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Introduction

Energy transport in nonequilibrium macroscopic systems is described phenomenologically by Fourier's law. This relates the energy flux J, at the position r in the system, to the temperature gradient at r, via J = -κ∇T . The computation of the thermal conductivity κ, which depends on the temperature and the constitution of the system, from the underlying microscopic dynamics is one of the central mathematical problems in nonequilibrium statistical mechanics (see [START_REF] Bonetto | Fourier's Law: a challenge to theorist[END_REF][21] [START_REF] Dhar | Heat Transport in low-dimensional systems[END_REF] and references therein).

The Green-Kubo (GK) formula gives a linear response expression for the thermal conductivity. It is defined as the asymptotic space-time variance for the energy currents in an infinite system in equilibrium at temperature T = β -1 , evolving according to the appropriate dynamics. For purely Hamiltonian (or quantum) dynamics, there is no proof of convergence of the GK formula (and consequently no proof of Fourier law). One way to overcome this problem is to add a dash of randomness (noise) to the dynamics [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF]. In the present work we explore the resulting GK formula and start an investigation of what happens when the strength of the noise, ς, goes to zero.

Our basic setup is a chain of coupled systems. Each uncoupled system (to which we will refer as a cell) evolves according to Hamiltonian dynamics (like a billiard, a geodesic flow on a manifold of negative curvature, or an anharmonic oscillator...) perturbed by a dynamical energy preserving noise, with intensity ς. We will consider cases where the only conserved quantity for the dynamics with ς > 0, is the energy. The cells are coupled by a smooth nearest neighbor potential εV . We assume that the resulting infinite volume Gibbs measure has a convergent expansion in ε for small ε. We are interested in the behaviour of the resulting GK formula for κ(ε, ς) given explicitly by equation (2.4) below, for small ς and ε keeping the temperature β -1 and other parameters fixed.

We start in Section 2 by noting that for ς > 0, the GK formula is well defined and has a finite upper bound [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF]. We do not however have a strictly positive lower bound on κ(ε, ς) except in some special cases [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF]. We believe however that κ(ε, ς) > 0 whenever ε > 0, ς > 0, i.e. there are no (stable) heat insulators. The fact that κ(ε, ς) ≥ 0 follows from the definition of the GK formula. The situation is different when we let ς → 0. In that case we have examples where κ(ε, ς) → 0 (disordered harmonic chains [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF]), and where κ(ε, ς) → ∞ (periodic harmonic systems).

To make progress in elucidating the properties of κ(ε, ς), when ς → 0, we carry out in Section 3 a purely formal expansion of κ(ε, ς) in powers of ε: κ(ε, ς) = n≥2 κ n (ς)ε n . This is formal because spacetime correlations entering in the GK formula are non-local function and depends themselves on ε.

We then investigate in Section 4 the structure of the term κ 2 (ς), which we believe, but do not prove, coincides with the lim ε→0 κ(ε, ς)/ε 2 .

We show that κ 2 (ς) is finite and strictly positive for ς > 0 by proving that it is equal to the conductivity obtained from a weak coupling limit in which there is a rescaling of time as ε -2 t (cf. [START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF][START_REF] Liverani | Macroscopic Energy diffusion after weak coupling[END_REF]). We argue further that the lim ς→0 κ 2 (ς) exists and is closely related to the weak coupling macroscopic conductivity obtained for the purely Hamiltonian dynamics ς = 0 from the beginning. The latter is computed for a geodesic flow on a surface of negative curvature, and is strictly positive [START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF]. A proof, in the latter case, would require the extension to random perturbations for the theory developed for deterministic perturbations in [START_REF] Butterley | Smooth anosov flows: correlation spectra and stability[END_REF] [START_REF] Butterley | Robustly invariant sets in fiber contracting bundle flows[END_REF]. This should be possible by arguing as in the discrete time case [START_REF] Gouezel | Banach spaces adapted to Anosov systems[END_REF].

Nevertheless the identification of κ 2 (ς) with the weak coupling limit conductivity (suggested by H. Spohn [START_REF] Spohn | [END_REF]) gives some hope that the higher order terms, can also be shown to be well defined and studied in the limit ς → 0. This could then lead (if nature and mathematics are kind) to a proof of the convergence and positivity of the GK formula for a Hamiltonian system.

We next show in Section 5 that we obtain the same κ 2 (ς) for the thermal conductivity of an open system: N coupled cells in which cell 1 and cell N are in contact with Langevin reservoirs at different temperatures, when we let N → ∞ and the two reservoir temperatures approach to β -1 .

Section 6 is devoted to a detailed study of κ 2 (ς) for 3 examples: the isolated cell hamiltonian is 1) a pinned anharmonic oscillator, 2) a rotor; 3) the system at ς = 0 is a random (positively) pinned harmonic chain. In all cases we can prove that, generically, lim sup ς→0 κ 2 (ς) < +∞, as contrasted with the regular harmonic chain when κ 2 (ς) → ∞ when ς → 0 [1] [START_REF] Dhar | Heat conduction in disordered harmonic lattices with energy conserving noise[END_REF]. In case 1 and 2 we have no lower bound for this limit, but we believe that it will be strictly positive. In case 3 we prove that the limit is 0, as in the harmonic chain for ς → 0, with random pinning springs. Phase mixing, due to lack of resonances between frequencies of different cells at different energies, is the relevant ingredient for the finiteness of κ 2 (ς) when ς → 0.

Green-Kubo formula (random dynamics)

We define first the dynamics of a single uncoupled cell. This will be given by a Hamiltonian dynamics generated by

H = p 2 /2 + W (q)
where the position q has values in some d-dimensional manifold, q ∈ M, and the momentum p ∈ R d . We generally assume that W ≥ 0, and its minimum value is 0. In the case of the dynamics of a billiard, W = 0 and M ⊂ R 2 is the corresponding compact set of allowed position with reflecting condition on the boundary. Another chaotic example is given by M a manifold with negative curvature and W = 0 (cf [START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF]). We will also consider cases where d = 1, that are completely integrable.

The Hamiltonian flow in a cell is perturbed by a noise that typically acts on the velocity, conserving the kinetic and the internal energy of each cell (as in [3][22]). Noises that exchanges energy betweens different cells will not be considered here. Consequently the energy current will be due entirely to the deterministic interaction between the cells.

The time evolved {q(t), p(t)} is given by a Markov process on the state space Ω = M × R d , generated by

L = A + ςS
where A is the Liouville operator associated to the Hamiltonian flow and S is the generator of the stochastic perturbation. We assume that S acts only on the momentum p and is such that S|p| 2 = 0. For d ≥ 2, we just take for S the Laplacian on the sphere |p| 2 = constant. In dimension 1, we take an S that generates at random exponential times a flip on the sign of the velocity:

Sf (q, p) = f (q, -p) -f (q, p).
In all cases p is an eigenfunction of S for some negative eigenvalue: Sp = -λp.

Consider now the dynamics on Ω Z constituted by infinitely many processes {q x (t), p x (t)} x∈Z as above, but coupled by a smooth nearest neighbor potential εV . The dynamics is then generated by1 

L ε = x∈Z ςS x + A x 0 + ε∇V (q x -q x-1 )(∂ p x-1 -∂ px ) = L 0 + εG (2.1)
where

L 0 = A 0 + ςS, A 0 = x A x 0 , S = x S
x . The energy of each cell, which is the sum of the internal energy and of the interaction energy, is defined by

e ε x = e x + ε 2 (V (q x+1 -q x ) + V (q x -q x-1 )) . (2.2)
To simplify notation we write e x for e 0 x , the energy of the isolated system x.

This dynamics conserves the total energy. The corresponding energy currents εj x,x+1 , defined by the local conservation law

L ε e ε x = ε (j x-1,x -j x,x+1 )
are antisymmetric functions of the p's such that

j x,x+1 = - 1 2 (p x + p x+1 ) • ∇V (q x+1 -q x ). (2.3)
Let us denote by µ β,ε = • β,ε the canonical Gibbs measure at temperature β -1 > 0 defined by the Dobrushin-Lanford-Ruelle equations, which of course depends on the interaction εV . we shall assume in all the cases considered that µ β,ε is analytical in ε for sufficiently small ε (when applied to local functions). In particular we assume that the potentials V and W are such that the Gibbs state is unique and has spatial exponential decay of correlations. Technical assumptions on V and W for this to hold can for example be found in [START_REF] Bodineau | Correlations, Spectral Gap and Log-Sobolev inequalities for unbounded spin systems[END_REF]. Also we assume that the infinite dynamics is well defined for a set of initial conditions which has probability measure one with respect to µ β,ε (we refer the interested reader to [START_REF] Fritz | Stochastic dynamics of two-dimensional infinite particle systems[END_REF][START_REF] Fritz | Some remarks on nonequilibrium dynamics of infinite particle systems[END_REF][START_REF] Fritz | Gradient dynamics of infinite point systems[END_REF] and references therein).

