 0 p¨,kq u m,n p¨, kq} L 2 r pR `q ď Cp0, βq and }e βΦ 0 p¨,kq r u m,n p¨, kq} L 2 pR `q ď Cp0, βq where r u m,n prq :" ? r u m,n p¨, kq is a normalized eigenvector associated with λ m,n pkq for the operator r g m pkq in the unweighted space L 2 pR `q.

The function r Þ Ñ Φ 0 pr, kq is positive, decreasing on p0, e k q and increasing on pe k , `8q. It vanishes when r " e k , so we find that the eigenfunction of the operator g m pkq are localized at the minimum of the wells r " e k . 2.3. Asymptotics for the small energy. In this section we provide an asymptotic expansion of µ m,n phq for fixed pm, nq when h goes to 0, namely: Proposition 2.2. For all pm, nq P Z ˆN˚t here exists C m,n ą 0 and h 0 ą 0 such that @h P p0, h 0 q, |µ m,n phq ´p2n ´1qh ´pm 2 ´1 4 ´npn´1q

2 qh 2 | ď C m,n h 5{2 .
The operator g m phq written in (2.1) is a semiclassical Schrödinger operator with a potential which has a unique minimum at ρ " 1. We will use the technics of the harmonic approximation as described in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF], [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF] or [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF] to derive the asymptotics of the eigenvalues. The remain of this section is devoted to the proof of Proposition 2.2 which implies Theorem 1.1 because λ m,n pkq " µ m,n pe ´kq.

' Canonical transformations. As above we introduce the operator r g m phq :" Mg m phqM ˚in the unweighted space where M : upρq Þ Ñ ? ρ upρq. We get

r g m phq " ´h2 B 2 ρ `h2 m 2 ´1 4 ρ 2 `log 2 ρ
acting on the unweighted space L 2 pR `q. Apply now the change of variable t " ρ´1 ? h . We get that r g m phq is unitarily equivalent to hp g m phq where

p g m phq :" ´B2 t `log 2 p1 `?htq h `h m 2 ´1 4 p1 `?htq 2
acting on L 2 pI h q with I h " p´h ´1{2 , `8q. As we will see below, this operator has a suitable shape to make an asymptotic expansion of its eigenvalues when h Ñ 0.

' Asymptotic expansion and formal construction of quasi-modes. We write a Taylor expansion of the potential near t " 0:

log 2 p1 `?htq h `h m 2 ´1 4 1 `?ht " t 2 ´h1{2 t 3 `p11 12 t 4 `m2 ´1 4 qh `Rpt, hq (2.10) 
where Rpt, hq will later be controlled by p1 `|t|q 5 h 3{2 . We write

p g m phq " L 0 `h1{2 L 1 `hL 2 `Rp¨, hq where $ ' & ' % L 0 :" ´B2 t `t2 , L 1 :" ´t3 , L 2 :" `11 12 t 4 `m2 ´1 4 ˘.
At first we consider these operator as acting on L 2 pRq and we look at a quasi-mode for L 0 h1{2 L 1 `hL 2 defined on R. Using a suitable cut-off function this procedure will provide a quasi-mode for p g m phq.

We look for a quasi-mode of the form

pEphq, f p¨, hqq " pE 0 `h1{2 E 1 `hE 2 , f 0 `h1{2 f 1 `hf 2 q .
We are led to solve the following system:

$ & % L 0 f 0 " E 0 f 0 , (2.11a) L 1 f 0 `L0 f 1 " E 0 f 1 `E1 f 0 , (2.11b) L 2 f 0 `L1 f 1 `L0 f 2 " E 2 f 0 `E1 f 1 `E0 f 2 . (2.11c)
Since L 0 is the quantum harmonic oscillator, to solve (2.11a) we choose for E 0 the n-th Landau level:

(2.12) E 0 :" 2n ´1, n ě 1

and f 0 " f 0,n :" Ψ n , n ě 1
where Ψ n is the n-th normalized Hermite's function with the convention that Ψ 1 ptq " p2πq ´1{4 e ´t2 {2 .

We take the scalar product of (2.11b) against f 0,n and we find

E 1 " xpL 0 ´E0 qf 1 , f 0,n y `xL 1 f 0,n , f 0,n y " xL 1 f 0,n , f 0,n y .
Notice that f 0,n is either even or odd and that L 1 f 0,n has the opposite parity. Therefore the function L 1 f 0,n ¨f0,n is odd for all n ě 1 and we get (2.13) E 1 " 0 .

We find f 1 by solving (2.11b):

(2.14)

pL 0 ´E0 qf 1 " ´L1 f 0,n " t 3 Ψ n ptq .
Using tΨ n ptq " b n´1 2 Ψ n´1 ptq `an 2 Ψ n`1 ptq, we write t 3 Ψ n ptq on the basis of the Hermite's functions:

t 3 Ψ n ptq " a n Ψ n´3 ptq `bn Ψ n´1 ptq `cn Ψ n`1 ptq `dn Ψ n`3 ptq with (2.15) @n ě 1, $ ' ' ' ' ' & ' ' ' ' ' % a n " 2 ´3{2 a pn ´1qpn ´2qpn ´3q b n " 2 ´3{2 3pn ´1q ? n ´1 c n " 2 ´3{2 3n ? n d n " 2 ´3{2 a npn `1qpn `2q .
Therefore the unique solution to (2.14) orthogonal to f 0,n is:

f 1 " f 1,n :" ˆ´a n 6 Ψ n´3 ´bn 2 Ψ n´1 `cn 2 Ψ n`1 `dn 6 Ψ n`3
ẇith a n " 0 when n ď 3 and b n " 0 when n " 1 (see (2.15)).

