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ENTROPY OF NON-EQUILIBRIUM STATIONARY MEASURES OF

BOUNDARY DRIVEN TASEP

CÉDRIC BERNARDIN, PATRÍCIA GONÇALVES, AND CLAUDIO LANDIM

ABSTRACT. We examine the entropy of non-equilibrium stationary states of boundary

driven totally asymmetric simple exclusion processes. As a consequence, we obtain that

the Gibbs-Shannon entropy of the non equilibrium stationary state converges to the Gibbs-

Shannon entropy of the local equilibrium state. Moreover, we prove that its fluctuations are

Gaussian, except when the mean displacement of particles produced by the bulk dynamics

agrees with the particle flux induced by the density reservoirs in the maximal phase regime.

Dedicated to Herbert Spohn.

1. INTRODUCTION

Nonequilibrium stationary states (NESS) maintained by systems in contact with infinite

reservoirs at the boundaries have attracted much attention in these last years. In analogy

with the usual Boltzmann entropy for equilibrium stationary states, we introduced in [3]

the entropy function of NESS and we computed it explicitly in the case of the boundary

driven symmetric simple exclusion process. In the present paper we extend this work to

the boundary driven totally asymmetric simple exclusion process (TASEP) and we show

that the entropy function detects phase transitions.

The boundary driven asymmetric simple exclusion process is defined as follows, see

Figure 1. Let p = 1−q ∈ [0,1] 6= 1/2 and 0 < ρ− < ρ+ < 1. The microstates are described

by the vectors η = (η−N , . . . ,ηN) ∈ ΩN := {0,1}{−N,...,N} where for x ∈ {−N, · · · ,N},

ηx = 1 if the site x is occupied and ηx = 0 if the site x is empty. In the bulk of the sys-

tem, each particle, independently from the others, performs a nearest-neighbor asymmetric

random walk, where jumps to the right (resp. left) neighboring site occur at rate p (resp.

rate q), with the convention that each time a particle attempts to jump to a site already

occupied, the jump is suppressed in order to respect the exclusion constrain. At the two

boundaries the dynamics is modified to mimic the coupling with reservoirs of particles: if

the site −N is empty (resp. occupied), a particle is injected at rate α (resp. removed at rate

γ); similarly, if the site N is empty, a particle is injected at rate δ (resp. removed at rate

β ). For any sites x 6= y, we denote by σ x,yη (resp. σ x(η)) the configuration obtained from

η ∈ ΩN by the exchange of the occupation variables ηx and ηy (resp. by the change of ηx

into 1−ηx). The boundary driven (nearest neighbor) asymmetric simple exclusion process

is the Markov process on Ω whose generator L is given by

L = L0 +L− +L+,

Key words and phrases. Non-equilibrium stationary states, phase transitions, large deviations, quasi-

potential, boundary driven asymmetric exclusion processes.
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where L0,L−,L+ act on functions f : ΩN → R as follows

(L0 f )(η) =
N−1

∑
x=−N

{pηx(1−ηx+1)+qηx+1(1−ηx)}
[

f (σ x,x+1η)− f (η)
]

,

(L− f )(η) = c−(η−N)
[

f (σ−Nη)− f (η)
]

, (L+ f )(η) = c+(ηN)
[

f (σNη)− f (η)
]

with c± : ΩN → [0,+∞) given by

c−(η) = α(1−η−N)+ γη−N , c+(η) = δ (1−ηN)+βηN .

α

γ

β

δ

pq

FIGURE 1. The one dimensional boundary driven nearest neighbor

asymmetric simple exclusion process.

The density of the left (resp. right) reservoir is denoted by ρ− (resp. ρ+) and can

be explicitly computed as a function of p,q,α,γ (resp. p,q,β ,δ ). For simplicity we will

focus only on the totally asymmetric simple exclusion process (TASEP) which corresponds

to p = 0 or p = 1. Furthermore, if p = 1−q = 1 we take α = ρ−, β = 1−ρ+, γ = δ = 0.

If p = 1−q = 0, we take δ = ρ+, γ = 1−ρ− and α = β = 0. Since ρ− < ρ+ the reservoirs

induce a flux of particles from the right to the left. On the other hand the bulk dynamics

produces a mean displacement of the particles with a drift equal to (p−q). For p = 0 both

effects cooperate to push the particles to the left and we call the corresponding system the

cooperative TASEP. If p = 1 the two effects push the particles in opposite directions and

we call the corresponding system the competitive TASEP.

The unique non-equilibrium stationary state of the boundary driven TASEP is denoted

by µss,N . In the case ρ− = ρ+ = ρ ∈ (0,1), µss,N is given by the Bernoulli product measure

νρ on ΩN . In the non-equilibrium situation, the steady state has a lot of non-trivial inter-

esting properties. The phase diagram for the average density ρ̄ is well known and one can

distinguish three phases: the high-density phase (HD) for which ρ̄ = ρ+, the low density

phase (LD) for which ρ̄ = ρ− and the maximal current phase (MC) where ρ̄ = 1/2, see

[8]. The transition lines between these phases are second order phase transitions except for

the boundary ρ− +ρ+ = 1 in the competitive case where the transition is of first order. On

this line, the typical configurations are shocks between LD phase with density ρ− at the

left of the shock and HD phase with density ρ+ at the right of the shock. The position of

the shock is uniformly distributed along the system and the average profile ρ̄(x) is given

by ρ̄(x) = ρ−1{x ≤ 0}+ρ+1{x ≥ 0}. This is summarized in Figure 2.

The entropy function of µss,N introduced in [3] is the function S
p,q
ρ−,ρ+ : [0,+∞) →

[0, log(2)]∪{−∞} defined by

S
p,q
ρ−,ρ+(E) = lim

δ→0
lim

N→+∞

1

2N +1
log
(

∑
η∈ΩN

1
{

∣

∣

∣

∣

1

2N +1
log(µss,N(η))+E

∣

∣

∣

∣

≤ δ
})
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FIGURE 2. The phase diagram for the cooperative TASEP (left) and the

competitive TASEP (right).

if the limit exists.

Observe that J
p,q
ρ−,ρ+(E) = E −S

p,q
ρ−,ρ+(E) ≥ 0 coincides with the large deviations func-

tion of the random variables YN(η) := −
1

2N +1
log(µss,N(η)) under the probability mea-

sure µss,N . Therefore, the (concave) Legendre transform of the entropy function S :=
S

p,q
ρ−,ρ+ ,

P(θ) := P
p,q
ρ−,ρ+(θ) = inf

E≥0
{θE −S(E)}, (1.1)

that we call the pressure, is by the Laplace-Varadhan theorem simply related to the cumu-

lant generating function of the random variables {YN}N , i.e.

P(θ) = − lim
N→+∞

1

2N +1
log

(

∫

e(2N+1)(1−θ)YN(η)µss,N(dη)

)

= − lim
N→+∞

1

2N +1
log

(

∑
η∈ΩN

(µss,N(η))θ

)

.

(1.2)

In the equilibrium case ρ− = ρ+ = ρ ∈ (0,1), denoting by

ϕ = log(
ρ

1−ρ
) ∈ R (1.3)

the corresponding chemical potential, it is easy to show that the entropy function is given

by

Sρ,ρ(E) = −s

(

−E + log(1+ eϕ)

ϕ

)

(1.4)

where

s(θ) = θ log(θ)+(1−θ) log(1−θ) so that s′(θ) = log
( θ

1−θ

)

. (1.5)

The pressure P(ϕ,θ) is then given by

P(ϕ,θ) := θ log(1+ eϕ)− log(1+ eϕθ ). (1.6)

In the non-equilibrium case ρ− 6= ρ+, since µss,N has not a simple form, the computation

of the entropy function is much more difficult. It has been proved in [3] that if a strong

form of local equilibrium holds (see Section 5 for a precise definition), then the entropy
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function S := S
p,q
ρ−,ρ+ can be expressed in a variational form involving the non-equilibrium

free energy V := V
p,q

ρ−,ρ+ and the Gibbs-Shannon entropy S:

S(E) = sup
ρ∈M

{S(ρ) ; V (ρ)+S(ρ) = E} , (1.7)

where the set of density profiles M is defined in (2.1) and the Gibbs-Shannon entropy of

the profile ρ ∈ M is defined by

S(ρ) = −
1

2

∫ 1

−1
s(ρ(x))dx. (1.8)

The interval composed of the E ∈ [0,+∞) such that S(E) 6= −∞ is called the energy

band. The bottom and the top of the energy band are defined respectively by

E− := inf
ρ∈M

{S(ρ)+V (ρ)} and E+ := sup
ρ∈M

{S(ρ)+V (ρ)} (1.9)

The non-equilibrium free energy is the large deviation function of the empirical density

under µss,N . Its value does not depend on p nor q but only on the sign of p− q, and we

denote it by V + if p− q > 0 and by V− if p− q < 0. The explicit computation of this

functional has been obtained first in [8] and generalized to other systems in [2]. Similarly,

the entropy (resp. pressure) of the competitive TASEP is denoted by S+ (resp. P+) and

the entropy (resp. pressure) of the cooperative TASEP by S− (resp. P−). It follows easily

from (1.1) and (1.7) that

P(θ) = inf
ρ∈M

{θ(V (ρ)+S(ρ))−S(ρ)} .

This formula can also be obtained starting from (1.2) and using the local equilibrium state-

ment as it is done in [3] for the entropy function.

In this paper we compute explicitly S+ and S− (resp. Theorem 2.2 and Theorem 3.2)

and P+ and P− (resp. Theorem 2.3 and Theorem 3.3). From those results we deduce

several interesting consequences (see Theorem 2.4 and Theorem 3.4):

• We recover some results of [1] for the TASEP, showing that the Gibbs-Shannon

entropy of the non-equilibrium stationary state of the TASEP is the same, in the

thermodynamic limit, as the Gibbs-Shannon of the local Gibbs equilibrium mea-

sure, see Theorems 2.4 and 3.4. In this case, the local Gibbs equilibrium measure

is νρ̄ , namely, the Bernoulli product measure ⊗N
x=−NB(ρ̄(x)) where B(r) is the

one-site Bernoulli measure on {0,1} with density r and ρ̄ is the stationary profile.

• For the competitive TASEP, contrarily to what happens for the boundary driven

symmetric simple exclusion process ([3, 6]), the fluctuations are Gaussian with

the same variance as the one given by the local equilibrium state.

• For the cooperative TASEP, the same occurs if ρ−,ρ+ ≤ 1/2 or if ρ−,ρ+ ≥ 1/2.

But in the MC phase ρ− ≤ 1/2 ≤ ρ+, the fluctuations are not Gaussian. This

is reminiscent of [5, 8] where it is shown that the fluctuations of the density are

non-Gaussian 1.

Our last results concern the presence of phase transitions 2 for the competitive and the

cooperative TASEP. For the cooperative TASEP the function S− is a continuously differ-

entiable concave function on its energy band but has linear parts. As a consequence the

1The non-Gaussian part of the fluctuations can be described in terms of the statistical properties of a Brownian

excursion ([5]).
2We refer the interested reader to [10] for more informations about the implications of these facts from a

physical viewpoint.
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pressure function P− is a concave function with a discontinuous derivative. The function

P− may also have a linear part due to the fact that the entropy S− does not necessarily

vanish at the boundaries of the energy band. If ρ− ≤ 1/2 ≤ ρ+, then the function S+ is a

smooth concave function on its energy band, but does not vanish at the top of the energy

band. Consequently the pressure function P+ is concave with a linear part on an infinite

interval. If ρ−,ρ+ ≤ 1/2 or ρ−,ρ+ ≥ 1/2, the entropy function S+ has a discontinuity of

its derivative at some point in the interior of the energy band but vanishes at the boundaries

of the energy band. Then, the pressure function P+ has a linear part on a finite interval.

It would be interesting to see how these results extend to other asymmetric systems

for which the quasi-potential has been explicitly computed ([2]). The form of the entropy

function obtained for the TASEP is relatively simple but follows from long computations.

We did not succeed in giving a simple intuitive explanation to the final formulas obtained.

We also notice that extending these results to a larger class of systems would require to

prove the strong form of local equilibrium for them in order to get (1.7). This seems to be

a difficult task.

The paper is organized as follows. In Section 2 we obtain the entropy and the pressure

functions for the competitive TASEP and deduce some consequences of these computa-

tions. In Section 3 we obtain similar results for the cooperative TASEP. The local equilib-

rium statement is proved in Section 5. Technical parts are postponed to the Appendix.

2. COMPETITIVE TASEP

In this section we derive the variational formula for the entropy function (1.7) for the

competitive TASEP. Denote by χ(ρ), the mobility of the system, that is χ : [0,1] → [0,1]
is defined by χ(ρ) = ρ(1−ρ). The chemical potential corresponding to ρ± is denoted by

ϕ± and satisfies ρ± = eϕ±/(1+ eϕ±), see (1.3).

We consider the set L
∞([−1,1]) equipped with the weak⋆ topology and M as the set

M = {ρ ∈ L
∞([−1,1]) : 0 ≤ ρ ≤ 1} (2.1)

which is equipped with the relative topology. Denote by ρ̄ the stationary density profile.