The argument of Section 5 in [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF] applies here, and gives the convergence of the thermal conductivity defined by the Green-Kubo formula

κ(ε, ς) = ε 2 ∞ 0 x∈Z E β,ε (j x,x+1 (t)j 0,1 (0)) dt. (2.4) 
Here E β,ε indicates the expectation of the infinite dynamics in equilibrium at temperature β -1 . The convergence of the integral in (2.4) is in fact defined as

lim ν→0 ≪ j 0,1 , (ν -L ε ) -1 j 0,1 ≫ β,ε (2.5) 
for ν > 0, where ≪ •, • ≫ β,ε is the inner product

≪ f, g ≫ β,ε = x∈Z [< τ x f, g > β,ε -< f > β,ε < g > β,ε ].
By the same argument as in [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF], we have the bound

sup ν>0 ≪ j 0,1 , (ν -L ε ) -1 j 0,1 ≫ β,ε ≤ C ς (2.6)
where C is independent of ε. The convergence in (2.5) and the bound (2.6) are based on the fact that j 0,1 being a linear function on the momentum p, is an eigenfunction of the generator of the noise S. It then fluctuates fast in time making the integral in the GK formula convergent.

3. Formal expansion of κ(ε, ς)

It follows from (2.6) that κ(ε, ς) is of order ε 2 , i.e. lim sup ε→0 ε -2 κ(ε, ς) = κ2 (ς) < +∞, (3.1) 
We conjecture that the limit exists and it is given by κ 2 (ς), the lowest term in the formal expansion of κ(ε, ς) in powers of ε:

κ(ε, ς) = ∞ n=2 ε n κ n (ς). (3.2)
It turns out that it is convenient for calculating the terms in this expansion to choose ν = ε 2 λ in (2.6), for a λ > 0, and solve the resolvent equation

(λε 2 -L ε )u λ,ε = εj 0,1 (3. 
3) for the unknown function u λ,ε . The reason for considering λ > 0 is to have well defined solutions also for the infinite system. The factor ε 2 is the natural scaling in view of the subsequent computations.

Next, define e = {e x , x ∈ Z}. For any function f ∈ L 1 (µ β,0 ),

(Πf )(e) = µ β,0 (f |e), Q = 1 -Π.
We will look for solutions of (3.3) of the form

u λ,ε = n≥0 (v λ,n + w λ,n )ε n , (3.4) 
where Πv λ,n = Qw λ,n = 0. Observe that L 0 w λ,n = 0 and that ΠGΠ = 0, where G is defined by (2.1). Accordingly

v λ,0 = 0 -L 0 v λ,1 -Gw λ,0 = j 0,1 λw λ,n-2 + λv λ,n-2 -L 0 v λ,n -Gv λ,n-1 -Gw λ,n-1 = 0, n ≥ 2. ( 3.5) 
It follows from the last equation, since ΠL 0 v λ,n = 0, that ΠGv λ,n-1 = λw λ,n-2 . In addition,

Gv λ,1 = G(-L 0 ) -1 (Gw λ,0 + j 0,1 ) Gv λ,n = G(-L 0 ) -1 [-λv λ,n-2 + Gw λ,n-1 + QGv λ,n-1 ] .
It is then natural to consider the operator

L = ΠG(-L 0 ) -1 GΠ. (3.6)
Using L, we can write the equations for v λ,n and w λ,n in the form

w λ,0 = (λ -L) -1 ΠG(-L 0 ) -1 j 0,1 v λ,1 = (-L 0 ) -1 [j 0,1 + Gw λ,0 ] w λ,n = (λ -L) -1 ΠG(-L 0 ) -1 [-λv λ,n-1 + QGv λ,n ] , n ≥ 1 v λ,n+1 = (-L 0 ) -1 [-λv λ,n-1 + Gw λ,n + QGv λ,n ] , n ≥ 1. 
(3.7)

Of course, the above expressions are at present only formal. To begin with the term (-L 0 ) -1 is a priori ill defined since the space K 0 composed of functions of the internal energies {e x ; x ∈ Z} alone is in the kernel of L 0 . However, in (3.7), the operator (-L 0 ) -1 is always applied to a function f that satisfies Πf = 0, i.e. to a function which is orthogonal to K 0 . Therefore, if we assume that K 0 coincides with the kernel of L 0 , which should be a consequence of the ergodic properties of the internal dynamics, including the noise ς > 0, then the function g := (-L 0 ) -1 f , where f is orthogonal to K 0 , is well defined. We in fact take g to be the unique solution such that Πg = 0. We will show in proposition 3.1 below that the operator L is a generator of a Markov process so that (λ -L) -1 is well defined. β exp(-βe x -U(e x ))de x for a suitable function U. We denote the formal sum x U(e x ) by U := U(e). We denote also, for a given value of the internal energy ẽx in the cell x, by ν x ẽx the microcanonical probability measure in the cell x. i.e. the uniform probability measure on the manifold Σ ẽx := {(q x , p x ) ∈ Ω ; e x (q x , p x ) = ẽx }.

Proposition 3.1. The operator L, when restricted to the range of Π, is given by Proof. Let us start by noting that, for each local function f depending only on the energies,

L = x e U (∂ e x+1 -∂ ex ) e -U γ 2 (e x , e x+1 ) (∂ e x+1 -∂ ex ), (3.8 
Gf = - x ∇V (q x -q x-1 ) • (p x ∂ ex -p x-1 ∂ e x-1 )f = x j x-1,x (∂ ex -∂ e x-1 )f - 1 2 x [L 0 V (q x -q x-1 )](∂ ex + ∂ e x-1 )f = x j x-1,x (∂ ex -∂ e x-1 )f -L 0 1 2 x V (q x -q x-1 )(∂ ex + ∂ e x-1 )f . (3.11)
Note that the above expression is linear in p. Next, note that the adjoint of G in L 2 (µ β,0 ) is given by

G * = -G-β x ∇V (q x -q x-1 )•(p x -p x-1 ) = -G-βL 0 V = -G+βL * 0 V.
(3.12) Thus, if f, g are smooth local functions of the energies only then, remembering that the measure is symmetric in p,

gLf β,0 = G * g • (-L 0 ) -1 Gf β,0 = -Gg • (-L 0 ) -1 Gf β,0 -β V g • Gf β,0 = - x,y j y-1,y (∂ ey -∂ e y-1 )g • (-L 0 ) -1 j x-1,x (∂ ex -∂ e x-1 )f β,0 .
Next, note that j y,y-1 (-L 0 ) -1 j x,x-1 |e β,0 = δ xy γ 2 (e x-1 , e x ), and consequently

gLf β,0 = - x γ 2 (e x-1 , e x )(∂ ex g -∂ e x-1 g)(∂ ex f -∂ e x-1 f ) β,0 .
Thus, for each local smooth function g of the energies only,

gG(-L 0 ) -1 j 0,1 β,0 = -Gg • (-L 0 ) -1 j 0,1 β,0 -β gV j 0,1 = - y j y-1,y (∂ ey -∂ e y-1 )g • (-L 0 ) -1 j 0,1 β,0 = -(∂ e 1 -∂ e 0 )g • γ(e 0 , e 1 ) 2 β,0 = g • e U (e) (∂ e 1 -∂ e 0 ) e -U (e) γ 2 (e 0 , e 1 ) β,0
from which the Lemma follows.

We conclude this section by noting that the operator L is the generator of a Ginzburg-Landau dynamics which is reversible with respect to ρ β , for any β > 0 [START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF][START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF][START_REF] Liverani | Macroscopic Energy diffusion after weak coupling[END_REF]. It is conservative in the energy x e x and the microscopic current corresponding to this conservation law is given by α(e x , e x+1 ). The corresponding finite dynamics appears in [START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF][START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF] as the weak coupling limit of a finite number N (fixed) of cells weakly coupled by a potential ǫV in the limit ǫ → 0 when time t is rescaled as tε -2 . Moreover, the hydrodynamic limit of the Ginzburg-Landau dynamics is then given (in the diffusive scale tN 2 , N → +∞), by a heat equation with diffusion coefficient which coincides with κ 2 as given by (4.12) given below ( [START_REF] Varadhan | Nonlinear diffusion limit for a system with nearest neighbor interactions II, Asymptotic problems in probability theory: stochastic models and diffusions on fractals[END_REF], [START_REF] Liverani | Macroscopic Energy diffusion after weak coupling[END_REF]).

