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Abstract: Timely imaging examinations are critical for stroke patients due to the potential 

life threat. We have proposed a contract-based Magnetic Resonance Imaging (MRI) 

reservation process [1] in order to reduce their waiting time for MRI examinations. 

Contracted time slots (CTS) are especially reserved for Neural Vascular Department (NVD) 

treating stroke patients. Patients either wait in a CTS queue for such time slots or are directed 

to Regular Time Slot (RTS) reservation. This strategy creates "unlucky" patients having to 

wait for lengthy RTS reservation. This paper proposes and analyzes other contract 

implementation strategies called RTS reservation strategies. These strategies reserve RTS for 

NVD but do not direct patients to regular reservations. Patients all wait in the same queue and 

are served by either CTS or RTS on a FIFO (First In First Out) basis. We prove that RTS 

reservation strategies are able to reduce the unused time slots and patient waiting time. 

Extensive numerical results are presented to show the benefits of RTS reservation and to 

compare various RTS reservation strategies. 

 

Keywords: healthcare, hospital, capacity allocation, capacity reservation, implementation 

strategies 
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I. INTRODUCTION 

This paper is motivated by our collaboration with a large French university teaching hospital 

in order to reduce the waiting time of stroke patients treated in Neural Vascular Department 

(NVD). A stroke is the sudden loss of brain function, which is usually caused by interruption 

of the blood supply (ischemic stroke) and rupture of a blood vessel (hemorrhagic stroke). The 

brain is deprived of oxygen and nerve cell death will occur in the area of the brain with no 

blood flow. The patients will suffer from severe physical and cognitive deficits. It is crucial 

for stroke patients to have timely imaging examinations in order to have appropriate diagnosis 

and treatment.  

However, significant delays are observed because many key examinations rely on expensive 

and heavily used imaging facilities such as Magnetic Resonance Imaging (MRI). In France, 

the average waiting time for MRI examinations is about 30~40 days. Stroke patients, just like 

the other routine patients, have to reserve the time slots via fax or via telephone for the 

emergency patients. Long waiting time has a negative impact on quality of care and patient 

service [2]. 

In order to reduce the waiting time of stroke patients, we proposed in [1] a contract-based 

MRI examination reservation process. The imaging department managing the MRI facilities 

reserve each week some Contracted Time Slots (CTS) for NVD treating stroke patients. 

Stroke patients can be served by either CTS or regular time slots (RTS) in case of arrival 

surges of stroke patients. CTS decisions and RTS assignment policy determine the efficiency 

of the reservation process. The former is the number of CTS and its distribution over the time, 

whereas the latter refers to the policy for assigning incoming patients to RTS. We proposed a 

method combining stochastic programming model and Markov Decision Process (MDP) to 

simultaneously determine the two decisions. Structural properties of the optimal RTS 

assignment policy were established by an average cost MDP model. It is proved that there 

exists a threshold Li for each day i and the optimal RTS assignment control consists in sending 

patients to RTS by keeping CTS queue length below Li. Then Monte Carlo approximation and 

local improvement were used to determine CTS decisions and RTS assignment policy. 

Computational results showed that the reservation process can greatly reduce the average 

waiting time of stroke patients. However, there exist some “unlucky” patients who are 

directed to RTS and have to wait much longer time than those who wait for CTS.  

In order to solve this problem, this paper proposes three new MRI reservation processes. In 
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these processes, RTS is reserved for NVD and added to the list of CTS. CTS and RTS time 

slots are grouped according to their day of availability and filled by patients. No patient is 

directed to wait for lengthy RTS. All patients wait in the same queue for MRI time slots and 

are scheduled to either CTS or RTS in a FIFO (First In First Out) order and according to the 

release dates of CTS and RTS.  

Three RTS reservation policies are proposed in this paper based on patient queue length 

information and some service ratio criterion. We first prove that RTS reservation policies 

outperform RTS assignment policy with shorter patient waiting time and less unused MRI 

time slots. We then perform extensive numerical experiments to compare the performances of 

different contract implementation strategies. 

The rest of this paper is organized as follows. Literature review is described in Section II. 

Section III defines and compares different MRI-contract implementation strategies. Formal 

proofs that RTS reservation strategies improve RTS assignment strategy are given in the 

Appendix. Section IV presents computational results to show the efficiency of RTS 

reservation strategies and the impact of different problem parameters. Conclusions and 

perspectives are given in Section V. 

II. LITERATURE REVIEW 

Capacity reservation and scheduling of imaging facilities, such as computer tomography (CT) 

and MRI scanners, have received limited coverage. The two earliest contributions are [3] and 

[4]. Simulation was used in [3] to investigate the effect of scheduling rules on patient waiting 

time and physician idle time for X-rays in a chest radiology department. It was demonstrated 

in [4] that more technicians and orderlies do not imply better service quality. To improve the 

radiology services, the emphasis was the design of the management systems and scheduling 

techniques.  

A new scheduling method was proposed in [2] to identify improvement potentials in order to 

reduce MRI access time. Finite-horizon dynamic program was used in [5] to effectively 

allocate the expensive imaging diagnosis capacity among several classes of patients during a 

day. Properties of the optimal policies are identified in order to design the outpatient 

appointment schedule, and establish dynamic priority rules for admitting patients into services. 

[6] proposed a simple approach for dividing the available diagnosis capacity between 

emergency and inpatients on the one hand and outpatients on the other. MDP was used in [7] 

for the admission of multi-priority patients on a waiting queue to a diagnostic resource. An 
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approximate dynamic programming approach was proposed to overcome the state space 

explosion problem. The same problem was solved in [8] with protection level policies by 

protecting a part of the capacity from the lower priority jobs in order to make it available for 

the future higher priority jobs. A perturbation analysis technique was proposed to evaluate 

sample-path gradients with respect to the protection levels. A stochastic approximation 

approach was used to determine the optimal protection levels. 

