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GREEN-KUBO FORMULA FOR WEAKLY COUPLED

SYSTEM WITH DYNAMICAL NOISE.

C.BERNARDIN, F.HUVENEERS, J.L.LEBOWITZ, C.LIVERANI AND S.OLLA

Abstract. We consider an infinite system of cells coupled into a
chain by a smooth nearest neighbor potential εV . The uncoupled
system (cells) evolve according to Hamiltonian dynamics perturbed
stochastically with an energy conserving noise of strenght ς . We
study the Green-Kubo (GK) formula κ(ε, ς) for the heat conduc-
tivity of this system which exists and is finite for ς > 0, by formally
expanding κ(ε, ς) in a power series in ε, κ(ε, ς) =

∑

n≥2
εnκn(ς).

We show that κ2(ς) is the same as the conductivity obtained in
the weak coupling (van Hove) limit where time is rescaled as ε−2t.

κ2(ς) is conjectured to approach as ς → 0 a value proportional to
that obtained for the weak coupling limit of the purely Hamiltonian
chain.We also show that the κ2(ς) from the GK formula, is the same
as the one obtained from the flux of an open system in contact with
Langevin reservoirs. Finally we show that the limit ς → 0 of κ2(ς)
is finite for the pinned anharmonic oscillators due to phase mixing
caused by the non-resonating frequencies of the neighboring cells.
This limit is bounded for coupled rotors and vanishes for harmonic
chain with random pinning.

1. Introduction

Energy transport in nonequilibrium macroscopic systems is described
phenomenologically by Fourier’s law. This relates the energy flux J ,
at the position r in the system, to the temperature gradient at r, via
J = −κ∇T . The computation of the thermal conductivity κ, which
depends on the temperature and the constitution of the system, from
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the underlying microscopic dynamics is one of the central mathemati-
cal problems in nonequilibrium statistical mechanics (see [5][21][9] and
references therein).
The Green-Kubo (GK) formula gives a linear response expression for

the thermal conductivity. It is defined as the asymptotic space-time
variance for the energy currents in an infinite system in equilibrium at
temperature T = β−1, evolving according to the appropriate dynamics.
For purely Hamiltonian (or quantum) dynamics, there is no proof of
convergence of the GK formula (and consequently no proof of Fourier
law). One way to overcome this problem is to add a dash of random-
ness (noise) to the dynamics [3]. In the present work we explore the
resulting GK formula and start an investigation of what happens when
the strength of the noise, ς, goes to zero.
Our basic setup is a chain of coupled systems. Each uncoupled sys-

tem (to which we will refer as a cell) evolves according to Hamiltonian
dynamics (like a billiard, a geodesic flow on a manifold of negative
curvature, or an anharmonic oscillator...) perturbed by a dynamical
energy preserving noise, with intensity ς. We will consider cases where
the only conserved quantity for the dynamics with ς > 0, is the energy.
The cells are coupled by a smooth nearest neighbor potential εV . We
assume that the resulting infinite volume Gibbs measure has a conver-
gent expansion in ε for small ε. We are interested in the behaviour
of the resulting GK formula for κ(ε, ς) given explicitly by equation
(2.4) below, for small ς and ε keeping the temperature β−1 and other
parameters fixed.
We start in Section 2 by noting that for ς > 0, the GK formula

is well defined and has a finite upper bound [3]. We do not however
have a strictly positive lower bound on κ(ε, ς) except in some special
cases [3]. We believe however that κ(ε, ς) > 0 whenever ε > 0, ς > 0,
i.e. there are no (stable) heat insulators. The fact that κ(ε, ς) ≥ 0
follows from the definition of the GK formula. The situation is different
when we let ς → 0. In that case we have examples where κ(ε, ς) → 0
(disordered harmonic chains [2]), and where κ(ε, ς) → ∞ (periodic
harmonic systems).
To make progress in elucidating the properties of κ(ε, ς), when ς →

0, we carry out in Section 3 a purely formal expansion of κ(ε, ς) in
powers of ε: κ(ε, ς) =

∑

n≥2 κn(ς)ε
n. This is formal because space-

time correlations entering in the GK formula are non-local function
and depends themselves on ε.
We then investigate in Section 4 the structure of the term κ2(ς),

which we believe, but do not prove, coincides with the limε→0 κ(ε, ς)/ε
2.
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We show that κ2(ς) is finite and strictly positive for ς > 0 by proving
that it is equal to the conductivity obtained from a weak coupling limit
in which there is a rescaling of time as ε−2t (cf. [22, 23]). We argue
further that the limς→0 κ2(ς) exists and is closely related to the weak
coupling macroscopic conductivity obtained for the purely Hamiltonian
dynamics ς = 0 from the beginning. The latter is computed for a
geodesic flow on a surface of negative curvature, and is strictly positive
[12]. A proof, in the latter case, would require the extension to random
perturbations for the theory developed for deterministic perturbations
in [7][6]. This should be possible by arguing as in the discrete time
case [18].
Nevertheless the identification of κ2(ς) with the weak coupling limit

conductivity (suggested by H. Spohn [25]) gives some hope that the
higher order terms, can also be shown to be well defined and studied in
the limit ς → 0. This could then lead (if nature and mathematics are
kind) to a proof of the convergence and positivity of the GK formula
for a Hamiltonian system.
We next show in Section 5 that we obtain the same κ2(ς) for the

thermal conductivity of an open system: N coupled cells in which
cell 1 and cell N are in contact with Langevin reservoirs at different
temperatures, when we let N → ∞ and the two reservoir temperatures
approach to β−1.
Section 6 is devoted to a detailed study of κ2(ς) for 3 examples:

the isolated cell hamiltonian is 1) a pinned anharmonic oscillator, 2) a
rotor; 3) the system at ς = 0 is a random (positively) pinned harmonic
chain. In all cases we can prove that, generically, lim supς→0 κ2(ς) <
+∞, as contrasted with the regular harmonic chain when κ2(ς) → ∞
when ς → 0 [1][10]. In case 1 and 2 we have no lower bound for
this limit, but we believe that it will be strictly positive. In case 3
we prove that the limit is 0, as in the harmonic chain for ς → 0,
with random pinning springs. Phase mixing, due to lack of resonances
between frequencies of different cells at different energies, is the relevant
ingredient for the finiteness of κ2(ς) when ς → 0.

2. Green-Kubo formula (random dynamics)

We define first the dynamics of a single uncoupled cell. This will be
given by a Hamiltonian dynamics generated by

H = p2/2 +W (q)

where the position q has values in some d-dimensional manifold, q ∈ M ,
and the momentum p ∈ R

d. We generally assume that W ≥ 0, and its
minimum value is 0. In the case of the dynamics of a billiard, W = 0
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and M ⊂ R
2 is the corresponding compact set of allowed position with

reflecting condition on the boundary. Another chaotic example is given
by M a manifold with negative curvature and W = 0 (cf [12]). We will
also consider cases where d = 1, that are completely integrable.
The Hamiltonian flow in a cell is perturbed by a noise that typically

acts on the velocity, conserving the kinetic and the internal energy of
each cell (as in [3][22]). Noises that exchanges energy betweens different
cells will not be considered here. Consequently the energy current will
be due entirely to the deterministic interaction between the cells.
The time evolved {q(t), p(t)} is given by a Markov process on the

state space Ω =M × R
d, generated by

L = A+ ςS

where A is the Liouville operator associated to the Hamiltonian flow
and S is the generator of the stochastic perturbation. We assume that
S acts only on the momentum p and is such that S|p|2 = 0. For d ≥ 2,
we just take for S the Laplacian on the sphere |p|2 = constant. In
dimension 1, we take an S that generates at random exponential times
a flip on the sign of the velocity:

Sf(q, p) = f(q,−p)− f(q, p).

In all cases p is an eigenfunction of S for some negative eigenvalue:
Sp = −λp.
Consider now the dynamics on ΩZ constituted by infinitely many

processes {qx(t), px(t)}x∈Z as above, but coupled by a smooth nearest
neighbor potential εV . The dynamics is then generated by1

Lε =
∑

x∈Z

[

ςSx + Ax
0 + ε∇V (qx − qx−1)(∂px−1

− ∂px)
]

= L0 + εG (2.1)

where L0 = A0 + ςS, A0 =
∑

xA
x
0 , S =

∑

x S
x.