The lowest order term κ 2 (ς)

To simplify notation, we denote γ(e x , e x+1 ) (resp. α(e x , e x+1 )) by γ x,x+1 (resp. α x,x+1 ). Define the operator D x,x+1 = γ x,x+1 (∂ e x+1 -∂ ex ), then the adjoint, with respect to ρ β , is given by

D * x,x+1 = -e U (∂ e x+1 -∂ ex )e -U γ x,x+1 and consequently L = x D * x,x+1 D x,x+1
. First note that for any λ > 0, we have by (3.7)

λw λ -Lw λ = α 0,1 = D * 0,1 γ 0,1 . (4.1) 
This resolvent equation, which involves only functions of the energies, has a well defined solution w λ ∈ L 2 (ρ β ) for λ > 0.

For any function f of the energies, denote by Γ f = x τ x f (intended as a formal sum). Observe moreover that by the definition of ρ β , since f depends only on the energies, we have f β,0 = ρ β (f ). In the following we will denote by • β the integration with respect to ρ β . Then we have the relations

≪ f, -Lg ≫ β = γ 2 0,1 [(∂ e 1 -∂ e 0 )Γ f ] [(∂ e 1 -∂ e 0 )Γ g ] β = (D 0,1 Γ f )(D 0,1 Γ g ) β , ≪ f, α ≫ β = -γ 0,1 D 0,1 Γ f β . (4.2) So from (4.1) we have λ ≪ w λ , w λ ≫ β + (D 0,1 Γ w λ ) 2 β = -γ 0,1 D 0,1 Γ w λ β (4.3)
thus by the Schwarz inequality

λ ≪ w λ , w λ ≫ β + (D 0,1 Γ w λ ) 2 β ≤ γ 2 0,1 1/2 (D 0,1 Γ w λ ) 2 1/2
β and this gives the bounds

λ ≪ w λ , w λ ≫ β,0 ≤ γ 2 0,1 β , (D 0,1 Γ w λ ) 2 β ≤ γ 2 0,1 β .
The standard Kipnis-Varadhan argument ( [START_REF] Kipnis | Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions[END_REF], [START_REF] Komorowski | Fluctuations in Markov processes. Time symmetry and martingale approximation[END_REF] chapter 1) then gives lim

λ→0 λ ≪ w λ , w λ ≫ β = 0.
It also follows form the same argument ( [START_REF] Kipnis | Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions[END_REF], [START_REF] Komorowski | Fluctuations in Markov processes. Time symmetry and martingale approximation[END_REF] chapter 1) that D 0,1 Γ w λ converges strongly in L 2 (ρ β ) to a limit that we denote with η and satisfies the relation

η 2 β = -γ 0,1 η β .
We now return to the formal expansion of κ(ε, ς) in powers of ε given by (3.2). By (2.5), (3.4) and the expansion of the canonical Gibbs measure µ β,ε in ε, we have, at least formally, that

κ(ε, ς) ≡ lim λ→0 ≪ u λ,ε , εj 0,1 ≫ β,ε = n≥1 ε n+1 lim λ→0 ≪ j 0,1 , v λ,n ≫ β,ε = ε 2 lim λ→0 ≪ j 0,1 , v λ,1 ≫ β,ε + o(ε 2 ). (4.4)
We now compute

≪ j 0,1 , v λ,1 ≫ β,ε =≪ j 0,1 , (-L 0 ) -1 j 0,1 ≫ β,ε + ≪ j 0,1 , (-L 0 ) -1 Gw λ ≫ β,ε =≪ j 0,1 , (-L 0 ) -1 j 0,1 ≫ β,ε + y ≪ j 0,1 , (-L 0 ) -1 j y-1,y (∂ ey -∂ e y-1 )w λ ≫ β,ε + y ≪ j 0,1 , V (q ey -q e y-1 )(∂ ey + ∂ e y-1 )w λ ≫ β,ε (4.5)
where we have used formula (3.11) and we have assumed that (∂ ey + ∂ e y-1 )w λ and (∂ ey -∂ e y-1 )w λ exists and are bounded in L 2 of • β,ε . In fact we only have existence of (∂ ey -∂ e y-1 )w λ . By a smoothing argument one can handle (∂ ey + ∂ e y-1 )w λ . Then last term in (4.5) is zero by the symmetry in p of the Gibbs measure. Let us compute the first term. By the symmetry in p again we have

≪ j 0,1 , (-L 0 ) -1 j 0,1 ≫ β,ε = |x|≤1 j x,x+1 , (-L 0 ) -1 j 0,1 β,ε . (4.6)
To compute it is convenient to use the following little Lemma.

Lemma 4.1. For each integrable function g of the energies {e x } we have

j -1,0 , (-L 0 ) -1 j 0,1 g β,ε = O(ε). (4.7) and j 0,1 , (-L 0 ) -1 j 0,1 g β,ε = γ 2 0,1 g β,ε + O(ε). (4.8)
Proof. Note that the adjoint of L 0 with respect to • β,ε is given by

L ′ 0 f = L * 0 f -εβ x (p x+1 -p x )∇V (q x+1 -q x )f,
where L * 0 is the adjoint with respect to • β,0 . Then, observing that

p -1 • ∇V (q 0 -q -1 ), (-L 0 ) -1 j 0,1 g β,ε = 0 we have j -1,0 ,(-L 0 ) -1 j 0,1 g β,ε = 1 2 (p 0 -p -1 ) • ∇V (q 0 -q -1 ), (-L 0 ) -1 j 0,1 g β,ε = 1 2 L * 0 V (q 0 -q -1 ), (-L 0 ) -1 j 0,1 g β,ε = 1 2 L ′ 0 V (q 0 -q -1 ), (-L 0 ) -1 j 0,1 g β,ε + 1 2 εβ x (p x+1 -p x )∇V (q x+1 -q x )V (q 0 -q -1 ), (-L 0 ) -1 j 0,1 g β,ε = O(ε).
Proof of (4.8) follows a similar line.

Applying the above Lemma with g ≡ 1 to the terms x = -1 and x = 1 in (4.6) it follows

≪ j 0,1 , (-L 0 ) -1 j 0,1 ≫ β,ε = γ 2 0,1 β,0 + O(ε).
We are left with the second term in (4.5). Using again Lemma 4.1 we have

y ≪ j 0,1 , (-L 0 ) -1 j y-1,y (∂ ey -∂ e y-1 )w λ ≫ β,ε = x,y j x-1,x , (-L 0 ) -1 j y-1,y (∂ ey -∂ e y-1 )w λ β,ε = x j x-1,x , (-L 0 ) -1 j x-1,x (∂ ex -∂ e x-1 )w λ β,ε + O(ε) = j 0,1 , (-L 0 ) -1 j 0,1 (∂ e 1 -∂ e 0 )Γ w λ β,ε + O(ε) = γ 2 0,1 (∂ e 1 -∂ e 0 )Γ w λ β,ε + O(ε) = γ 0,1 D 0,1 Γ w λ β,ε + O(ε) Even though D 0,1 Γ w λ is not a local function it is reasonable to assume that γ 0,1 D 0,1 Γ w λ β,ε = γ 0,1 D 0,1 Γ w λ β,0 + o ε (1) (4.9)
with o ε (1) → 0 as ε → 0 uniformly in λ. 2 In the particular case when the local potential W = 0, (4.9) can actually be proven, because in this case functions g of the only energies are functions only of the modulus of the velocities, and then we have g β,ε = g β,0 . Hence,

lim λ→0 ≪ j 0,1 , v λ,1 ≫ β,ε = γ 2 0,1 β,0 + lim λ→0 γ 0,1 D 0,1 Γ w λ β,0 + o ε (1) = γ 2 0,1 β,0 -η 2 β,0 + o ε (1) = γ 2 0,1 β,0 + η 2 β,0 + 2 γ 0,1 η β,0 + o ε (1) = (γ 0,1 + η) 2 β,0 + o ε (1). (4.10) Hence κ(ε, ς) = ε 2 (γ 0,1 + η) 2 β,0 + o(ε 2 ). We conclude that κ 2 (ς) = (γ 0,1 + η) 2 β,0 ≥ 0. ( 4.11) 
It follows from the above calculation that

κ 2 (ς) = γ 2 0,1 β,0 - x∈Z α 0,1 (-L) -1 α x,x+1 dρ β (e). (4.12) 
The right hand side of (4.12) is exactly the macroscopic diffusion of the energyin the autonomous stochastic dynamics describing the evolution of e, obtained in the weak coupling limit [START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF][START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF][START_REF] Liverani | Macroscopic Energy diffusion after weak coupling[END_REF]. Thus even if (4.12) is obtained from a formal expansion it is a mathematically well defined object and we expect it to coincide with the lim ε→0 ε -2 κ(ε, ς).