We now take the scalar product of (2.11c) against f 0,n :

(2.16)

E 2 " xL 2 f 0,n , f 0,n y `xL 1 f 1,n , f 0,n y .
Computations provides

xL 2 f 0,n , f 0,n y " `11 12 }t 2 f 0,n } 2 `m2 ´1 4 ˘" `11 16 p2n 2 ´2n `1q `m2 ´1 4 ȃnd xL 1 f 1,n , f 0,n y " ˆa2 n 6 `b2 n 2 ´c2 n 2 ´d2 n 6 ˙" 1 16 `´30n 2 `30n ´11 ˘, therefore we get (2.17) E 2 " ˆ´npn ´1q 
2 `m2 ´1 4 ˙.
We deduce from (2.11c):

pL 0 ´E0 qf 2 " E 2 f 0,n ´L1 f 1,n ´L2 f 0,n .
Since the compatibility condition is satisfies by the choice of E 2 (see (2.16)), the Fredholm alternative provides a unique solution f 2 " f 2,n orthogonal to f 0,n . As above it may be computed explicitly using the Hermite's functions. Notice that f 2,n depends on m as E 2 , see (2.17).

We finally define f m,n pt, hq :" f 0,n ptq `h1{2 f 1,n ptq `hf 2,n ptq ' Evaluation of the quasi-mode and upper bound. The above formal construction provides functions on R and we will now use a cut-off function in order to get quasi-modes for p g m phq. Let χ P C 8 0 pR, r0, 1sq be a cut-off function increasing such that χptq " 0 when t ď ´1{2 and χptq " 1 when t ě ´1{4. We define χpt, hq :" χph 1{2 tq and p v m,n pt, hq :" χpt, hqf m,n pt, hq .

Recall that p g m,n phq acts on L 2 pI h q with I h " p´h ´1{2 , `8q. Since supp `p v m,n p¨, hq ˘Ă p´1 2 h ´1{2 , `8q and p v m,n p¨, hq has exponential decay at `8, we have p v m,n P dompp g m phqq. Let E m,n phq :" E 0 `h1{2 E 1 `hE 2 where E 0 , E 1 and E 2 are defined in (2.12), (2.13) and (2.17).

We now evaluate } pp g m phq ´Em,n phqq p v m,n p¨, hq} L 2 pI h q . The procedure is rather elementary but for the sake of completeness we provide details below. We have (2.18) } pp g m phq ´Em,n phqq p v m,n p¨, hq} L 2 pI h q ď }rp g m phq, χp¨, hqsf m,n p¨, hq} L 2 pI h q `}χp¨, hqRp¨, hqf m,n p¨, hq} L 2 pI h q `}χp¨, hq `L0 `h1{2 L 1 `hL 2 ´Em,n phq ˘fm,n p¨, hq} L 2 pI h q

We have rp g m phq, χp¨, hqsf m,n pt, hq " ´2h 1{2 χ 1 ph 1{2 tqf 1 m,n pt, hq ´hχ 2 ph 1{2 tqf m,n pt, hq therefore t Þ Ñ rp g m phq, χp¨, hqsf m,n pt, hq is supported in r´1 2 h ´1{2 , ´1 4 h ´1{2 s and since f m,n p¨, hq and f 1 m,n p¨, hq have exponential decay we get (2. [START_REF] Raȋkov | Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential[END_REF] }rp g m phq, χp¨, hqsf m,n p¨, hq} L 2 pI h q " Oph 8 q .

Remind that Rpt, hq is defined in (2.10), we get DC ą 0, @h ą 0, @t P supppχp¨, hqq, |Rpt, hq| ď Ch 3{2 p1 `|t|q 5 .

Using the exponential decay of f m,n we get C m,n ą 0 such that

(2.20) }χp¨, hqRp¨, hqf m,n p¨, hq} L 2 pI h q ď C m,n h 3{2 .
The last term of (2.18) is easily computed:

`L0 `h1{2 L 1 `hL 2 ´Em,n phq ˘fm,n p¨, hq " h 3{2 ppL 1 ´E1 qf 2,n `pL 2 ´E2 qf 1,n q`h 2 L 2 f 2,n
and we get C m,n ą 0 such that

}χp¨, hq `L0 `h1{2 L 1 `hL 2 ´Em,n phq ˘fm,n p¨, hq} L 2 pI h q ď C m,n h 3{2 .
Combining this with (2. [START_REF] Raȋkov | Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential[END_REF]) and (2.20) in (2.18) we get (2.21) DC m,n , Dh 0 ą 0, @h P p0, h 0 q, } pp g m phq ´Em,n phqq p v m,n p¨, hq} L 2 pI h q ď C m,n h 3{2 .

Moreover we have

} p v m,n p¨, hq} L 2 pI h q " }f m,n p¨, hq} L 2 pRq `Oph 8 q " }f 0,n } L 2 pRq `Oph 1{2 q " 1 `Oph 1{2 q
where the above estimates depends on pm, nq. Since g m phq is unitarily equivalent to hp g m phq, µ m,n phq{h is the n-th eigenvalue of p g m phq and the spectral theorem applied to (2.21) shows that

(2.22) DC m,n , Dh 0 ą 0, µ m,n phq h ď E m,n phq `Cm,n h 3{2
and we have proved the upper bound of Proposition 2.2.

' Arguments for the lower bound. The complete procedure for the proof of the lower bound of the eigenvalues of p g m phq using the harmonic approximation can be found in [7, Chapter 4] or [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]Chapter 3]. We recall here the main arguments. Let p Φ 0 pt, hq :" p1 `?htq logp1 `?htq ´?ht be the distance of Agmon in the t-variable, the estimates provided in (2.7) becomes:

@β P p0, 1q, }e β p Φ 0 h p u m,n p¨, hq} L 2 pI h q ď CpE, βq
where p u m,n p¨, hq is the n-th eigenvector associated to p g m phq. Therefore there holds a priori estimates on the eigenfunctions proving that they concentrate near t " 0 when h tends to 0. Using a Grushin procedure (see [START_REF] Šin | Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols[END_REF]), these eigenfunctions are used as quasi-modes for the first order approximation L 0 and this provides a rough lower bound on the eigenvalues µm,nphq h of p g m phq by the eigenvalues of L 0 that are the Landau levels, modulo some remainders. Combining this with (2.22), we get that there are gaps in the spectrum of p g m phq and the spectral theorem applied to (2.21) proved the lower bound on µm,nphq h and therefore the lower bound of Proposition 2.2.