MDP was used in [9] to allocate two CT-scanners to three patient groups with different arrival 

patterns and different cost-structures in order to maximize the total expected reward. [10] 

determined the optimal number of outpatients to schedule and the assignment of outpatients to 

a variable-block/fixed-interval appointment schedule. An MDP approach was proposed in [11] 

to decide whether to accept requests for MRI examinations from patients with different 

priorities such as inpatients and outpatients. Different examination types, cancellations, 

no-shows and over-booking, and same-day demand were considered. A continuous-time 

Markov decision process was used in [12] to model the problem of accepting or rejecting the 

reservation of different services by different classes of customers. The solution strategy was 

proposed by using simulation-based approximate dynamic programming (ADP) combined 

with a discrete event simulation of the service period. Numerical experiments show that the 

heuristic ADP algorithm performs very well in terms of objective function value, solution 

time, and memory requirements. 

Queueing theory was used in [13] to determine the number of schedule slots to open in a 

radiology department for urgent CT and ultrasonography in order to keep the rescheduling 

rate of routine studies to accommodate emergencies below a certain level. [14] examined a 

multi-period capacity allocation model with upgrading by considering multiple product types 

and multiple classes of demand. The optimal allocation policy was shown to be a simple 

two-step algorithm: meet demands with available capacity of the same-class, and then 

upgrade customers until a protection limit of a class-dependent capacity. Bounds of optimal 

protection limits were proposed.  

Most existing studies focus on medical service capacity allocation and scheduling from the 

perspective of service provider side except for [1, 15, 16]. [1] proposed contracted based MRI 

reservation process, and determined CTS decisions and RTS assignment policy by combining 

stochastic programming model and average-cost MDP. It differs from the previous studies on 

critical resource scheduling by investigating the problem from a totally different perspective 

and explores solutions from the perspective of a given class of customers, i.e., stroke patients. 
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CTS are pre-reserved for stroke patients by taking their average waiting time and unused CTS 

into account. On this basis, [15, 16] considered the possibility of canceling some CTS and 

proposed average-cost MDP approaches. [15] determined simultaneously RTS assignment 

policy and one-day advance cancellation policy for CTS; whereas [16] determined the RTS 

assignment policy, one-day and two-day advance cancellation policy for CTS. This paper 

investigates different strategies for implementing an MRI-contract in order to reduce waiting 

time variation. Advance cancellation of CTS is not considered in this paper.  

III. PROBLEM AND STRATEGIES 

A. MRI time slot contracting and reservation 

In order to reduce the waiting times of stroke patients, we proposed in [1] a contract-based 

MRI examination reservation process. In this reservation process, NVD treating stroke 

patients is allocated a certain number of time slots every day which is called Contracted Time 

Slots (CTS). The distribution of CTS over time will be called the contract. When the queue 

for CTS is too long, stroke patients can also use additional time slots via regular reservation 

which is called Regular Time Slots (RTS). Patients either wait for MRI time slots in a CTS 

queue or are directed to RTS via lengthy regular reservation process (30-40 days). This 

strategy will be called RTS assignment policy. Although the combination of contract and 

RTS assignment policy greatly reduces the average waiting time of stroke patients, the 

variation of patients’ waiting time is quite large. The “unlucky” patients assigned to RTS have 

to wait much longer than those waiting for CTS.  

In order to improve waiting time distribution, this paper proposes three new implementation 

strategies. These new strategies still make use of the same contract. With these new strategies, 

no patient is directed to wait for RTS reservation, and all patients wait in the same queue for 

MRI time slots. Additional MRI time slots are reserved by NVD through the regular 

reservation process. The reservation depends on the queue length of patients, and the 

corresponding time slots will be available in T time periods later. These additional time slots 

and CTS are pooled together and given to strokes patients on a FIFO basis. These new 

reservation processes are called RTS reservation policies. 

B. System dynamics under contract implementation strategies 

In this paper, the following assumptions are made: 

A1. Only MRI examination is considered and each patient can use either one CTS or one 
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RTS.  

A2. Only one class of patients is considered and all patients have equal priority.  

A3. The arrival of patients varies during a week but is stationary from one week to another. 

Further, the number of arrivals in one day is independent of the arrivals of other days. 

A4. The contract is known and remains the same from one week to another. 

A5. The waiting time for a time slot via regular reservation is a constant T.  

Remark 1: The average waiting time of the stroke patients served by RTS is approximated by 

a constant T in this paper. In practice, the use of contract-based solution is expected to modify 

T and reserving more CTS for stroke patients will lead to longer T. However, assumption A5 

is reasonable for the following reasons. First, in practice MRI time slots are shared among 

multiple departments. The proportion of MRI usage by NVD is usually not too high. For 

example, the hospital we collaborated with has 5 MRI machines shared by 61 medical 

services of the hospital, many external services and the imaging department itself for various 

diagnosis, researches and teaching activities. The change of reservation process of NVD alone 

is expected to have limited impact on the delay of regular reservation. Second, our simulation 

studies show that change of waiting time for regular reservation due to the use of 

well-designed contract is quite limited when the overall workload of MRI facilities is 

reasonable and is for example below 90%. Third, the impact of CTS on T can be further 

reduced by appropriate advance CTS cancellation strategies not addressed in this paper but 

investigated in [15] and [16].  

The MRI reservation problem is characterized by the following notation: 

t index of days with t=1,2, …; 

T number of days for obtaining a time slot through regular reservation with T > 1;  

at number of patients arrived in day t. By assumption 3, daily arrivals at are mutual 

independent random variables and weekly arrivals (a7w+1, a7w+2, …, a7w+7) are identically 

distributed for all w = 0, 1, …. As a result, the arrival process is characterized by 

probability matrix [rij] for i = 1, …, 7 and for all j ≥ 0 with rij denoting the probability of j 

arrivals in day i; 

nt number of CTS of day t. By assumption 4), nt = nt+7 and the contract can be denoted by 

a 7-integer vector n = [n1, …, n7]; 
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c  penalty factor of an unused MRI time slot. It serves as a weighting factor in order to 

balance waiting time and unused MRI time slots. 