Lower bounds on κ

2 (ς). Notice that γ -1 0,1 η β = 0, so 1 = γ -1 0,1 (γ 0,1 + η) ≤ γ -2 0,1 1/2 β (γ 0,1 + η) 2 1/2 β
In particular using the last line of (4.11)

γ -2 0,1 -1 β ≤ κ 2 (ς) ≤ γ 2 0,1 β (4.13)
In [START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF], a single particle Hamiltonian of the form H = p 2 /2 + W (q) is considered in dimension d = 2. It is shown there under suitable assumptions on the potentials V and W that the bound γ 2 (e 0 , e 1 ) ≥ c -(ς)e 0 e 1 holds, for small energies and c -(ς) > 0 for ς > 0. It follows that the lower bound (4.13) is strictly positive as soon as ς > 0 for that system. We conjecture that this holds in general for ς > 0 and we prove it for the examples of sections 6.

When the Hamiltonian part of the cell dynamics is given by a geodesic flow on a manifold of negative curvature, the lower bound in (4.13) is strictly positive even without the noise (ς = 0), in dimension d ≥ 3 ( [START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF]).

The non-equilibrium stationary state

A different more direct way than the GK formula to study the energy flux in a macroscopic system is to consider the stationary state in a finite open system with Langevin thermostats at the boundary with temperature T and T + δT [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF]. The generator of the dynamics is then

L ε,N,δT = N x=1 (A x 0 + γS x ) + εG + B 1,T +δT + B N,T
where B 1,T +δT , B N,T are the generators of the corresponding Langevin dynamics at the boundaries:

B x,T = T 2 ∂ 2 px -p x ∂ px and G = N x=2 ∇V (q x -q x-1 )(∂ px -∂ p x-1 ) .
Our goal is to compute the thermal conductivity of the stationary state, e.g. the stationary current divided by the temperature gradient δT /N:

κ N,T,ε = lim δT →0 N δT ε j 0,1 N,δT,ε , (5.1) 
where < • > N,δT,ε is the expectation with respect to the stationary measure. To this end we are going to expand the stationary measure in ε and δT . As a preliminary step, we use as a reference measure the inhomogeneous Gibbs distribution with linear profile of inverse temperature {β x } x=1,...,N , interpolating between the two inverse temperatures by setting β x+1 -β x ∼ -δT N T 2 . We will call E the expectation with respect to such a measure, that is

E(f ) = Z -1 e -N x=1 βxe ε x f (q, p)dqdp, (5.2) 
where as before e ε x = 1 2 p 2 x + 1 2 ε[V (q x -q x-1 ) + V (q x+1 -q x )], for x = 2, . . . , N -1 and e ε 1 = 1 2 p 2 1 + 1 2 εV (q 2 -q 1 ), e ε N = 1 2 p 2 N + 1 2 εV (q N -q N -1 ). 3To keep consistency with previous notations, we will use e x to designate e 0

x , the internal energy of the isolated cell.

The corresponding adjoint operator is

L * ε,N,δT = N x=1 (-A x 0 +γS x )-εG+ε N -1 x=1 (β x+1 -β x )j x,x+1 +B 1,T +δT +B N,T .
We assume that there exists a unique stationary probability distribution with smooth density. The existence and uniqueness of such a probability measure still remains an open problem for most of the dynamics that appear in this work, though for some models, proofs can be found in [START_REF] Bernardin | Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities[END_REF] (see also [START_REF] Rey-Bellet | Open Classical System[END_REF]). For certain choice of the local dynamics L 0 and interaction V , the smoothness of the density follows by applying results of [START_REF] Eckmann | Non-Equilibrium Statistical Mechanics of Strongly Anharmonic Chains of Oscillators[END_REF], [START_REF] Carmona | Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths[END_REF].

Let f ε,N,δT be the density of this stationary measure with respect to this inhomogeneous Gibbs measure, i.e. the solution of

L * ε,N,δT f ε,N,δT = 0, f ε,N,δT ≥ 0. If e = {e 2 , .
. . , e N -1 }, then it is convenient to define the projector 4 , since it integrates with respect to a gaussian the variable at the boundary.

Πf (e 2 , . . . , e N -1 ) = E(f | e) .

Also let B = B 1,T + B N,T and J = 1

N T 2 N -1 x=1 j x,x+1
. We expand the stationary measure as follows

f ε,N,δT = 1 + δT w 0 + n≥1 (v n + w n ) ε n + O((δT ) 2 ) (5.3)
where Πw n = w n and Πv n = 0. Next, it is convenient to set

L B = N x=1 (A x 0 + γS x ) + B = L 0,N,0 . Note that 5 L * B = N x=1 (-A x 0 + γS x ) + B = L * 0,N,0 .
and that L * B Π = ΠL * B = 0. Since L * ε,N,δT 1 = JδT + O((δT ) 2 ), if we compute at the first order in δT we have

-εJ -εGw 0 + n≥1 ε n {L * B v n -εGv n -εGw n } = 0.
From the above it follows

L * B v 1 = J + Gw 0 L * B v n+1 = Gw n + Gv n .
Since ΠGΠ = 0 it must be ΠGv n = 0. It is then natural to define

L B = ΠG(L * B ) -1 GΠ. (5.4) 
We then obtain

w 0 = L -1 B ΠG(-L * B ) -1 J v n+1 = (L * B ) -1 [Gw n + Gv n ]
(5.5)

with v 0 = 0. Next, we want to compute how L B acts on the space of function {f : Πf = f }.

Gf = N x=2 ∇V (q x -q x-1 )(p x ∂ ex -p x-1 ∂ e x-1 )f = N x=2 j x,x-1 (∂ ex -∂ e x-1 )f - 1 2 N x=2 [L * B V (q x -q x-1 )](∂ ex + ∂ e x-1 )f.
Thus, given two function of the energies f (e 2 , . . . , e N -1 ) and g(e 2 , . . . , e N -1 ), we have

6 E β (gL B f ) = E β (gΠG(L * B ) -1 GΠf ) = N x=2 E β (gG(L * B ) -1 j x,x-1 (∂ ex -∂ e x-1 )f ), (5.6) 
where we have used the antisymmetry in p of the measure. Also, taking the adjoint with respect to E β yields

G * = -G + β x ∇V (q x -q x-1 )(p x -p x-1 ) = -G + βL B V. (5.7)
Inserting the above in (5.6) and using again the antisymmetry in p we have

-E β (gL B f ) = 1 4 N x,y=2 (j y,y-1 (∂ ey -∂ e y-1 )g • (-L * B ) -1 j x,x-1 (∂ ex -∂ e x-1 )f .
Finally, we have

γ(e x-1 , e x ) 2 δ xy = E β (j y,y-1 (-L * B ) -1 j x,x-1 | e) x = 2, N γ(e 1 , e 2 ) 2 δ y,2 = E β (j y,y-1 (-L * B ) -1 j 2,1 | e) γ(e N -1 , e N ) 2 δ y,N = E β (j y,y-1 (-L * B ) -1 j N,N -1 | e) Thus -E β (gL B f ) = 1 4 N x=2 E β (γ 2 (e x-1 , e x )(∂ ex -∂ e x-1 )g • (∂ ex -∂ e x-1 )f ) = 1 4 N -1 x=3 E β (γ 2 (e x-1 , e x )(∂ ex -∂ e x-1 )g • (∂ ex -∂ e x-1 )f ) + 1 4 E β (γ 2 (e 2 )∂ e 2 g • ∂ e 1 ,e 2 f ) + 1 4 E β (γ 2 (e N -1 , e N )∂ e N-1 g • ∂ e N-1 f )
Which shows that L B is the operator that one would expect in [START_REF] Liverani | Toward the Fourier law for a weakly interacting anharmonic crystal[END_REF][START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF] when adding the appropriate boundary terms.