Notation Operator

Space Form Eigenpairs

H A p´i∇ ´Aq 2 L 2 pR 3 q spectrum" R gm pkq ´1 r B r rB r `m2 r 2 `plog r ´kq 2 L 2 pR `, rdrq q k m pλ m,n pkq, u m,n pr, kqq r g m pkq ´B2 r `m2 ´1 4 r 2 `plog r ´kq 2 L 2 pR `, drq r q k m pλ m,n pkq, r u m,n pr, kqq g m phq ´h2 1 ρ B ρ ρB ρ `h2 m 2 ρ 2 `plog ρq 2 L 2 pR `, ρdρq q h m pµ m,n phq, u m,n pρ, hqq r g m phq ´h2 B 2 ρ `h2 m 2 ´1 4 ρ 2 `plog ρq 2 L 2 pR `, dρq r q h m pµ m,n phq, r u m,n pρ, hqq p g m phq ´B2 t `h m 2 ´1 4 p1`h 1{2 tq 2 `plogp1 `h1{2 tqq 2 L 2 pI h , dtq p q h m ph ´1µ m,n phq, p u m,n pt, hqq TABLE 1.
Operators and notations. Remind that ρ " hr with r " a x 2 `y2 , h " e ´k and I h " p´h ´1{2 , `8q.

2.4.

Numerical approximation of the band functions. We use the finite element library Melina ( [START_REF] Mélina | bibliothèque de calculs éléments finis[END_REF]) to compute numerical approximations of the band functions λ m,n pkq with 0 ď m ď 2 and 1 ď n ď 4. For k P r´2, 6s), the computations are made on the interval r0, Ls with L large enough and an articifial Dirichlet boundary condition at r " L. According to the decay of the eigenfunctions provided by the Agmon estimates we have chosen L " 2e 6 so that the region tr " e k u where are localized the associated eigenfunction is included in the computation domain.

On Figure 1 we have plot the numerical approximation of λ m,n pkq for the range of parameters described above. According to the theory, they all decrease from `8 toward 0. Notice that the band functions may cross for different values of m.

On figure 2 we have zoomed on the lowest energies λ ăă 1 and we have also plotted the first order asymptotics k Þ Ñ p2n ´1qe ´k. We see that for set 1 ď n ď 4, the band functions λ m,n pkq 0ďmď2 cluster around the first order asymptotic p2n ´1qe ´k according to Theorem 1.1. 

CONSTRUCTION OF QUASI-MODES AND INFINITENESS OF NEGATIVE

EIGENVALUES

In this section we prove Theorem 1.2 giving infinitely many eigenvalues below 0 for a slowly decreasing perturbation.

First, we consider V depending only on pr, zq and we construct quasi-modes which allow to reduce the existence of infinitely many negatives eigenvalues to the existence of sufficiently small eigenvalues of some 1D-effective problems D 2 z ´Vm,n . Then, we study the effective potential V m,n and conclude the proof of Theorem 1.2.

3.1. Quasi-modes. We construct quasi-modes for the perturbed operator H A ´V where V is axisymmetrical. Let ψ m,n pr, φ, z, kq :" e imφ e ikz u m,n pr, kqf pzq where f P L 2 pRq, pm, n, kq will be chosen later and u m,n pr, kq is a normalized eigenfunction of g m pkq associated with λ m,n pkq. We have: Integrating over pr, zq in the weighted space pR `ˆR, rdrdzq we get

(3.6) xpH A ´V qψ m,n , ψ m,n y L 2 pR `ˆR,rdrdzq " λ m,n pkq}f } 2 L 2 pRq `}D z f } 2 `2 ż r,z plog r ´kq|u m,n pr, kq| 2 D z f pzqf pzqrdrdz ´żz V m,n pz, kq|f pzq| 2 dz.
Then, using that for any ǫ ą 0,

|2plog r ´kqD z f pzqf pzq| ď ǫplog r ´kq 2 |f pzq| 2 `ǫ´1 |D z f | 2 ,
we deduce,

xpH A ´V qψ m,n , ψ m,n y ď λ m,n pkq}f } 2 L 2 pRq `p1 `ǫ´1 q D z f 2 L 2 pRq `ǫ ż r,z plog r ´kq 2 |u m,n pr, kq| 2 |f pzq| 2 rdrdz ´xV m,n p., kqf, f y L 2 pRq .
Since in the sense of quadratic form in L 2 pR `ˆR, rdrdzq, we have plog r ´kq 2 ď g m pkq, we obtain (3.1) using again that g m pkqu m,n pr, kq " λ m,n pkqu m,n pr, kq.

Remark 3.2. According to the Feynman-Hellmann formula, the third term in the right hand side of (3.6) is related to the derivative of λ m,n pkq:

λ 1 m,n pkq " ´2 ż r,z
plog r ´kq|u m,n pr, kq| 2 rdr.

This quantity could be studied more carefully as in [START_REF] Hislop | Characterization of currents carried by bulk states in one-edge quantum hall systems[END_REF] where it is done for another fibered operator, but here, we need only some rough estimates.

3.2.