The cost structure is as follows. Each patient incurs a cost of 1 for each waiting day for either 

CTS or RTS. Each unused CTS or RTS time slot incurs a cost of c. The goal is to minimize 

the long run average cost incurred by patient waiting and unused time slots of both CTS and 

reserved RTS. 

Four implementation strategies Pi with i =0, 1, 2, 3 will be considered in this paper. Each 

policy Pi is associated with the following notation: 

yi,t  number of patients directed to RTS or number of RTS reserved at the end of day t; 

ui,t 
number of unused time slots in day t;  

xi,t 
total number of patients waiting for a time slot at the end of day t including those directed 

to RTS but not yet served. It will be called global queue length; 

di,t 
number of patients having received their time slots and hence left in day t. 

The capital letter of each notation denotes the cumulative total from 0 to t. Notation At, Di,t 

and Ui,t will be used. The following notation is also used: 

  , , ,1, 1i t i t i i tq x Y t T t y       (1) 

where Yi(t’,t) = yi,t’ +… + yi,t, Yi(t-T+1,t-1) denotes the outstanding RTS assignment or 

reservation in day t. If Pi is a RTS assignment policy, qi,t corresponds to the CTS queue 

length and
, , ,

1

t

i t i t i

t T

x q y 
   

   . If Pi is a RTS reservation policy, xi,t is the queue length of 

waiting patients and qi,t equals with xi,t minus the total number of outstanding RTS 

reservations. 

With a given contract n and a given implementation strategy Pi, the sequence of events in 

each day is as follows. At the beginning of the day, the queue lengths qi,t-1 and xi,t-1 as well as 

outstanding RTS assignments / reservations yi,t’ for t' = t – T to t-1 are known, at new patients 

arrive, nt CTS are available. If RTS assignment is used, MIN{nt, qi,t-1+at} patients in the CTS 

queue are served by CTS of day t and yi,t-T patients are served by RTS of day t. If RTS 

reservation is used, yi,t-T additional time slots arrive and MIN{nt+yi,t-T, xi,t-1+at} patients are 

served by CTS and RTS available in day t. At this moment, the decision variable yi,t 
is 

selected according to policy Pi. yi,t patients are directed RTS and depart from the CTS queue if 
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RTS assignment is used and yi,t RTS time slots are reserved if RTS reservation is used. All 

queue lengths and performance indicators are then updated. Fig. 1 illustrates the dynamics of 

the two types of strategies. 

 

 

 

 

Fig. 1. RTS assignment and RTS reservation 

Without loss of generality, we assume that the system starts empty with 

  , , ,, , , 0i t i t i tx q y t  0  (2)  

The system dynamics can be characterized by the following: 

  , , 1 ,i t i t t t i tq q a n y


    , for RTS assignment (3) 

  , , 1 ,i t i t t t i t Tx x a n y


     , for RTS reservation (4) 

  , , 1i t t i t tu n q a


   , for RTS assignment (5) 

  , , , 1i t t i t T i t tu n y x a


     , for RTS reservation (6) 

 , ,i t t i tD A x   (7) 

The performance measures considered in this paper include: long-run average cost iC , 

average unused time slots iU , average patient waiting time iW  and average queue length 

iX . 

  , ,

1

1
limi i t i t

t

C cu x


 


   (8) 
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The evaluation of other performance measures is straightforward. Further, by Little's law, 

 i iW X A  (9) 

where  
7

1 1

1 1
lim

7
t t

t t

A a E a


 
 

    is the average daily arrival rate. This implies that higher 

global queue length xi,t implies higher average waiting time. 

C. Contract implementation strategies 

One RTS assignment policy denoted P0 and three RTS reservation policies P1, P2 and P3 are 

considered in this paper. 

P0 is the optimal RTS assignment policy which is shown in [1] to be a policy characterized 

by a threshold Lt associated with each day with Lt = Lt+7. This policy keeps the CTS queue 

length q0t at the end of each day t below or equal to Lt. As a result, 

  0, 0, 1t t t t ty q a n L


     (10) 

   0, 0, 1min ,t t t t tq q a n L


    (11) 

With a RTS reservation policy Pi (i =1, 2, 3), no one is directed to regular reservation and all 

patients wait in the same patient queue and are served in FIFO order. At the beginning of 

period t, the length of the patient queue is xi,t-1, the total number of available time slots is 

nt+yi,t-T. The number of RTS to reserve yi,t is determined via different methods. 

P1 is a RTS reservation policy such that y1,t = y0,t. More precisely, P1 keeps track of an 

artificial CTS queue length q0,t 
as if P0 were used and it determines y0,t and hence y1,t with the 

artificial queue and relation (10). That is, P1 is similar to P0 but with additional RTS reserved 

instead of sending patients directly to RTS. In the following, P1 is called RTS reservation 

with artificial queue. 

P2 is a RTS reservation policy defined as follows: 

   2, 2, 2 1, 1t t ty x Y t T t L


        (12) 

and is called RTS reservation with real queue. The number y2,t 
of RTS to reserve is 

determined by considering its effect on patient queue. From assumption A5, the RTS 

reservation decision yt only impacts on the patient queue in day t+T. P2 tries to keep the 

expected queue length at time t+T as close as possible to a threshold, i.e.   '

t T tE x L   which 
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implies the following relation 

   '

1

t T

t s s s T s t T

s t

E x a n y u L


 

 

 
     

 
  

This relation is further approximated by neglecting unused time slots 

     '

1

1, 1
t T

t t t T s s

s t

x Y t T t y L n E a




 

         

With   '

1





 

  
t T

t t T s s

s t

L L n E a and the nonnegativity of yt, the above relation leads to (12). 