We recall that ρ̄ = ρ− for ρ+ < 1− ρ−, i.e. ϕ+ < −ϕ−, ρ̄ = ρ+ for ρ+ > 1− ρ−, i.e.

ϕ+ >−ϕ− and ρ̄(x) = ρ−1{x ≤ 0}+ρ+1{x ≥ 0} if ρ−+ρ+ = 1. Let ϕ̄ = sup(ϕ+,−ϕ−)
so that ρ̄ = eϕ̄/(1+ eϕ̄) if ρ− +ρ+ 6= 1. Let

Φ =
{

ϕ := ϕy : x ∈ [−1,1] → ϕ−1{−1 ≤ x < y}+ϕ+1{y ≤ x ≤ 1} ; y ∈ [−1,1]
}

.

For (ρ,ϕ) ∈ M ×Φ we define the functional

H (ρ,ϕ) =
1

2

∫ 1

−1

[

(1−ρ(x))ϕ(x)− log(1+ eϕ(x))
]

dx. (2.2)

Then the quasi-potential of the competitive TASEP is given ([8], [2]) by

V +(ρ) = −S(ρ)+ inf
ϕ∈Φ

H (ρ,ϕ)−V̄ +

where

V̄ + = −S(ρ̄)+ inf
ϕ∈Φ

H (ρ̄,ϕ) = log
(

min
ρ∈[ρ−,ρ+]

χ(ρ)
)

.

Let us also introduce ϕ0 = sup{|ϕ−|, |ϕ+|} and ρ0 = eϕ0/(1+ eϕ0).
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For each E ≥ 0, m ∈ [0,2] and ϕ−,ϕ+ we define

ξ0 :=
log(1+ eϕ+)− log(1+ eϕ−)

ϕ+ −ϕ−
∈ (0,1), ξ̂0 :=

log(1+ eϕ+)+ log(1+ eϕ−)

ϕ+ −ϕ−
. (2.3)

2.1. Energy bands. In this section we determine the energy band of the competitive

TASEP. This is summarized in Figure 3.

Proposition 2.1. The bottom of the energy band is given by

E−
+∞ = −V̄ + − log(1+ eϕ0),

where ϕ0 = sup{|ϕ−|, |ϕ+|} and the top of the energy band is given by

E+
+∞ = −V̄ + +



























ϕ− log(1+ eϕ+)−ϕ+ log(1+ eϕ−)

ϕ+ −ϕ−
, ρ− ≤ 1

2
≤ ρ+,

− log(1+ eϕ+), ρ− < ρ+ ≤ 1
2
,

− log(1+ e−ϕ−), 1
2
≤ ρ− < ρ+.

ρ+

ρ−0
0

1

1

A

B

E−
+∞

ρ+

ρ−0
0

1

1

Ā

B̄

C̄ D̄

E+
+∞

FIGURE 3. The phase diagram for the bottom of the energy band (left)

and the top of the energy band (right) for the competitive TASEP. We

have A =− log(1−ρ−), B =− log(ρ+) and Ā =− log(χ(ρ−))+ log(1−

ρ+), B̄ = ϕ−
ϕ+−ϕ−

log
(

1−ρ−
1−ρ+

)

− logρ−, C̄ = ϕ+
ϕ+−ϕ−

log
(

1−ρ−
1−ρ+

)

− logρ+,

D̄ = − log(χ(ρ+))+ log(ρ−). All transitions are of first order.

2.2. Entropy. Now we compute the entropy function. We introduce

W (ρ−,ρ+) =
log(ρ+) log(1−ρ−)− log(ρ−) log(1−ρ+)

log
(

ρ+(1−ρ−)
ρ−(1−ρ+)

) . (2.4)

By abuse of notation we denote by W (ϕ−,ϕ+) the same quantity as above, expressed in

terms of ϕ− and ϕ+, that is

W (ϕ−,ϕ+) =
ϕ− log(1+ eϕ+)−ϕ+ log(1+ eϕ−)

ϕ+ −ϕ−
. (2.5)

It coincides with the first coordinate of one of the (possible) two intersection points of the

curves x → Sρ+,ρ+(−x) and x → Sρ−,ρ−(−x), where Sρ,ρ(·) is defined in (1.4).
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Theorem 2.2. The restriction of the entropy function S+ on the energy band [E−
+∞ ; E+

+∞]
is given by

S+(E) =















































Sρ0,ρ0
(−(E +V̄ +)), ρ− ≤ 1

2
≤ ρ+,

Sρ−,ρ−(−(E +V̄ +))1{(E +V̄ +) ≤W (ρ−,ρ+)}

+Sρ+,ρ+(−(E +V̄ +))1{(E +V̄ +) > W (ρ−,ρ+)}, ρ− < ρ+ ≤ 1
2
,

Sρ−,ρ−(−(E +V̄ +))1{(E +V̄ +) ≥W (ρ−,ρ+)}

+Sρ+,ρ+(−(E +V̄ +))1{(E +V̄ +) < W (ρ−,ρ+)}, 1
2
≤ ρ− < ρ+,

and is a concave function. Therefore, when ρ− ≤ 1
2
≤ ρ+, its derivative (S+)′ is continuous

on the energy band, but in the remaining cases (S+)′ is continuous except where E +V̄ + =
W (ρ−,ρ+).

The supremum in the definition of S+(E), see (1.7), for E ∈ [E−
+∞ ; E+

+∞] is realized for

a unique profile whose value is given by














































uρ̄ , ρ− ≤ 1
2
≤ ρ+,

uρ− 1{(E +V̄ +) ≤W (ρ−,ρ+)}

+uρ+ 1{(E +V̄ +) > W (ρ−,ρ+)}, ρ− < ρ+ ≤ 1
2
,

uρ− 1{(E +V̄ +) ≥W (ρ−,ρ+)}

+uρ+1{(E +V̄ +) < W (ρ−,ρ+)}, 1
2
≤ ρ− < ρ+,

where for any ρ , the profile uρ is the constant profile equal to
log(ρ)−(E+V̄+)
log(ρ)−log(1−ρ) .

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 4. Graph of the function S+ (crosses) and graphs of the func-

tions E → Sρ±,ρ±(−(E + V̄ +)) (red and blue) for ρ− = 0.1, ρ+ = 0.7
(left) and for ρ− = 0.1, ρ+ = 0.3 (right). The graph of the function S+

for 1/2 ≤ ρ− < ρ+ is similar to the one at the right hand side of the

previous figure, since the entropy function in those cases has the same

expression when exchanging ρ− with ρ+.
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2.3. Pressure. We recall that the pressure function P+ is defined as the Legendre trans-

form of the entropy function S+:

P+(θ) = inf
E≥0

{

θE −S+(E)
}

.

We introduce the two parameters θ±
0 := − 1

ϕ±
s′(ξ0), where ξ0 is defined in (2.3) and s′

is given in (1.5).

Theorem 2.3. The pressure function P+ is given by:

• If ρ+ < 1−ρ− ≤ 1
2

then

P+(θ) =











P(ϕ−,−θ)−θV̄ +, θ ≥ θ−
0 ,

P+(θ0)+E+
+∞(θ −θ−

0 ), θ < θ−
0 .

• If 1
2
≤ ρ+ < 1−ρ− then

P+(θ) =











P(ϕ+,−θ)−θV̄ +, θ ≥ θ+
0 ,

P+(θ0)+E+
+∞(θ −θ0), θ < θ+

0 .

• If ρ− < ρ+ ≤ 1
2

then

P+(θ) =































P(ϕ−,−θ)−θV̄ +, θ ≥ θ−
0 ,

P(ϕ+,−θ)−θV̄ +, θ ≤ θ+
0 ,

P+(θ+
0 )+

P+(θ−
0 )−P+(θ+

0 )

θ−
0 −θ+

0

(θ −θ+
0 ), θ ∈ (θ+

0 ,θ−
0 ).

• If 1
2
≤ ρ− < ρ+ then

P+(θ) =































P(ϕ+,−θ)−θV̄ +, θ ≥ θ+
0 ,

P(ϕ−,−θ)−θV̄ +, θ ≤ θ−
0 ,

P+(θ−
0 )+

P+(θ+
0 )−P+(θ−

0 )

θ+
0 −θ−

0

(θ −θ−
0 ), θ ∈ (θ−

0 ,θ+
0 ),

where P(ρ,ϕ) is given by (1.6).

It follows that the function P+ is a concave continuously differentiable function with

some linear parts.

The proof of this theorem is postponed to Appendix B.

2.4. Consequences. Let ρ ∈ (0,1) and ϕ be the associated chemical potential, see (1.3).

Let us first observe that the equation of the tangent to the curve of E → Sρ,ρ(E) at E =
E0(ρ) := −ρ log(1−ρ)− (1−ρ) log(ρ) is given by

Y = −E − log(χ(ρ)).

This is the unique point where the tangent has a slope equal to −1. Since Sρ,ρ is a

concave function, the curve of Sρ,ρ is strictly below the tangent apart from the point
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FIGURE 5. Graph of the function P+ for ρ− = 0.3, ρ+ = 0.8 (left) and

for ρ− = 0.1, ρ+ = 0.3 (right).

(E0,Sρ,ρ(E0)) = (E0,(−s)(ρ)). Moreover, E0(ρ) ≥ −ϕ
2

+ log(1 + eϕ), i.e. E0 is to the

right of the point where the function Sρ,ρ has its maximum.

This permits to show that J+(E) = E −S+(E) is a non negative convex function which

vanishes for a unique value of E equal to S(ρ̄). We recall that J+ is the large deviations

function of the random variables {YN}N under µss,N .

From this we recover the result of Bahadoran ([1]) in the case of the TASEP. We also

extend some of the results of [6] to the asymmetric simple exclusion process.

Theorem 2.4. In the thermodynamic limit, the Gibbs-Shanonn entropy of the non-equilibrium

stationary state defined by

S (µss,N) = ∑
η∈ΩN

[−µss,N(η) log(µss,N(η))]

is equal to the Gibbs-Shanonn entropy of the local equilibrium state, i.e.

lim
N→+∞

S (µss,N)

2N +1
= S(ρ̄).

Moreover, the corresponding fluctuations are Gaussian with a variance σ equal to the one

provided by a local equilibrium statement, i.e.

σ = S
′′

ρ̄,ρ̄(S(ρ̄)) =
1

2

∫ 1

−1
χ(ρ̄)

[

−s′(ρ̄(u))
]2

du,

where s′ is given in (1.5).

3. COOPERATIVE TASEP

In this section we present the main results of the article in the case of the cooperative

TASEP. We start by deriving the variational formula for the entropy function (1.7) for the

cooperative TASEP. Let F be the set

F :=
{

ϕ ∈C1([−1,1]) : ϕ(±1) = ϕ± , ϕ ′ > 0
}

.

and recall that χ : [0,1] → [0,1] represents the mobility and is given by χ(ρ) = ρ(1−ρ).
The quasi-potential V− of the cooperative TASEP ([8], [2]) is defined by

V−(ρ) = −S(ρ)+ sup
ϕ∈F

H (ρ,ϕ)−V̄− (3.1)
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where S(·) is defined in (1.8), H is defined in (2.2) and

V̄− = log
(

max
ρ∈[ρ−,ρ+]

χ(ρ)
)

.

3.1. Energy bands. In this section we determine the energy band of the cooperative

TASEP. This is summarized in Figure 6.

Proposition 3.1. The bottom of the energy band is given by

E−
−∞ = −V̄− +























− log(2), ρ− ≤ 1
2
≤ ρ+,

− log(1+ e−ϕ+), ρ− < ρ+ ≤ 1
2
,

− log(1+ eϕ−), 1
2
≤ ρ− < ρ+,

and the top of the energy band by is given by

E+
−∞ = −V̄−− log(1+ e−ϕ0)

where ϕ0 = sup{|ϕ−|, |ϕ+|}.

ρ+

ρ−0
0

1

1

A

B
C

E−
−∞

ρ+

ρ−0
0

1

1

Ā

B̄

C̄ D̄

E+
−∞

FIGURE 6. The phase diagram for the bottom of the energy band (left)

and the top of the energy band (right) for the cooperative TASEP.

We have A = − log(1 − ρ+), B = log(2), C = − log(ρ−) and Ā =
− log(χ(ρ+))+ log(1−ρ−), B̄ = 2log(2)+ log(1−ρ−), C̄ = 2log(2)+
log(ρ+), D̄ = − log(χ(ρ−))+ log(ρ+). All transitions are of first order.

3.2. Entropy. We are now in position to state the main result of this section.
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Theorem 3.2. The restriction of the entropy function S− on the energy band [E−
−∞ ; E+

−∞]
is given by

S−(E) =















































































−(E +V̄−)1{(E +V̄−) ≤ s(ρ0)}

+Sρ0,ρ0
(−(E +V̄−))1{(E +V̄−) > s(ρ0)}, ρ− ≤ 1

2
≤ ρ+,

Sρ+,ρ+(−(E +V̄−))1{(E +V̄−) < s(ρ+)}

−(E +V̄−)1{s(ρ+) ≤ (E +V̄−) ≤ s(ρ−)}

+Sρ−,ρ−(−(E +V̄−))1{(E +V̄−) > s(ρ−)}, ρ− < ρ+ ≤ 1
2
,

Sρ−,ρ−(−(E +V̄−))1{(E +V̄ +) < s(ρ−)}

−(E +V̄−)1{s(ρ−) ≤ (E +V̄−) ≤ s(ρ+)}

+Sρ+,ρ+(−(E +V̄−))1{(E +V̄−) > s(ρ+)}, 1
2
≤ ρ− < ρ+.

