Christian Lavault
email: christian.lavault@lipn.univ-paris13.fr

S Mohamed

Sedjelmaci Lipn

Worst-Case Analysis of Weber's GCD Algorithm

Keywords: Integer greatest common divisor (GCD), Complexity analysis, Number theory

Recently, Ken Weber introduced an algorithm for finding the (a, b)-pairs satisfying au + bv ≡ 0 (mod k), with 0 < |a|, |b| < √ k, where (u, k) and (v, k) are coprime. It is based on Sorenson's and Jebelean's "k-ary reduction" algorithms. We provide a formula for N (k), the maximal number of iterations in the loop of Weber's GCD algorithm.

Introduction

The greatest common divisor (GCD) of integers a and b, denoted by gcd(a, b), is the largest integer that divides both a and b.

Recently, Sorenson proposed the "right-shift k-ary algorithm" [START_REF] Sorenson | Two Fast GCD Algorithms[END_REF]. It is based on the following reduction. Given two positive integers u > v relatively prime to k (i.e., (u, k) and (v, k) are coprime), two integers a, b can be found that satisfy au + bv ≡ (mod k) with 0 < |a|, |b| < √ k.

(1)

If we perform the transformation (u, v) -→ (u ′ , v ′) (also called "k-ary reduction"), where (u ′ , v ′) = |au + bv|/k, min(u, v) , which replaces u with u ′ = |au + bv|/k, the size of u is reduced by roughly 1/2 log 2 (k) bits. Sorensen suggests table lookup to find sufficiently small a and b satisfying [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]. By contrast, Jebelean [START_REF] Jebelean | A Generalization of the Binary GCD Algorithm[END_REF][START_REF] Jebelean | An Algorithm for Exact Division[END_REF] and Weber [START_REF] Weber | Parallel Implementation of the Accelerated Integer GCD Algorithm[END_REF] both propose an easy algorithm, which finds such small a and b that satisfy [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF] with time complexity O(n 2), where n represents the number of bits in the two inputs. This latter algorithm we call the "Jebelean-Weber algorithm", or JWA for short. The present work focuses on the study of N(k), the maximal number of iterations of the loop in JWA, in terms of t = t(k, c) as a function of two coprime positive integers c and k (0 < c < k). Notice that this exact worst-case analysis of the loop does not provide the greatest lower bound on the complexity of JWA: it does not result in the optimality of the algorithm.

In the next Section 2, an upper bound on N(k) is given, in Section 3, we show how to find explicit values of N(k) for every integer k > 0. Section 4 is devoted to the determination of all integers c > 0, which achieve the maximal value of t(k, c) for every given k > 0; that is the worst-case ocurrences of JWA. Section 5 contains concluding remarks.

An Upper Bound on N (k)

Let us recall the JWA as stated in [START_REF] Sedjelmaci | Improvements on the Accelerated Integer GCD Algorithm[END_REF][START_REF] Weber | Parallel Implementation of the Accelerated Integer GCD Algorithm[END_REF]. The first instruction c := x/y mod k in JWA is not standard. It means that the algorithm finds c ∈ [1, k -1], such that cy = x + nk, for some n (where x, y, k, c, and n are all integers). Input: x, y > 0, k > 1, and gcd(k, x) = gcd(k, y) = 1. Output: (n, d) such that 0 < n, |d| < √ k, and ny ≡ dx (mod k). c := x/y mod k ;

f 1 = (n ′ , d ′) := (k, 0) ; f 2 = (n ′′ , d ′′) := (c, 1) ; while n ′′ ≥ √ k do f 1 := f 1 -⌊n ′ /n ′′ ⌋ f 2 ; swap (f 1 , f 2) endwhile return f 2 Notice that the loop invariant is n ′ |d ′′ | + n ′′ |d ′ | = k. When (n, d) is the output result of JWA, the pairs (a, b) = (d, -n) and (-d, n) meet property (1).

Notation

In JWA, the input data are the positive integers k, u and v. However, for the purpose of the worst-case complexity analysis, we consider c = u/v mod k in place of the pair (u, v). Therefore, the actual input data of JWA are regarded as being k and c, such that 0 < c < k, and gcd(k, c) = 1.