Combining with (12) with (1), 

 
2,t tq L  (13) 

P3 is also a RTS reservation policy but is service ratio-oriented and will be called RTS 

reservation with service ratio . Here the service ratio at the end of a day is defined as the 

probability that all existing patients are served. Each day t, the number of RTS to reserve is 

determined such that the service ratio at the end of day t+T is at least , i.e. 

  3, 1 3t T t T t T tP x a n y         

This policy requires the determination of the probability distribution of 3, 1t T t Tx a    which 

depends on the current queue length and all outstanding RTS reservations. In this paper, this 

probability is determined by Monte Carlo simulation from day t+1 to t+T with a fixed but 

large number of random samples of patient arrivals. 

Remark 2: From the description of the problem, the dynamics of an RTS reservation policy 

can be modeled as a Markov chain but its state space is huge and beyond practical limit as the 

state at the beginning of each day includes not only the length of the patient queue but also the 

number of RTS reserved in each of the T-1 previous days, i.e. each state corresponds to a 

T-dimension vector. Direct analysis of the underlying Markov chain is impossible. For this 

reason, we compare the implementation strategies by sample path comparisons and simulation 

studies.  

D. Performance comparison of contract implementation strategies 

This sub-section compares policies P0, P1 and P2 under the condition of common arrivals and 

with the same thresholds Lt for all policies. Sample-path comparison is used in the Appendix 
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to establish the results in Table 1. 

From Table 1, P1 and P2 both improve the RTS assignment policy P0. More specifically, the 

global queue length under P0 is the longest one, whereas that under P1 is the shortest, among 

policies P0, P1 and P2. This together with (9) implies 0 2 1W W W  . In terms of additional 

time slots reserved, P2 uses the least number of additional time slots, whereas P0 and P1 use 

the same number of additional time slots for every period t. Therefore, P2 has the least number 

of unused time slots while P1 and P0 have the same average unused time slots. With the 

longest waiting time and highest number of unused time slots, P0 has the highest cost.  

Table 1: Performance comparison of policies P0, P1 and P2 

Performance indicator Policy ordering 

Global queue length x0,t≥x2,t≥x1,t 
 

Reservation of additional time slots y2,t≤y1,t=y0,t
 

Ratio of unused time slots 
2 1 0U U U   

Average waiting time 
0 2 1W W W   

Average cost 
0 1C C , 0 2C C  

IV. EXPERIMENTAL STUDY 

This section presents numerical experiments performed to evaluate the performance of several 

MRI reservation processes. We then perform sensitivity analysis to show how the reservation 

processes depend on different factors such as T and c, and patient arrival rates. 

A. Numerical experiments 

We first describe the base case corresponding to our real case study. From the data collected 

from the NVD of our study, the average numbers of patient arrivals during the week are as 

follows: {1, 0.89, 0.95, 1.16, 1.53, 0.16, 0.05} which sum up to 5.74 patients per week. The 

number of patient’s arrival each day is assumed to follow a Poisson distribution. The average 

waiting time for RTS is in the range of 30~40 days with an average of T = 35 days. The 

weight, c, is set to 15. The base case is then modified to investigate the impact of parameters 

c, T, and patient arrival rates. 

The control parameters of the four policies are determined as follows. For any contract n, the 

optimal thresholds of P0 can be determined by linear programming as shown in [1] and are 

denoted L0. For P3, a line search with golden point insertion in interval [0, 1] is used to 

determine the optimal service ratio . Two parameter settings are considered for P1 and P2. 
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P1L0 and P2L0 are policies P1 and P2 with thresholds L0. Another threshold vector is also 

derived with local search (increasing or decreasing one CTS in one day) to improve P1 and P2 

by starting from L0. Let L1 and L2 be the corresponding threshold vectors, and P1L1 and P2L2 

be the corresponding policies. 

A common randomly generated sample path a of patient arrivals over a time horizon of 10000 

days is used in control parameter optimization of policies P3, P1L1 and P2L2. All policies are 

then evaluated by ten replications of the simulation of the MRI reservation process over 

10000 days. Further, with policy 3, at the end of each day, 1000 replications of the on-line 

simulation over the next T days are performed in order to estimate the patient queue length 

distribution at the end of day t+T. 

B. RTS assignment vs. RTS reservation 

This section considers the base case and compares the RTS assignment policy P0 and RTS 

reservation policies P1L0 and P2L0 in order to confirm theoretical results of Section IV. The 

contract under consideration is n0 = [1,1,1,1,2,0,0] which is the optimal policy with 6 CTS. 

Remind that the average weekly demand is 5.74. The optimal thresholds of P0 are L0 = 

[6,6,6,6,5,6,6]. 

 

 

Fig. 2. Waiting time distribution 

Fig. 2 gives the waiting time distributions of the three policies. The P0 leads to waiting times 

of either 0 to 7 days or 35 days with 5.56% of unlucky patients having to wait 35 days. The 
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waiting time distributions of P1L0 and P2L0 are much smoother without unlocking patients. 

Both range between 0 to 24 days with 89.25% served in 10 days and 99.41% in 15 days for 

P1L0 and 89% in 10 days and 99.35% in 15 days for P2L0. 

Table 2 compares the average daily cost, the percentage of time slots that are not used that 

will be called unused ratio, the average, standard deviation and maximum of waiting times of 

the three policies. These results as well as the remaining experimental results confirm the 

results of Section IV: P1 and P2 both improve P0, both P1 and P2 have smaller waiting time 

variation and smaller maximal waiting time than P0, P2 has smaller unused ratio but P1 has 

shorter waiting time. These results also show that P1 and P2 are actually very close with 

respect to all performance measures as well as waiting time distribution. 