Moreover, the function S− is concave, its derivative (S−)′ is continuous on the energy band

but its second derivative (S−)′′ is not continuous.

The supremum in the definition of S−(E), see (1.7), for E ∈ [E−
−∞ ; E+

−∞] is realized by

the profiles:














































































M E
− , if E +V̄− ≤ s(ρ0)

{uρ0
}, if E +V̄− > s(ρ0), ρ− ≤ 1

2
≤ ρ+,

{uρ+}, if E +V̄− < s(ρ+),

M E
− , if s(ρ+) ≤ E +V̄− ≤ s(ρ−),

{uρ−}, if E +V̄− > s(ρ−), ρ− < ρ+ ≤ 1
2
,

{uρ−}, if E +V̄ + < s(ρ−),

M E
− , if s(ρ−) ≤ E +V̄− ≤ s(ρ+),

{uρ+}, if E +V̄− > s(ρ+)}, 1
2
≤ ρ− < ρ+,

where for any ρ , the profile uρ is the constant profile equal to
log(ρ)−(E+V̄−)
log(ρ)−log(1−ρ) and M E

− is the

set of non-increasing profiles ρ : [−1,1] → [1−ρ+,1−ρ−] such that S(ρ) = −(E +V̄−).

3.3. Pressure. Let us define the function m : R → (0,+∞) by

m(θ) = inf{ fθ (t) : t ∈ [ϕ−,ϕ+]}, θ ∈ R,

where for any θ ∈ R, fθ : R → (0,+∞) is given by

fθ (t) =











exp
{ 1

θ
log(1+ eθ t)+ log(1+ e−t)

}

, θ 6= 0,

exp{t/2+ log(1+ e−t)} , θ = 0.

It is easy to check that fθ is increasing (resp. decreasing) on (−∞,0), decreasing (resp.

increasing) on (0,+∞) if θ < −1 (resp. θ > −1) and is constant equal to 1 if θ = −1. It
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0.0
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0.6

0.7
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIGURE 7. Graph of the function S− (cross) and graphs of the functions

E → Sρ±,ρ±(−(E +V̄−) (red and blue) for ρ− = 0.2, ρ+ = 0.6 (left) and

for ρ− = 0.25, ρ+ = 0.4 (right).

follows that

m(θ) =







min( fθ (ϕ−), fθ (ϕ+)), 0 /∈ [ϕ−,ϕ+]

min( fθ (ϕ−), fθ (ϕ+), fθ (0)), 0 ∈ [ϕ− ; ϕ+]
.

Theorem 3.3. The pressure function P− is given by

P−(θ) = −θ (log(m(θ))+V̄−).

Moreover, the function P− is concave, has a linear part if ρ− ≤ 1/2 ≤ ρ+, and is differen-

tiable except for θ = −1.

The proof of this theorem is postponed to Appendix D.

- 15

- 10

- 5

0

5

10
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- 16

- 14

- 12

- 10

- 8

- 6

- 4

- 2

0

2

4

- 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10

FIGURE 8. Graph of the function P− for ρ− = 0.15, ρ+ = 0.95 (left)

and for ρ− = 0.1, ρ+ = 0.3 (right).
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3.4. Consequences.

Theorem 3.4. In the thermodynamic limit, the Gibbs-Shanonn entropy of the non-equilibrium

stationary state defined by

S (µss,N) = ∑
η∈ΩN

[−µss,N(η) log(µss,N(η))]

is equal to the Gibbs-Shanonn entropy of the local equilibrium state, i.e.

lim
N→+∞

S (µss,N)

2N +1
= S(ρ̄).

Moreover, in the case ρ+ > ρ− ≥ 1/2 or ρ < ρ+ ≤ 1/2, the fluctuations are Gaussian with

a variance σ = χ(ρ̄)[−s′(ρ̄)]2, where s′ is given in (1.5). In the case ρ− ≤ 1/2 ≤ ρ+ the

fluctuations are not Gaussian.

4. PROOFS

4.1. Proof of Proposition 2.1.

Recall from (1.9) that E−
+∞ = infρ∈M {S(ρ)+V +(ρ)}. The computation of the bottom

of the energy band is easy since we have

E−
+∞ = inf

ρ∈M
inf

ϕ∈Φ
H (ρ,ϕ)−V̄ +

= inf
ϕ∈Φ

inf
ρ∈M

H (ρ,ϕ)−V̄ +

= inf
y∈[−1,1]

1

2

{

(y+1)(ϕ−∧0− log(1+ eϕ−))+(1− y)(ϕ+ ∧0− log(1+ eϕ+))
}

−V̄ +

= inf
{

(ϕ−∧0− log(1+ eϕ−)) , (ϕ+ ∧0− log(1+ eϕ+))
}

−V̄ +.

We compute now the top of the energy band. Recall from (1.9) that

E+
+∞ = sup

ρ∈M

{

S(ρ)+V +(ρ)
}

.

For each profile ρ ∈ M , we introduce the non-decreasing continuous and almost every-

where differentiable function

Hρ(x) =
∫ x

−1
(1−ρ(z))dz (4.1)

and the constant mρ = Hρ(1) ∈ [0,2]. Let yρ ∈ [−1,1] the infimum of the points of [−1,1]
where the infimum of the continuous function y → yξ0 −Hρ(y) is attained. Then,

E+
+∞ = sup

ρ∈M

inf
ϕ∈Φ

H (ρ,ϕ)−V̄ +

=
(ϕ+ −ϕ−)

2
sup

m∈[0,2]

{

ϕ+

ϕ+ −ϕ−
m−

2V̄
+

ϕ+ −ϕ−
− ξ̂0 +U(m)

}

with

U(m) = sup
ρ∈M ,

Hρ (1)=m

inf
y∈[−1,1]

{

yξ0 −Hρ(y)
}

.

We claim that U(m) = inf{−ξ0 , ξ0 −m}. It is trivial that U(m) ≤ inf{−ξ0,ξ0 −m} (take

y = 1,−1 in the variational formula). For m 6= ξ0, the supremum can be obtained by
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taking the piecewise linear function Hρ such that Hρ is linear on [−1,0] and on [0,1], with

Hρ(−1) = 0, Hρ(1) = m and

Hρ(0) =



























ξ0, −ξ0 ≤ ξ0 −m, m > ξ0,

0, −ξ0 ≤ ξ0 −m, m < ξ0,

1, −ξ0 ≥ ξ0 −m, m−ξ0 ≥ 1,

m−ξ0, −ξ0 ≥ ξ0 −m, m−ξ0 ≤ 1.

In the case m = ξ0, there are two profiles Hρ for which the supremum is obtained, one with

Hρ(0) = ξ0, the other one with Hρ(0) = 0. It follows that

E+
+∞ =

(ϕ+ −ϕ−)

2
sup

m∈[0,2]

{

ϕ+

ϕ+ −ϕ−
m−

2V̄
+

ϕ+ −ϕ−
− ξ̂0 + inf{ξ0 −m,−ξ0}

}

=
(ϕ+ −ϕ−)

2

[

sup
m∈[2ξ0,2]

{

ϕ−

ϕ+ −ϕ−
m+(ξ0 − ξ̂0)

}

∨

sup
m∈[0,2ξ0]

{

ϕ+

ϕ+ −ϕ−
m− (ξ0 + ξ̂0)

}]

−V̄ +.

We have now to optimize a piecewise linear function and we get the result.

4.2. Proof of Theorem 2.2.

We notice that once the form of S+ is obtained its concavity is easy to establish. The

computation of S+ is accomplished in several steps. For any E ≥ 0, let D := D(E) be the

(possibly empty) compact convex domain of R
2 defined by

(y,m) ∈ D ⇔















−1 ≤ y ≤ 1, 0 ≤ m ≤ 2,

sup{ξ0,m−ξ0} ≤ E(m) ≤ m− (m−1)ξ0,

0 ≤ yξ0 +E(m) ≤ y+1, 0 ≤ m− (yξ0 +E(m)) ≤ 1− y,

(4.2)

where

E(m) :=
ϕ+m−2V̄ + −2E

ϕ+ −ϕ−
− ξ̂0.

The fact that D is a convex compact domain follows from the fact that E(m) is a linear

function of m so that D is the intersection of half-planes of R
2.

Define now the function F : D → R on (y,m) ∈ D by

F(y,m) = −(y+1)s

(

yξ0 +E(m)

y+1

)

− (1− y)s

(

m− (yξ0 +E(m))

1− y

)

.

It is understood here that if y = ±1 then the indefinite terms are equal to 0. The function F

is continuous on D and smooth on D̊.

Proposition 4.1. The entropy function S+ is given by

S+(E) =
1

2
sup

(y,m)∈D

F(y,m).

Proof. With the notations introduced above, we have

S+(E) = sup
m∈[0,2]

sup
ρ∈M

{

S(ρ) ; mρ = m, inf
y∈[−1,1]

{

yξ0 −Hρ(y)
}

= −E(m)

}

.
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Assume that there exists a profile ρm ∈M such that infy∈[−1,1]

{

yξ0 −Hρm(y)
}

=−E(m)
and Hρm(1) = m. Then, by taking y = ±1 in the infimum we see that this is possible only

if −E(m) ≤ inf{−ξ0,ξ0 −m} = −sup{ξ0,m−ξ0}. Moreover, the existence of ρm implies

that

−E(m) = inf
y∈[−1,1]

{

yξ0 −Hρm(y)
}

≥ inf
ρ∈M ,

Hρ (1)=m

inf
y∈[−1,1]

{

yξ0 −Hρ(y)
}

.

By inverting the two infimums, the right hand side of the previous inequality can be

rewritten as

inf
y∈[−1,1]

{

yξ0 − sup
ρ∈M ,

Hρ (1)=m

Hρ(y)
}

.

Since 0 ≤ H ′
ρ ≤ 1, we have that sup ρ∈M ,

Hρ (1)=m

Hρ(y) is equal to y + 1 if y + 1 ≤ m or m if

y+1 ≥ m. It follows that

inf
ρ∈M ,

Hρ (1)=m

inf
y∈[−1,1]

{

yξ0 −Hρ(y)
}

= (m−1)ξ0 −m.

Thus the existence of ρm is only possible if sup{ξ0,m−ξ0} ≤ E(m) ≤ m− (m−1)ξ0.
Let us denote ρm by ρ . Recall that yρ is the smallest point in [−1,1] such that the infi-

mum in infy∈[−1,1]{yξ0−Hρ(y)} is realized. If yρ ∈ (−1,1) then we have yρ ξ0−Hρ(yρ) =
−E(m) which implies that

yρ ξ0 +E(m)

yρ +1
=

Hρ(yρ)−Hρ(−1)

yρ +1
∈ [0,1],

m− (yρ ξ0 +E(m))

1− yρ
=

Hρ(1)−Hρ(yρ)

1− yρ
∈ [0,1].

If yρ = −1, then we have ξ0 = E(m) and for any z ≥−1, Hρ(z) ≤ zξ0 +E(m) and in par-

ticular, for z = 1, we get m≤ 2ξ0. If yρ = 1, similarly, we have ξ0 +E(m) = m and 2ξ0 ≤m.

Thus, if a profile ρ is such that V̄ +(ρ) + S(ρ) = E then (yρ ,mρ) belongs to the set

composed of couples (y,m) ∈ [−1,1]× [0,2] satisfying











































sup{ξ0,m−ξ0} ≤ E(m) ≤ m− (m−1)ξ0,

yξ0 +E(m)

y+1
∈ [0,1],

m− (yξ0 +E(m))

1− y
∈ [0,1], if y ∈ (−1,1),

−ξ0 +E(m) = 0, m ≤ 2ξ0, if y = −1,

ξ0 +E(m) = m, m ≥ 2ξ0, if y = 1.
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These conditions are equivalent to (y,m) ∈ D. By concavity of the function −s together

with Jensen’s inequality, if yρ ∈ [−1,1], we have

S(ρ) = S(H ′
ρ) = −

1

2

∫ yρ

−1
s(H ′

ρ(x))dx−
1

2

∫ 1

yρ

s(H ′
ρ(x))dx

≤−
(yρ +1)

2
s

(

yρ ξ0 +E(m)

yρ +1

)

−
(1− yρ)

2
s

(

m− (yρ ξ0 +E(m))

1− yρ

)

(4.3)

with the convention that if yρ = ±1 the indefinite terms have to be replaced by 0. This

proves that

S+(E) ≤
1

2
sup

(y,m)∈D

F(y,m).