We can, at last, compute the current:

E(f ε,N,δT J) = δT E({w 0 + ε(v 1 + w 1 )}J) + O(ε 2 δT + (δT ) 2 ).
Thus, setting

j 0,N = lim δT →0 1 δT E(f ε,N,δT J)
we have

j 0,N = εE β (v 1 J) + O(ε 2 ) = ε N 2 T 2 x E β (γ(e x-1 , e x ) 2 ) + εE β (J • (L * B ) -1 Gw 0 ) + O(ε 2 ) = ε N 2 T 2 x E β (γ(e x-1 , e x ) 2 ) + ε N x E β (α(e x-1 , e x )[(-L B ) -1 α(e 0 , e 1 )]) + O N (ε 2 )
Formally the limit

lim ε→0 lim N →∞ 1 ε Nj 0,N
yields the formula for κ 2 in agreement with the Green-Kubo formula expansion of Section 4.

6.

Behavior of κ 2 (ς) in the limit ς → 0 for some model systems

We now study the behavior of κ 2 (ς) in the deterministic limit ς → 0. This limit is singular, since the operator L = ΠG(-L 0 ) -1 GΠ formally vanishes at ς = 0 for the whole class of systems considered in this work 7 : both operators (-L 0 ) -1 and G exchange symmetric and antisymmetric functions under the operation p → -p, while Π annihilates antisymmetric functions. It is therefore important to analyze some particular cases in more detail. Here we consider three such examples. In all these cases, the uncoupled cells are one-dimensional and the stochasticity is the random velocity flip with rate ς -1 .

1. Anharmonic oscillators. It is a common belief, based on extensive numerical simulation, that transport of energy in anharmonic onedimensional pinned chains is diffusive [START_REF] Lepri | Thermal Conduction in classical low-dimensional lattices[END_REF][9] (see also [START_REF] Gaspard | Heat conduction and Fourier's law by consecutive local mixing and thermalization[END_REF] for physical approaches passing through a kinetic limit). However, to our knowledge, there are no rigorous mathematical arguments supporting this. We show here that lim sup ς→0 κ 2 (ς) < ∞ for one-dimensional oscillators with rather generic pinning potentials W and interaction V .

We consider the Hamiltonian (6.1) below which allows for an explicit description. The fact that as ς → 0, κ 2 (ς) does not diverge results from averaging oscillations in the uncoupled cells, and not from decay of correlations as it would be the case for a chaotic dynamics. The control of the time integrated current-current correlations in the limit ς → 0 is possible if resonances between near atoms occur with small probability in the Gibbs state. This condition is violated if the pinning W is harmonic, but is otherwise typically satisfied.

2. Disordered oscillators and rotor. We next consider in more details two examples of chains of one dimensional systems that display a similar structure: the disordered harmonic chain and the rotor model. In each case, the atoms are one-dimensional systems, so that, when both noise and coupling are removed, the full dynamics becomes again integrable. Moreover, then, neighboring particles typically oscillate at different frequencies. For these two examples, we are able to give explicit formulas for the weak coupling operator L (see Proposition 6.3 and Proposition 6.5).

In the absence of noise (ς = 0), the disordered chain is well known to be a perfect insulator: κ = 0 [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF], while it is conjectured that the conductivity of the rotor chain is finite and positive [START_REF] Lepri | Thermal Conduction in classical low-dimensional lattices[END_REF], but decays faster than any power law in ε as ε → 0 [START_REF] De Roeck | Asymptotic localization of energy in nondisordered oscillator chains[END_REF]. Thus in these two cases it is expected that the conductivity of the deterministic system κ(ǫ, ς) has no expansion in power of ǫ. What we are actually able to prove is that lim

ς→0 κ 2 (ς) = 0.
We also show in Subsection 6.3 that for the rotor chain lim sup ς→0 κ 2 (ς) < +∞, extending the conclusions of Proposition 6.1 to this case.

6.1. Upper bound on the conductivity for pinned anharmonic oscillators. Let

H(q, p) = x p 2 x 2 + W (q x ) + εV (q x+1 -q x ) = x H 0 (q x , p x ) + εV (q x+1 -q x ) (6.1)
with (q x , p x ) ∈ R 2 . The potential W is assumed to be smooth, strictly convex, except possibly at the origin, and symmetric. The potential V is also taken smooth, symmetric, bounded below, and of polynomial growth, always satisfying the requirement that µ β,ε is analytic in ε for small ε. To make things simple and concrete, we will actually focus on W given by

W (q) = |q| r r , r > 2.
(6.2) Proposition 6.1. Let W be given by (6.2) for some r > 2. Then, with the assumptions on V given after (6.1), lim sup κ 2 (ς) < +∞.

Proof. Because of its length, the proof as well as the needed introductory material are deferred to Appendix A.

Remark. In Proposition 6.1, we have limited ourselves to a case leading to rather clean computations. A closer look at the proof in appendix A shows that our hypotheses are too restrictive: what is important is that the map ω(I), giving the frequency of oscillation as a function of the action, can be inverted. The main advantage of taking the W given by (6.2), is that this can be done explicitely. It then arises as a natural question whether the proof could be further generalized to cases where ω(I) is invertible everywhere but on a finite or countable number of points. This would for example be the case if we consider the pinning potential W (q) = q 2 + a cos(q) for some small enough constant a > 0. This is unfortunatly not the case, as some logarithmic divergence in ς shows up in the limit ς → 0, if one just tries to mimic the proof of Proposition 6.1. Unless the system posseses some hidden symmetry, this in fact means that γ 2 (e 0 , e 1 ) β,0 diverges logarithmically in the deterministic limit. This however does not necessarily imply that κ 2 itself will diverge in this limit, as the term η 2 β,0 in (4.11) can compensate this divergence. This is in fact what is expected to happen.

The disordered harmonic chain. The hamiltonian part of the generator is now given by

A 0 = x p x ∂ qx -ω 2 x q x ∂ px , G = x (q x-1 -2q x + q x+1 )∂ px , (6.3)
where ω 2 x are random, independent and identically distributed squared frequencies, that satisfy the bound c -1 ≤ ω 2

x ≤ c, for some constant c > 0. The internal energy is given by e x = p 2

x /2 + ω 2 x q 2 x /2, while for ε ≥ 0 the energy flux εj x,x+1 between two adjacent oscillators is given by

ε j x,x+1 = -ε p x + p x+1 2 (q x+1 -q x ).
Lemma 6.2. Let x, y ∈ Z. A solution ψ x,y to the equation -L 0 ψ x,y = q x p y is given by

ψ x,y = 4ς ω 2 x q x p y -ω 2 y q y p x + (ω 2 x -ω 2 y )p x p y + (ω 2 x -ω 2 y -8ς 2 )ω 2 y q x q y ∆(x, y) with ∆ x,y = 8ς 2 (ω 2 x + ω 2 y ) + (ω 2 x -ω 2 y ) 2 .
Proof. This follows by a direct computation. This lemma allows us to give an explicit form of the operator L = ΠG(L 0 ) -1 GΠ. We know that L is the generator of a Ginzburg-Landau dynamics.

Proposition 6.3. Let L = ΠG(L 0 ) -1 GΠ. Then ρ β (e) = x βe -βex , (6.4) 
γ 2 (e x , e x+1 ) = 4ς ∆ x,x+1 e x e x+1 , (6.5) 
α(e x , e x+1 ) = 8ς ∆ x,x+1

(e x -e x+1 ) (

Proof. To obtain the expression for the invariant measure, let us take an f that depends only on e x = (p 2 x + ω 2 x q 2 x )/2, and let us compute

f β,0 = Z x (β) -1 R 2 f p 2 x + ω 2 x q 2 x 2 e -β(p 2 x +ω 2 x q 2 x )/2 dq x dp x ∼ ∞ 0
f (e) e -βe de from which the expression for ρ β follows.