Table 2: Performances of P0, P1 and P2 for the base case 

  
Daily cost % unused 

Waiting time (days) 

  Average Standard deviation Maximum 

P0 5.03 8.84 4.67 7.37 35 

P1L0 4.74 8.84 4.31 3.73 24 

P2L0 4.77 8.66 4.39 3.77 24 

 

Remark 3: We have discussed the results with the managers of the collaborating hospital. 

They are very interested in the proposed methodology and intend to change the current way. 

However, there are several issues they are concerned about: 1) the impacts of this method on 

the waiting times of other patients; 2) how to implement the strategies if advance CTS 

cancellation is considered and 3) whether it benefits from using contracts for multiple medical 

departments. Decisions of real implementation will made based on the results of the above 

issues. The implementation has also been delayed due to serious financial problems of the 

hospital, a common situation for most French public hospitals. Cutting cost has become top 

priority of this hospital while the work of this paper mainly aims at improving service quality 

to stroke patients. We expect the implementation of the contract-based solutions resumed after 

the current financial pressure. 

C. Sensitivity analysis of unused time slot cost c 

This section considers the base case with contract n0 = [1,1,1,1,2,0,0] and performs sensitivity 

analysis of the six policies under consideration by changing unused time slot cost c in {1, 10, 

15, 20, 30, 40, 50, 60, 70, 80, 90, 100}. 

Table 3 shows the thresholds L0, L1 and L2 and the service ratio  of the policies. When c 
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increases, L0, L1 and L2 increase and  decreases leading to less RTS assignments / 

reservations and hence smaller unused ratio. Local search reduces the thresholds and hence 

more RTS reservations and more unused time slots. 

Table 3: Thresholds and service ratio v.s. penalty cost c 

c L0 L1 L2  

1 {5,5,5,5,4,5,5} {4,6,2,0,0,5,5} {5,5,5,5,-18,5,5} 0.69  

10 {6,6,6,6,5,5,6} {6,6,3,2,2,1,6} {6,6,6,0,-1,-2,6} 0.34  

15 {6,6,6,6,5,6,6} {3,4,4,4,2,6,6} {6,6,2,2,0,6,6} 0.31  

20 {7,6,6,7,6,6,7} {6,6,5,4,3,4,7} {5,5,5,4,2,3,7} 0.25  

30 {7,7,7,7,6,7,7} {7,7,6,5,5,7,7} {6,8,5,5,3,7,7} 0.22  

40 {8,8,8,8,7,8,8} {7,7,6,7,6,7,8} {6,7,7,7,5,8,8} 0.13  

50 {9,9,9,9,8,8,9} {9,10,9,8,6,8,9} {9,10,9,8,6,8,9} 0.09  

60 {9,9,9,9,8,9,9} {8,8,9,9,7,8,9} {8,8,9,9,7,8,9} 0.09  

70 {10,10,10,10,9,9,10} {10,11,11,10,8,8,10} {9,9,10,10,8,9,10} 0.07  

80 {10,10,10,11,10,10,10} {10,9,11,11,9,10,10} {10,9,11,11,9,10,10} 0.05  

90 {11,11,11,11,10,11,11} {11,11,10,12,10,10,11} {11,11,10,12,10,10,11} 0.05  

100 {12,12,12,12,11,11,12} {12,12,11,13,11,11,12} {12,12,11,13,11,11,12} 0.02  

 

Figures 3 to 7 compare the average daily cost, the unused ratio, the average value, the 

standard deviation and the maximum of patients waiting times of the six policies P0, P1L0, 

P1L1, P2L0, P2L2 and P3. The following observations can be made. 

For average daily cost, (i) all daily cost increases when c increases; (ii) P3 has the lowest daily 

cost; (iii) P0 has the highest daily cost; (iv) P1L0 and P2L0 have almost the same daily cost; 

(v) local search improves P1 and P2; (vi) daily cost are almost the same for all policies when c 

> 20. 

For unused time slots, (i) the unused ratio decreases when c increases, (ii) P2L0 has the lowest 

unused ratio, (iii) P0 and P1L0 have the same unused ratio that is slightly higher than P2L0, 

(iv) local search leads to significantly higher unused ratio, (v) P3 often has the highest unused 

ratio. 

For the average waiting times, (i) the average delay increases from half day to over 6 days 

when c increases, (ii) P0 has the highest delay, (ii) P2L0 has shorter delay than P0 but slightly 

longer delay than P1L0, (iii) local search significantly reduces the delay, (iv) P3 often has the 

shortest waiting time. 

For the standard deviation of waiting times, (i) P0 always has the largest waiting time 
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variation but it decreases when c increases, (ii) the waiting time variations of other policies 

increase when c increases, (iii) P1L0 and P2L0 have almost the same variation, (iv) local 

search reduces this variation, (v) P3 has often the smaller waiting time variation. 

For the maximal waiting time, the sensitivity with respect to c is almost the same as that of the 

standard deviation except that the maximal delay of P0 remains the same. 

  

Fig. 3. Daily cost vs. unused time slot cost c 

  

Fig. 4. Unused ratio vs. unused time slot cost c 
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Fig. 5. Average waiting time vs. unused time slot cost c 

  

Fig. 6. Waiting time variation vs. unused time slot cost c 

 

Fig. 7. Maximal waiting time vs. unused time slot cost c 
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D. Sensitivity analysis of RTS delay 

This section considers the base case with contract n0 = [1,1,1,1,2,0,0] and performs sensitivity 

analysis of the six policies under consideration by changing RTS delay T in {2, 10, 20, 30, 35, 

40, 50, 60, 70, 80, 90, 100}. 