To prove the opposite inequality, consider any (y,m) ∈ D and let Hy be the continuous

function, linear on [−1,y] and on [y,1] such that Hy(−1) = 0,Hy(1) = m,Hy(y) = yξ0 +
E(m). Since (y,m) ∈ D, the profile ρ such that Hρ = Hy belongs to M and satisfies

Hρ(1) = m, yρ = y and infz{zξ0−Hρ(z)}=−E(m), i.e. V̄ +(ρ)+S(ρ) = E. Observe now

that the equality in (4.3) is satisfied for Hρ := Hyρ . This shows that F(y,m) = 2S(ρ) ≤
2S+(E) and finishes the proof.

�

To prove Theorem 2.2 it remains to compute the supremum appearing in the statement

of Proposition 4.1. This is done in Appendix A. The last part of Theorem 2.2 concerning

the values of the maximizers is also postponed to Appendix A.

4.3. Proof of Theorem 2.4.

We just give the proof in the case 1/2 < 1−ρ− < ρ+ which corresponds to 0 <−ϕ− <
ϕ+ since the other cases are similar. Then, we have ρ̄ = ρ+ and V̄ + = log(ρ+(1−ρ+)).
Since, in the energy band, J+(E) = E +V̄ +−Sρ+,ρ+(−(E +V̄ +))−V̄ +, we conclude that

J+(E) ≥ 0 with equality if and only if −(E + V̄ +) = E0(ρ+) and −E0(ρ+)− V̄ + belongs

to [E−
+∞ , E+

+∞]. This last condition is equivalent to

−E0(ρ+) ∈ [− log(1+ eϕ+) , W (ϕ−,ϕ+)]. (4.4)

Since −E0(ρ+)=−(1−ρ+) log(1+e−ϕ+)−ρ+ log(1+eϕ+) we get easily that −E0(ρ+)≥
− log(1 + eϕ+). To prove the other inequality we write W (ϕ−,ϕ+) + E0(ρ+) = g(ϕ−),
where the function g : [−ϕ+,0] → R is defined by

g(x) = (1−ρ+) log(1+ e−ϕ+)+ρ+ log(1+ eϕ+)+
x log(1+ eϕ+)−ϕ+ log(1+ ex)

ϕ+ − x
.

Since

g′(x) =
ϕ+

(ϕ+ − x)2

{

log(1+ eϕ+)+ log(1+ ex)− (ϕ+ − x)
ex

1+ ex

}

there exists ϕ̃x ∈ [x,ϕ+] such that

g′(x) =
ϕ+

(ϕ+ − x)

{

eϕ̃x

1+ eϕ̃x
−

ex

1+ ex

}

≥ 0.

The last inequality follows from the fact that the function t → et/(1 + et) is increasing.

Thus g(ϕ−) ≤ g(−ϕ+) and g(−ϕ+) = (ρ+ − 1/2)ϕ+ ≥ 0 which proves (4.4). Thus, J+

is a non-negative convex function vanishing only for −E0(ρ+)−V̄ + = (−s)(ρ+) = S(ρ̄).
The function J+ is smooth around S(ρ̄) and J+(E) = E +V̄ +−Sρ+,ρ+(−(E +V̄ +))−V̄ +.
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By performing a second Taylor expansion of J+ around S(ρ̄) we can determine the value

of the variance of the Gaussian fluctuations and we get the desired result.

4.4. Proof of Proposition 3.1.

Let us first compute the top of the energy band. Recall from (1.9) that

E+
−∞ = sup

ρ∈M

{

S(ρ)+V−(ρ)
}

.

We have

sup
ρ∈M

sup
ϕ∈F

H (ρ,ϕ) = sup
ϕ∈F

sup
ρ∈M

H (ρ,ϕ).

For any ϕ ∈ F we define xϕ = sup{x ∈ [−1,1] : ϕ(x) ≤ 0}. Then, supρ∈M H (ρ,ϕ) is

realized for ρ(x) = 1{−1 ≤ x ≤ xϕ}. It follows that

sup
ρ∈M

sup
ϕ∈F

H (ρ,ϕ) = sup
x∈[−1,1]

sup
ϕ∈Fx

{1

2

∫ 1

x
(ϕ(u)− log(1+ eϕ(u)))du−

1

2

∫ x

−1
log(1+ eϕ(u))du

}

where Fx is the set of functions ϕ ∈ F such that ϕ(x) = 0 if x ∈ (−1,1), ϕ(x) ≤ 0 if

x = 1 and ϕ(x) ≥ 0 if x = −1. Assume for example that ϕ− ≤ 0 ≤ ϕ+ (the other cases are

similar). By using the fact that the function t → t − log(1+ et) is increasing, we see that

sup
ρ∈M

sup
ϕ∈F

H (ρ,ϕ) = sup
x∈[−1,1]

{

−
(x+1)

2
log(1+ eϕ−)+

(1− x)

2
(ϕ+ − log(1+ eϕ+))

}

because the supremum over Fx is realized by a sequence of functions in Fx converging

to the step function ϕ−1{−1 ≤ u ≤ x}+ ϕ+1{x ≤ u ≤ 1}. The last supremum is equal to

− log(1+ e−ϕ0) which concludes the computation of the top of the energy band.

We compute now the bottom of the energy band. Recall from (1.9) that

E−
−∞ = inf

ρ∈M

{

S(ρ)+V−(ρ)
}

.

We first recall some results of [8]. Recall the definition of Hρ from (4.1) and let Gρ be the

convex envelop of Hρ , i.e. the biggest convex function G such that G ≤ Hρ . We recall that

any convex function is almost everywhere differentiable. Then, the supremum in (3.1) is

given by −S(ρ)+H (ρ,ϕGρ )+V̄− where

ϕGρ (x) =































ϕ−, G′
ρ(x) ≤ ρ−,

log

(

G′
ρ(x)

1−G′
ρ(x)

)

, ρ− ≤ G′
ρ(x) ≤ ρ+,

ϕ+, G′
ρ(x) ≥ ρ+.

Moreover, by (2.2) we have that

H (ρ,ϕGρ ) =
1

2

∫ 1

−1
[G′

ρ(x)ϕGρ (x)− log(1+ e
ϕGρ (x)) ]dx .

This shows that H (ρ,ϕGρ ) does not depend on ρ but only on Gρ . Since as ρ describes

the set M , Gρ describes exactly the set of non-decreasing convex functions G such that

G(−1) = 0 and 0 ≤ G′ ≤ 1, then we have

inf
ρ∈M

sup
ϕ∈F

H (ρ,ϕ) = inf
ρ∈M

H (ρ,ϕGρ ) = inf
G

{

1

2

∫ 1

−1
[G′(x)ϕG(x)− log(1+ eϕG(x)) ]dx

}
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where the last infimum is carried over the set of non-decreasing convex functions G such

that G(−1) = 0 and 0 ≤ G′ ≤ 1.

Let us now consider the set of non-decreasing functions g such that g ∈ [0,1] and for

such g let T (g) : [−1,1] → [ϕ−,ϕ+] be defined by

T (g)(x) =































ϕ−, g(x) ≤ ρ−,

log

(

g(x)

1−g(x)

)

, ρ− ≤ g(x) ≤ ρ+,

ϕ+, g(x) ≥ ρ+.

We have then

inf
ρ∈M

sup
ϕ∈F

H (ρ,ϕ) = inf
g

{

1

2

∫ 1

−1
[g(x)T (g)(x)− log(1+ eT (g)(x))]dx

}

(4.5)

where the infimum is taken over the set of non-decreasing functions g : [−1,1] → [0,1].
To each non-decreasing function g : [−1,1] → [0,1] we associate −1 ≤ x− ≤ x+ ≤ 1 and

0 ≤ y− ≤ ρ− < ρ+ ≤ y+ ≤ 1 defined by

x− = sup{x ∈ [−1,1] : g(x) ≤ ρ−}, x+ = inf{x ∈ [−1,1] : g(x) ≥ ρ+},

y− =
1

x− +1

∫ x−

−1
g(x)dx, y+ =

1

1− x+

∫ 1

x+

g(x)dx.

In the case x− =−1 (resp. x+ = 1) we adopt the convention that y− = ρ− (resp. y+ = ρ+).

With these definitions we can write
∫ 1

−1
[g(x)T (g)(x)− log(1+ eT (g)(x))]dx

=
{

(x− +1)(ϕ−y−− log(1+ eϕ−))+(1− x+)(ϕ+y+ − log(1+ eϕ+))
}

+
∫ x+

x−

s(g(x))dx.

The infimum can be computed by fixing first x−,x+,y−,y+, optimizing separately over

the restrictions of g to [−1,x−], [x−,x+] and [x+,1] and then taking the infimum over

x−,x+,y−,y+. These parameters shall satisfy −1 ≤ x− ≤ x+ ≤ 1 and 0 ≤ y− ≤ ρ− < ρ+ ≤
y+ ≤ 1.

By convexity of the function s(·) and by Jensen’s inequality we get that the infimum of
∫ x+

x−
s(g(x))dx is given by (x+ − x−) infρ∈[ρ−,ρ+] s(ρ). It follows that (4.5) is equal to

inf
−1≤x−≤x+≤1

0≤y−≤ρ−<ρ+≤y+≤1

1

2

{

(x− +1)(ϕ−y−− log(1+ eϕ−))+(1− x+)(ϕ+y+ − log(1+ eϕ+))

+ (x+ − x−)

(

inf
ρ∈[ρ−,ρ+]

s(ρ)

)}

= inf
−1≤x−≤x+≤1

1

2

{

(x− +1)((ϕ−∧0)ρ−− log(1+ eϕ−))+(1− x+)(ϕ+ ∧ (ϕ+ρ+))

− log(1+ eϕ+)+(x+ − x−)

(

inf
ρ∈[ρ−,ρ+]

s(ρ)

)

}

We observe now that ρ± = eϕ±/(1+ eϕ±) and that the function t → tet/(1+ et)− log(1+
et) is even, increasing on [0,+∞) and negative. The result then follows.
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4.5. Proof of Theorem 3.2.

We notice that once the form of S− is known, the fact that it is concave and continuously

differentiable on its energy band is trivial. For completeness, we prove here that for ρ+ ≥
1/2 ≥ ρ− and for ρ0 = ρ+ the entropy function S− is continuously differentiable but not

twice continuously differentiable. The rest of the cases is completely similar. By the

expression for S−, it is enough to check that (S−)′(−s(ρ+)) = 1 and that (S−)′′(−s(ρ+)) 6=
0. But this follows from a simple computation using (1.4) and the expression for s(·).

In order to obtain the form of S− we start to reduce the computation of S− to a 4 dimen-

sional optimization problem. Some notations shall be introduced. Let m = minρ∈[ρ−,ρ+](−s(ρ))
and M = maxρ∈[ρ−,ρ+](−s(ρ)). We define the linear functions γ± : R → R by

γ±(y) = yϕ±− log(1+ eϕ±), y ∈ R.

For any E ≥ 0, let K := K(E) be the (possibly empty) compact convex domain of R
4

composed of 4-tuples (x−,x+,y−,y+) such that the following conditions are satisfied






























0 ≤ y− ≤ ρ− < ρ+ ≤ y+ ≤ 1,

−1 ≤ x− ≤ x+ ≤ 1,

1
2

(

(x− +1)(γ−(y−)+m)+(1− x+)(γ+(y+)+m)
)

≥ (E +V̄−)+m,

1
2

(

(x− +1)(γ−(y−)+M)+(1− x+)(γ+(y+)+M)
)

≤ (E +V̄−)+M.

Let F : K → R be the function defined by

F(x−,x+,y−,y+) =
1

2

(

(x− +1)((−s)(y−)+ γ−(y−))+(1− x+)((−s)(y+)+ γ+(y+))
)

.

Proposition 4.2. For any E ≥ 0, we have that

S−(E) = sup
k∈K

F(k) − (E +V̄−).

Moreover K 6= /0 if and only if E ∈ [E−
−∞ ; E+

−∞].

Proof. The last part of the proposition follows directly from the computations performed

during the determination of the energy band. We assume now that E ∈ [E+
−∞ ; E+

−∞].
We use the notations introduced in the proof of Proposition 3.1. Then we have

S−(E) = sup
ρ∈M

{

S(ρ) ; H (ρ,ϕGρ ) = E +V̄−
}

.

Since, by convexity of the function s, we have S(ρ) ≤ S(G′
ρ), we get

S−(E) ≤ sup
G

{

S(G′) ;
1

2

∫ 1

−1
G′(x)ϕG(x)− log(1+ eϕG(x))dx = E +V̄−

}

where the supremum is carried over the set of non-decreasing convex functions G such that

G(−1) = 0, 0 ≤ G′ ≤ 1. On the other hand, given any non-decreasing convex function G

such that G(−1) = 0 and 0 ≤ G′ ≤ 1, let ρ = 1−G′ ∈ M . We have Hρ = G = Gρ and

S(ρ) = S(H ′
ρ) = S(G). It follows that

S−(E) = sup
G

{

S(G′) ;
1

2

∫ 1

−1
G′(x)ϕG(x)− log(1+ eϕG(x))dx = E +V̄−

}

.