The energy of each cell, which is the sum of the internal energy and
of the interaction energy, is defined by

eεx = ex +
ε

2
(V (qx+1 − qx) + V (qx − qx−1)) . (2.2)

To simplify notation we write ex for e0x, the energy of the isolated
system x.
This dynamics conserves the total energy. The corresponding energy

currents εjx,x+1, defined by the local conservation law

Lεe
ε
x = ε (jx−1,x − jx,x+1)

1Note that, in general, we should write V (qx, qx−1) as q might not belong to a
vector space. We avoid it to simplify notation, see [12] for details.
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are antisymmetric functions of the p’s such that

jx,x+1 = −1

2
(px + px+1) · ∇V (qx+1 − qx). (2.3)

Let us denote by µβ,ε = 〈·〉β,ε the canonical Gibbs measure at tem-
perature β−1 > 0 defined by the Dobrushin-Lanford-Ruelle equations,
which of course depends on the interaction εV . we shall assume in all
the cases considered that µβ,ε is analytical in ε for sufficiently small
ε (when applied to local functions). In particular we assume that the
potentials V and W are such that the Gibbs state is unique and has
spatial exponential decay of correlations. Technical assumptions on V
andW for this to hold can for example be found in [4]. Also we assume
that the infinite dynamics is well defined for a set of initial conditions
which has probability measure one with respect to µβ,ε (we refer the
interested reader to [14, 15, 16] and references therein).
The argument of Section 5 in [3] applies here, and gives the conver-

gence of the thermal conductivity defined by the Green-Kubo formula

κ(ε, ς) = ε2
∫ ∞

0

∑

x∈Z

Eβ,ε (jx,x+1(t)j0,1(0)) dt. (2.4)

Here Eβ,ε indicates the expectation of the infinite dynamics in equilib-
rium at temperature β−1. The convergence of the integral in (2.4) is
in fact defined as

lim
ν→0

≪ j0,1, (ν − Lε)
−1j0,1 ≫β,ε (2.5)

for ν > 0, where ≪ ·, · ≫β,ε is the inner product

≪ f, g ≫β,ε =
∑

x∈Z

[< τxf, g >β,ε − < f >β,ε< g >β,ε].

By the same argument as in [3], we have the bound

sup
ν>0

≪ j0,1, (ν − Lε)
−1j0,1 ≫β,ε ≤

C

ς
(2.6)

where C is independent of ε. The convergence in (2.5) and the bound
(2.6) are based on the fact that j0,1 being a linear function on the
momentum p, is an eigenfunction of the generator of the noise S. It
then fluctuates fast in time making the integral in the GK formula
convergent.

3. Formal expansion of κ(ε, ς)

It follows from (2.6) that κ(ε, ς) is of order ε2, i.e.

lim sup
ε→0

ε−2κ(ε, ς) = κ̂2(ς) < +∞, (3.1)
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We conjecture that the limit exists and it is given by κ2(ς), the lowest
term in the formal expansion of κ(ε, ς) in powers of ε:

κ(ε, ς) =
∞
∑

n=2

εnκn(ς). (3.2)

It turns out that it is convenient for calculating the terms in this
expansion to choose ν = ε2λ in (2.6), for a λ > 0, and solve the
resolvent equation

(λε2 − Lε)uλ,ε = εj0,1 (3.3)

for the unknown function uλ,ε. The reason for considering λ > 0 is to
have well defined solutions also for the infinite system. The factor ε2

is the natural scaling in view of the subsequent computations.
Next, define e = {ex, x ∈ Z}. For any function f ∈ L1(µβ,0),

(Πf)(e) = µβ,0(f |e), Q = 1−Π.

We will look for solutions of (3.3) of the form

uλ,ε =
∑

n≥0

(vλ,n + wλ,n)ε
n, (3.4)

where Πvλ,n = Qwλ,n = 0. Observe that L0wλ,n = 0 and that ΠGΠ =
0, where G is defined by (2.1). Accordingly

vλ,0 = 0

− L0vλ,1 −Gwλ,0 = j0,1

λwλ,n−2 + λvλ,n−2 − L0vλ,n −Gvλ,n−1 −Gwλ,n−1 = 0, n ≥ 2.
(3.5)

It follows from the last equation, since ΠL0vλ,n = 0, that ΠGvλ,n−1 =
λwλ,n−2. In addition,

Gvλ,1 = G(−L0)
−1(Gwλ,0 + j0,1)

Gvλ,n = G(−L0)
−1 [−λvλ,n−2 +Gwλ,n−1 +QGvλ,n−1] .

It is then natural to consider the operator

L = ΠG(−L0)
−1GΠ. (3.6)

Using L, we can write the equations for vλ,n and wλ,n in the form

wλ,0 = (λ−L)−1
[

ΠG(−L0)
−1j0,1

]

vλ,1 = (−L0)
−1[j0,1 +Gwλ,0]

wλ,n = (λ− L)−1ΠG(−L0)
−1 [−λvλ,n−1 +QGvλ,n] , n ≥ 1

vλ,n+1 = (−L0)
−1 [−λvλ,n−1 +Gwλ,n +QGvλ,n] , n ≥ 1.

(3.7)
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Of course, the above expressions are at present only formal. To
begin with the term (−L0)

−1 is a priori ill defined since the space K0

composed of functions of the internal energies {ex ; x ∈ Z} alone is in
the kernel of L0. However, in (3.7), the operator (−L0)

−1 is always
applied to a function f that satisfies Πf = 0, i.e. to a function which is
orthogonal to K0. Therefore, if we assume that K0 coincides with the
kernel of L0, which should be a consequence of the ergodic properties
of the internal dynamics, including the noise ς > 0, then the function
g := (−L0)

−1f , where f is orthogonal to K0, is well defined. We in fact
take g to be the unique solution such that Πg = 0. We will show in
proposition 3.1 below that the operator L is a generator of a Markov
process so that (λ−L)−1 is well defined.

3.1. The operator L. Let us denote by ρβ(de) the distribution of the
internal energies e = {ex ; x ∈ Z} under the Gibbs measure µβ,0. It
can be written in the form

dρβ(e) =
∏

x∈Z

Z−1
β exp(−βex − U(ex))dex

for a suitable function U . We denote the formal sum
∑

x U(ex) by
U := U(e). We denote also, for a given value of the internal energy ẽx
in the cell x, by νxẽx the microcanonical probability measure in the cell
x. i.e. the uniform probability measure on the manifold

Σẽx := {(qx, px) ∈ Ω ; ex(qx, px) = ẽx}.

Proposition 3.1. The operator L, when restricted to the range of Π,
is given by

L =
∑

x

eU(∂ex+1
− ∂ex)

[

e−Uγ2(ex, ex+1)
]

(∂ex+1
− ∂ex), (3.8)

where

γ2(e0, e1) =

∫ ∞

0

dt

∫

Σe0
×Σe1

j0,1 (e
tL0j0,1) dνe0dνe1 (3.9)

and etL0 denotes the semigroup of the uncoupled dynamics generated by

L0. In addition, setting α(ex, ex+1) = ΠG(−L0)
−1jx,x+1, we have

α(ex, ex+1) = eU(e)(∂ex+1
− ∂ex)

[

e−U(e)γ(ex, ex+1)
2
]

. (3.10)
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Proof. Let us start by noting that, for each local function f depending
only on the energies,

Gf = −
∑

x

∇V (qx − qx−1) · (px∂ex − px−1∂ex−1
)f

=
∑

x

jx−1,x(∂ex − ∂ex−1
)f − 1

2

∑

x

[L0V (qx − qx−1)](∂ex + ∂ex−1
)f

=
∑

x

jx−1,x(∂ex − ∂ex−1
)f − L0

(

1

2

∑

x

V (qx − qx−1)(∂ex + ∂ex−1
)f

)

.

(3.11)

Note that the above expression is linear in p. Next, note that the
adjoint of G in L

2(µβ,0) is given by

G∗ = −G−β
∑

x

∇V (qx−qx−1)·(px−px−1) = −G−βL0V = −G+βL∗
0V.

(3.12)
Thus, if f, g are smooth local functions of the energies only then, re-
membering that the measure is symmetric in p,

〈gLf〉β,0 = 〈G∗g · (−L0)
−1Gf〉β,0 = −〈Gg · (−L0)

−1Gf〉β,0 − β〈V g ·Gf〉β,0
= −

∑

x,y

〈jy−1,y(∂ey − ∂ey−1
)g · (−L0)

−1jx−1,x(∂ex − ∂ex−1
)f〉β,0.