Next we have that

γ 2 (e x , e x+1 ) = Π j x,+1 (-L 0 ) -1 j x,x+1 = 1 4 Π q x+1 p x -q x p x+1 + q x+1 p x+1 -q x p x ψ x+1,x -ψ x,x+1 + ψ x+1,x+1 -ψ x,x = 2σ ∆ x,x+1 Π ω 2 x+1 q 2 x+1 p 2 x + ω 2 x q 2 x p 2 x+1
where we have used the fact that odd powers of q x , p x , q x+1 , p x+1 are annihilated by the projection Π. Using then polar coordinates

ω x q x √ 2 = √ e x cos θ x , p x √ 2 = √ e x sin θ x , it is computed that both Π(p 2 x ) = Π(ω 2 x q 2 x ) = 1 2π 2π 0 2e sin 2 θ x dθ x = e x .
This yields the announced expression for γ 2 (e x , e x+1 ). The current α(e x , e x+1 ) follows using (3.10).

Corollary 6.4. For ς > 0, we have that a.s. in ω

κ 2 (ς) = 8ς ∆ 0,1 (ς) * > 0
where • * represents the average with respect to the realizations of the disorder. In particular, a.s. in ω,

lim ς→0 κ 2 (ς) = 0.
Proof. The proof is given in Appendix B.

The rotor chain. The Hamiltonian part of the dynamics is given by

A 0 = x p x ∂ qx , G = x [sin(q x-1 -q x ) -sin(q x -q x+1 )] ∂ px , (6.7 
) with q x ∈ R/2πZ. The individual energy for the uncoupled dynamics (ε = 0) is e x = p 2

x /2. If ε > 0, there is a flux of energy which is given by εj x,x+1 where

j x,x+1 = - 1 2 (p x + p x+1 ) sin(q x+1 -q x )
Proposition 6.5. For this system Proof. The proof is given in Appendix C.

ρ(e) = x e -(U (ex)+βex) β/π with U(e x ) = 1 2 log e x , (6.8) 
γ 2 (e x , e x+1 ) = 2ς e x e x+1 ∆(e x , e x+1 ) , (6.9) α(e 
It is seen from the above expressions that as noted earlier the generator L formally vanishes as ς → 0. However, for ς small but positive, the coefficient γ 2 (e x , e x+1 ) can become of order 1/ς in case a resonance occurs, such that |e x+1 -e x | ≤ ς. We have unfortunately not been able to decide whether, despite of this phenomenon, the value of κ 2 (ς) still vanishes as ς → 0, as suggested by the results in [START_REF] De Roeck | Asymptotic localization of energy in nondisordered oscillator chains[END_REF].

We have however a result analogous to that of Proposition 6.1: Proposition 6.6. For any ς > 0, κ 2 (β, ς) is strictly positive and

lim sup ς→0 κ 2 (ς) < +∞.
Proof. By (4.13) and the explicit form of γ we have that κ 2 (ς, β) ≥ γ -2 (e 0 , e 1 ) -1 β,0 ≥ cς for a positive constant c independent of ς. By (4.13) it holds also that κ 2 ≤ γ 2 (e 0 , e 1 ) β,0 .

The function γ 2 (e 0 , e 1 ) β,0 has the behavior γ 2 (e 0 , e 1 ) β,0 ∼ R 2 + ς e 0 e 1 4ς 2 (e 0 + e 1 ) + (e 1 -e 0 ) 2 e -β(e 0 +e 1 ) de 0 de 1

√ e 0 e 1 ∼ R 2 ς x 2 y 2 8ς 2 (x 2 + y 2 ) + (y 2 -x 2 ) 2 e -β(x 2 +y 2 )/2 dxdy ∼ ∞ 0 dr 2π 0 dθ ς r 3 cos 2 θ sin 2 θ 8ς 2 + r 2 (cos 2 θ -sin 2 θ) 2 e -βr 2 /2 .
In the limit ς → 0, only the values of θ such that cos 2 θ -sin 2 θ ∼ 0 contribute (θ ∼ ±π/4 and θ ∼ ±3π/4), so that, by a Taylor expansion,

γ 2 (e 0 , e 1 ) β,0 ∼ ∞ 0 dr 1 0 du ς r 3 8ς 2 + r 2 u 2 e -βr 2 /2 ∼ ∞ 0 r 2 e -βr 2 /2 1 0 ς/r 8(ς/r) 2 + u 2 du dr ∼ 1 as ς → 0.
This proves the claim.

Appendix A. Proof of Proposition 6.1

To study the system at hand, it is convenient to pass to action-angle variables. Let I : R + → R + be defined by

I(E) = 1 2π A(E)
dqdp with A(E) = {(q, p) ∈ R 2 : H 0 (q, p) ≤ E} Our assumptions on W ensure that I ′ (E) = dI/dE (E) > 0 for any E > 0. Given E ≥ 0, we also set q * (E) = max{q ∈ R : H 0 (q, p) = E for some p ∈ R}.

Then we define the action-angle variables by

I x = I(q x , p x ) = I(H 0 (q x , p x )), θ x = θ(q x , p x ) = -sgn(p x ) I ′ (H 0 (q x , p x )) q * (H 0 (qx,px)) qx dq ′ 2(H 0 (q x , p x ) -W (q ′ ))
.

It is checked that (I x , θ x ) ∈ R + × T with T = R/(2πZ). The potential W is such that this change of variable is invertible, except at origin. We denote by Q and P the inverse maps:

q x = Q(I x , θ x ), p x = P (I x , θ x ).
The change of variables (q x , p x ) ↔ (I x , θ x ) is known to be a canonical change of variables.

Let H 0 : R + → R + be the inverse function of I: H 0 • I(E) = E for any E ∈ R + . In the action-angle variables, the Hamiltonian (6.1) reads

H(I, θ) = x H 0 (I x ) + ǫV Q(I x+1 , θ x+1 ) -Q(I x , θ x ) . Defining ω(I x ) = H ′ 0 (I x ) = dH 0 /dI x , Hamilton equations read İx = -ǫ ∂ ∂θ x V Q(I x+1 , θ x+1 ) -Q(I x , θ x ) , θx = ω x + ǫ ∂ ∂I x V Q(I x+1 , θ x+1 ) -Q(I x , θ x ) .
The current, given by (2.3), has the form

j x,x+1 = - 1 2 P (I x , θ x ) + P (I x+1 , θ x+1 ) V ′ Q(I x+1 , θ x+1 ) -Q(I x , θ x ) (A.1) with V ′ (x) = dV /dx.
Since we are in dimension d = 1, the noise written in the action-angle coordinates is given by

Sf (I, θ) = x f (I, θ x ) -f (I, θ) , (A.2)
with θ x is obtained from θ by changing θ x to -θ x (-θ x is the inverse of θ x for the the addition on T). The symmetry of the potential W implies

P (I x , -θ x ) = -P (I x , θ x ) and Q(I x , -θ x ) = Q(I x , θ x ).
This implies that the noise S, as defined by (A.2), preserves the total energy, and that the relation

Sj x,x+1 = -4j x,x+1
holds.

A.1. The special case W given by (6.2). Let us now assume that W (q) = |q| r /r, i.e.

H 0 (q, p) = p 2 2 + |q| r r , r > 2. (A.3)
The following scaling relation is checked thanks to Hamilton's equations: if (q(t), p(t)) t≥0 is a solution to the equations of motion, then so is (q α (t), p α (t)) t≥0 with q α (t) = α 2/(r-2) q(αt), p α (t) = α r/(r-2) p(αt) for α > 0.

This first allows to deduce that (A.6) It follows from the theory of ordinary differential equations that Q(1, θ) and P (1, θ) are smooth, so that the Fourier coefficients Q(1, k), P (1, k), with k ∈ Z, have good decay property as |k| → ∞.

A.2. Poisson equation for the uncoupled dynamics. In this subsection, we consider functions on R 2 + × T 2 , that depend on two actions (I 0 , I 1 ) and two angles (θ 0 , θ 1 ). The actions play the role of a parameter, and, for clarity, will be dropped from several notations. A function f ∈ C ∞ (T 2 ) is expanded in Fourier series as

f (I 0 , I 1 , θ 0 , θ 1 ) = (k 0 ,k 1 )∈Z f (I 0 , I 1 , k 0 , k 1 )e i(k 0 θ 0 +k 1 θ 1 ) with f (I 0 , I 1 , k 0 , k 1 ) = 1 (2π) 2 [-π,π] 2
f (I 0 , I 1 , θ 0 , θ 1 )e -i(k 0 θ 0 +k 1 θ 1 ) .