This can be written as

S−(E) = sup
g

{

S(g) :
1

2

∫ 1

−1
g(x)T (g)(x)− log(1+ eT (g)(x))dx = E +V̄−

}

(4.6)
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where the supremum is taken over the set of non-decreasing functions g such that g ∈ [0,1].
Then, the constraint in (4.6) is given by

1

2

∫ 1

−1
g(x)T (g)(x)− log(1+ eT (g)(x))dx

=
1

2

(

(x− +1)γ−(y−)+(1− x+)γ+(y+)+
∫ x+

x−

s(g(x))dx
)

=E +V̄−.

(4.7)

Fix x−,x+,y−,y+. We decompose the integral appearing in S(g) into the three integrals

corresponding to the intervals [−1,x−], [x−,x+] and [x+,1] so that we can optimize inde-

pendently over the restrictions of g to [−1,x−] and [x+,1]. Then the value of the integral

of (−s)(g) over [x−,x+] is fixed by the constraint (4.7).

By using that supg

∫ x−
−1 (−s)(g(x))dx over the constraint that

∫ x−
−1 g(x)dx = (x− + 1)y−

is given by (x− + 1)(−s)(y−) (and similarly for supg

∫ 1
x+

(−s)(g(x))dx), we conclude that

S−(E) is given by

S−(E) = sup
{

F(x−,x+,y−,y+)− (E +V̄−) : (x−,x+,y−,y+) ∈ A

}

.

Above A is the set of 4-tuples (x−,x+,y−,y+) such that

−1 ≤ x− ≤ x+ ≤ 1, 0 ≤ y− ≤ ρ− < ρ+ ≤ y+ ≤ 1

and that there exists a non-decreasing function h : [x−,x+] → [ρ−,ρ+] satisfying

1

2

∫ x+

x−

(−s)(h(x))dx = −(E +V̄−)+
1

2

(

(x− +1)γ−(y−)+(1− x+)γ+(y+)
)

.

This last condition can be stated as

−(E +V̄−)+
1

2

(

(x− +1)γ−(y−)+(1− x+)γ+(y+)
)

∈

[

x+ − x−

2
m ;

x+ − x−

2
M

]

. (4.8)

It is easy to see that A = K and we have proved the proposition. �

Assume from now on that E belongs to the energy band [E−
−∞ ; E+

−∞]. We have to com-

pute the supremum of the function F over the non-empty convex compact set K. To do this

we first fix y− ∈ [0,ρ−] and y+ ∈ [ρ+,1] and optimize over the couples (x−,x+) such that

(x−,x+,y−,y+) ∈ K.

Observe now that writing

(−s)(y±)+ γ±(y±) = (−s)(y±)−
[

(−s)(ρ±)+(−s′)(ρ±)(y±−ρ±)
]

and using the concavity of −s, we get that F(x−,x+,y−,y+) ≤ 0 for all (x−,x+,y−,y+);
and F(x−,x+,y−,y+) = 0 if and only if (x±∓1)(y±−ρ±) = 0.

If −(E +V̄−) belongs to [m,M] then by taking x± =±1, we conclude that supk∈K F(k)=
0 and consequently that

S−(E) = −(E +V̄−). (4.9)

Consider now the case where E belongs to the energy band but −(E + V̄−) /∈ [m,M].
Fix first y±. In order to keep notation simple and since y± are fixed, we use the notation

γ± := γ±(y±). We have first to maximize the function F(·, ·,y−,y+) in the compact convex
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domain D := D(y−,y+) composed of (x−,x+) such that

D =



















−1 ≤ x− ≤ x+ ≤ 1,

1
2

(

(x− +1)(γ− +m)+(1− x+)(γ+ +m)
)

≥ (E +V̄−)+m,

1
2

(

(x− +1)(γ− +M)+(1− x+)(γ+ +M)
)

≤ (E +V̄−)+M.

(4.10)

The two last conditions are obtained from (4.8).

Since F(·, ·,y−,y+) is an affine function, the supremum of F(·, ·,y−,y+) is attained at

one of the extremal points of the domain D. Consider the lines Dm and DM defined by

Dm =

{

(x−,x+) ∈ R
2 ;

1

2

(

(x− +1)(γ− +m)+(1− x+)(γ+ +m)
)

= (E +V̄−)+m

}

,

DM =

{

(x−,x+) ∈ R
2 ;

1

2

(

(x− +1)(γ− +M)+(1− x+)(γ+ +M)
)

= (E +V̄−)+M

}

.

There are 3,4 or 5 of such extremal points. The line Dm intersects the lines x− = x+,

x− = −1 and x+ = 1 at the points

X0 :=

(

2(E +V̄−)− (γ− + γ+)

γ−− γ+
,

2(E +V̄−)− (γ− + γ+)

γ−− γ+

)

,

Xm :=

(

−1,1−
2(E +V̄−)+2m

γ+ +m

)

Ym :=

(

2(E +V̄−)+2m

γ− +m
−1,1

)

,

respectively. The line DM intersects the same lines at the points X0,

XM :=

(

−1,1−
2(E +V̄−)+2M

γ+ +M

)

YM :=

(

2(E +V̄−)+2M

γ− +M
−1,1

)

,

respectively. Observe that the point (x−,x+) = (−1,1) does not belong to the domain D

because −(E +V̄−) /∈ [m,M].
The rest of the proof consists in determining what are the extremal points of D according

to the position of E in the energy band, find what is the supremum of F(·, ·,y−,y+) among

these extremal points, and then to maximize over y−,y+. This is accomplished in Appendix

C. The proof of the last statement of the theorem is also postponed to the Appendix.

4.6. Proof of Theorem 3.4.

We start by giving the proof in the case 1/2 ≤ 1− ρ− < ρ+, which corresponds to

0 ≤−ϕ− < ϕ+. The case 1/2 ≤ ρ+ < 1−ρ− is similar and for that reason is omitted.

By the definition of V̄−, we have that V̄− = log(χ(1/2)) = −2log(2). Also, by the

results of the previous sections, defining J−(E) = E − S−(E), we have for E + V̄− ∈
I1 = [− log(2);−s(ρ+)], that J−(E) = E +(E + V̄−) = 2E + V̄−. Since J− is linear and

increasing, we conclude that for E + V̄− ∈ I1 is holds that J−(E) ≥ 0 with equality if

and only if E0 = − 1
2
V̄− = log(2), which satisfies E0 + V̄− = − log(2) ∈ I1. Now, for
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E +V̄− ∈ I2 = (s(ρ+);− log(1+ e−ϕ+)], J−(E) = E −Sρ+,ρ+(−(E +V̄−)). As in the pre-

vious chapter we conclude that J−(E) ≥ 0 with equality if and only if E0 := E0(ρ+) =
−ρ+ log(1−ρ+)− (1−ρ+) log(ρ+) and −E0 ∈ I2. Now, we notice that by a simple com-

putation −E0 can be written as − log(1 + eϕ+)+ ϕ+
1+eϕ+ . Since s(ρ+) = − log(1 + eϕ+)+

ϕ+

1+e−ϕ+
= − log(1+ eϕ+)+ ϕ+eϕ+

1+eϕ+ and since ϕ+ > 0 we easily conclude that −E0 ≤ s(ρ+)

and as a consequence −E0 /∈ I2. Then J− vanishes for a unique value E0 := log(2) = S(ρ̄)
for ρ̄ = 1/2. Thus, the function J− is linear around log(2) and the fluctuations are not

Gaussian.

Now we consider the case ρ+ ≤ 1/2, which corresponds to ϕ− ≤ ϕ+ < 0. By the

definition of V̄−, we have that V̄− = log(χ(ρ+)). By the previous results, for E +V̄− ∈ I1 =
[s(ρ+);s(ρ−)], we have that J−(E) = E +(E +V̄−) = 2E +V̄−. We conclude that for E +
V̄− ∈ I1 it holds that J−(E) ≥ 0 with equality if and only if E0 = − 1

2
V̄− = 1

2
log(χ(ρ+)).

But in this case a simple computation shows that E0 /∈ I1. On the other hand for E +V̄− ∈
I2 = [− log(1 + e−ϕ+);s(ρ+)) we have that J−(E) = E − Sρ+,ρ+(−(E + V̄−)). As above

we conclude that for E + V̄− ∈ I2 it holds that J−(E) ≥ 0 with equality if and only if

E0 := E0(ρ+) = −ρ+ log(1−ρ+)− (1−ρ+) log(ρ+). Repeating the same computations

as above, one shows that −E0 < s(ρ+) so that −E0 ∈ I2. In the remaining case, namely E +
V̄− ∈ I3 = (s(ρ−);− log(1+eϕ−)] we have J−(E) = E−Sρ−,ρ−(−(E +V̄−)) and J−(E0) =
0 for E0 := E0(ρ−)=−ρ− log(1−ρ−)−(1−ρ−) log(ρ−) but in this case E0 /∈ I3. Thus, J−

vanishes for a unique value of −E0 − V̄− := −ρ+ log(ρ+)− (1−ρ+) log(1−ρ+) = S(ρ̄)
for ρ̄ = ρ+.

The case 0 ≤ ϕ− < ϕ+ is analogous to the previous one and for that reason we omitted

its proof.

5. A LOCAL EQUILIBRIUM STATEMENT

In this section we give a derivation of the strong form of local equilibrium that we

need in order to establish the variational formula (1.7). For any ε > 0, we split the set

{−N, . . . ,N} into K = ε−1 boxes of size εN (we assume εN to be an integer to simplify).

To each configuration η ∈ ΩN , let M(η) = (M1(η), . . . ,MK(η)) with Mi(η) begin the

number of particles in the ith box in the configuration η . For M = (M1, . . . ,MK) fixed,

we denote by ΩN(M) the configurations η such that for any i ∈ {1, . . . ,K}, the number of

particles in the ith box is Mi and by ZN(M) its cardinal.

The strong form of local equilibrium is the following statement:

lim
ε→0

limsup
N→∞

sup
M

sup
η∈ΩN(M)

∣

∣

∣ log
(

ZN(M)µss,N(η |M)
)

∣

∣

∣ = 0 . (H)

The stationary state µss,N can be expressed in terms of a product of (infinite) matri-

ces ([4]). We consider the TASEP with p = 1 but we do not assume in this section that

ρ− < ρ+. Thus, the case ρ− < ρ+ corresponds to the competitive TASEP and the case

ρ− > ρ+ to the cooperative TASEP (up to a trivial left-right symmetry). Moreover, to

have notations consistent with [4] we consider the boundary driven TASEP on the lattice

{1, . . . ,N} rather than on {−N, . . . ,N}. Let ΣN = {0,1}{1,...,N}.

By [4], there exist matrices D, E and vectors |V 〉,〈W | such that 〈W |V 〉 = 1,

DE = D + E ,

(1−ρ+)D |V 〉 = |V 〉 ,

〈W |ρ− E = 〈W |
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and

µss,N(η) =
ωN(η)

〈W |(D+E)N |V 〉
,

where the weight ωN(η) is given by

ωN(η) = 〈W |
N

∏
x=1

{η(x)D+[1−η(x)]E}|V 〉 .

Lemma 5.1. For any N ≥ 2, any η ∈ ΣN such there exists a site x ∈ {1, . . . ,N − 1} for

which ηx = 1, ηx+1 = 0, we have that

sN(x,η) = ωN(η)−ωN(σ x,x+1η)

has the same sign as ρ−−ρ+.

Proof. Let us define s = 1
ρ−

+ 1
1−ρ+

− 1
(1−ρ+)ρ−

which has the same sign as ρ−−ρ+. We

prove the lemma by induction. A configuration of ΣN is identified with a sequence of 0’s

and 1’s of length N. For example 011 is the configuration η ∈ Σ3 such that η1 = 0,η2 =
1,η3 = 1. For N = 2, the induction hypothesis is trivial since

ω2(10)−ω2(01) = 〈W |DE −ED |V 〉 = s.

Assume that the induction hypothesis is valid for N −1. Consider a configuration η ∈ ΣN

such that ηx = 1, ηx+1 = 0, x ∈ {1, . . . ,N −1}. We write η in the form η = α10β where

the 1 is at position x. If α = α ′1 then by using the relation DE = D+E, we have

sN(x,η) = ωN(α ′110β )−ωN(α ′101β )

= ωN−1(α
′11β )+ωN−1(α

′10β )−ωN−1(α
′11β )−ωN−1(α

′01β )

= sN−1(x−1,η ′)

where η ′ = α ′10β . Thus, by the induction hypothesis applied to η ′, sN(x,η) has the same

sign as s. If β = 0β ′, the same conclusion holds. Thus we can assume that η is in the form

α0101β . If β = 0β ′, by using the relation DE = D + E applied at position (x + 2,x + 3),
we get

sN(x,η) = ωN−1(α0101β ′)−ωN−1(α0011β ′)+ωN−1(α0100β ′)−ωN−1(α0010β ′)

= sN−1(x,η
1)+ sN−1(x,η

0)

where the η1 = α0101β ′ and η0 = α0100β ′. By the induction hypothesis, this has the

same sign as s. The same conclusion holds if α = α ′1. By iterating this procedure, one

can prove that sN(x,η) has the same sign as s if there is a 1 to the left of x−1 or a 0 to the

right of x + 2. The only remaining case is if η is in the form η = 0 . . .0101 . . .1 with m

zeroes to the left of the leftmost one and n ones to the right of the rightmost zero. But in

this case we have

sN(x,η) = 〈W |Em(DE −ED)Dn |V 〉 =
1

ρm
−(1−ρ+)n

〈W |(DE −ED) |V 〉

=
s

ρm
−(1−ρ+)n

which has the same sign as s and the lemma is proved. �

This lemma is sufficient to prove the local equilibrium statement as in [3].
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APPENDIX A. PROOF OF THEOREM 2.2

Recall the definition of D from (4.2). We can rewrite the set D in a more convenient

form by introducing

am =
E(m)−1

1−ξ0
and bm =

m−E(m)

ξ0
.