Estimate on the reduced potential. We are looking at the asymptotic behavior of the 1D potential z Þ Ñ V m,n pz, kq by using the localization properties of the eigenfunctions r u m,n p¨, kq when k goes to `8. In this section all the Landau's notations refers to an asymptotic behavior when k goes to `8. Set pm, nq P Z ˆN˚, C m,n ą 2n ´1 and choose k large enough such that λ m,n pkq ď C m,n e ´k (see Theorem 1.1). Write that R " I k YAI k with I k " re k ´apkq, e k `apkqs and apkq " ope k q will be chosen later. We use (2.9) with E " 0: ż where the Agmon distance Φ 0 is defined in (2.8). Since Φ 0 p¨, kq is decreasing on p0, e k q and increasing on pe k , `8q we have

inf AI k Φ 0 p¨, kq " minpΦ 0 pe k ˘apkqq .
An asymptotic expansion at these points provides

Φ 0 pe k ˘apkq, kq " kÑ`8 1 2 a 2 pkqe ´k `Opapkq 3 e ´2k q .
Assume that We have

V m,n pz, kq ě inf rPI k V pr, zq ż I k |r u m,n pr, kq| 2 dr ě inf rPI k V pr, zqp1 ´Cp0, βq sup rPAI k
e ´βΦ 0 pr,kq q where we have used }r u m,n p¨, kq} L 2 pR `q " 1.

Set β P p0, 1q once for all. Choose ǫ ą 0. Then we deduce from the choice of apkq in (3.7) and (3.8) that there exists k 0 that depends a priori of pm, nq such that (3.9) @k ě k 0 , @z P R, V m,n pz, kq ě p1 ´ǫq inf

rPI k V pr, zq 3.3. Proof of Theorem 1.2.
According to the min-max principle, since V satisfies (1.4), it is sufficient to prove the infinity of the negative eigenvalues for the axisymmetric potential V pr, zq " xry ´αv K pzq. Let us denote H m A the restriction of H A to e imφ L 2 pR `ˆR, rdrdzq. For V axisymmetric, H A ´V is unitarily equivalent to ' mPZ pH m A ´V q, then H A ´V has infinitely many negative eigenvalues provided that ' Either H m A ´V has at least one's for all m P Z, ' or there exists m P Z such that H m A ´V has infinitely many negative eigenvalues. Thanks to the min-max principle, Lemma 3.1, implies that for each m P Z the number of negative eigenvalues of H m A ´V is at least the number of eigenvalues of p1 `ǫ´1 qD 2 z Vm,n p., kq below ´p1 `ǫqλ m,n pkq, that is the number of eigenvalues of D 2 z ´ǫ 1`ǫ V m,n p., kq below ´ǫλ m,n pkq.

For V pr, zq " xry ´αv K pzq, the inequality (3.9) implies:

@k ě k 0 , @z P R, V m,n pz, kq ě Ce ´αk v K pzq,
and choosing k large enough such that λ m,n pkq ď C m,n e ´k, we deduce that the number of negative eigenvalues of H m A ´V is at least the number of eigenvalues of D 2 z ´Cǫ 1`ǫ e ´αk v K below ´ǫC m,n e ´k. Then Theorem 1.2 follows by applying the following lemmas (Lemma 3.3 and Lemma 3.4), for k sufficiently large with Λpkq " e ´αk , v " Cǫ 1`ǫ v K and λpkq " ǫC m,n e ´k.

3.4. Lemmas on negative eigenvalues for a family of some 1D Schrödinger operators.

Lemma 3.3. Let hpkq " D 2 z ´Λpkqvpzq on R, k P R with:

v P L 1 pRq; ż R vpzqdz ą 0, Λpkq ą 0.
Let λpkq be a positive function of k P R such that

(3.10) lim kÑ`8
λpkq " 0; lim kÑ`8 λpkq Λpkq 2 " 0.

Then, for k sufficiently large, hpkq `λpkq has at least one negative eigenvalue.

Proof. Let us introduce the L 2 ´normalized function v k pzq :" apkq 1 2 e ´apkq|z| with apkq satisfying lim kÑ`8 apkq " 0 and to be chosen. We use v k pzq as a quasi-mode:

xhpkqv k , v k y " apkq 2 ´Λpkqapkq ż R vpzqe ´2apkq|z| dz. Since lim kÑ`8 ż R vpzqe ´2apkq|z| dz " ż R vpzqdz ą 0,
for k sufficiently large, there exists C ą 0 such that:

xhpkqv k , v k y ď apkq 2 ´CΛpkqapkq.
By using the min-max principle, it remains to chose apkq such that apkq 2 ´CΛpkqapkq ă ´λpkq. Under the assumption (3.10), the polynomial X 2 ´CΛpkqX `λpkq has two real roots a `pkq ą a ´pkq ą 0 with a ´pkq ď 2λpkq

CΛpkq tending to 0 as k tends to infinity, see (3.10). Then, there exists apkq such that, for k sufficiently large, " 0.

xhpkqv k , v k y ă
Then, for k sufficiently large, hpkq `λpkq has at least one negative eigenvalue and the number of negative eigenvalues tends to infinity, as k tends to infinity.

Proof. Using the change of variable y " Λpkq

1 2´γ z, it is clear that hpkq is unitarily equivalent to Λpkq 2 2´γ hpkq with hpkq :" D 2 y ´1 Λpkq 2 2´γ V k ˜y Λpkq 1 2´γ

¸.

By assumption on V k , we have:

1 Λpkq 2 2´γ V k ˜y Λpkq 1 2´γ
¸ě pΛ 2 2´γ pkq `y2 q ´γ 2 ě p1 `y2 q ´γ 2 where we have used Λpkq P p0, 1q. Then the min-max principle implies that the number of negative eigenvalues of hpkq `λpkq is larger that the number of eigenvalues of D 

FINITE NUMBER OF NEGATIVE EIGENVALUE FOR PERTURBATION BY SHORT RANGE POTENTIAL

The aim of this section is to prove Theorem 1.3. In Section 4.2, using the Birman-Schwinger principle, we reduce the proof to the analysis of some compact operator involving the contribution of the small energies (λ m,n pkq ď ν ăă 1). Exploiting that the eigenfunctions associated with λ m,n pkq are localized near e k , we obtain in Section 4.3 an upper bound of the counting function including interactions between the behavior in r and z via a convolution product and the Fourier transform w.r.t. z. Then, exploiting a uniform lower bound of the band functions (see Section 4.1), we are able to prove Theorem 1.3 by computing the Hilbert-Schmidt norm of a canonical operator and by using standard Young inequality (see Section 4.4).