It is seen that the current satisfies ĵ0,1 (I 0 , I 1 , 0, 0) = 0 for all (I 0 , I 1 ) ∈ R 2 + . We introduce the notations α(k 0 , k 1 ) = i k 0 ω(I 0 ) + k 1 ω(I 1 ) -2ς

D(k 0 , k 1 ) = α(k 0 , k 1 )α(-k 0 , -k 1 ) - 16ς 4 α(-k 0 , k 1 )α(k 0 , -k 1 )
.

Lemma A.1. Let f be a function on R 2 + × T 2 such that f (I 0 , I 1 , •, •) is smooth and satisfies f (I 0 , I 1 , 0, 0) = 0, for any (I 0 , I 1 ) ∈ R 2 + . Writing f (k 0 , k 1 ) for f (I 0 , I 1 , k 0 , k 1 ), we define

g(I 0 , I 1 , k 0 , k 1 ) = f (k 0 , k 1 ) -ς f (-k 0 , k 1 ) α(-k 0 , k 1 ) + f (k 0 , -k 1 ) α(k 0 , -k 1 ) + ς 2 α(-k 0 , -k 1 ) 1 α(-k 0 , k 1 ) + 1 α(k 0 , -k 1 ) f (-k 0 , -k 1 ) -f (k 0 , k 1 ) . (A.7)
A solution u to the equation -L 0 u = f is given, in the Fourier variables, by

û(I 0 , I 1 , 0, 0) = 0, û(I 0 , I 1 , k 0 , k 1 ) = - α(-k 0 , -k 1 ) D(k 0 , k 1 ) g(I 0 , I 1 , k 0 , k 1 ) for (k x , k y ) = (0, 0).
Proof. In the Fourier variables, the equation

-L 0 u = f reads α(k 0 , k 1 )û(k 0 , k 1 ) + ς û(-k 0 , k 1 ) + ς û(k 0 , -k 1 ) = -f (k 0 , k 1 )
where we have written û(k 0 , k 1 ) for û(I 0 , I 1 , k 0 , k 1 ). The result is then checked by means of a direct computation.

Remarks. 1. All other solutions are obtained by taking for û(I 0 , I 1 , 0, 0) an arbitrary function of the actions I 0 , I 1 . This choice is irrelevant for the sequel.

2. Since |ς/α(k 0 , k 1 )| ≤ 1 for all (k 0 , k 1 ) ∈ Z 2 , we have the bound

|g(I 0 , I 1 , k 0 , k 1 )| ≤ 5 max{| f (k 0 , ±k 1 )|, | f(-k 0 , ±k 1 )|}.
3. For ς = 0, the solution simply becomes û(I 0 , I 1 , k 0 , k 1 ) = i f (k 0 , k 1 ) k 0 ω(I 0 ) + k 1 ω(I 1 ) for (k x , k y ) = (0, 0).

A.3. Proof of Proposition 6.1. By (4.13) we have κ 2 (ς, β) ≤ γ 2 (e 0 , e 1 ) β,0 = j 0,1 (-L 0 ) -1 j 0,1 β,0 , with • β,0 the uncoupled Gibbs state. Writing u = (-L 0 ) -1 j 0,1 we have thus

j 0,1 (-L 0 ) -1 j 0,1 β,0 ∼ R 2 + e -β H 0 (I 0 )+H 0 (I 1 ) dI 0 dI 1 × T 2 u(I 0 , I 1 , θ 0 , θ 1 )j 0,1 (I 0 , I 1 , θ 0 , θ 1 ) dθ 0 dθ 1 ∼ R 2 + e -β H 0 (I 0 )+H 0 (I 1 ) dI 0 dI 1 × k 0 ,k 1 ∈Z 2 û(I 0 , I 1 , k 0 , k 1 ) ĵ0,1 (I 0 , I 1 , k 0 , k 1 ).
Writing h(I 0 , I 1 , k 0 , k 1 ) = -g(I 0 , I 1 , k 0 , k 1 ) ĵ(I 0 , I 1 , k 0 , k 1 ), (A.8) so that in turn h takes the form

h(ω 0 , ω 1 , k 0 , k 1 ) = ω 2r/(r-2) 0 h0,0 (ω 0 , ω 1 , k 0 , k 1 ) + ω r/(r-2) 0 ω r/(r-2) 1 h0,1 (ω 0 , ω 1 , k 0 , k 1 ) + ω 2r/(r-2) 1 h1,1 (ω 0 , ω 1 , k 0 , k 1 ), (A.12)
where hi,j satisfies the following bounds: there exists a < +∞ and, for any b > 0, there exists a constant C b < +∞, such that hi,j (ω

0 , ω 1 , k 0 , k 1 ) ≤ C b (|ω 0 | + |ω 1 | + 1) a (|k 0 | + |k 1 | + 1
) b , (i, j) = (0, 0), (0, 1), (1, 1). (A.13) Moreover, by symmetry, we have P (I, 0) = 0 for all I > 0, with P (I, 0) defined by (A.5). It follows that h0,0 (ω 0 , ω 1 , 0, k

1 ) = h0,1 (ω 0 , ω 1 , 0, k 1 ) = h0,1 (ω 0 , ω 1 , k 0 , 0) = h1,1 (ω 0 , ω 1 , k 0 , 0) = 0. (A.14)
We now move back to the evalution of (A.11). We distinguish three cases, according to the values of k 0 and k 1 ; resonances appear in case 3. The sum over (k 0 , k 1 ) ∈ Z 2 /{0, 0} can then be controlled thanks to the decay in (A.13) with b large enough.

Case 1: k 0 k 1 = 0. Let us, as an example, consider the case k 0 = 0, k 1 = 0. The integral (A.11) has a possible divergence only for k 1 → 0. We have α

(-k 0 , -k 1 ) D(k 0 , k 1 ) ≤ Cω -2 1 for ω 0 , ω 1 ≤ 1
Thanks to (A.14), only the term in h1,1 survives in (A.12), and we conclude that the integrand behaves as

ω 4/(r-2) 1 ω 2r/(r-2) 1 ω -2 1 = ω 8/(r-2) 1
as ω 1 → 0, so that there is in fact no singularity. Case 2: k 0 k 1 > 0. The only possible divergence of the integral (A.11) is at the origin. We have the bounds

α(-k 0 , -k 1 ) D(k 0 , k 1 ) ≤ Cω -2 0 , Cω -1 0 ω -1 1 , Cω -2 1 for ω 0 , ω 1 ≤ 1,
allowing to check, as in the previous case, that there is no singularity. Case 3: k 0 k 1 < 0. The integrand now becomes truly singular (resonances). Let us assume, for example, that k 0 > 0 and k 1 < 0. We split the integral (A.11) as

R 2 + (. . . ) = k 0 ω 0 +|k 1 |ω 1 <ς (. . . ) + k 0 ω 0 +|k 1 |ω 1 ≥ς (. . . ). (A.15)
For the first integral, we are satisfied by the rough bound

α(-k 0 , -k 1 ) D(k 0 , k 1 ) ≤ C ς 2 (k 0 ω 0 + |k 1 |ω 1 ) 2 .
As in the cases treated previousely, it is seen that there is no singularity. Moreover, the intgration domain is of size ς 2 , so that the intgral is of order 1 at most.

We move to the second integral. We find it convenient to change again variables. With We observe that, in the domain of integration x ≥ ς:

4ς 2 x 2 x 2 + 4ς 2 ≥ 4 5 ς 2 .
Therefore, the integral converges to a finite value as ς → 0. where {e x (t)} is the time evolved energy generated by the Ginzburg-Landau dynamics L with the coefficients γ 2 and α computed above, starting with the equilibrium distribution at temperature β -1 . Then computing the time derivative we have ∂ t S(x, t, ω) = 8ς∆ -1 x+1,x,ω [S(x + 1, t, ω) -S(x, t, ω)] -8ς∆ -1

x,x-1,ω [S(x, t, ω) -S(x -1, t, ω)] i.e. S(x, t, ω) = E 0,ω (δ x (X(t))), the transition probability of a 1dimensional random walk on random bonds X(t) (so called bond diffusion). It is well known and easy to compute the asymptotic variance of this bond diffusion, it is given by the harmonic average of the bonds variables ( [START_REF] Komorowski | Fluctuations in Markov processes. Time symmetry and martingale approximation[END_REF]):

lim t→∞ 1 t x
x 2 S(x, t, ω) = lim t→∞ 1 t E 0,ω (X(t) 2 ) = 8ς ∆ 0,1 (ς) Appendix C. Proof of Proposition 6.5

We start by the following lemma.