It is clear that if E(m) ≥ sup{ξ0,m− ξ0} then am ≥ −1 and bm ≤ 1. Also, if E(m) ≤
m +(1−m)ξ0 then am ≤ bm. We have am = −1 (resp. bm = 1) if and only if E(m) = ξ0

(resp. m−E(m) = ξ0).

We have

(y,m) ∈ D ⇔







0 ≤ m ≤ 2, sup{ξ0,m−ξ0} ≤ E(m) ≤ m− (m−1)ξ0,

am ≤ y ≤ bm.

It is easy to check that D 6= /0 is equivalent to {m ∈ [0,2] ; sup{ξ0,m− ξ0} ≤ E(m) ≤
m− (m−1)ξ0} 6= /0 which is equivalent to E ∈ [E−

+∞,E+
+∞].

Assume from now on that E ∈ [E−
+∞,E+

+∞].
We denote by α := α(E) (resp. β := β (E), resp. γ := γ(E)) the solution to the linear

equation E(m) = ξ0 (resp. m−E(m) = ξ0, resp. E(m)−m+(m−1)ξ0 = 0). We have that

{m ∈ [0,2] ; sup{ξ0,m−ξ0} ≤ E(m) ≤ m− (m−1)ξ0} is given by m ∈ [0,2] such that















E(α) ≤ E(m)

m−E(m) ≤ β −E(β )

E(m)−m+(m−1)ξ0 ≤ E(γ)− γ +(γ −1)ξ0.

Since E(m) is a linear function of m, {m∈ [0,2] ; sup{ξ0,m−ξ0}≤E(m)≤m−(m−1)ξ0}
is a closed interval [m−,m+] (with m− := m−(E) and m+ := m+(E)) of [0,2] and it is easy

to show by inspection of the different cases that we have:

1
2
≤ ρ− < ρ+ ρ− < ρ+ ≤ 1

2
1
2
≤ 1−ρ− ≤ ρ+

1
2
≤ ρ+ ≤ 1−ρ−

m− = sup{α,β} m− = γ m− = α m− = γ

m+ = γ m+ = inf{α,β} m+ = γ m+ = β

inf{α,β} /∈ (m−,m+) sup{α,β} /∈ (m−,m+) β /∈ (m−,m+) α /∈ (m−,m+)

TABLE 1. Values of m− and m+ in terms of α,β and γ .

This shows that γ is always equal to m− or m+, that α or β is the other boundary of

the interval [m−,m+] and that the remaining point among {α,β ,γ} does not belong to

(m−,m+).
Let f : [m−,m+] → R be defined by

f (m) = sup
y∈[am,bm]

F(y,m) (A.1)
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so that

S+(E) =
1

2
sup

m∈[m−,m+]

f (m). (A.2)

Observe that α 6= β 6= γ apart from a finite (at most three) number of explicit values

of E. If E is different from these values we say that E is a regular value of the energy.

For simplicity we restrict the study to the case where E is a regular value but the same

analysis could be performed for the non-regular values of E. Since α = β is equivalent to

α = β = 2ξ0 we will always assume that it is not the case.

Lemma A.1. Let E ∈ [E−
+∞ ; E+

+∞] be a regular value of the energy.

For any m ∈ (m−,m+), we have that f (m) = F(y(m),m) for a unique y(m) ∈ (am,bm)
which is solution to the equation ∂yF(y(m),m) = 0.

If α (resp. β ) belongs to {m−,m+} then f (α) = −2s(α/2) (resp. f (β ) = −2s(β/2)) and

the supremum appearing in the definition of f is uniquely realized for y =−1 (resp. y = 1).

We have f (γ) = 0 and the supremum in the definition of f is uniquely realized for y = γ−1.

Proof. We notice that if m = γ then am = bm = m− 1 and f (γ) = 0. This shows the last

sentence of the lemma.

Now, let m ∈ (m−,m+). Then am < bm. For any y ∈ (am,bm), we have

∂yF(y,m) = −
ξ0 −E(m)

y+1
s′

(

yξ0 +E(m)

y+1

)

− s

(

yξ0 +E(m)

y+1

)

−
m−E(m)−ξ0

1− y
s′

(

m− (yξ0 +E(m))

1− y

)

+ s

(

m− (yξ0 +E(m))

1− y

)

,

∂ 2
y F(y,m) = −

(ξ0 −E(m))2

(y+1)3
s′′

(

yξ0 +E(m)

y+1

)

−
(m−E(m)−ξ0)

2

(1− y)3
s′′

(

m− (yξ0 +E(m))

1− y

)

.

Since s is a strictly convex function, ∂ 2
y F(y,m) < 0, i.e. F(·,m) is strictly concave on

(am,bm) so that sup[am,bm] F(·,m) is attained for a unique point y(m) of [am,bm]. If m 6=

α then am 6= −1 and if m 6= β then bm 6= 1. Noticing that (yξ0 + E(m))/(y + 1) (resp.

(m−(yξ0 +E(m)))/(1−y)) goes to 1 (resp. 0) as y goes to am (resp. bm), we conclude that

∂yF(y,m) goes to +∞ (resp. −∞). This implies that y(m)∈ (am,bm) and (∂yF)(y(m),m) =
0. If m = α ∈ [m−,m+], then

F(y,α) = −(y+1)s(ξ0)− (1− y)s

(

α −ξ0(y+1)

1− y

)

for y ∈ [−1,bα ] ⊂ [−1,1), F(·,α) is strictly concave on[−1,bα ] and

lim
y→−1

∂yF(y,α) = (−s)(ξ0)− (−s)(α/2)− (ξ0 −α/2)(−s)′(α/2) < 0

because s is strictly convex and α 6= 2ξ0 (otherwise E is not regular). The maximum of

F(·,α) is uniquely attained for y(α) := −1 and F(y(α),α) = −2s(α/2).
Similarly, if m = β ∈ [m−,m+], the supremum is uniquely attained for y(β ) = 1 and

F(y(β ),β ) = −2s(β/2).
�
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Lemma A.2. Let E ∈ [E−
+∞ ; E+

+∞] be a regular value of the energy. The function f :

[m−,m+] → [0,2log(2)] is a continuously differentiable function on (m−,m+) and, when

α,β ∈ [m−,m+],

f ′(α) = −s′(α/2) and f ′(β ) = −s′(β/2).

Proof. It is clear that f is smooth on (m−,m+) and that the implicit function theorem

applies. Thus the continuity and differentiability problems are only around the points m−

and m+.

Let us prove that f (m) goes to f (α) and that f ′(m) has a limit as m goes to α (assuming

that α ∈ {m−,m+}) equal to −s′(α/2). The other case can be treated similarly. We will

show that

lim
m→α

y(m) = −1, lim
m→α

y(m)ξ0 +E(m)

y(m)+1
= lim

m→+∞

m− (y(m)ξ0 +E(m))

1− y(m)
= α/2. (A.3)

By the implicit function theorem, for any m 6= α,β we have

f ′(m) = ∂mF(y(m),m)

= −
ϕ+

ϕ+ −ϕ−
s′

(

y(m)ξ0 +E(m)

y(m)+1

)

+
ϕ−

ϕ+ −ϕ−
s′

(

m− (y(m)ξ0 +E(m))

1− y(m)

)

.

From (A.3) we deduce that limm→α f (m) = f (α) and limm→α f ′(m) = −s′(α/2).
Let (mn)n≥0 be a sequence in (m−,m+) (mn 6= α,β ,γ for any n) converging to α . Since

for any m,

y(m) ∈ [−1,1],
y(m)ξ0 +E(m)

y(m)+1
∈ [0,1],

m− (y(m)ξ0 +E(m))

1− y(m)
∈ [0,1],

up to a subsequence we can assume that yn := y(mn) converges to some a ∈ [−1,1] and

that
yn ξ0+E(mn)

yn+1
converges to u ∈ [0,1] and

mn−(yn ξ0+E(mn))
1−yn

converges to v ∈ [0,1].

If a ∈ (−1,1), then u = ξ0 ∈ (0,1), v = ξ0 + α−2ξ0
1−a

and v 6= u since α 6= 2ξ0. By

continuity of the functions involved and taking into account that ∂yF(yn,mn) = 0, we get

that

−s(u)−
α −2ξ0

1−a
s′(v)+ s(v) = 0.

The term on the left hand side of the previous equality can be written as s(v)− s(u)−
(v− u)s′(v) which is negative, by the convexity of the function s (if v = 0 or v = 1 then

s′(v) = −∞ or s′(v) = +∞ and the inequality is still valid). Therefore a ∈ {−1,1}.

If a = 1, then since
mn−(yn ξ0+E(mn))

1−yn
converges to v ∈ [0,1] and yn → a = 1, mn → α it

implies that α = 2ξ0 that is in contradiction with our assumptions.

It follows that a = −1, so that v = α/2. Observe that
E(mn)−ξ0

yn+1
converges to u− ξ0.

Using the fact that ∂yF(yn,mn) = 0, we get

0 = (u−ξ0)s
′(u)− s(u)−

α −2ξ0

2
s′(α/2)+ s(α/2).

Since s is convex, the function z → (z−ξ0)s
′(z)− s(z) is monotone, so that the equality is

uniquely satisfied for u = α/2. This proves (A.3). �

Lemma A.3. Let E ∈ [E−
+∞ ; E+

+∞] be a regular value of the energy. The function f is

strictly concave on (m−,m+).
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Proof. On D̊ we have

∂ 2
mF(y,m) = −

(

ϕ+

ϕ+ −ϕ−

)2
1

y+1
s′′

(

ξ0 −E(m)

y+1

)

−

(

ϕ−

ϕ+ −ϕ−

)2
1

1− y
s′′

(

m− (yξ0 +E(m))

1− y

)

∂ 2
y,mF(y,m) = −

(

ϕ+

ϕ+ −ϕ−

)

ξ0 −E(m)

(y+1)2
s′′

(

ξ0 −E(m)

y+1

)

+

(

ϕ−

ϕ+ −ϕ−

)

(m−E(m)−ξ0)

(1− y)2
s′′

(

m− (yξ0 +E(m))

1− y

)

.

One easily checks that

(∂ 2
y F)(∂ 2

mF)− (∂ 2
y,mF)2

=
s′′(a)s′′(b)

(ϕ+ −ϕ−)2(y2 −1)2



ϕ+

√

1+ y

1− y
(m−E(m)−ξ0)+ϕ−

√

1− y

1+ y
(ξ0 −E(m))





2

,

where

a =
yξ0 −E(m)

y+1
and b =

m− (yξ0 +E(m))

1− y
.

By convexity of the function s it follows that (∂ 2
y F)(∂ 2

mF)− (∂ 2
y,mF)2 > 0 if m 6= α,β .

By the implicit function theorem, the function m → F(y(m),m) is smooth on (m−,m+)
and

f ′′(m) = ∂ 2
mF(y(m),m)+∂ 2

y,mF(y(m),m)y′(m)

d

dm
[∂yF(y(m),m)] = 0 = (∂ 2

m,yF)(y(m),m)+(∂ 2
y F)(y(m),m)y′(m),

so that

f ′′(m) =

[

(∂ 2
y F)(∂ 2

mF)− (∂ 2
y,mF)2

]

(y(m),m)

∂ 2
y F(y(m),m)

.

Recalling from the proof of lemma A.1 that ∂ 2
y F < 0, we get that f ′′(m) < 0.

�

We have to compute supm∈[0,2] f (m). Since f is strictly concave there exists a unique

m0 ∈ [m−,m+] for which the supremum of f is attained.

The point m0 belongs to (m−,m+) if and only if there exists m ∈ (m−,m+) such that

f ′(m) = 0. This is equivalent to the existence of m ∈ (m−,m+) and y ∈ (am,bm) such that

∂mF(y,m) = 0, ∂yF(y,m) = 0. (A.4)

To simplify notations we introduce

ã = s′

(

yξ0 +E(m)

y+1

)

and b̃ = s′

(

m− (yξ0 +E(m))

1− y

)

,
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so that ã := s′(a) and b̃ := s′(b), where a and b were introduced above. Then (A.4) is

equivalent to

b̃ =
ϕ+

ϕ−
ã and ξ0

(

1−
ϕ−

ϕ+

)

b̃+ log





1+ e
ϕ−
ϕ+

b̃

1+ eb̃



= 0.