4.1.

Uniform estimate for the one-dimensional problem. In order to prove Theorem 1.3 we need an uniform lower bound on the band functions near 0. Lemma 4.1. Let ν 0 ą 0. There exists C 0 ą 0 such that for all pm, n, hq satisfying µ m,n phq ď ν 0 we have µ m,n phq ě C 0 nh ' Sketch of the proof. For convenience, first we work with the operator

g m phq " ´h2 1 ρ B ρ ρB ρ `V m h with V m h pρq :" logpρq 2 `h2 m 2 ρ 2 .
We notice that in the sense of quadratic form we have g m phq ě g 0 phq and dompg m phqq Ă dompg 0 phqq, therefore for all m P Z there holds µ m,n phq ě µ 0,n phq and it is sufficient to prove the result for m " 0.

We will split the proof depending on which region belongs the parameter h:

(1) For h P p0, h 0 q with h 0 to be chosen, we will use the semi-classical analysis and the Agmon estimates on the eigenfunctions in order to compare g 0 phq with more standard operators. The idea is to bound from below the potential log 2 ρ on a suitable interval by a quadratic potential such that the associated operator has known spectrum. (2) Since h Ñ µ 0,n phq is unbounded for large h, there exists h ν 0 such that for h ě h ν 0 the eigenvalues µ m,n phq are outside the region tµ ď ν 0 u. (3) On the compact rh 0 , h ν 0 s, since n Ñ µ 0,n phq is unbounded for large n, we may find N ě 1 such that for n ě N the eigenvalues µ m,n phq are outside the region tµ ď ν 0 u. Therefore the Lemma is clear on this region since we have to deal with a finite number of eigenvalues.

' proof. Assume µ m,n phq ď ν 0 . Denote by 0 ă ρ 1 ă 1 ă ρ 2 the two real numbers (depending on ν 0 ) such that log 2 pρ 1 q " log 2 pρ 2 q " ν 0 .

Set ρ 1 1 P p0, ρ 1 q, ρ 1 2 P pρ 2 , `8q and Ipν 0 q :" pρ 1 1 , ρ 1 2 q. Let M pν 0 q :" minpφ 0 pρ 1 1 q, φ 0 pρ 1 2 qq where φ 0 is defined by

φ 0 pρq :" ˇˇˇż ρ 1 b
pplog ρq 2 ´ν0 q `dρ ˇˇB y construction we have M pν 0 q ą 0 and the Agmon estimate (2.7) provides h 0 ą 0 such that (uniformly in n): @h P p0, h 0 q, ż AIpν 0 q |u 0,n pρ, hq| 2 ρdρ ď Cpν 0 , βqe ´βM pν 0 q{h where β P p0, 1q is set.

Recall that r u m,n pρ, hq " ? ρ u m,n pρ, hq is a normalized eigenfunction of r g m phq " Mg m phqM åssociated with the eigenvalue µ m,n phq. It satisfies (4.1) @h P p0, h 0 q, ż AIpν 0 q |r u 0,n pρ, hq| 2 dρ ď Cpν 0 , βqe ´βM pν 0 q{h Remark 4.2. Since g m phq ě g 0 phq, in the sense of quadratic form, the above estimate (4.1) holds also for r u m,n : @h P p0, h 0 q, ż AIpν 0 q |r u m,n pρ, hq| 2 dρ " ż AIpν 0 q |u m,n pρ, hq| 2 ρdρ ď Cpν 0 , βqe ´βM pν 0 q{h uniformly with respect to pm, nq such that µ m,n phq ď ν 0 . This estimate will be used in Section 4.2.

Set ǫ 0 P p0, ρ 1 1 q. Let pχ j q j"1,2 P C 8 pR `, r0, 1sq be a partition of the unity of R `such that χ 2 1 `χ2

2 " 1 with χ 2 " 0 on Ipν 0 q and χ 2 " 1 on p0, ρ 1 1 ´ǫ0 q Y pρ 1 2 `ǫ0 , `8q. We may assume that there exists C ą 0 such that ř j |∇χ j | 2 ď C. The IMS formula provides for any eigenfunction r u 0,n p¨, hq:

r q h 0 pr u 0,n p¨, hqq " ÿ j"1,2
r q h 0 pχ j r u 0,n p¨, hqq ´ÿ j"1,2 }p∇χ j qr u 0,n p¨, hq} 2

L 2 pR `q ě r q h 0 pχ 1 r u 0,n p¨, hqq ´C ż supppχ 1 2 q
|r u 0,n pρ, hq| 2 dρ and therefore using (4.1):

(4.2) r q h 0 pr u 0,n p¨, hqq ě r q h 0 pχ 1 r u 0,n p¨, hqq ´Cpν 0 , βqe ´βM pν 0 q{h .

We now bound from below r q h 0 pχ 1 r u 0,n p¨, hqq using a lower bound on the potential. We have (4.3) DCpν 0 q P p0, 1q, @ρ P Jpν 0 q, Cpν 0 qpρ ´1q 2 ď log 2 ρ where we have denoted Jpν 0 q :" pρ 1 1 ´ǫ0 , ρ 1 2 `ǫ0 q. Assume n ‰ n 1 . Since xr u 0,n p¨, hq, r u 0,n 1 p¨, hqy L 2 pR `q " 0, we deduce from (4.1) that (4.4) ˇˇxχ 1 r u 0,n p¨, hq, χ 1 r u 0,n 1 p¨, hqy L 2 pR `qˇď Cpν 0 , βqe ´βM pν 0 q{h .