Next, note that

〈jy,y−1(−L0)
−1jx,x−1|e〉β,0 = δxyγ

2(ex−1, ex),

and consequently

〈gLf〉β,0 = −
∑

x

〈γ2(ex−1, ex)(∂exg − ∂ex−1
g)(∂exf − ∂ex−1

f)〉β,0.

Thus, for each local smooth function g of the energies only,

〈gG(−L0)
−1j0,1〉β,0 = −〈Gg · (−L0)

−1j0,1〉β,0 − β〈gV j0,1〉
= −

∑

y

〈jy−1,y(∂ey − ∂ey−1
)g · (−L0)

−1j0,1〉β,0

= −〈(∂e1 − ∂e0)g · γ(e0, e1)2〉β,0
=
〈

g · eU(e)(∂e1 − ∂e0)
[

e−U(e)γ2(e0, e1)
]〉

β,0

from which the Lemma follows. �

We conclude this section by noting that the operator L is the genera-
tor of a Ginzburg-Landau dynamics which is reversible with respect to
ρβ, for any β > 0 [22, 12, 23]. It is conservative in the energy

∑

x ex and
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the microscopic current corresponding to this conservation law is given
by α(ex, ex+1). The corresponding finite dynamics appears in [22, 12]
as the weak coupling limit of a finite number N (fixed) of cells weakly
coupled by a potential ǫV in the limit ǫ→ 0 when time t is rescaled as
tε−2. Moreover, the hydrodynamic limit of the Ginzburg-Landau dy-
namics is then given (in the diffusive scale tN2, N → +∞), by a heat
equation with diffusion coefficient which coincides with κ2 as given by
(4.12) given below ([26],[23]).

4. The lowest order term κ2(ς)

To simplify notation, we denote γ(ex, ex+1) (resp. α(ex, ex+1)) by
γx,x+1 (resp. αx,x+1). Define the operator Dx,x+1 = γx,x+1(∂ex+1

− ∂ex),
then the adjoint, with respect to ρβ, is given by

D∗
x,x+1 = −eU(∂ex+1

− ∂ex)e
−Uγx,x+1

and consequently L =
∑

xD
∗
x,x+1Dx,x+1. First note that for any λ > 0,

we have by (3.7)

λwλ − Lwλ = α0,1 = D∗
0,1γ0,1. (4.1)

This resolvent equation, which involves only functions of the energies,
has a well defined solution wλ ∈ L

2(ρβ) for λ > 0.
For any function f of the energies, denote by Γf =

∑

x τxf (intended
as a formal sum). Observe moreover that by the definition of ρβ, since f
depends only on the energies, we have 〈f〉β,0 = ρβ(f). In the following
we will denote by 〈·〉β the integration with respect to ρβ . Then we have
the relations

≪ f,−Lg ≫β =
〈

γ20,1 [(∂e1 − ∂e0)Γf ] [(∂e1 − ∂e0)Γg]
〉

β

= 〈(D0,1Γf)(D0,1Γg)〉β ,
≪ f, α ≫β = −〈γ0,1D0,1Γf〉β .

(4.2)

So from (4.1) we have

λ≪ wλ, wλ ≫β +
〈

(D0,1Γwλ
)2
〉

β
= −〈γ0,1D0,1Γwλ

〉β (4.3)

thus by the Schwarz inequality

λ≪ wλ, wλ ≫β +
〈

(D0,1Γwλ
)2
〉

β
≤
〈

γ20,1
〉1/2 〈

(D0,1Γwλ
)2
〉1/2

β

and this gives the bounds

λ≪ wλ, wλ ≫β,0≤
〈

γ20,1
〉

β
,

〈

(D0,1Γwλ
)2
〉

β
≤
〈

γ20,1
〉

β
.
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The standard Kipnis-Varadhan argument ([19], [20] chapter 1) then
gives

lim
λ→0

λ≪ wλ, wλ ≫β= 0.

It also follows form the same argument ([19], [20] chapter 1) that
D0,1Γwλ

converges strongly in L2(ρβ) to a limit that we denote with
η and satisfies the relation

〈

η2
〉

β
= −〈γ0,1η〉β .

We now return to the formal expansion of κ(ε, ς) in powers of ε
given by (3.2). By (2.5), (3.4) and the expansion of the canonical
Gibbs measure µβ,ε in ε, we have, at least formally, that

κ(ε, ς) ≡ lim
λ→0

≪ uλ,ε, εj0,1 ≫β,ε=
∑

n≥1

εn+1 lim
λ→0

≪ j0,1, vλ,n ≫β,ε

= ε2 lim
λ→0

≪ j0,1, vλ,1 ≫β,ε + o(ε2).
(4.4)

We now compute

≪ j0,1, vλ,1 ≫β,ε =≪ j0,1, (−L0)
−1j0,1 ≫β,ε + ≪ j0,1, (−L0)

−1Gwλ ≫β,ε

=≪ j0,1, (−L0)
−1j0,1 ≫β,ε

+
∑

y

≪ j0,1, (−L0)
−1jy−1,y(∂ey − ∂ey−1

)wλ ≫β,ε

+
∑

y

≪ j0,1, V (qey − qey−1
)(∂ey + ∂ey−1

)wλ ≫β,ε

(4.5)

where we have used formula (3.11) and we have assumed that (∂ey +
∂ey−1

)wλ and (∂ey − ∂ey−1
)wλ exists and are bounded in L2 of 〈·〉β,ε.

In fact we only have existence of (∂ey − ∂ey−1
)wλ. By a smoothing

argument one can handle (∂ey + ∂ey−1
)wλ. Then last term in (4.5) is

zero by the symmetry in p of the Gibbs measure. Let us compute the
first term. By the symmetry in p again we have

≪ j0,1, (−L0)
−1j0,1 ≫β,ε=

∑

|x|≤1

〈jx,x+1, (−L0)
−1j0,1〉β,ε. (4.6)

To compute it is convenient to use the following little Lemma.

Lemma 4.1. For each integrable function g of the energies {ex} we

have

〈j−1,0, (−L0)
−1j0,1g〉β,ε = O(ε). (4.7)

and

〈j0,1, (−L0)
−1j0,1g〉β,ε = 〈γ20,1g〉β,ε +O(ε). (4.8)
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Proof. Note that the adjoint of L0 with respect to 〈·〉β,ε is given by

L′
0f = L∗

0f − εβ
∑

x

(px+1 − px)∇V (qx+1 − qx)f,

where L∗
0 is the adjoint with respect to 〈·〉β,0. Then, observing that

〈p−1 · ∇V (q0 − q−1), (−L0)
−1j0,1g〉β,ε = 0

we have

〈j−1,0,(−L0)
−1j0,1g〉β,ε =

1

2
〈(p0 − p−1) · ∇V (q0 − q−1), (−L0)

−1j0,1g〉β,ε

=
1

2
〈L∗

0V (q0 − q−1), (−L0)
−1j0,1g〉β,ε

=
1

2
〈L′

0V (q0 − q−1), (−L0)
−1j0,1g〉β,ε

+
1

2
εβ
∑

x

〈(px+1 − px)∇V (qx+1 − qx)V (q0 − q−1), (−L0)
−1j0,1g〉β,ε

= O(ε).

Proof of (4.8) follows a similar line. �

Applying the above Lemma with g ≡ 1 to the terms x = −1 and
x = 1 in (4.6) it follows

≪ j0,1, (−L0)
−1j0,1 ≫β,ε=

〈

γ20,1
〉

β,0
+O(ε).