Lemma C.1. Let x, y ∈ Z. A solution ψ x,y to the equation -L 0 ψ x,y = sin(q x -q y )p x (C.1) is given by ψ x,y = ∆ -1 x,y [4ς 2 + (e x -e y )]e x + 1 2 (e x -e y )p x p y cos(q x -q y ) + ∆ -1 x,y {2ς(e y p x + e x p y )} sin(q x -q y ) (C. Proof. We compute A 0 ψ x,y = 2ς∆ -1 x,y (e y p x + e x p y )(p x -p y ) cos(q x -q y ) -∆ -1

x,y 4ς 2 + (e x -e y ) e x + 1 2 (e x -e y )p x p y (p x -p y ) sin(q x -q y ) and Sψ x,y = -4ς∆ -1

x,y (e y p x +e x p y ) sin(q x -q y )-2∆ -1

x,y (e x -e y )p x p y cos(q x -q y ). Remembering that p 2

x = 2e x and p 2 y = 2e y , the terms in cos(q x -q y ) cancel in (A 0 + ςS)ψ x,y , so that [A 0 + ςS]ψ x,y = ∆ -1

x,y θ x,y sin(q x -q y ) with θ x,y = 4ς 2 + (e x -e y ) e x + 1 2 (e x -e y )p x p y (p x -p y ) -4ς 2 (e y p x + e x p y ) = -p x ∆ x,y . This proves the claim.

We now move to the proof of Proposition 6.5. The Gibbs measure at inverse temperature β is readily computed. For a function f depending only on the uncoupled energy e x = p 2

x /2, it holds that = 1 2 Π j x,x+1 (-L 0 ) -1 sin(q x+1 -q x )p x+1 -(-L 0 ) -1 sin(q x -q x+1 )p x = 1 2 Π j x,x+1 ψ x+1,x -ψ x,x+1 .

f β,0 = β 2π R f (p 2 x /
The terms in cos(q x -q x+1 ) in ψ x+1,x and ψ x,x+1 will vanish due to the projection Π, so that we are left with γ 2 (e x , e x+1 ) = 1 4 Π(p x +p x+1 ) sin(q x+1 -q x ) 4ς(e x+1 p x + e x p x+1 ) sin(q x+1 -q x ) ∆ x,x+1

Since 1 (2π) 2 [0,2π] 2 sin 2 (x -y) dxdy = 1/2, and since the projection of expressions containing uneven powers of p x or p x+1 vanishes, we obtain (6.9).

The current α(e x , e x+1 ) can be computed in two possible ways: directly by the definition α(e x , x x+1 ) = ΠG(-L 0 ) -1 j x,x+1 , or by means of the expression α(e x , e x+1 ) = e U (ex)+U (e x+1 ) ∂ e x+1 -∂ ex e -(U (ex)+U (e x+1 )) γ 2 (e x , e x+1 ) with U(x) = 1 2 log x. Both computations lead to (6.10).

3. 1 .

 1 The operator L. Let us denote by ρ β (de) the distribution of the internal energies e = {e x ; x ∈ Z} under the Gibbs measure µ β,0 . It can be written in the form dρ β (e) = x∈Z Z -1

) where γ 2 0 dtΣe 0 ×Σe 1 j 0 , 1 (e tL 0 j 0, 1 ) dν e 0 dν e 1 ( 3 . 9 )

 201011139 (e 0 , e 1 ) = ∞ and e tL 0 denotes the semigroup of the uncoupled dynamics generated by L 0 . In addition, setting α(e x , e x+1 ) = ΠG(-L 0 ) -1 j x,x+1 , we have α(e x , e x+1 ) = e U (e) (∂ e x+1 -∂ ex ) e -U (e) γ(e x , e x+1 ) 2 .(3.10)

  x , e x+1 ) = ς(e x -e x+1 ) ∆ 2 (e x , e x+1 ) ∆(e x , e x+1 ) + 8e x e x+1 (6.10) with ∆(e x , e x+1 ) = 4ς 2 (e x + e x+1 ) + (e x+1 -e x ) 2 .

H

  0 (I) = H 0 (1)•I 2r/(r+2) and ω(I) = ω(1)•I (r-2)/(r+2) . (A.4) Next, writing Q(I, θ) = k∈Z Q(I, k)e ikθ , P (I, θ) = k∈Z P (I, k)e ikθ , (A.5) we obtain Q(I, θ) = I 2/(r+2) k∈Z Q(1, k)e ikθ , P (I, θ) = I r/(r+2) k∈Z P (1, k)e ikθ .

xy 2 + 4ς 2 x 2 x 2 +4ς 2 φ

 222 = k 0 ω 0 + |k 1 |ω 1 , y = k 0 ω 0 -|k 1 |ω 1 ,the second integral in the right hand side of (A.15) becomesk 0 ω 0 +|k 1 |ω 1 ≥ς (. . . ) (x, y, k 0 , k 1 ) ρβ (x, y, k 0 , k 1 ) with φ(x, y, k 0 , k 1 ) = h x + y 2k 0 , x -y 2|k 1 | , k 0 , k 1 (x + y)(x -y) 4k 0 |k 1 | 4/(r-2) ρβ (x, y, k 0 , k 1 ) = ρ β x + y 2k 0 , x -y 2|k 1 | .

Appendix B. Proof of Corollary 6. 4

 4 Consider the quenched space-time correlations of the energy:S(x, t, ω) = e x (t)e 0 (0) ρ β -β -2

2 (

 2 ω. By the Green-Kubo formula for the diffusivity for L, this is equal to κ 2 (ς, β) and κ

  2) with ∆ x,y := ∆(e x , e y ) = 4ς 2 (e x + e y ) + (e y -e x ) 2 . (C.3)

2 )e -βp 2 x /2 dp x = β π ∞ 0 f

 20 (e)e -βe de √ e from which (6.8) follows.Next, γ 2 (e x , e x+1 ) is computed by means of Lemma C.1:γ 2 (e x , e x+1 ) = Π j x,x+1 (-L 0 ) -1 j x,x+1

Note that, in general, we should write V (q x , q x-1 ) as q might not belong to a vector space. We avoid it to simplify notation, see[START_REF] Dolgopiat | Energy transfer in a fast-slow Hamiltonian system[END_REF] for details.

This would follow, for example, from a uniform bound on the L 2 norm, with respect to • β,ε , of D 0,1 Γ w λ . Unfortunately, we can prove such a bound only with respect to • β,0 .

Since we will compute a correction of order one, the correction to the local energies does not matter.

Note that this projector is different from the one used in section 3

Here the adjoint is taken with respect to all the measures E(• | e).

By E β we mean the measure (5.2) with δT = 0.

When the dynamics of individual cells is chaotic, the operator (-L 0 ) -1 is actually not even well defined at ς = 0. In this Section, we will only be concerend with integrable isolated dynamics.
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with g as defined in (A.7), we obtain by Lemma A.1, j 0,1 (-L 0 ) -1 j 0,1 β,0 ∼ (k 0 ,k 1 ) =(0,0) R 2 + α(-k 0 , -k 1 ) D(k 0 , k 1 ) h(I 0 , I 1 , k 0 , k 1 ) e -β H 0 (I 0 )+H 0 (I 1 ) dI 0 dI 1 .

(A.9)

In this expression,

(A.10) We now come to the crux of the argument, and start using the specific form of H 0 . In view of (A.10), it looks desirable to change integration variables in (A.9) from (I 0 , I 1 ) to (ω 0 , ω 1 ) = (ω(I 0 ), ω(I 1 )). The anharmonicity of W , specifically expressed in this case by relation (A.4), makes this possible, giving

) , c ′ (r) > 0.

To proceed, we need some more technical informations on the function h(ω 0 , ω 1 , k 0 , k 1 ). The potential W is not strictly convex at the origin, implying that ω(I) vanishes as I → 0. For this reason, we need a relatively detailed knowledge on h(ω 0 , ω 1 , k 0 , k 1 ) for (ω 0 , ω 1 ) near the origin, in a order to exclude any divergence at small frequencies.

Using the general expression (A.1) for the current j 0,1 , the specific expression (A.6) for Q(I, θ) and P (I, θ), the definition (A.7) of g, and the definition (A.8) of h, we conclude that h is of the form h(I 0 , I 1 , k 0 , k 1 ) = I