Let us introduce the harmonic oscillator g low phq :" ´h2 B 2 ρ `pρ ´1q 2 , ρ P R initially defined on C 8 0 pRq and close on L 2 pRq, whose eigenvalues are tp2n ´1qhu nPN ˚. Due to (4.3) and since supppχ 1 q " Jpν 0 q we have (4.5) r q

h 0 pχ 1 r u 0,n p¨, hqq ě Cpν 0 qxg low phqχ 1 r u 0,n p¨, hq, χ 1 r u 0,n p¨, hqy L 2 pRq ´h2 4pρ 1 1 ´ǫ0 q 2 }χ 1 r u 0,n p¨, hq} 2 L 2 pR `q
where in the right hand side, χ 1 r u 0,n , extended by 0 on R ´, is also considered as a function defined on R.

Recall (4.4), the min-max principle combined with (4.5) provides (4.6) r q h 0 pχ 1 r u 0,n p¨, hqq ě ´Cpν 0 qp2n ´1qh ´r Cpν 0 , βqh 2 ¯}χ 1 r u 0,n p¨, hq} 2 L 2 pR `q.

Using (4.1) we get |1 ´}χ 1 r u 0,n p¨, hq} 2 L 2 pR `q| ď Cpν 0 , βqe ´βM pν 0 q{h . Therefore combining (4.2) and (4.6) we have proved the existence of h 0 ą 0 and C 0 ą 0 such that for all p0, n, hq such that µ 0,n phq ď ν 0 we have @h P p0, h 0 q, µ 0,n phq " r q h 0 pr u 0,n p¨, hqq ě C 0 nh. We now have to deal with the region h P ph 0 , `8q. Since µ 0,n phq tends to `8 as h tends to `8, there exists h ν 0 ą 0 such that @n P N ˚, @h ě h ν 0 , µ 0,n phq ě ν 0 .

Therefore we are led to prove the lower bound for h P rh 0 , h ν 0 s. Since for all h ą 0 the sequence pµ m,n phqq ně1 converges toward `8, there exists nphq such that for all n ě nphq we have µ m,n phq ě ν 0 . Due to a compact argument we find N P N ˚such that @n ą N, @h P rh 0 , h ν 0 s, µ 0,n phq ě ν 0 .

Define Cphq :" min 1ďnďN µ 0,n phq{n and C :" min hPrh 0 ,hν 0 s Cphq h . We clearly have C ą 0 and by construction, for all pn, hq P N ˚ˆrh 0 , h ν 0 s such that µ 0,n phq ď ν 0 we have µ 0,n phq ě Cnh therefore the lemma is proved for h P rh 0 , h ν 0 s. Remark 4.3. In (4.6), the remainder term of order h 2 involves the contributions of ´h2 4ρ 2 and has been controlled on Jpν 0 q. Another strategy, which improves the remainder term, would have been to work in the weighted space L 2 ρ pR `q and to consider g low phq :" ´h2 1 ρ B ρ ρB ρ `pρ ´1q 2 , ρ ą 0.

In this case, (4.6) is replaced by q h 0 pχ 1 u 0,n p¨, hqq ě Cpν 0 qpζ n phq ´Cpν 0 , βqe ´βM pν 0 q{h q}χ 1 u 0,n p¨, hq} 2 L 2 ρ pR `q with ζ n phq the n-th eigenvalue of the operator g low phq. These eigenvalues have already been studied in [25, Section 4.2] and [START_REF] Popoff | On the lowest energy of a 3d magnetic laplacian with axisymmetric potential[END_REF] and they can be bounded from below by C 1 nh by exploiting the results from [START_REF] Popoff | On the lowest energy of a 3d magnetic laplacian with axisymmetric potential[END_REF].

4.2.

Bring the norm of a canonical operator. Let λ ą 0, for simplicity we denote by N pλq :" N A,V pλq the number of negative eigenvalues of H A ´V below ´λ:

N pλq :" 7 ´SpH A ´V qXs ´8, ´λs ¯.

We want to prove that there exists C ą 0 independent of λ, such that N pλq ď C. Let us introduce the axisymmetric non negative potential (4.7) V 0 pr, zq :" xry ´α v K pzq.

The assumption (1.5) means that V ď V 0 . Then the min-max principle gives:

(4.8) N pλq ď N 0 pλq :" 7 ´SpH A ´V0 qXs ´8, ´λs ¯.

According to the Birman-Schwinger principle, for λ ą 0, (4.9)

N 0 pλq " n `´1, V 1 2 0 pH A `λq ´1V 1 2 0 ¯,
where for a self-adjoint operator T , n `ps, T q :" Tr 1 ps,8q pT q; is the counting function of positive eigenvalues of T .

Fix a real number ν ą 0 (chosen sufficiently small later) and let us introduce the orthogonal projections P ν :" 1 r0,νs pH A q and P ν :" I ´Pν " 1 sν,`8r pH A q.

Since H

A P ν ě ν, the compact operator V 1 2 0 pH A `λq ´1P ν V 1 2
0 is uniformly bounded with respect to λ ě 0 and from the Weyl inequality, for any ǫ ą 0, we have:

(4.10) n `´1, V 1 2 0 pH A `λq ´1V 1 2 0 ¯ď n `´1 ´ǫ, V 1 2 0 pH A `λq ´1P ν V 1 2 0 ¯`C ν , C ν ě 0.
According to the decomposition:

H A " Φ ˚F 3 ¨À ÿ pm,nqPZˆN ˚ż À kPR λ m,n pkqP m,n pkqdk 'F 3 Φ, with P m,n pkq : f Þ Ñ xf, u m,n p¨, kqyu m,n p¨, kq, the orthogonal projection onto u m,n p., kq P L 2 pR `, rdrq, we have V 1 2 0 pH A `λq ´1P ν V 1 2 0 " V 1 2 0 Φ ˚F 3 ¨À ÿ pm,nqPZˆN ˚ż À kPR P m,n pkq 1 r0,νs pλ m,n pkqq λ m,n pkq `λ dk 'F 3 ΦV 1 2 0 .
Since V 0 is axisymmetric, this operator is unitarily equivalent to the direct sum of

K ν,m pλq :" V 1 2 0 F 3 ˜ż À kPR À ÿ nPN ˚r P m,n pkq 1 r0,νs pλ m,n pkqq λ m,n pkq `λ dk ¸F3 V 1 2 0 ,
defined in L 2 pR `ˆR, drdzq, with r P m,n pkq :" M ˚Pm,n pkqM " x., r u m,n pkqyr u m,n pk, .q, the orthogonal projection onto r u m,n p., kq P L 2 pR `, drq, r u m,n pr, kq " ? ru m,n pr, kq.