There are two solutions to the second equation, b̃ = 0 and b̃ = ϕ+.

If b̃ = 0 then from a = b = 1/2 we get that m = 1. As a consequence we obtain that y =
(1/2−E(1))/(ξ0 −1/2). The condition y ∈ (a1,b1) implies that E(1) < sup{1−ξ0,ξ0},

which is in contradiction with the fact that m = 1 shall satisfy sup{ξ0,m−ξ0} ≤ E(m) ≤
m− (m−1)ξ0.

If b̃ = ϕ+ then

a =
yξ0 +E(m)

y+1
= ρ− and b =

m− (yξ0 +E(m))

1− y
= ρ+.

As a consequence we obtain that y =
m−ρ+ −ρ−

ρ−−ρ+
. Then we get that

E(m)−ξ0 = (ρ−−ξ0)(y+1), (m−E(m)−ξ0) = (ρ+ −ξ0)(1− y).

Thus the conditions sup{ξ0,m−ξ0} ≤ E(m) and y ∈ (−1,1) imply ρ− ≥ ξ0 ≥ ρ+. But we

assumed ρ− < ρ+ and we have a contradiction.

Therefore m0 ∈ {m−,m+}. Consequently, for any regular value E ∈ [E−
+∞ ; E+

+∞],

S+(E) =
1

2
sup
{

f (m−) , f (m+)
}

.

Recall that the set {m−,m+} is equal to {α,γ} or to {β ,γ} and that f (γ) = 0, f (α) =
−2s(α/2) and f (β ) = −2s(β/2). Thus, by using the results in Table 1, we have

S+(E) =



























−s(sup{α,β}/2), 0 < ϕ− < ϕ+,

−s(inf{α,β}/2), ϕ− < ϕ+ < 0,

−s(α/2), 0 < −ϕ− ≤ ϕ+,

−s(β/2), 0 < ϕ+ ≤−ϕ−.

By definition of α and β we have that

α

2
=

1

ϕ+

{

(E +V̄ +)+ log(1+ eϕ+)
}

and
β

2
=

1

ϕ−

{

(E +V̄ +)+ log(1+ eϕ−)
}

.

Recall from (2.5) the definition of W (ϕ−,ϕ+) and let ϕ = log(ρ/(1−ρ)). Observe that

the function x → Sρ,ρ(−x) is a concave function equal to −∞ outside [i1, i2] := [− log(1+

e−|ϕ|) ; − log(1 + e|ϕ|)], positive inside, vanishing at the boundaries of the interval, attain-

ing its maximum equal to log(2) for x0 := (i1 + i2)/2 = ϕ/2− log(1+eϕ). It is increasing

on [i1,x0] and decreasing on [x0, i2].
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A.1. The case 1
2
≤ 1−ρ− ≤ ρ+:

Recall that the energy band is given by

−V̄ + +[− log(1+ eϕ+) ; W (ϕ−,ϕ+)].

The entropy function S+, in the energy band, is given by S+(E) = Sρ+,ρ+(−(E + V̄ +)).
Remark that we have W (ϕ−,ϕ+) + log(1 + eϕ−) = ϕ−ξ0 < 0 since ξ0 ∈ (0,1). Thus,

W (ϕ−,ϕ+) < − log(1 + e−ϕ+) and the function S+ is concave, smooth in the interior of

the energy band, but does not vanish at the top of the energy band.

A.2. The case 1
2
≤ ρ+ ≤ 1−ρ−:

Recall that the energy band is given by

−V̄ + +[− log(1+ e−ϕ−) ; W (ϕ−,ϕ+)].

The entropy function S+, in the energy band, is given by S+(E) = Sρ−,ρ−(−(E + V̄ +)).
The function S+ is concave, smooth in the interior of the energy band, but does not vanish

at the top of the energy band.

It remains now to prove the last statement of Theorem 2.2. Let us assume that ρ is a

maximizer of S+(E), E belonging to the energy band. We use the notations of the proof of

Proposition 4.1. In the proof of this proposition, we have seen that ρ being a maximizer of

S+(E) is equivalent to the fact that (yρ ,Hρ(1)) ∈ D(E) being a maximizer of the function

F over D(E) and ρ is such that Hρ is linear on [−1,yρ ] and on [yρ ,1] with Hρ(yρ) =
yρ ξ0 +E(mρ). Moreover, we have seen above that such a maximizer (y,m) satisfies y =±1

and

i) m = sup({α,β}) =

{

β if E +V̄ + > W (ρ−,ρ+),

α if E +V̄ + ≤W (ρ−,ρ+),
, 1/2 ≤ ρ− < ρ+,

ii) m = inf({α,β}) =

{

β if E +V̄ + < W (ρ−,ρ+),

α if E +V̄ + ≥W (ρ−,ρ+),
, ρ− < ρ+ ≤ 1/2,

iii) m = α 1/2 ≤ 1−ρ− ≤ ρ+,

iv) m = β 1/2 ≤ ρ+ ≤ 1−ρ−.

This implies in particular that if ρ is a maximizer of S+(E) then Hρ is linear with a

slope equal to mρ/2, i.e. ρ is constant equal to 1 − mρ/2. Since, by definition, we have

α = 2
log(1+ eϕ+)+(E +V̄ +)

ϕ+
and β = 2

log(1+ eϕ−)+(E +V̄ +)

ϕ−
,

we get the result.

A.3. The case ρ− < ρ+ ≤ 1
2
:

Recall that the energy band is given by

−V̄ + +[− log(1+ e−ϕ−) ; − log(1+ eϕ+)].

The condition α/2 ≤ β/2 is equivalent to

E +V̄ + ≥W (ϕ−,ϕ+).

Observe that W (ϕ−,ϕ+)+ log(1+ eϕ+) = ϕ+ξ0 and ξ0 ∈ (0,1), so that

− log(1+ e−ϕ−) < − log(1+ e−ϕ+) ≤W (ϕ−,ϕ+) ≤− log(1+ eϕ+) < − log(1+ eϕ−).
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Moreover, we have ξ0 < 1/2 because there exists ϕ̃ ∈ [ϕ−,ϕ+] such that ξ0 = eϕ̃

1+eϕ̃ .

This implies that W (ϕ−,ϕ+) ≥ ϕ+
2
− log(1 + eϕ+). We recall that

ϕ+
2
− log(1 + eϕ+) is

the first coordinate of the point for which the concave function x → Sρ+,ρ+(−x) attains its

maximum given by log(2). It follows that S+ is a concave function. On the energy band it

is given by

S+(E) = Sρ−,ρ−(−(E +V̄ +))1{(E +V̄ +) ≤W (ϕ−,ϕ+)}

+Sρ+,ρ+(−(E +V̄ +))1{(E +V̄ +) > W (ϕ−,ϕ+)}.

The function S+ is not differentiable at the point W (ϕ−,ϕ+)−V̄ +.

A.4. The case 1
2
≤ ρ− < ρ+:

Recall that the energy band is given by

−V̄ + +[− log(1+ eϕ+) ; − log(1+ e−ϕ−)].

The condition α/2≤ β/2 is equivalent to E +V̄ + ≥W (ϕ−,ϕ+). Observe that W (ϕ−,ϕ+)+
log(1+ eϕ−) = ϕ−ξ0 and ξ0 ∈ (0,1), so that

− log(1+ eϕ+) ≤− log(1+ eϕ−) ≤W (ϕ−,ϕ+) ≤− log(1+ e−ϕ−) ≤− log(1+ e−ϕ+).

Moreover, we have ξ0 > 1/2 because there exists ϕ̃ ∈ [ϕ−,ϕ+] such that ξ0 = eϕ̃

1+eϕ̃ . This

implies that W (ϕ−,ϕ+) ≥ ϕ−
2
− log(1 + eϕ−). We recall that

ϕ−
2
− log(1 + eϕ−) is the

first coordinate of the point for which the concave function x → Sρ−,ρ−(−x) attains its

maximum given by log(2). It follows that S+ is a concave function. On the energy band it

is given by

S+(E) = Sρ−,ρ−(−(E +V̄ +))1{(E +V̄ +) ≥W (ϕ−,ϕ+)}

+Sρ+,ρ+(−(E +V̄ +))1{(E +V̄ +) < W (ϕ−,ϕ+)}.

The function S+ is not differentiable at the point W (ϕ−,ϕ+)−V̄ +.

APPENDIX B. PROOF OF THEOREM 2.3

In order to prove the theorem, we have simply to compute the Legendre transform of

S+ whose explicit form is given in Theorem 2.2. Recall also that the Legendre transform

of the function Sρ,ρ defined by (1.4) is given by the function P(ϕ, ·) defined by (1.6).

B.1. The case 1
2
≤ 1−ρ− < ρ+:

For any E ∈ (E−
+∞ ; E+

+∞) we have that dS+

dE
is a decreasing function and

lim
E→E−

+∞

dS+

dE
= +∞, lim

E→E+
+∞

dS+

dE
= θ−

0 .

We get that

P+(θ) =







P(ϕ−,−θ)−θV̄ +, θ ≥ θ−
0 ,

P+(θ0)+E+
+∞(θ −θ−

0 ), θ < θ−
0 .
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B.2. The case 1
2
≤ ρ+ < 1−ρ−:

For any E ∈ (E−
+∞ ; E+

+∞) we have that dS+

dE
is a decreasing function and

lim
E→E−

+∞

dS+

dE
= +∞, lim

E→E+
+∞

dS+

dE
= θ+

0 .

We get that

P+(θ) =







P(ϕ+,−θ)−θV̄ +, θ ≥ θ+
0 ,

P+(θ0)+E+
+∞(θ −θ0), θ < θ+

0 .

B.3. The case ρ− < ρ+ ≤ 1
2
:

In this case we have that θ+
0 ≤ θ−

0 because ξ0 ∈ (0,1/2). We get similarly that

P+(θ) =























P(ϕ−,−θ)−θV̄ +, θ ≥ θ−
0 ,

P(ϕ+,−θ)−θV̄ +, θ ≤ θ+
0 ,

P+(θ+
0 )+

P+(θ−
0 )−P+(θ+

0 )

θ−
0 −θ+

0

(θ −θ+
0 ), θ ∈ (θ+

0 ,θ−
0 ).

B.4. The case 1
2
≤ ρ− < ρ+:

The function S+ is differentiable everywhere in the interior of the energy band apart

from the point W (ϕ−,ϕ+)− V̄ +. For E = W (ϕ−,ϕ+)− V̄ +, S+ has a left-tangent and a

right-tangent. Moreover, dS+

dE
is decreasing on (E−

+∞ ; W (ϕ−,ϕ+)−V̄ +) and increasing on

(W (ϕ−,ϕ+)−V̄ + ; E+
+∞). We have

lim
E→E±

+∞

dS+

dE
= ∓∞ and lim

E→[W (ϕ−,ϕ+)−V̄+]±

dS+

dE
= θ±

0 .

Observe that θ−
0 ≤ θ+

0 because ξ0 ∈ (1/2,1). We get easily that

P+(θ) =























P(ϕ+,−θ)−θV̄ +, θ ≥ θ+
0 ,

P(ϕ−,−θ)−θV̄ +, θ ≤ θ−
0 ,

P+(θ−
0 )+

P+(θ+
0 )−P+(θ−

0 )

θ+
0 −θ−

0

(θ −θ−
0 ), θ ∈ (θ−

0 ,θ+
0 ).

APPENDIX C. PROOF OF THEOREM 3.2

In this section we determine the extremal points of the domain ∆ according to the po-

sition of E along the energy band, we find the supremum of F(·, ·,y−,y+) among those

points and then we maximize over y− and y+.

C.1. The case ρ− ≤ 1
2
≤ ρ+:

This case corresponds to ϕ− ≤ 0 ≤ ϕ+, therefore m = (−s)(ρ0) and M = (−s)(1/2) =
log(2) = −E−

−∞ − V̄−. Since γ ′+(y+) = ϕ+ > 0, then the function γ+ is increasing. On

the other hand, since γ ′−(y−) = ϕ− < 0, the function γ− is decreasing. Since γ+(ρ+) :=
ϕ+/(1+e−ϕ+)− log(1+eϕ+) and the function t → t/(1+e−t)− log(1+et) is increasing

in (0,+∞), we obtain that −M ≤ γ+(ρ+) < γ+(1). On the other hand, since γ−(ρ−) =
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ϕ−/(1+e−ϕ−)− log(1+eϕ−) and the function t → t/(1+e−t)− log(1+et) is decreasing

in (−∞,0) we obtain that −M ≤ γ−(ρ−) ≤ γ−(0).

We only consider the case 1
2
≤ 1−ρ− < ρ+ (which corresponds to ϕ0 = ϕ+), the case

1
2
≤ ρ+ < 1−ρ− (which corresponds to ϕ0 = −ϕ−) being similar.