Throughout, we use the following notation. The sequence (n i , d i) denotes the successive pairs produced by JWA when k and c are the input data. Let t = t(k, c) denote the number of iterations of the loop of JWA; t must satisfy the following inequalities:

n t < √ k < n t-1 and 0 < n t , |d t | < √ k, (2
)
where finite sequence D = (d i) is defined recursively for i = -1, 0 , 1, . . . , (t -2) as

d i+2 = d i -q i+2 d i with d -1 = 0 and d 0 = 1 q i+2 = ⌊n i /n i+1 ⌋ with n -1 = k and n 0 = c. (3
)
We denote by Q = (q i) the finite sequence of partial quotients defined in [START_REF] Jebelean | An Algorithm for Exact Division[END_REF]. The sequence D is uniquely determined from the choice of Q (i.e., D = D(Q)), since the initial data d -1 and d 0 are fixed and D is an increasing function of the q i 's in Q. Let (F n) (n = 0, 1, . . .) be the Fibonacci sequence, we define m(k) by

m(k) = max i ≥ 0 | F i+1 ≤ √ k with i ∈ N.
For every given integer k > 0, the maximal number of iterations of the loop of JWA is:

N(k) = max t(k, c) | 0 < c < k and gcd(k, c) = 1 .

Bounding N (k)

Lemma 2.1. With the above notation,

(i) |d t | ≥ F t+1 . (ii) N(k) ≤ m(k).

Proof. (i)

The proof is by induction on t.

• Basis:

|d -1 | = 0 = F 0 , |d 0 | = 1 = F 1 , and |d 1 | = q 1 ≥ 1 = F 2 .
• Induction step: For every i ≥ 0, suppose |d j | ≥ F j+1 for j = -1, 0, 1, . . ., (i -1). Then,

|d i | = |d i-2 | + q i |d i-1 | ≥ |d i-2 | + |d i-1 | ≥ F i-1 + F i = F i+1
and (i) holds.

(ii) F t+1 ≤ |d t | < √ k. Hence t = t(c, k) ≤ m(k), and also N(k) ≤ m(k).
Note that the following inequalities also hold

φ m-1 < F m+1 le √ k < F m+2 < φ m+1 ,
where φ = (1 + √ 5)/2 is the golden ratio. From Lemma 2.1 and the above inequalities, an explicit expression of m(k) is easily derived,

m(k) = ⌊log φ (√ k)⌋ or m(k) = ⌈log φ (√ k)⌉. Example 2.1. For k = 2 10 , m(k) = 7 and t(k, 633) = N(k) = m(k) = 7. For k = 2 16 , m(k) = 12 and t(k, 40, 503) = N(k) = m(k) = 12.
In the above examples, N(k) = m(k). However, N(k) < m(k) for some specific values of k; e.g. k = 2 12 . (See Subsection 3.1, Case 1.)

Worst-Case Analysis of JWA

In this section, we show how to find the largest number of iterations N(k) for every integer k > 0, and we exhibit all the values of c corresponding to the worst case of JWA.

For p ≤ m = m(k) and c > 0 integer, let I p (k) and J p (k) be two sets defined as follows,

I p (k) = {c | (F p /F p+1)k < c < (F p+1 /F p+2)k} for p even, I p (k) = {c | (F p+1 /F p+2)k < c < (F p /F p+1)k} for p odd and J p (k) = I p (k) ∩; {c | gcd(k, c) = 1}.
(i) c ∈ I n (k) =⇒ k/c = [1, 1, . . . , 1, x],
where [1, 1, . . . , 1, x] denotes a continued fraction having at least n times a "1" (including the leftmost 1), and x is a sequence of positive integers (see e.g. [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]).