Table 4 shows the thresholds L0, L1 and L2 and the service ratio  of the policies. When T 

increases, L0, L1 and L2 increase while  is insensitive to the change of T. Local search 

reduces the thresholds and hence more RTS reservations and more unused time slots. 
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Table 4: Thresholds and service ratio vs. RTS delays T 

T L0 L1 L2 

2 {3,3,3,3,2,3,3} {3,3,3,3,2,4,4} {3,3,3,3,2,3,3} 0.31  

10 {4,4,4,4,3,4,4} {4,3,5,4,3,3,4} {4,3,5,4,3,3,4} 0.24  

20 {5,5,5,5,4,4,5} {6,3,5,4,3,3,5} {5,3,5,4,3,2,5} 0.25  

30 {6,6,6,6,5,5,6} {4,2,8,3,2,2,6} {6,6,7,3,2,1,6} 0.27  

35 {6,6,6,6,5,6,6} {3,4,4,4,2,6,6} {6,6,2,2,0,6,6} 0.31  

40 {7,6,6,7,6,6,7} {7,7,6,5,4,2,7} {7,7,6,2,1,-1,7} 0.31  

50 {7,7,7,7,6,7,7} {7,8,4,3,1,7,7} {7,8,7,-1,-1,7,7} 0.31  

60 {8,8,8,8,7,8,8} {9,9,8,2,1,8,8} {9,9,8,8,-3,8,8} 0.29  

70 {9,9,9,9,8,8,9} {9,10,10,3,2,1,9} {9,10,10,9,8,-5,9} 0.29  

80 {9,9,9,9,8,9,9} {10,9,9,3,1,9,9} {10,9,9,9,-5,9,9} 0.31  

90 {10,10,10,10,9,9,10} {10,10,10,10,2,1,10} {10,10,10,10,9,-8,10} 0.31  

100 {10,10,10,11,10,10,10} {11,10,1,11,10,11,10} {10,10,-9,11,10,11,10} 0.31  

 

Figures 8 to 12 compare different performance measures of the six policies. The following 

observations can be made. 

For average daily cost, all daily cost increases when T increases. Except for the case T = 2, P0 

has the highest daily cost, P3 has the lowest cost, P1L0 and P2L0 has almost the same cost. 

Local search does improve P1 and P2 and P1L1 and P2L2 have almost the same cost. Cost 

reduction of RTS reservation over RTS assignment become larger when T increases. 

For unused time slots, the unused ratios of P0, P1L0 and P2L0 are almost the same and 

decreases as T increases. P3 has the highest unused ratio while the unused ratios of P1L1 and 

P2L2 are smaller than that of P3 but significantly higher than that of P1L0 and P2L0 especially 

for large T. There is no clear trend of unused ratios of P3, P1L1, P2L2. 

For the average waiting times, (i) the average delay increases when c increases, (ii) P0 has the 

highest delay, (ii) P1L0 and P2L0 has almost the same waiting times, (iii) local search 

significantly reduces the delay especially for large T, (iv) P3 often has the shortest waiting 

time, (v) P1L1, P2L2 and P3 are able to limit the average waiting time below 3.5 days even for 

very large T. 

For the standard deviation of waiting times, (i) the waiting time variations increase when T 

increases, (ii) P0 always has the largest waiting time variation, (iii) the improvement of RTS 

reservation policies becomes larger for large T, (iv) P1L0 and P2L0 have almost the same 

variation, (v) local search significantly reduces this variation, (vi) P3 has the smaller waiting 

time variation, (vii) P1L1, P2L2 and P3 are able to limit the standard deviation below 3.5 days 
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even for very large T. 

For the maximal waiting time, the maximal delay increases as T increases, P0 has the worse 

maximal delay equal to T, P1L0 and P2L0 have almost the same maximal delay that is 

significantly lower than T, P1L1, P2L2 and P3 have even smaller maximal delay and are able 

to limit it below 22 days even for very large T. 

 

Fig. 8. Daily cost vs. RTS delay T 

 

Fig. 9. Unused ratio vs. RTS delay T 
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Fig. 10. Average waiting time vs. RTS delay T 

 

Fig. 11. Waiting time variation vs. RTS delay T 

  

Fig. 12. Maximal waiting time vs. RTS delay T 
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respectively Low, Medium, and High demand cases. For all cases, the contract n0 is the 

optimal contract with RTS assignment determined by the Monte Carlo approach in [1] in 

order to minimize the average daily cost but without limiting the number of CTS. Local 

search of P1 and P2 is not considered here and the impact is similar to policy P3. 

Table 5 shows the contract n0, the thresholds L0 and the service ratio  of the policies. As the 

demand increases, n0 and L0 increase while  remains stable.  

Table 6 gives the performances of different strategies where each performance for each 

strategy is given in the order of Low, Medium and High demand cases. The followings are 

observed. When the arrival rate increases, the daily cost increases but all other performance 

measures decreases. While the reduction of unused ratio and average waiting time is expected. 

The reduction of the waiting time variation and maximal waiting time is not straightforward. 

RTS reservation strategies do improve the waiting time variations and the maximal waiting 

time for all cases. This confirms the results of Section III. 

Finally, contracts of this section use more CTS than the contract used the previous section 

which limits the number of CTS to the average weekly arrival rate. With more CTS, the 

average daily cost, unused ratio and average waiting time are almost the same for all policies. 

This suggests that the benefits of RTS reservation strategies with respect to these criteria are 

significant only when the contracted number of CTS is near or below the weekly arrival rate. 

The optimal contract meets this condition if the unused time slot cost c is high. 