We are left with the second term in (4.5). Using again Lemma 4.1 we
have

∑

y

≪ j0,1, (−L0)
−1jy−1,y(∂ey − ∂ey−1

)wλ ≫β,ε

=
∑

x,y

〈jx−1,x, (−L0)
−1jy−1,y(∂ey − ∂ey−1

)wλ〉β,ε

=
∑

x

〈jx−1,x, (−L0)
−1jx−1,x(∂ex − ∂ex−1

)wλ〉β,ε +O(ε)

= 〈j0,1, (−L0)
−1j0,1(∂e1 − ∂e0)Γwλ

〉β,ε +O(ε)

= 〈γ20,1(∂e1 − ∂e0)Γwλ
〉β,ε +O(ε) = 〈γ0,1D0,1Γwλ

〉β,ε +O(ε)

Even though D0,1Γwλ
is not a local function it is reasonable to assume

that

〈γ0,1D0,1Γwλ
〉β,ε = 〈γ0,1D0,1Γwλ

〉β,0 + oε(1) (4.9)
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with oε(1) → 0 as ε → 0 uniformly in λ.2 In the particular case when
the local potentialW = 0, (4.9) can actually be proven, because in this
case functions g of the only energies are functions only of the modulus
of the velocities, and then we have 〈g〉β,ε = 〈g〉β,0.
Hence,

lim
λ→0

≪ j0,1, vλ,1 ≫β,ε =
〈

γ20,1
〉

β,0
+ lim

λ→0
〈γ0,1D0,1Γwλ

〉β,0 + oε(1)

=
〈

γ20,1
〉

β,0
−
〈

η2
〉

β,0
+ oε(1)

=
〈

γ20,1
〉

β,0
+
〈

η2
〉

β,0
+ 2 〈γ0,1η〉β,0 + oε(1)

=
〈

(γ0,1 + η)2
〉

β,0
+ oε(1).

(4.10)

Hence
κ(ε, ς) = ε2

〈

(γ0,1 + η)2
〉

β,0
+ o(ε2).

We conclude that

κ2(ς) =
〈

(γ0,1 + η)2
〉

β,0
≥ 0. (4.11)

It follows from the above calculation that

κ2(ς) =
〈

γ20,1
〉

β,0
−
∑

x∈Z

∫

[

α0,1 (−L)−1αx,x+1

]

dρβ(e). (4.12)

The right hand side of (4.12) is exactly the macroscopic diffusion of
the energyin the autonomous stochastic dynamics describing the evolu-
tion of e, obtained in the weak coupling limit [12, 22, 23]. Thus even if
(4.12) is obtained from a formal expansion it is a mathematically well
defined object and we expect it to coincide with the limε→0 ε

−2κ(ε, ς).

4.1. Lower bounds on κ2(ς). Notice that 〈γ−1
0,1η〉β = 0, so

1 = 〈γ−1
0,1(γ0,1 + η)〉 ≤ 〈γ−2

0,1〉
1/2
β 〈(γ0,1 + η)2〉1/2β

In particular using the last line of (4.11)
〈

γ−2
0,1

〉−1

β
≤ κ2(ς) ≤

〈

γ20,1
〉

β
(4.13)

In [22], a single particle Hamiltonian of the form H = p2/2 +W (q)
is considered in dimension d = 2. It is shown there under suitable
assumptions on the potentials V and W that the bound γ2(e0, e1) ≥
c−(ς)e0e1 holds, for small energies and c−(ς) > 0 for ς > 0. It follows
that the lower bound (4.13) is strictly positive as soon as ς > 0 for

2This would follow, for example, from a uniform bound on the L2 norm, with
respect to 〈·〉β,ε, of D0,1Γwλ

. Unfortunately, we can prove such a bound only with
respect to 〈·〉β,0.
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that system. We conjecture that this holds in general for ς > 0 and we
prove it for the examples of sections 6.
When the Hamiltonian part of the cell dynamics is given by a ge-

odesic flow on a manifold of negative curvature, the lower bound in
(4.13) is strictly positive even without the noise (ς = 0), in dimension
d ≥ 3 ([12]).

5. The non-equilibrium stationary state

A different more direct way than the GK formula to study the energy
flux in a macroscopic system is to consider the stationary state in a
finite open system with Langevin thermostats at the boundary with
temperature T and T + δT [3]. The generator of the dynamics is then

Lε,N,δT =

N
∑

x=1

(Ax
0 + γSx) + εG+B1,T+δT +BN,T

where B1,T+δT , BN,T are the generators of the corresponding Langevin
dynamics at the boundaries:

Bx,T =
T

2
∂2px − px∂px

and

G =

N
∑

x=2

∇V (qx − qx−1)(∂px − ∂px−1
) .

Our goal is to compute the thermal conductivity of the stationary state,
e.g. the stationary current divided by the temperature gradient δT/N :

κN,T,ε = lim
δT→0

N

δT
ε 〈j0,1〉N,δT,ε , (5.1)

where < · >N,δT,ε is the expectation with respect to the stationary
measure. To this end we are going to expand the stationary measure
in ε and δT .
As a preliminary step, we use as a reference measure the inhomo-

geneous Gibbs distribution with linear profile of inverse temperature
{βx}x=1,...,N , interpolating between the two inverse temperatures by
setting βx+1−βx ∼ − δT

NT 2 . We will call E the expectation with respect
to such a measure, that is

E(f) = Z−1

∫

e−
∑N

x=1
βxeεxf(q, p)dqdp, (5.2)
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where as before eεx = 1
2
p2x +

1
2
ε[V (qx − qx−1) + V (qx+1 − qx)], for x =

2, . . . , N−1 and eε1 =
1
2
p21+

1
2
εV (q2−q1), eεN = 1

2
p2N + 1

2
εV (qN −qN−1).

3

To keep consistency with previous notations, we will use ex to designate
e0x, the internal energy of the isolated cell.
The corresponding adjoint operator is

L∗
ε,N,δT =

N
∑

x=1

(−Ax
0+γS

x)−εG+ε
N−1
∑

x=1

(βx+1−βx)jx,x+1+B1,T+δT+BN,T .

We assume that there exists a unique stationary probability distribu-
tion with smooth density. The existence and uniqueness of such a
probability measure still remains an open problem for most of the dy-
namics that appear in this work, though for some models, proofs can be
found in [3] (see also [24]). For certain choice of the local dynamics L0

and interaction V , the smoothness of the density follows by applying
results of [13], [8].
Let fε,N,δT be the density of this stationary measure with respect to

this inhomogeneous Gibbs measure, i.e. the solution of

L∗
ε,N,δTfε,N,δT = 0, fε,N,δT ≥ 0.

If e = {e2, . . . , eN−1}, then it is convenient to define the projector4,
since it integrates with respect to a gaussian the variable at the bound-
ary.

Πf(e2, . . . , eN−1) = E(f | e) .
Also let B = B1,T + BN,T and J = 1

NT 2

∑N−1
x=1 jx,x+1. We expand the

stationary measure as follows

fε,N,δT = 1 + δT

[

w0 +
∑

n≥1

(vn + wn) ε
n

]

+O((δT )2) (5.3)

where Πwn = wn and Πvn = 0. Next, it is convenient to set

LB =
N
∑

x=1

(Ax
0 + γSx) +B = L0,N,0.

Note that5

L∗
B =

N
∑

x=1

(−Ax
0 + γSx) +B = L∗

0,N,0.

3Since we will compute a correction of order one, the correction to the local energies
does not matter.
4Note that this projector is different from the one used in section 3
5Here the adjoint is taken with respect to all the measures E(· | e).
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and that L∗
BΠ = ΠL∗

B = 0. Since L∗
ε,N,δT1 = JδT + O((δT )2), if we

compute at the first order in δT we have

−εJ − εGw0 +
∑

n≥1

εn {L∗
Bvn − εGvn − εGwn} = 0.

From the above it follows
L∗
Bv1 = J +Gw0

L∗
Bvn+1 = Gwn +Gvn.

Since ΠGΠ = 0 it must be ΠGvn = 0. It is then natural to define

LB = ΠG(L∗
B)

−1GΠ. (5.4)

We then obtain

w0 = L−1
B ΠG(−L∗

B)
−1J

vn+1 = (L∗
B)

−1 [Gwn +Gvn]
(5.5)

with v0 = 0.
Next, we want to compute how LB acts on the space of function

{f : Πf = f}.

Gf =
N
∑

x=2

∇V (qx − qx−1)(px∂ex − px−1∂ex−1
)f

=
N
∑

x=2

jx,x−1(∂ex − ∂ex−1
)f − 1

2

N
∑

x=2

[L∗
BV (qx − qx−1)](∂ex + ∂ex−1

)f.