(ii

) If J m-1 (k) = ∅, then N(k) = m or m -1. (iii) If J m-2 (k) = ∅, then N(k) = m, (m -1) or (m -2). (iv) If k = 2 s , N(k) = m, (m -1) or (m -2). Proof. (i) Let a n /b n = [1, 1, . . . , 1] = F n+1 /
F n be the n-th convergent of the golden ratio φ, containing n times the value "1" (see [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF][START_REF] Knuth | The Art of Computer Programming: seminumerical algorithms[END_REF] for more details). To prove (i), we show that F n+1 /F n is the n-th convergent of the rational number k/c; in other words,

|(k/c) -(F n+1 /F n)| < 1/(F n) 2 . (4) Now, (F n+1) 2 -F n F n+2 = (-1) n and, since c ∈ I n (k), |(k/c) -(F n+1 /F n)| < |(F n+1) 2 -F n F n+2 |/(F n F n+1) = 1/(F n F n+1) < 1/(F n) 2 .
(ii) First, recall an invariant loop property which is also an Extended Euclidean Algorithm property: for i = 1, . . . , (t -1), where t = t(k, c), we have that

n i |d i+1 | + n i+1 |d i | = k. (5
)
We first prove that n m-2 > √ k. In fact, if we assume that J m-1 (k) = ∅, then from (i), there exists an integer c such that k/c = [1, 1, . . . , 1, x] with (m -1) such 1's. Then, q i = 1 and

|d i | = F i+1 for i = 1, . . . , (m -1). Now if n m-2 < √ k, then, since n m-1 < n m-2 , k = n m-2 |d m-1 | + n m-1 |d m-2 | = n m-2 F m + n m-1 F m-1 < √ k (F m + F m-1) = √ k F m+1 ,
and hence, √ k < F m+1 , which contradicts the definition of m(k), and

n m-2 > √ k. If n m-1 < √ k, then t(k, c) = m -1 and N(k) ≥ m -1; else, if n m-1 > √ k, then N(k) = m.
(iii) The proof is similar to the previous one. There exists an integer c such that q i = 1 and |di| = F i+1 for i = 1, . . . , (m -2). So, n m-3 > √ k, and the result follows.

(iv) Let ∆ m-2 be the size of the interval I m-2 . Then,

∆ m-2 = |(F m-2 /F m-1) k -(F m-1 /F m) k| = k |F m-2 F m -(F m-1) 2 |/(F m-1 F m) = k/(F m-1 F m). Since 2F m-1 F m < (F m-1 + F m) 2 = (F m+1) 2 and (F m+1) 2 ≤ k, then ∆ m-2 > 2.
Thus, out of two consecutive values within I m-2 (k), at least one integer is odd. Therefore, J m-2 (k) = ∅ and we can apply (iii). (Note that this argument is not valid when k is not a power of 2.) Remark 3.1. This last example shows that J m (k) is not made of all integers c such that t(k, c) = m, with gcd(k, c) = 1. Proposition 3.2 shows how to find all such numbers. For the purpose, two technical lemmas are needed first. Lemma 3.1. For every m ≥ 3, the following three implications hold.

1. If J m (k) = ∅, then N(k) ≥ m -1, since J m (k) ⊂ J m-1 (k) ⊂ J m-2 (k).
(i) ∃i | q i = 2 =⇒ F m+1 + F m-1 ≤ |d m |. (ii) ∃i | q i ≥ 3 =⇒ |d m | ≥ F m+2 > √ k. (iii) ∃i, j (i = j) | q i = q j = 2 =⇒ |d m | ≥ F m+2 + 2F m-3 > √ k.
Proof.

(i) Let ∆ = ∆(Q) = (δ i) i be the sequence defined as: δ -1 = 0, δ 0 = 1, and δ i = δ i-2 +q i δ i-1 , for i = 1, 2, . . . , m with Q = (1, 2, 1, . . . , 1). An easy calculation yields δ i = F i+1 + F i-1 for i = 1, 2, . . . , m.

On the other hand, let (d i) i be a sequence satisfying [START_REF] Jebelean | An Algorithm for Exact Division[END_REF]. We show that

|d m | ≥ δ m = F m+1 + F m-1 (m ≥ 3),
δ m = F m+1 + F m-1 . Thus, |d m | > δ m . If D = D(Q) with Q = (1, 1, . . . , 2, . . . , 1
) and q p = 2 for some p ≥ 3, then

|d p | = F p-1 + 2F p = F p+2 and |d p+1 | = F p + F p+2 , whereas δ p = F p+1 + F p-1 and δ p+1 = F p+2 + F p . It is then clear that |d i | > δ i for i ≥ p, and |d m | ≥ δ m = F m+1 + F m-1 . (
|d p+1 | = F p+3 + F p + F p-2 , whereas δ p = F p+2 + F p-3 and δ p+1 = F p+3 + F p-2 . Therefore, |d i | ≥ δ i for i ≥ p, and |d m | ≥ δ m = F m+2 + F m-3 > F m+2 .
(iii) The proof is similar to the previous one with

Q = (1, 2, 1, . . . , 1, 2, 1). For such a choice of Q, |d m | ≥ δ m = F m+2 + 2F m-3
, and the result follows.