Table 5: Contracts, thresholds and service ratio vs. arrival rate 

Arrival Rate   n0  L0   

Low {1,1,1,1,3,0,0} {11,11,11,11,9,10,10} 0.25  

Medium {5,5,5,6,9,1,0} {21,21,21,21,19,19,21} 0.27  

High {10,9,10,12,17,2,1} {31,31,31,31,28,29,30} 0.24  

 

Table 6: Performances vs. patient arrival rate 

  Daily cost % unused 

Waiting time (days) 

Average Standard Dev Maximum 

P0 4.48 9.78 13.93 18.16 7.71 6.06 2.13 1.14 0.73 2.74 2.12 1.55 35 35 35 

P1L0 4.48 9.75 13.88 18.16 7.71 6.06 2.12 1.13 0.72 2.45 1.46 1.06 15.4 9.9 6.9 

P2L0 4.48 9.75 13.88 18.16 7.71 6.06 2.13 1.14 0.73 2.45 1.47 1.07 15.4 9.9 6.9 

P3 4.47 9.80 13.91 18.32 8.49 6.27 2.09 1.01 0.69 2.40 1.35 1.03 14.9 8.6 6.8 
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V. CONCLUSION 

This paper proposed different strategies to implement a contract-based MRI reservation 

process for stroke patients. Previous studies proposed methods for determination of the 

number of CTS and the corresponding RTS assignment control policy. This paper proves that 

RTS reservation instead of RTS assignment, i.e. reserve RTS time slots instead assign patient 

directly to RTS reservation, improves the contract-based solution by reducing unused MRI 

time slots, patient waiting time and waiting time variation. Three RTS reservation strategies 

are proposed. The first strategy is built on an artificial queue, the second one use actual patient 

queue information and the third one is service ratio oriented. Apart from the theoretical 

analysis, an extensive numerical experiment is performed to show the effectiveness of the 

RTS reservation strategies.  

Future research can be pursued in several directions. First, it would be interesting to combine 

the RTS reservation strategies with advance CTS cancelation. Queueing analysis of RTS 

reservation strategies is another interesting direction. Other directions are related to the 

impacts of contracting MRI time slots for the neural vascular department on the waiting times 

of other patients. Contract design for multiple medical departments and for patients requiring 

multiple diagnostic facilities is an important challenging issue.  

APPENDIX. ANALYSIS OF IMPLEMENTATION STRATEGIES 

A. RTS assignment vs. RTS reservation with artificial queue 

Property 1: 
0, 1, , 0t tx x t   . 

Property 2:
 1 0U U . 

Property 3: The maximal waiting time under P1 is smaller or equal to T if the thresholds tL  

are such that 
1



 

 
t T

t s

s t

L n  and 1 1  t t tL n L . 

Remark 4: Apart from Properties 1-3, the followings holds (i) 1, 0,t ty y , (ii) 0 1C C  and 

(iii) 0 1W W  where (i) is from the definition of P1, (ii) from Properties 1 and 2 and (iii) from 

Property 1 and relation (9). In other words, P1 not only reduces the maximal waiting time by 

avoiding "unlucky" patients directed to longer regular reservation but also reduces the average 

waiting time.  

Remark 5: The conditions of Property 3 basically assume that patients in CTS queue under 
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P0 wait no longer than T and a patient in the CTS queue will not be directed to RTS. The last 

condition holds for any optimal RTS assignment policy. By relaxing the first condition, it is 

still possible to show that the maximal waiting time of P1 does not exceed that of P0.  

Proof of Property 1 by induction: The property clearly holds for t = 0. Assume that it holds for 

day t-1. We now prove that it holds for day t. First, for P0 and for day t, q0,t-1 
patients wait for 

CTS and x0,t-1 
patients wait for the CTS and RTS. The number of new patients is at. During 

the day, MIN{nt, q0,t-1+at} patients are served by CTS and y0,t-T patients by RTS. From the 

definition of global queue, 

 

 

 

0, 0, 1 0, 1 0,

0, 1 0, 0, 1 0, 1 0,

min ,

max ,

t t t t t t t T

t t t t T t t t T

x x a n q a y

x a n y x q y

  

    

    

       

From definition, we have 

 
1, 0, ,t ty y t  . (14) 

Combining the above with (4) for i=1, (14), the induction assumption and x0,t-1≥q0,t-1+ y0,t-T, 

we have x0,t≥x1,t which completes the proof.   

Remark 6: From the proof of Property 1, with the same number of time slots, more patients 

can be served with RTS reservation P1 than with RTS assignment P0. The deviation, i.e. x0,t > 

x1,t, happens when nt > q0,t-1+at. In this case, in P0, there are not enough patients to fill CTS 

and patients directed to RTS cannot be redirected. In P1, as no patients are directed RTS, these 

extra CTS time slots can be filled by patients that were directed to RTS in P0.  

Proof of Property 2: By definition of global queue, 

 0, 0 0, 0,

1 1 1

t t T t

t s s s s

s s s

x x a y n u


  

        

 1, 0 1, 1,

1 1

t t

t s s s T s

s s

x x a n y u

 

       

As 0, 1, 0, 0t ty y t    , subtracting the two relations leads to: 

0, 1, 0, 1,

1 1

t t

t t s s

s s

x x u u
 

     

which proves the property if both x0,t and x1,t are finite numbers. The finiteness of x0,t is true as 
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q0,t≤Lt, y0,t≤q0,t-1+at≤Lt-1+at, and *

0, 0,

1

t t

t t s s

s t T s t T

x q y TL a
    

      where L* is the 

maximum 
tL  for all t. The finiteness of x1,t follows from Property 1.   

Remark 7: From the proofs of Properties 1 and 2, 
0, 1,

1 1

0
t t

s s

s s

u u
 

   . Policy P1 has less 

unused time slots even though the average underutilization cost is the same. 

Proof of Property 3:  Consider the last patient arriving in day t under P1, i.e. the x1,t-th patient 

in the patient queue. Assume by contradiction that its waiting time exceeds T. As patients are 

served in FIFO order, 

1,

1

t T

t T

t

x a






 

   

Consider P0. From relation (1) and q0,t≤Lt, the conditions of the property ensure that all 

patients in x0,t have been served by time t + T. As a result, 

0,

1

t T

t T

t

x a






 

   

which contradicts Property 1 and concludes the proof.     

B. RTS assignment vs. RTS reservation with real queue 

Property 4.    0, 0, 0, 2, 2, 2,, , , , , 0t t t t t tx y q x y q t   . 