Thus, given two function of the energies f(e2, . . . , eN−1) and g(e2, . . . , eN−1),
we have6

Eβ(gLBf) = Eβ(gΠG(L
∗
B)

−1GΠf)

=
N
∑

x=2

Eβ(gG(L
∗
B)

−1jx,x−1(∂ex − ∂ex−1
)f),

(5.6)

where we have used the antisymmetry in p of the measure. Also, taking
the adjoint with respect to Eβ yields

G∗ = −G + β
∑

x

∇V (qx − qx−1)(px − px−1) = −G + βLBV. (5.7)

Inserting the above in (5.6) and using again the antisymmetry in p we
have

−Eβ(gLBf) =
1

4

N
∑

x,y=2

〈

(jy,y−1(∂ey − ∂ey−1
)g · (−L∗

B)
−1jx,x−1(∂ex − ∂ex−1

)f
〉

.

6By Eβ we mean the measure (5.2) with δT = 0.
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Finally, we have

γ(ex−1, ex)
2δxy = Eβ(jy,y−1(−L∗

B)
−1jx,x−1 | e) x 6= 2, N

γ(e1, e2)
2δy,2 = Eβ(jy,y−1(−L∗

B)
−1j2,1 | e)

γ(eN−1, eN )
2δy,N = Eβ(jy,y−1(−L∗

B)
−1jN,N−1 | e)

Thus

−Eβ(gLBf) =
1

4

N
∑

x=2

Eβ(γ
2(ex−1, ex)(∂ex − ∂ex−1

)g · (∂ex − ∂ex−1
)f)

=
1

4

N−1
∑

x=3

Eβ(γ
2(ex−1, ex)(∂ex − ∂ex−1

)g · (∂ex − ∂ex−1
)f)

+
1

4
Eβ(γ

2(e2)∂e2g · ∂e1,e2f)

+
1

4
Eβ(γ

2(eN−1, eN)∂eN−1
g · ∂eN−1

f)

Which shows that LB is the operator that one would expect in [22, 12]
when adding the appropriate boundary terms.
We can, at last, compute the current:

E(fε,N,δTJ) = δT E({w0 + ε(v1 + w1)}J) +O(ε2δT + (δT )2).

Thus, setting

j0,N = lim
δT→0

1

δT
E(fε,N,δTJ)

we have

j0,N = εEβ(v1J) +O(ε2)

=
ε

N2T 2

∑

x

Eβ(γ(ex−1, ex)
2) + εEβ(J · (L∗

B)
−1Gw0) +O(ε2)

=
ε

N2T 2

∑

x

Eβ(γ(ex−1, ex)
2)

+
ε

N

∑

x

Eβ(α(ex−1, ex)[(−LB)
−1α(e0, e1)]) +ON (ε

2)

Formally the limit

lim
ε→0

lim
N→∞

1

ε
Nj0,N

yields the formula for κ2 in agreement with the Green-Kubo formula
expansion of Section 4.
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6. Behavior of κ2(ς) in the limit ς → 0 for some model
systems

We now study the behavior of κ2(ς) in the deterministic limit ς → 0.
This limit is singular, since the operator L = ΠG(−L0)

−1GΠ formally
vanishes at ς = 0 for the whole class of systems considered in this work7:
both operators (−L0)

−1 and G exchange symmetric and antisymmetric
functions under the operation p → −p, while Π annihilates antisym-
metric functions. It is therefore important to analyze some particular
cases in more detail. Here we consider three such examples. In all these
cases, the uncoupled cells are one-dimensional and the stochasticity is
the random velocity flip with rate ς−1.
1. Anharmonic oscillators. It is a common belief, based on exten-

sive numerical simulation, that transport of energy in anharmonic one-
dimensional pinned chains is diffusive [21][9] (see also [17] for physical
approaches passing through a kinetic limit). However, to our knowl-
edge, there are no rigorous mathematical arguments supporting this.
We show here that lim supς→0 κ2(ς) <∞ for one-dimensional oscillators
with rather generic pinning potentials W and interaction V .
We consider the Hamiltonian (6.1) below which allows for an explicit

description. The fact that as ς → 0, κ2(ς) does not diverge results
from averaging oscillations in the uncoupled cells, and not from decay
of correlations as it would be the case for a chaotic dynamics. The
control of the time integrated current-current correlations in the limit
ς → 0 is possible if resonances between near atoms occur with small
probability in the Gibbs state. This condition is violated if the pinning
W is harmonic, but is otherwise typically satisfied.
2. Disordered oscillators and rotor. We next consider in more de-

tails two examples of chains of one dimensional systems that display a
similar structure: the disordered harmonic chain and the rotor model.
In each case, the atoms are one-dimensional systems, so that, when
both noise and coupling are removed, the full dynamics becomes again
integrable. Moreover, then, neighboring particles typically oscillate at
different frequencies. For these two examples, we are able to give ex-
plicit formulas for the weak coupling operator L (see Proposition 6.3
and Proposition 6.5).
In the absence of noise (ς = 0), the disordered chain is well known

to be a perfect insulator: κ = 0 [2], while it is conjectured that the
conductivity of the rotor chain is finite and positive [21], but decays

7When the dynamics of individual cells is chaotic, the operator (−L0)
−1 is actually

not even well defined at ς = 0. In this Section, we will only be concerend with
integrable isolated dynamics.
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faster than any power law in ε as ε → 0 [11]. Thus in these two cases
it is expected that the conductivity of the deterministic system κ(ǫ, ς)
has no expansion in power of ǫ. What we are actually able to prove is
that

lim
ς→0

κ2(ς) = 0.

We also show in Subsection 6.3 that for the rotor chain lim supς→0 κ2(ς) <
+∞, extending the conclusions of Proposition 6.1 to this case.

6.1. Upper bound on the conductivity for pinned anharmonic

oscillators. Let

H(q, p) =
∑

x

p2x
2

+W (qx) + εV (qx+1 − qx)

=
∑

x

H0(qx, px) + εV (qx+1 − qx)
(6.1)

with (qx, px) ∈ R
2. The potential W is assumed to be smooth, strictly

convex, except possibly at the origin, and symmetric. The potential
V is also taken smooth, symmetric, bounded below, and of polynomial
growth, always satisfying the requirement that µβ,ε is analytic in ε for
small ε. To make things simple and concrete, we will actually focus on
W given by

W (q) =
|q|r
r
, r > 2. (6.2)

Proposition 6.1. Let W be given by (6.2) for some r > 2. Then, with
the assumptions on V given after (6.1), lim sup κ2(ς) < +∞.

Proof. Because of its length, the proof as well as the needed introduc-
tory material are deferred to Appendix A. �

Remark. In Proposition 6.1, we have limited ourselves to a case lead-
ing to rather clean computations. A closer look at the proof in appendix
A shows that our hypotheses are too restrictive: what is important is
that the map ω(I), giving the frequency of oscillation as a function of
the action, can be inverted. The main advantage of taking theW given
by (6.2), is that this can be done explicitely.
It then arises as a natural question whether the proof could be further

generalized to cases where ω(I) is invertible everywhere but on a finite
or countable number of points. This would for example be the case
if we consider the pinning potential W (q) = q2 + a cos(q) for some
small enough constant a > 0. This is unfortunatly not the case, as
some logarithmic divergence in ς shows up in the limit ς → 0, if one
just tries to mimic the proof of Proposition 6.1. Unless the system
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posseses some hidden symmetry, this in fact means that 〈γ2(e0, e1)〉β,0
diverges logarithmically in the deterministic limit. This however does
not necessarily imply that κ2 itself will diverge in this limit, as the term
〈η2〉β,0 in (4.11) can compensate this divergence. This is in fact what
is expected to happen.

6.2. The disordered harmonic chain. The hamiltonian part of the
generator is now given by

A0 =
∑

x

px∂qx −ω2
xqx∂px , G =

∑

x

(qx−1−2qx+ qx+1)∂px , (6.3)

where ω2
x are random, independent and identically distributed squared

frequencies, that satisfy the bound c−1 ≤ ω2
x ≤ c, for some constant

c > 0. The internal energy is given by ex = p2x/2 + ω2
xq

2
x/2, while for

ε ≥ 0 the energy flux εjx,x+1 between two adjacent oscillators is given
by

ε jx,x+1 = −ε px + px+1

2
(qx+1 − qx).

Lemma 6.2. Let x, y ∈ Z. A solution ψx,y to the equation

−L0ψx,y = qxpy

is given by

ψx,y =
4ς
(

ω2
xqxpy − ω2

yqypx
)

+ (ω2
x − ω2

y)pxpy +
(

(ω2
x − ω2

y − 8ς2)ω2
y

)

qxqy

∆(x, y)

with

∆x,y = 8ς2(ω2
x + ω2

y) + (ω2
x − ω2

y)
2.