Let us prove that for some s Ps0, 1r, there exists ν sufficiently small such for any m P Z and any λ ą 0 (4.11) n `ps, K ν,m pλqq " 0.

Then Theorem 1.3, is a consequence of (4.8), (4.9), (4.10) and (4.11).

Let us introduce the operator: we have to prove that for ν sufficiently small, the L 2 ´norm of S m pλq ˚Sm pλq admits an upper bound by s ă 1 uniformly with respect to m P Z and λ ą 0.

S

4.3.

Computations on the integral kernel of the canonical operator.

Proposition 4.4. Let V 0 defined in (4.7) and S m pλq defined in (4.12). Then there exist C ą 0 and ν 0 ą 0 such that for all ν P p0, ν 0 q, the following upper bound of the Hilbert-Schmidt norm holds: g n 1 pk 1 qL m,n 1 pk 1 qr u m,n 1 pr, k 1 qe izpk 1 ´kq dk 1 drdz where we have denoted L m,n pkq :" 1 r0,νs pλ m,n pkqq a λ m,n pkq `λ . The integral kernel of this operator is N m,n,n 1 pk, k 1 q :" L m,n pkqL m,n 1 pk 1 q ż r ż z V 0 pr, zqr u m,n pr, kqr u m,n 1 pr, k 1 qe izpk´k 1 q dzdr . " L m,n pkqL m,n 1 pk 1 qx v K pk 1 ´kq ż r xry ´α r u m,n pr, kqr u m,n 1 pr, k 1 qdr.

Then the Hilbert-Schmidt norm is given by Set ν 0 ą 0 and pm, n, kq such that λ m,n pkq ď ν 0 . Applying Remark 4.2 we know that there exists I k pν 0 q :" rρ 1 1 e k , ρ 1 2 e k s, ρ 1 1 ă 1 ă ρ 1 2 , such that for any k ě k 0 sufficiently large (independent of pm, nq), ż | r u m,n pk, rq | 2 dr ď Cpν 0 , βqe ´βM pν 0 qe k with β P p0, 1q and M pν 0 q ą 0. On the other hand, on I k pν 0 q, we have ż uniformly with respect to pm, n, kq P Z ˆN˚ˆR satisfying λ m,n pkq ď ν 0 . Using the Cauchy-Schwarz inequality we deduce from (4.16) that for all ν P p0, ν 0 q: ι m,n 1 pk 1 , νqι m,n pk, νq|x v K pk 1 ´kq| 2 dk 1 dk and the lemma is proved

We notice that the influence of V appears as an interaction between the behaviors in r and z via a convolution product in the phase space. We now estimate the norm of the function ι m,n pk, νq: Lemma 4.5. There exists C ą 0 and ν 0 ą 0 such that for all pm, n, kq P Z ˆN˚ˆR , we have @ν P p0, ν 0 q, @q ě 1, }ι m,n p¨, νq} L q ď C ν α´1 n α .

Proof. Set ν 0 ą 0 and assume λ m,n pkq ď ν 0 . According to Lemma 4.1 there exists C 0 ą 0 such that (4.19) λ m,n pkq ě C 0 ne ´k, uniformly with respect to pm, n, kq P ZˆN ˚ˆR. Then for ν P p0, ν 0 q there holds 1 r0,νs pλ m,n pkqq ď 1 r0, ν C 0 s pne ´kq and for any λ ą 0 we have }ι m,n } q L q " ż k 1 r0,νs pλ m,n pkqq pλ m,n pkq `λq q e ´αqk dk ď ż kělog C 0 n ν 1 pλ m,n pkq `λq q e ´αqk dk ď 1 pC 0 nq q ż kělog C 0 n ν e p´α`1qqk dk " 1 qpα ´1qpC 0 nq q ˆν C 0 n ˙pα´1qq and the lemma is proved.
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FIGURE 1 .

 1 FIGURE 1. The band functions λ m,n pkq for 0 ď m ď 2 and 1 ď n ď 4 and k P r´2, 6s.

FIGURE 2 .

 2 FIGURE 2. Zoom on the lowest energies compared with the first order asymptotics p2n ´1qe ´k. Each cluster corresponds to an energy level n.

  AI k |r u m,n pr, kq| 2 dr ď Cp0, βq sup rPAI k e ´βΦ 0 pr,kq

a 2 8 a 3 8 e2 ăă apkq ăă e 2k 3 and 8 e

 283838 pkqe ´k " `8 and lim kÑ`pkqe ´2k " 0 then we have e ´βΦ 0 pe k ˘apkq,kq " kÑ`´β 2 apkq 2 e ´k The condition (3.7) is valid for any apkq satisfying e k for such an apkq we get (3.8) sup rPAI k e ´βΦ 0 pr,kq " kÑ`´β 2 apkq 2 e ´k .

(4. 14 )n,n 1 ż k ż k 1 ι 1 ż k 1

 14111 }S m pλq ˚Sm pλq} 2 2 ď C ÿ m,n 1 pk 1 , νqι m,n pk, νq|x v K pk 1 ´kq| 2 dk 1 dkwhere we have set ι m,n pk, νq :"1 r0,νs pλ m,n pkqq λ m,n pkq `λ e ´αk .Proof. We check that S m pλq ˚Sm pλq : L 2 pR, l 2 pN ˚qq ÝÑ L 2 pR, l 2 pN ˚qq corresponds with (4.15) pS m pλq ˚Sm pλqpg n 1 qq n pkq " n pr, kqV 0 pr, zq ÿ n

( 4 . 16 )

 416 4π 2 }S m pλq ˚Sm pλq} 2 2 " ÿ n,n 1

L

  m,n pkq 2 L m,n 1 pk 1 q 2 |x v K pk 1 ´kq| 2 ˇˇˇż r xry ´α r u m,n pr, kqr u m,n 1 pr, k 1 qdr ˇˇˇ2 dkdk 1 .