Lemma 3.2. For every m ≥ 3, let Q = (1, 1, . . . , 1, 2, 1, . . . , 1), and let p be the index such that q p = 2 (q j = 1 for j = p, 1 ≤ j ≤ m). Then, for p = 1, 2, . . . , m, |d m | explicitly expresses as

|d m | = F m-p+1 F p+2 + F m-p F p .
Proof. The proof proceeds along the same arguments as for Lemma 3.1.

Proposition 3.2. For every integer

k ≥ 9 (m ≥ 3), if t(k, c) = m, then either c ∈ J m (k), or k/c = [1, . . . , 1, 2, 1, . . . , 1, x]
. That is, there exists i ∈ {1, . . . , m} such that q i = 2 and for any j = i, j ≤ m and q j = 1.

In that case, the inequality

F m+1 + F m-1 < √ k holds.
Proof. The proof follows from the inequalities (2) and Lemma 3.1.

Application of Proposition 3.2

The two following cases are examplified in Table 1. Assume J m (k) = ∅.

Case 1: N(k) ≤ m(k) -1 holds, for example when k = 2 6 , 2 8 or 2 12 , etc. (the inequality

F m+1 + F m-1 > √ k holds).
Case 2: N(k) = m(k). The procedure that determines all possible integers c in the worst case is described in Section 4.

Worst-Case Occurrences

Assuming that J m (k) = ∅, we search for the positive integers c such that t(k, c) = m(k).

Step

n m-1 |d m | + n m |d m-1 | = k, (6
)
under the two conditions

gcd(n m , n m-1) = 1 with n m < √ k < n m-1 (7) and 0 < n m , |d m | < √ k. (8
)
The system of equations (6)-(7)-(8) is denoted by (Σ Q), since it depends on |d m | and |d m-1 |, and thus on Q. Further, Eq. (6) is the expression of (5) when i = m -1, Eq. (8) expresses the exit test condition of JWA and Eq. (7) ensures that gcd(k, c) = gcd(n m , n m-1) = 1.

Step 2. Eq. (6

Applications

The following algorithm summarizes the results by computing the values of N(k).

t := m ; repeat if ∃c ∈ J t |n t-1 > √ k then N := t else /* J t = ∅ or no c ∈ J t satisfies n t-1 > √ k */ if (F t+1 + F t-1 < √ k) and (∃c solution of (Σ Q)) then N := t else t := t -1 ; until N is found Remark 4.1.
1. The algorithm terminates, since N(k) ≥ 1 for every k ≥ 3. Indeed, the first condition in the repeat loop always holds when t

= 1, since k -1 ∈ J 1 (k) (k ≥ 3).
2. In the algorithm, (Σ Q) corresponds to the system (6)-(7)-(8), where t substitutes for m.

The case when k > 1 is an even power of 2 is of special importance, since it is related to the practical implementation of JWA [START_REF] Weber | Parallel Implementation of the Accelerated Integer GCD Algorithm[END_REF].

Concluding Remarks

First we must point out that the condition gcd(k, c) = 1 is a very strong requirement: it eliminates many integers within I m (k) and many solutions of (Σ Q). This can be seen e. The following problems remain open.

• The example in Table 1 shows that, for k = 2 • Find the greatest lower bound of N(k) as a function of m(k).

Proposition 3 . 1 .

 31 Let k > 9 (i.e. m(k) ≥ 3), and let c and n be two positive integers such that gcd(k, c) = 1 and s ≤ m(k) = m. The four following properties hold

2 . 3 .