Proof. This follows by a direct computation. �

This lemma allows us to give an explicit form of the operator L =
ΠG(L0)

−1GΠ. We know that L is the generator of a Ginzburg-Landau
dynamics.

Proposition 6.3. Let L = ΠG(L0)
−1GΠ. Then

ρβ(e) =
∏

x

(

βe−βex
)

, (6.4)

γ2(ex, ex+1) =
4ς

∆x,x+1

exex+1, (6.5)

α(ex, ex+1) =
8ς

∆x,x+1

(ex − ex+1) (6.6)
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Proof. To obtain the expression for the invariant measure, let us take
an f that depends only on ex = (p2x + ω2

xq
2
x)/2, and let us compute

〈f〉β,0 = Zx(β)
−1

∫

R2

f
(p2x + ω2

xq
2
x

2

)

e−β(p2x+ω2
xq

2
x)/2 dqxdpx

∼
∫ ∞

0

f(e) e−βede

from which the expression for ρβ follows.
Next we have that

γ2(ex, ex+1) = Π
(

jx,+1(−L0)
−1jx,x+1

)

=
1

4
Π
(

qx+1px − qxpx+1 + qx+1px+1 − qxpx

)

(

ψx+1,x − ψx,x+1 + ψx+1,x+1 − ψx,x

)

=
2σ

∆x,x+1
Π
(

ω2
x+1q

2
x+1p

2
x + ω2

xq
2
xp

2
x+1

)

where we have used the fact that odd powers of qx, px, qx+1, px+1 are
annihilated by the projection Π. Using then polar coordinates

ωxqx√
2

=
√
ex cos θx,

px√
2

=
√
ex sin θx,

it is computed that both

Π(p2x) = Π(ω2
xq

2
x) =

1

2π

∫ 2π

0

2e sin2 θx dθx = ex.

This yields the announced expression for γ2(ex, ex+1).
The current α(ex, ex+1) follows using (3.10). �

Corollary 6.4. For ς > 0, we have that a.s. in ω

κ2(ς) =
8ς

〈∆0,1(ς)〉∗
> 0

where 〈·〉∗ represents the average with respect to the realizations of the

disorder. In particular, a.s. in ω,

lim
ς→0

κ2(ς) = 0.

Proof. The proof is given in Appendix B. �
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6.3. The rotor chain. The Hamiltonian part of the dynamics is given
by

A0 =
∑

x

px∂qx , G =
∑

x

[sin(qx−1 − qx)− sin(qx − qx+1)] ∂px ,

(6.7)
with qx ∈ R/2πZ. The individual energy for the uncoupled dynamics
(ε = 0) is ex = p2x/2. If ε > 0, there is a flux of energy which is given
by εjx,x+1 where

jx,x+1 = −1

2
(px + px+1) sin(qx+1 − qx)

Proposition 6.5. For this system

ρ(e) =
∏

x

(

e−(U(ex)+βex)
√

β/π
)

with U(ex) =
1

2
log ex,

(6.8)

γ2(ex, ex+1) =
2ς exex+1

∆(ex, ex+1)
, (6.9)

α(ex, ex+1) =
ς(ex − ex+1)

∆2(ex, ex+1)

(

∆(ex, ex+1) + 8exex+1

)

(6.10)

with

∆(ex, ex+1) = 4ς2(ex + ex+1) + (ex+1 − ex)
2.

Proof. The proof is given in Appendix C. �

It is seen from the above expressions that as noted earlier the gener-
ator L formally vanishes as ς → 0. However, for ς small but positive,
the coefficient γ2(ex, ex+1) can become of order 1/ς in case a resonance
occurs, such that |ex+1− ex| ≤ ς. We have unfortunately not been able
to decide whether, despite of this phenomenon, the value of κ2(ς) still
vanishes as ς → 0, as suggested by the results in [11].
We have however a result analogous to that of Proposition 6.1:

Proposition 6.6. For any ς > 0, κ2(β, ς) is strictly positive and

lim sup
ς→0

κ2(ς) < +∞.

Proof. By (4.13) and the explicit form of γ we have that

κ2(ς, β) ≥ 〈γ−2(e0, e1)〉−1
β,0 ≥ cς

for a positive constant c independent of ς. By (4.13) it holds also that

κ2 ≤ 〈γ2(e0, e1)〉β,0.
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The function 〈γ2(e0, e1)〉β,0 has the behavior

〈γ2(e0, e1)〉β,0 ∼
∫

R
2
+

ς e0e1
4ς2(e0 + e1) + (e1 − e0)2

e−β(e0+e1)
de0de1√
e0e1

∼
∫

R2

ς x2y2

8ς2(x2 + y2) + (y2 − x2)2
e−β(x2+y2)/2 dxdy

∼
∫ ∞

0

dr

∫ 2π

0

dθ
ς r3 cos2 θ sin2 θ

8ς2 + r2(cos2 θ − sin2 θ)2
e−βr2/2.

In the limit ς → 0, only the values of θ such that cos2 θ − sin2 θ ∼ 0
contribute (θ ∼ ±π/4 and θ ∼ ±3π/4), so that, by a Taylor expansion,

〈γ2(e0, e1)〉β,0 ∼
∫ ∞

0

dr

∫ 1

0

du
ς r3

8ς2 + r2u2
e−βr2/2

∼
∫ ∞

0

r2e−βr2/2

(
∫ 1

0

ς/r

8(ς/r)2 + u2
du

)

dr

∼ 1 as ς → 0.

This proves the claim. �

Appendix A. Proof of Proposition 6.1

To study the system at hand, it is convenient to pass to action-angle
variables. Let I : R+ → R+ be defined by

I(E) =
1

2π

∫

A(E)

dqdp with A(E) = {(q, p) ∈ R
2 : H0(q, p) ≤ E}

Our assumptions on W ensure that I′(E) = dI/dE (E) > 0 for any
E > 0. Given E ≥ 0, we also set

q∗(E) = max{q ∈ R : H0(q, p) = E for some p ∈ R}.
Then we define the action-angle variables by

Ix = I(qx, px) = I(H0(qx, px)),

θx = θ(qx, px) =
−sgn(px)

I′(H0(qx, px))

∫ q∗(H0(qx,px))

qx

dq′
√

2(H0(qx, px)−W (q′))
.

It is checked that (Ix, θx) ∈ R+ × T with T = R/(2πZ). The potential
W is such that this change of variable is invertible, except at origin.
We denote by Q and P the inverse maps:

qx = Q(Ix, θx), px = P (Ix, θx).

The change of variables (qx, px) ↔ (Ix, θx) is known to be a canonical
change of variables.
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Let H0 : R+ → R+ be the inverse function of I: H0 ◦ I(E) = E for
any E ∈ R+. In the action-angle variables, the Hamiltonian (6.1) reads

H(I, θ) =
∑

x

H0(Ix) + ǫV
(

Q(Ix+1, θx+1)−Q(Ix, θx)
)

.

Defining
ω(Ix) = H′

0(Ix) = dH0/dIx,

Hamilton equations read

İx = −ǫ ∂
∂θx

V
(

Q(Ix+1, θx+1)−Q(Ix, θx)
)

,

θ̇x = ωx + ǫ
∂

∂Ix
V
(

Q(Ix+1, θx+1)−Q(Ix, θx)
)

.

The current, given by (2.3), has the form

jx,x+1 = −1

2

(

P (Ix, θx) + P (Ix+1, θx+1)
)

V ′
(

Q(Ix+1, θx+1)−Q(Ix, θx)
)

(A.1)
with V ′(x) = dV/dx.
Since we are in dimension d = 1, the noise written in the action-angle

coordinates is given by

Sf(I, θ) =
∑

x

(

f(I, θx)− f(I, θ)
)

, (A.2)

with θx is obtained from θ by changing θx to −θx (−θx is the inverse
of θx for the the addition on T). The symmetry of the potential W
implies

P (Ix,−θx) = −P (Ix, θx) and Q(Ix,−θx) = Q(Ix, θx).

This implies that the noise S, as defined by (A.2), preserves the total
energy, and that the relation

Sjx,x+1 = −4jx,x+1

holds.

A.1. The special case W given by (6.2). Let us now assume that
W (q) = |q|r/r, i.e.