AI k pν 0 q

 0 xry ´α | r u m,n pk, rq | 2 dr ď ż AI k pν 0 q

I k pν 0 qR

 0 xry ´α | r u m,n pk, rq | 2 dr ď Cpν 0 qe ´αk ż I k pν 0 q | r u m,n pk, rq | 2 dr ď Cpν 0 qe ´αk . xry ´α | r u m,n pk, rq | 2 dr " Ope ´αk q,

(4. 18 )

 18 }S m pλq ˚Sm pλq} 2

  1) that k Þ Ñ λ m,n pkq is decreasing with

	lim kÑ´8	λ m,n pkq " `8;	lim kÑ`8	λ m,n pkq " 0.
	Exploiting semi-classical tools (with semi-classical parameter h " e ´k, k ąą 1, see Proposi-tion 2.2), we obtain asymptotic behaviors of the eigenpairs of g m pkq as k tends to infinity. The main result of Section 2 is the following
	Theorem 1.1. For all pm, nq P Z ˆN˚, there exist constants C m,n ą 0 and k 0 P R such that for all k P pk 0 , `8q, (1.3) |λ m,n pkq ´p2n ´1qe ´k `pm 2 ´1 4 ´npn´1q 2 qe ´2k | ď C m,n e ´5k{2

  24, Lemma 2.2 & 2.3]) that lim

hÑ0 µ m,n phq " 0 and lim hÑ`8

  Lemma 3.1. For any ǫ ą 0, (3.1) xpH A ´V qψ m,n , ψ m,n y ď p1`ǫqλ m,n pkq}f } 2 L 2 pRq `p1`ǫ ´1q D z f 2 L 2 pRq ´xV m,n p., kqf, f y L 2 pRq with H A ψ m,n pr, φ, z, kq " e imφ e ikz f pzqg m pkqu m,n pr, kq `eimφ e ikz u m,n pr, kq `D2 z f `2plog r ´kqD z f pzq

	(3.2)	V m,n pz, kq :"	ż	r	|r u m,n pr, kq| 2 V pr, zqdr;	r u m,n pr, kq :"	? r u m,n pr, kq.
	Proof. We have					
	(3.3) ˘,
	that is						
	(3.4) pH						

A ´V qψ m,n pr, φ, z, kq " λ m,n pkqψ m,n pr, φ, z, kq `eimφ e ikz u m,n pr, kq `D2 z f `2plog r ´kqD z f pzq ´V pr, zqf pzq ˘.

(3.5) pH A ´V qψ m,n ¨ψm,n " λ m,n pkqu m,n pr, kq 2 f pzq 2 ùm,n pr, kq 2 ´D2 z f pzq `2plog r ´kqD z f pzq ´V pr, zqf pzq ¯f pzq.

  Let hpkq " D 2 z ´Vk on R, k P R with V k satisfying: V k pzq ě Λpkqxzy ´γ ;

	and Lemma (3.3) holds.	´λpkq,
	Lemma 3.4. γ P p0, 2q;	Λpkq P p0, 1q.
	Let λpkq be a positive function of k P R such that (3.11) λpkq lim 2 kÑ`8 Λpkq 2´γ

  Theorem XIII.82]) that D 2 y ´xyy ´γ as infinitely many negative eigenvalues and Lemma 3.4 follows from(3.11).

	2 below ´λpkq Λ 2´γ pkq	2 y ´xyy ´γ

. Since γ ă 2, it is known (see

[21, 

  m pλq : L 2 pR, l 2 pN ˚qq ÝÑ L 2 pR `ˆR, drdzq, defined, for pg n p.qq nPN ˚P L 2 pR, l 2 pN ˚qq by (4.12)S m pλqpg n qpr, zq :" V and its adjoint defined for f P L 2 pR `ˆR, drdzq, by S m pλq ˚pf q n pkq " 1 ? 2π 1 r0,νs pλ m,n pkqq pλ m,n pkq `λqWe have: K ν,m pλq " S m pλq S m pλq K ν,m pλqq " n `ps, S m pλq S m pλq ˚q " n `ps, S m pλq ˚Sm pλqq,

	and since (4.13)	n `ps,	1 2 0 pr, zq ? 2π	nPN ˚żR ÿ 2 ż R `ˆR g 1	e ´izk r u m,n pr, kqpV ˚,	1 2 0 f qpr, zqdrdz.

n pkq e izk 1 r0,νs pλ m,n pkqq pλ m,n pkq `λq 1 2 r u m,n pr, kqdk,

4.4.

Convergence of the series and proof of Theorem 1.3. We notice that the r.h.s of (4.14) coincides with

Assume that v K P L p with p P r1, 2s. Then |x v K | 2 P L p 1 {2 with p 1 " p p´1 ě 2. Young's inequality provides for all q ě 1:

where 2 p 1 `1 q " 1 `1 r . We now use Holder's inequality combined with lemma 4.5 and we get for all pm, n, n 1 q: @ν P p0, ν 0 q,

1 pn 1 q α and therefore using Proposition 4.4:

}S m pλq ˚Sm pλq} 2 2 " Opν 2α´2 q which, for α ą 1, tends to 0 with ν, uniformly with respect to pm, λq P Z ˆp0, `8q. Then, (4.11) follows from (4.13). In conclusion the hypotheses we have used on V pr, zq is V pr, zq ď xry ´αv K pzq with α ą 1 and v K P L p pRq, p P r1, 2s and we deduce Theorem 1.3.