 23 The relation N(k) = m -2 holds for several k's (e.g. for k = 90). For any given integer k, there may exists a positive integer c such that c / ∈ J m (k), whereas t(k, c) = m. Such is the case when k = 15, 849: m = 10, I m (k) = {9, 795} and, since gcd(k, 9, 795) ≥ 3, J m (k) = ∅. However, for c = 11, 468, t(k, 11, 468) = 10.

 and ∆ is thus leading to the smallest possible |d m | satisfying the assumption in (i), i.e. |d m | = F m+1 + F m-1 (m ≥ 3). More precisely, If D = D(Q) with Q = (2, 1, 1, . . . , 1), then |d 2 | = 3, |d 3 | = 5, and |d m | = F m+2 , whereas δ 2 = 3, δ 3 = 4 and

 ii) Similarly, let ∆ = ∆(Q) defined by Q = (1, 3, 1, . . . , 1), and let D be a sequence satisfying the assumption. Then |d m | ≥ δ m = F m+2 (m ≥ 3). If D = D(Q) with Q = (3, 1, . . . , 1), then |d 2 | = 4, |d 3 | = 7, whereas δ 2 = 4 and δ 3 = 5. Clearly, |d i | > δ i for i = 3, and |d m | > δ m > F m+2 . If D = D(Q) with Q = (1, 1, . . . , 3, . . . , 1) and q p = 3 for p = 3, then |d p | = F p-1 + 3F p = F p+3 + F p-2 , and

1 .

 1 Consider each value of p (p = 1, 2, . . . , m), and select the p's that meet the condition |d m | < √ k (Lemma 3.1 provides all values of |d m | for each such m). If t(k, c) is still equal to m, then there exists a pair (n m-1 , n m) satisfying the Diophantine equation

Example 4 . 1 .

 41) is solved modulo |d m-1 |. For 0 ≤ a < |d m-1 |, n m-1 ≡ k/|d m | (mod |d m-1 |) ≡ a (mod |d m-1 |), and, from the inequality √ k < n m-1 < k/|d m |, we have n m-1 = a + r |d m-1 |, where r is a positive integer such that (√ ka)/|d m-1 | < r < (k/|d m |a)/|d m-1 |. Therefore, there exists only a finite number of solutions for n m-1 . Each solution of Eq. (6) (if any) fixes a positive integer c ≡ n m-1 /|d m-1 | (mod k) such that t(k, c) = m, and N(k) = m. Let k = 15, 849 and m = 10. By Lemma 3.2 (with m = 10 and p = 2), Eq. (6) yields 123n m-1 + 76n m = 15, 849. Solving modulo 76 gives n m-1 = 127 and n m = 3. The pair (n m-1 , n m) corresponds to the value c = 11, 468, and t(k, c) = N(k) = m(k) = 10, while J m = ∅.

 g. when k = 2 24 . Then m(k) = 17, and the choice of Q = (1, 2, 1, . . . , 1), (i.e., |d m | = 3, 571, |d m-1 | = 2, 207) yields n m-1 = 4, 404 and n m = 476, which leads to the solution c = 12, 140, 108. We still have t(k, c) = m(k) = 17 but unfortunately gcd(k, c) = 1, and N(k) = 16 = m(k) -1. Checking whether J m-2 (k) is empty is easy. It gives a straightforward answer to the question whether m(k) -2 ≤ N(k) ≤ m(k) or not.

 2s (2 ≤ s ≤ 16), the values ofN(k) are either N(k) = m(k) or N(k) = m(k) -1. Does the inequality m(k) -1 ≤ N(k) always hold for k = 2 2s (n ≥ 2)? • N(k) is never less than m(k) -2. Are the inequalities m(k) -2 ≤ N(k) ≤ m(k)true for every positive integer k ≥ 9?

Table 1

 1 gives some of the values of N(k), for k = 2 2s (2 ≤ s ≤ 16). k 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30 2 32

	m(k) 3 5 6 7	9	10 12 13 15 16 17 19 20 22 23
	N(k) 2 4 5 7	8	10 12 12 14 15 16 19 20 21 22

Table 1 :

 1 Values of m(k) and N(k) for k = 2 2s (2 ≤ s ≤ 16).