H0(q, p) =
p2

2
+

|q|r
r
, r > 2. (A.3)

The following scaling relation is checked thanks to Hamilton’s equa-
tions: if (q(t), p(t))t≥0 is a solution to the equations of motion, then so
is (qα(t), pα(t))t≥0 with

qα(t) = α2/(r−2)q(αt), pα(t) = αr/(r−2)p(αt) for α > 0.
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This first allows to deduce that

H0(I) = H0(1)·I2r/(r+2) and ω(I) = ω(1)·I(r−2)/(r+2). (A.4)

Next, writing

Q(I, θ) =
∑

k∈Z

Q̂(I, k)eikθ, P (I, θ) =
∑

k∈Z

P̂ (I, k)eikθ, (A.5)

we obtain

Q(I, θ) = I2/(r+2)
∑

k∈Z

Q̂(1, k)eikθ, P (I, θ) = Ir/(r+2)
∑

k∈Z

P̂ (1, k)eikθ.

(A.6)
It follows from the theory of ordinary differential equations that Q(1, θ)

and P (1, θ) are smooth, so that the Fourier coefficients Q̂(1, k), P̂ (1, k),
with k ∈ Z, have good decay property as |k| → ∞.

A.2. Poisson equation for the uncoupled dynamics. In this sub-
section, we consider functions on R

2
+ ×T

2, that depend on two actions
(I0, I1) and two angles (θ0, θ1). The actions play the role of a parame-
ter, and, for clarity, will be dropped from several notations. A function
f ∈ C∞(T2) is expanded in Fourier series as

f(I0, I1, θ0, θ1) =
∑

(k0,k1)∈Z

f̂(I0, I1, k0, k1)e
i(k0θ0+k1θ1)

with

f̂(I0, I1, k0, k1) =
1

(2π)2

∫

[−π,π]2
f(I0, I1, θ0, θ1)e

−i(k0θ0+k1θ1).

It is seen that the current satisfies ĵ0,1(I0, I1, 0, 0) = 0 for all (I0, I1) ∈
R

2
+. We introduce the notations

α(k0, k1) = i
(

k0ω(I0) + k1ω(I1)
)

− 2ς

D(k0, k1) = α(k0, k1)α(−k0,−k1)−
16ς4

α(−k0, k1)α(k0,−k1)
.

Lemma A.1. Let f be a function on R
2
+×T

2 such that f(I0, I1, ·, ·) is
smooth and satisfies f̂(I0, I1, 0, 0) = 0, for any (I0, I1) ∈ R

2
+. Writing

f̂(k0, k1) for f̂(I0, I1, k0, k1), we define

g(I0, I1, k0, k1) = f̂(k0, k1) − ς
( f̂(−k0, k1)
α(−k0, k1)

+
f̂(k0,−k1)
α(k0,−k1)

)

+
ς2

α(−k0,−k1)
( 1

α(−k0, k1)
+

1

α(k0,−k1)
)

(

f̂(−k0,−k1)− f̂ (k0, k1)
)

.

(A.7)
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A solution u to the equation −L0u = f is given, in the Fourier vari-

ables, by

û(I0, I1, 0, 0) = 0,

û(I0, I1, k0, k1) = −α(−k0,−k1)
D(k0, k1)

g(I0, I1, k0, k1) for (kx, ky) 6= (0, 0).

Proof. In the Fourier variables, the equation −L0u = f reads

α(k0, k1)û(k0, k1) + ςû(−k0, k1) + ςû(k0,−k1) = −f̂(k0, k1)

where we have written û(k0, k1) for û(I0, I1, k0, k1). The result is then
checked by means of a direct computation. �

Remarks. 1. All other solutions are obtained by taking for û(I0, I1, 0, 0)
an arbitrary function of the actions I0, I1. This choice is irrelevant for
the sequel.
2. Since |ς/α(k0, k1)| ≤ 1 for all (k0, k1) ∈ Z

2, we have the bound

|g(I0, I1, k0, k1)| ≤ 5max{|f̂(k0,±k1)|, |f̂(−k0,±k1)|}.

3. For ς = 0, the solution simply becomes

û(I0, I1, k0, k1) = i
f̂(k0, k1)

k0ω(I0) + k1ω(I1)
for (kx, ky) 6= (0, 0).

A.3. Proof of Proposition 6.1. By (4.13) we have

κ2(ς, β) ≤ 〈γ2(e0, e1)〉β,0 = 〈j0,1(−L0)
−1j0,1〉β,0,

with 〈·〉β,0 the uncoupled Gibbs state. Writing u = (−L0)
−1j0,1 we

have thus

〈j0,1(−L0)
−1j0,1〉β,0 ∼

∫

R
2
+

e−β
(

H0(I0)+H0(I1)
)

dI0dI1

×
∫

T2

u(I0, I1, θ0, θ1)j0,1(I0, I1, θ0, θ1) dθ0dθ1

∼
∫

R
2
+

e−β
(

H0(I0)+H0(I1)
)

dI0dI1

×
∑

k0,k1∈Z2

û(I0, I1, k0, k1)ĵ0,1(I0, I1, k0, k1).

Writing

h(I0, I1, k0, k1) = −g(I0, I1, k0, k1)ĵ(I0, I1, k0, k1), (A.8)
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with g as defined in (A.7), we obtain by Lemma A.1,

〈j0,1(−L0)
−1j0,1〉β,0 ∼

∑

(k0,k1)6=(0,0)

∫

R
2
+

α(−k0,−k1)
D(k0, k1)

h(I0, I1, k0, k1) e
−β
(

H0(I0)+H0(I1)
)

dI0dI1.

(A.9)

In this expression,

α(−k0,−k1)
D(k0, k1)

= − 2ς + i
(

k0ω(I0) + k1ω(I1)
)

(

k0ω(I0) + k1ω(I1)
)2

+ 4ς2 (k0ω(I0)−k1ω(I1))
2

(k0ω(I0)−k1ω(I1))
2 +4ς2

.

(A.10)
We now come to the crux of the argument, and start using the specific

form of H0. In view of (A.10), it looks desirable to change integration
variables in (A.9) from (I0, I1) to (ω0, ω1) = (ω(I0), ω(I1)). The an-
harmonicity of W , specifically expressed in this case by relation (A.4),
makes this possible, giving

〈j0,1(−L0)
−1j0,1〉β,0 ∼

∑

(k0,k1)6=(0,0)

∫

R
2
+

α(−k0,−k1)
D(k0, k1)

h̃(ω0, ω1, k0, k1) (ω0ω1)
4

r−2 ρβ(ω0, ω1) dω0dω1

(A.11)

with

h̃
(

ω0, ω1, k0, k1) = h
(

c(r)ω
r+2

r−2

0 , c(r)ω
r+2

r−2

1 , k0, k1
)

, c(r) > 0,

ρβ(ω0, ω1) = e−c′(r)β(ω
2r
r−2

0
+ω

2r
r−2

1
), c′(r) > 0.

To proceed, we need some more technical informations on the func-
tion h̃(ω0, ω1, k0, k1). The potential W is not strictly convex at the
origin, implying that ω(I) vanishes as I → 0. For this reason, we need

a relatively detailed knowledge on h̃(ω0, ω1, k0, k1) for (ω0, ω1) near the
origin, in a order to exclude any divergence at small frequencies.
Using the general expression (A.1) for the current j0,1, the specific

expression (A.6) for Q(I, θ) and P (I, θ), the definition (A.7) of g, and
the definition (A.8) of h, we conclude that h is of the form

h(I0, I1, k0, k1) = I
2r
r+2

0 h0,0(I0, I1, k0, k1) + I
r

r+2

0 I
r

r+2

1 h0,1(I0, I1, k0, k1)

+ I
2r
r+2

1 h1,1(I0, I1, k0, k1),
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so that in turn h̃ takes the form

h̃(ω0, ω1, k0, k1) = ω
2r/(r−2)
0 h̃0,0(ω0, ω1, k0, k1)

+ ω
r/(r−2)
0 ω

r/(r−2)
1 h̃0,1(ω0, ω1, k0, k1) + ω

2r/(r−2)
1 h̃1,1(ω0, ω1, k0, k1),

(A.12)

where h̃i,j satisfies the following bounds: there exists a < +∞ and, for
any b > 0, there exists a constant Cb < +∞, such that

h̃i,j(ω0, ω1, k0, k1) ≤ Cb
(|ω0|+ |ω1|+ 1)a

(|k0|+ |k1|+ 1)b
, (i, j) = (0, 0), (0, 1), (1, 1).