Property 5.     *

0, 0, 0, 0, 2, 2, 2, 2,, , , , , , , ,t t t t t t t tx y q u x y q u t t   0, * 2, * 0, * 2, *0 ,  ,  t t t tq q x x  

0, * 2, *t tu u  where  

  0, 0* min IN : 0, 1, 1 0tt t u Y t T t        

is the first day such that P0 has unused CTS and outstanding RTS patients. 

Remark 8: From Property 5, P0 and P2 deviate when P0 has both unused CTS and outstanding 

RTS patients. In such days, P2 fills these unused time slots with outstanding patients that were 

directed to RTS in P0.  

Property 6. 2, 0,t tD D , 2, 0,t tU U , 2 0C C , 2 0U U , 2 0W W . 

Property 7. The maximal waiting time of the reservation process P2 is smaller or equal to T if 
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the thresholds tL  are such that 
1



 

 
t T

t s

s t

L n  and 1 1  t t tL n L . 

Remark 9: From Properties 6 and 7, compared with the RTS assignment policy P0, RTS 

reservation P2 with real queue improves both the ratio of unused time slots and the average 

waiting time of patients. It further avoids unlucky patients with lengthy regular reservation 

time T. 

The proofs of the above properties need the following basic relations of policy P2. 

   2, 2, 1 2 1, 1t t t tu n q a Y t T t


        (15) 

  2, 2, 1t t t t ty q a n L


     (16) 

     2, 2. 1 2 2max , , 1,t t t tq x a n Y t T t Y t T t         (17) 

   2, 2, 1 2, 2max , 1,t t t t tq q a n y Y t T t        (18) 

where (15) is from (1) and (6), (16) from (4), (12) and (1), (17) from (1) and (4) , (18) from 

(17) and (1). The proof of property 7 is similar with that of Property 3 and is neglected. 

Proof of Property 4 by induction: The property clearly holds for t = 0. Assume that it holds up 

to day t-1. We now prove that it holds for day t.  

(A) 
0, 2,t ty y

 
as, by induction and relations (10) and (16), 

    0, 0, 1 2, 1 2,t t t t t t t t t ty q a n L q a n L y
 

           

(B) 
0, 2,t tq q  as 

  2. 2, 1t t t tq q a n


    

  2, 0, 1t t t tq q a n


    

   2. 0, 1 0,min ,t t t t t tq q a n L q


     

where the first inequality is from (18) and the fact y2,t≥0, the second from the induction 

assumption, the third from the second inequality, (13) and (11). 

Finally x0,t≥x2,t as 
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    2, 2, 2 0, 0 0,1, 1,t t t tx q Y t T t q Y t T t x          

where the first equality is from (1), the second inequality from (A), (B) and induction, the 

third equality from (1).      

Proof of Property 5: We first prove     *

0, 0, 0, 0, 2, 2, 2, 2,, , , , , , ,t t t t t t t tx y q u x y q u t t    by 

induction. It clearly holds for t = 0. Assume that it holds up to day t-1. We now prove that it 

holds for day t.  

(i) Proof of u0,t=u2,t. By definition of t*, if u0,t > 0, then Y0(t-T+1,t-1)=0 and, from (5) and (15), 

u0,t=u2,t. Otherwise, from (15), 0≤u2,t≤(nt-q2,t-1-at)
+
=u0,t. Since u0,t = 0 in this case, u0,t= u2,t.  

(ii) From (16) and (10), the induction assumption implies y0,t= y2,t. 

(iii)  Proof of q0,t= q2,t. From relations (10), (11) and (18) 

  0, 0, 1 0,t t t t tq q a n y


     (19) 

   2, 2, 1 2 2,max , 1, 1t t t t tq q a n Y t T t y         (20) 

If  0 1, 1 0Y t T t    , by induction and (ii), q0,t=q2,t. Otherwise, u0,t=0, from (5), q0,t-1+at-nt

≥0. By induction assumption, (19) and (20), q0,t=q2,t. 

(iv) From (i), induction assumption and (ii) and (iii), x0,t=x2,t. 
 

Consider now day t*. 0, * * 0, * 1 * 0t t t tu n q a    ,  0 * 1, * 1 0Y t T t    . From (15),  

  

  

  

2, * * 2, * 1 * 2

* 0, * 1 * 0

0, * 0 0, *

* 1, * 1

    * 1, * 1

    * 1, * 1

t t t t

t t t

t t

u n q a Y t T t

n q a Y t T t

u Y t T t u











      

      

     

 

Since * 0, * 1 * 0t t tn q a   , from (10), (11) and (1), 0, * 0tq  , 0, * 0ty  , 

 0, * 0 * 1, * 1tx Y t T t    . Similar to the proof of (ii), 2, * 0, * 0t ty y  . From (18),  

 

  

  

  

2, * 2, * 1 * * 2

0, * 1 * * 0

0, * 0

max , * 1, * 1

max , * 1, * 1

max , * 1, * 1 0

t t t t

t t t

t

q q a n Y t T t

q a n Y t T t

u Y t T t





      

      

      

 

Combining with (1), 0, * 2, *t tx x .       
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Proof of Property 6: 
2, 0,t tD D

 

is a direct consequence of (7) and 
2, 0,t tx x . Since the 

system is initially empty,  , ,1,i t t i i tD N Y t T U     which together with Property 4 implies 

2, 0,t tU U  and 2 0U U . 2 0W W  flows from (9) and Property 4. 2 0C C  is a 

consequence of Property 4, 
2, 0,t tU U  and 

  , , , ,

1 1

1 1
lim limi i t i t i i t

t t

C cu x cU x
 


   

 

 
    

 
    

C. RTS reservation with artificial queue vs. with real queue 

From the definition of P1 and Property 4, 

 
2, 1,t ty y  (21) 

By induction and by using (4) and (21), we have  

 
2, 1,t tx x  (22) 

From Properties 2 and 6, 2 1U U . From relation (9) and (22), 2 1W W .   
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