(A.13)

Moreover, by symmetry, we have P̂ (I, 0) = 0 for all I > 0, with P̂ (I, 0)
defined by (A.5). It follows that

h̃0,0(ω0, ω1, 0, k1) = h̃0,1(ω0, ω1, 0, k1)

= h̃0,1(ω0, ω1, k0, 0) = h̃1,1(ω0, ω1, k0, 0) = 0.
(A.14)

We now move back to the evalution of (A.11). We distinguish three
cases, according to the values of k0 and k1; resonances appear in case
3. The sum over (k0, k1) ∈ Z

2/{0, 0} can then be controlled thanks to
the decay in (A.13) with b large enough.
Case 1: k0k1 = 0. Let us, as an example, consider the case k0 =

0, k1 6= 0. The integral (A.11) has a possible divergence only for k1 → 0.
We have

∣

∣

∣

α(−k0,−k1)
D(k0, k1)

∣

∣

∣
≤ Cω−2

1 for ω0, ω1 ≤ 1

Thanks to (A.14), only the term in h̃1,1 survives in (A.12), and we
conclude that the integrand behaves as

ω
4/(r−2)
1 ω

2r/(r−2)
1 ω−2

1 = ω
8/(r−2)
1 as ω1 → 0,

so that there is in fact no singularity.
Case 2: k0k1 > 0. The only possible divergence of the integral (A.11)

is at the origin. We have the bounds
∣

∣

∣

α(−k0,−k1)
D(k0, k1)

∣

∣

∣
≤ Cω−2

0 ,Cω−1
0 ω−1

1 ,Cω−2
1 for ω0, ω1 ≤ 1,

allowing to check, as in the previous case, that there is no singularity.
Case 3: k0k1 < 0. The integrand now becomes truly singular (reso-

nances). Let us assume, for example, that k0 > 0 and k1 < 0. We split
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the integral (A.11) as
∫

R2
+

(. . . ) =

∫

k0ω0+|k1|ω1<ς

(. . . ) +

∫

k0ω0+|k1|ω1≥ς

(. . . ). (A.15)

For the first integral, we are satisfied by the rough bound
∣

∣

∣

α(−k0,−k1)
D(k0, k1)

∣

∣

∣
≤ C

ς2(k0ω0 + |k1|ω1)2
.

As in the cases treated previousely, it is seen that there is no singularity.
Moreover, the intgration domain is of size ς2, so that the intgral is of
order 1 at most.
We move to the second integral. We find it convenient to change

again variables. With

x = k0ω0 + |k1|ω1, y = k0ω0 − |k1|ω1,

the second integral in the right hand side of (A.15) becomes
∫

k0ω0+|k1|ω1≥ς

(. . . )

∼
∫ ∞

ς

dx

∫ x

−x

dy
2ς + iy

y2 + 4ς2 x2

x2+4ς2

φ(x, y, k0, k1) ρ̃β(x, y, k0, k1)

with

φ(x, y, k0, k1) = h

(

x+ y

2k0
,
x− y

2|k1|
, k0, k1

) (

(x+ y)(x− y)

4k0|k1|

)4/(r−2)

ρ̃β(x, y, k0, k1) = ρβ

(

x+ y

2k0
,
x− y

2|k1|

)

.

We observe that, in the domain of integration x ≥ ς:

4ς2
x2

x2 + 4ς2
≥ 4

5
ς2.

Therefore, the integral converges to a finite value as ς → 0. �

Appendix B. Proof of Corollary 6.4

Consider the quenched space-time correlations of the energy:

S(x, t, ω) = 〈ex(t)e0(0)〉ρβ − β−2

where {ex(t)} is the time evolved energy generated by the Ginzburg-
Landau dynamics L with the coefficients γ2 and α computed above,
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starting with the equilibrium distribution at temperature β−1. Then
computing the time derivative we have

∂tS(x, t, ω) = 8ς∆−1
x+1,x,ω [S(x+ 1, t, ω)− S(x, t, ω)]

−8ς∆−1
x,x−1,ω [S(x, t, ω)− S(x− 1, t, ω)]

i.e. S(x, t, ω) = E0,ω(δx(X(t))), the transition probability of a 1-
dimensional random walk on random bonds X(t) (so called bond dif-
fusion). It is well known and easy to compute the asymptotic variance
of this bond diffusion, it is given by the harmonic average of the bonds
variables ([20]):

lim
t→∞

1

t

∑

x

x2S(x, t, ω) = lim
t→∞

1

t
E0,ω(X(t)2) =

〈( 8ς

∆0,1(ς)

)−1〉−1

∗

=
8ς

〈∆0,1(ς)〉∗
(B.1)

almost surely in ω.
By the Green-Kubo formula for the diffusivity for L, this is equal to

κ2(ς, β) and

κ2(ς) =
8ς

〈∆0,1(ς)〉∗
→ 0 as ς → 0, (B.2)

which gives the claims. �

Appendix C. Proof of Proposition 6.5

We start by the following lemma.

Lemma C.1. Let x, y ∈ Z. A solution ψx,y to the equation

− L0ψx,y = sin(qx − qy)px (C.1)

is given by

ψx,y = ∆−1
x,y

{

[4ς2 + (ex − ey)]ex +
1

2
(ex − ey)pxpy

}

cos(qx − qy)

+ ∆−1
x,y {2ς(eypx + expy)} sin(qx − qy)

(C.2)

with

∆x,y := ∆(ex, ey) = 4ς2(ex + ey) + (ey − ex)
2. (C.3)
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Proof. We compute

A0ψx,y = 2ς∆−1
x,y(eypx + expy)(px − py) cos(qx − qy)

−∆−1
x,y

{

(

4ς2 + (ex − ey)
)

ex +
1

2
(ex − ey)pxpy

}

(px − py) sin(qx − qy)

and

Sψx,y = −4ς∆−1
x,y(eypx+expy) sin(qx−qy)−2∆−1

x,y(ex−ey)pxpy cos(qx−qy).
Remembering that p2x = 2ex and p2y = 2ey, the terms in cos(qx − qy)
cancel in (A0 + ςS)ψx,y, so that

[A0 + ςS]ψx,y = ∆−1
x,yθx,y sin(qx − qy)

with

θx,y =
{

(

4ς2 + (ex − ey)
)

ex +
1

2
(ex − ey)pxpy

}

(px − py)

− 4ς2(eypx + expy)

= −px∆x,y.

This proves the claim. �

We now move to the proof of Proposition 6.5. The Gibbs measure at
inverse temperature β is readily computed. For a function f depending
only on the uncoupled energy ex = p2x/2, it holds that

〈f〉β,0 =

√

β

2π

∫

R

f(p2x/2)e
−βp2x/2 dpx =

√

β

π

∫ ∞

0

f(e)e−βe de√
e

from which (6.8) follows.
Next, γ2(ex, ex+1) is computed by means of Lemma C.1:

γ2(ex, ex+1) = Π jx,x+1(−L0)
−1jx,x+1

=
1

2
Π jx,x+1

[

(−L0)
−1 sin(qx+1 − qx)px+1 − (−L0)

−1 sin(qx − qx+1)px
]

=
1

2
Π jx,x+1

[

ψx+1,x − ψx,x+1

]

.

The terms in cos(qx − qx+1) in ψx+1,x and ψx,x+1 will vanish due to the
projection Π, so that we are left with

γ2(ex, ex+1) =
1

4
Π(px+px+1) sin(qx+1−qx)

4ς(ex+1px + expx+1) sin(qx+1 − qx)

∆x,x+1

Since 1
(2π)2

∫

[0,2π]2
sin2(x − y) dxdy = 1/2, and since the projection of

expressions containing uneven powers of px or px+1 vanishes, we obtain
(6.9).
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The current α(ex, ex+1) can be computed in two possible ways: di-
rectly by the definition α(ex, xx+1) = ΠG(−L0)

−1jx,x+1, or by means
of the expression

α(ex, ex+1) = eU(ex)+U(ex+1)
(

∂ex+1
− ∂ex

)

e−(U(ex)+U(ex+1))γ2(ex, ex+1)

with U(x) = 1
2
log x. Both computations lead to (6.10). �
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