Since, −m = γ+(ρ+) we have that −M <−m < γ+(1) = E+
−∞ +V̄−. As a consequence,

γ+(y+) ≥−m for all y+ ∈ [ρ+,1]. Notice that the function t → t/(1+e−t)− log(1+et) is

even and increasing in (0,+∞). Therefore, γ−(ρ−) ≤ γ+(ρ+). On the other hand, γ−(0) ≤
γ+(1), which implies that −M ≤ γ−(ρ−) ≤ −m = γ+(ρ+) ≤ γ+(1). Now, two things can

happen, either γ−(0) > −m or γ−(0) < −m. We start by the former.

(a) γ−(0) > −m: Since we do not know the sign of γ− − γ+ we split again into two

cases: γ− < γ+ and γ− > γ+. We start by the former.

(a.1) Case γ− > γ+: Recall the intersection points of the lines Dm and DM from Section

3.2. In this case X0 is in the square [−1,1]2 if and only if γ+ ≤ E + V̄− ≤ γ−. We first

restrict to the case X0 ∈ [−1,1]2, i.e. γ+ ≤ E + V̄− ≤ γ−. Now, we check wether Xm, XM ,

Ym and YM are in the domain D. We start with Xm, and the same computations holds for

XM . For that purpose, it is enough to notice that Xm satisfies the third equation in (4.10),

that is

(E +V̄−)+m

γ+ +m
≤

(E +V̄−)+M

γ+ +M
.

Since the function t → (E + V̄− + t)/(γ+ + t) is decreasing and m < M we conclude that

Xm is not in the domain D. Analogously one shows that XM is not in D. By replacing γ+

by γ− in the computations above, one shows that Ym and YM are in the domain D.

Now, if X0 /∈ [−1,1]2, i.e. E +V̄− > γ− then the same computation as done above shows

that Ym and YM are not in D and as a consequence D is empty; and if E +V̄− < γ+ then Xm

and XM are not in D and as a consequence D is empty.

So, we are restricted to the case γ+ ≤ E +V̄− ≤ γ−. It remains to compute

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Ym,y−,y+),F(YM,y−,y+)
}

,

where Γ := {(y−,y+) : γ+ ≤ E +V̄− ≤ γ−}. Observe now that whatever the value of y−
is, we have that

F(Ym,y−,y+) =
(E +V̄−)+m

γ− +m
((−s)(y−)+ γ−) ,

F(YM,y−,y+) =
(E +V̄−)+M

γ−−+M
((−s)(y−)+ γ−) .

Now we notice that:

(−s(y−)+ γ−) = −
(

s
(γ− + log(1+ eϕ−)

ϕ−

)

− γ−)

= −
(

s
(−γ−− log(1+ e−ϕ−)

ϕ−

)

− γ−

)

= −
(

−S1−ρ−,1−ρ−(−γ−)− γ−

)

= −Jρ−,ρ−(−γ−).
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In the second equality above, we wrote y− in terms of γ−, in the third equality we used

the fact that s(θ) = s(1−θ) for all θ ∈ (0,1) and in fourth equality we used that for any

ρ ∈ [0,1],
Sρ,ρ = S1−ρ,1−ρ (C.1)

together with the definition of Jρ,ρ given above. The same argument also shows that

(−s(y+)+ γ+) = −Jρ+,ρ+(−γ+). Then we conclude that

F(Ym,y−,y+) = −
(E +V̄−)+m

γ− +m
Jρ−,ρ−(−γ−)

F(YM,y−,y+) = −
(E +V̄−)+M

γ− +M
Jρ−,ρ−(−γ−).

Observe that since the function t →−((E +V̄−)+ t)/(γ−+ t) is decreasing, m ≤ M and

Jρ−,ρ−(−γ−) ≥ 0, we get that F (Ym,y−,y+) ≥ F (YM,y−,y+) .
Now we recall some properties of the function Jρ,ρ , for ρ ∈ [0,1]. At first we notice

that by (C.1), we have that Jρ,ρ = J1−ρ,1−ρ . The function Jρ,ρ is convex and positive apart

from the point −s(ρ) where it vanishes. As a consequence the function Jρ−,ρ− is convex,

non-negative and finite on [log(1 + eϕ−) ; log(1 + e−ϕ−)] and has a minimum equal to 0

at the point −s(ρ−) = γ−(ρ−). Analogously, the function Jρ+,ρ+ is convex, non-negative

and finite on [log(1 + e−ϕ+) ; log(1 + eϕ+)] and has a minimum equal to 0 at the point

−s(ρ+) = γ+(ρ+). Since −s(ρ−)≤m =−s(ρ+) then for all y∈ I := [log(1+e−ϕ+) ; m] we

have that Jρ−,ρ−(y) ≥ Jρ+,ρ+(y). In particular, since γ− ∈ I we obtain that Jρ−,ρ−(−γ−) ≥
Jρ+,ρ+(−γ−). Putting together the previous observations, the fact that E + V̄− ≥ γ+ ≥ m

and γ− > −m, we conclude that

F(Ym,y−,y+) = −
(E +V̄−)+m

γ− +m
Jρ−,ρ−(−γ−) ≤−

(E +V̄−)+m

γ− +m
Jρ+,ρ+(−γ−).

On the other hand, by computing the derivative of the function

G(γ−) = −
(E +V̄−)+m

γ− +m
Jρ+,ρ+(−γ−)

with respect to γ− and using the fact that the function Jρ+,ρ+(−γ−) is convex at the point

γ−, we conclude that G(·) is decreasing. Then,

sup
(y−,y+)∈Γ

F(Ym,y−,y+) ≤ sup
γ−≥E+V̄−

G(γ−)

= G(E +V̄−)

= −Jρ+,ρ+

(

− (E +V̄−)
)

.

Now we rewrite F
(

X0,y−,y+

)

as

F
(

X0,y−,y+

)

= −
(E +V̄−)− γ+

γ−− γ+
Jρ−,ρ−(−γ−)−

γ−− (E +V̄−)

γ−− γ+
Jρ+,ρ+(−γ+).

By computing the derivative with respect to γ+ of F(X0,y−,y+), and noticing that both

Jρ+,ρ+ and Jρ−,ρ− are convex, we obtain that F(X0,y−,y+) is increasing as a function of

γ+. Then

sup
{

F(X0,y−,y+) : (y−,y+) ∈ Γ

}

≤ sup
{

F(X0,y−,y+) : γ− ≥ E +V̄−
}

= −Jρ+,ρ+

(

− (E +V̄−)
)

.
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Putting together the previous computations we obtain that

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Ym,y−,y+),F(YM,y−,y+)
}

= sup
γ+≤E+V̄−≤γ−

F(X0,y−,y+)

= sup
γ+=E+V̄−

{

F(X0,y−,y+)

=− Jρ+,ρ+

(

− (E +V̄−)
)

.

(a.2) Case γ− < γ+: A simple computation shows that X0 belongs to the square [−1,1]2

if and only if γ− ≤ E +V̄− ≤ γ+. As above, we first restrict to γ− ≤ E +V̄− ≤ γ+. A simple

computation as performed above, shows that Xm and XM are in D and Ym and YM are not in

D.

Now, if X0 /∈ [−1,1]2, i.e. E +V̄− > γ+ then the same computation as done above shows

that Xm and XM are not in D and as a consequence D is empty; and if E +V̄− < γ− then Ym

and YM are not in D and as a consequence D is empty.

So, we are restricted to the case γ− ≤ E +V̄− ≤ γ+. Then, it remains to compute

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Xm,y−,y+),F(XM,y−,y+)
}

,

where Γ := {(y−,y+) : γ− ≤ E +V̄− ≤ γ+}. By inverting the role of ρ− with ρ+ and of

γ− with γ+ in the proof of the previous case, we obtain here that the previous supremum

equals to −Jρ+,ρ+

(

− (E +V̄−)
)

.

(b) γ−(0) < −m: In this case we have that γ− < −m < γ+. As above, we have to check

whether the points X0,Xm,XM,Ym,YM are in the domain D or not.

The point X0 belongs to [−1,1]2 if and only if γ− ≤ E +V̄− ≤ γ+. If X0 /∈ [−1,1]2, i.e.

E +V̄− > γ+, then Xm and XM are not in the domain D and as a consequence D is empty.

Then we restrict to γ− ≤ E + V̄− ≤ γ+. A simple computation shows that Xm and XM

belong to the domain D, but YM,Ym are not in D. So we have to compute

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Xm,y−,y+),F(XM,y−,y+)
}

,

where Γ := {(y−,y+) : γ− ≤ E +V̄− ≤ γ+}.

As above easily we can show that F(Xm,y−,y+)≥F(XM,y−,y+). Now we have to com-

pare F(Xm,y−,y+) with F(X0,y−,y+). A simple computation shows that F (X0,y−,y+) can

be written as

F
(

X0,y−,y+

)

= −
γ+ − (E +V̄−)

γ+ − γ−
Jρ−,ρ−(−γ−)−

γ−− (E +V̄−)

γ−− γ+
Jρ+,ρ+(−γ+).

Since Jρ−,ρ− is a positive function, E +V̄− ≤ γ− and γ+ > γ− we have that

F
(

X0,y−,y+

)

≤−
γ−− (E +V̄−)

γ−− γ+
Jρ+,ρ+(−γ+).

Now, since the function t → −(E + V̄− + t)/(γ+ + t) is decreasing and m > −γ− we

obtain that F(X0,y−,y+) ≤ F(Xm,y−,y+).
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It follows that

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Xm,y−,y+),F(XM,y−,y+)
}

= sup
(y−,y+)∈Γ

F(Xm,y−,y+)

= sup
γ+≥E+V̄−

F(Xm,y−,y+)

=− Jρ+,ρ+

(

− (E +V̄−)
)

.

By the conclusions above together with (4.9), we obtain that the restriction of the en-

tropy function S− to [E−
−∞ ; E+

−∞] is given by

S−(E) =

=











−(E +V̄−),− log(2) ≤ E +V̄− ≤ ϕ0

1+e−ϕ0
− log(1+ eϕ0),

Sρ0,ρ0

(

− (E +V̄−)
)

, ϕ0

1+e−ϕ0
− log(1+ eϕ0) < E +V̄− ≤− log(1+ e−ϕ0).

Above we used the equality Sρ+,ρ+(E) = E − Jρ+,ρ+(E). To conclude, we notice that for

any ρ = eϕ/(1+ eϕ) ∈ [0,1],

s(ρ) =
ϕ

1+ e−ϕ
− log(1+ eϕ) =

−ϕ

1+ eϕ
− log(1+ e−ϕ).

Now, we prove the last assertion of the theorem. As above, we consider the case ϕ0 =
ϕ+ the other case being similar. We have to split now into two cases, whether E + V̄− >
s(ρ+) or E +V̄− ≤ s(ρ+). We start by the later.

Assume E + V̄− ≤ s(ρ+) and let ρ be a profile such that S(ρ) = S−(E) and S(ρ) +
V−(ρ) = E +V̄−. With the notations of Proposition 4.2, we have S−(E) = S(ρ) = S(H ′

ρ)≤

S(G′
ρ). Moreover, we have seen in the proof of Proposition 3.1 that (S +V−)(G′

ρ) =

(S+V−)(ρ). We claim now that ρ = G′
ρ . Indeed, let (a,b)∈ [−1,1] be a maximal interval

where Gρ < Hρ (which implies Hρ(a) = Gρ(a) and Hρ(b) = Gρ(b)). Since Gρ is the

convex envelope of Hρ , it implies that Gρ is linear on [a,b]. By Jensen’s inequality one has

that
∫ b

a
(−s)(H ′

ρ(x))dx > (b−a)(−s)

(

1

b−a

∫ b

a
H ′

ρ(x)dx

)

= (b−a)(−s)

(

Hρ(b)−Hρ(a)

b−a

)

= (b−a)(−s)

(

Gρ(b)−Gρ(a)

b−a

)

=
∫ b

a
(−s)(G′

ρ(x))dx.

Thus, if Hρ 6= Gρ we can find a profile ρ̃ (i.e. 1 − G′
ρ ) which satisfies the constraint

S(ρ̃)+V−(ρ̃) = E + V̄− and such that S(ρ̃) > S(ρ) = S−(E). Since this is not possible

we get that Hρ = Gρ , i.e. ρ is a non-increasing profile. In particular it implies that 1−
ρ = g where g is a maximizer of (4.6). In the proof of Proposition 4.2 we have seen

that S−(E) = −(E + V̄−) corresponds to the case where the supremum supk∈K F(k) = 0,

which is equivalent to (x± ∓ 1)(y± − ρ±) = 0. For such a 4-tuple (x−,x+,y−,y+) ∈ K,

a maximizer g of (4.6) is then given by any non-decreasing function on [x−,x+] taking

values in [ρ−,ρ+], constant equal to ρ− on [−1,x−] and to ρ+ on [x+,1] and such that

(4.7) is satisfied. Thus the set of maximizers ρ of S−(E), when E +V̄− ∈ [s(ρ+),s(ρ−)] is
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given by the set of non-increasing profiles ρ such that 1−ρ+ ≤ ρ ≤ 1−ρ− and satisfying

S(ρ) = −(E +V̄−).
Now assume that E + V̄− > s(ρ+). In all the cases (a1), (a2) and (b) above, the supre-

mum of F is attained at X0,X0 and Xm, respectively, and γ+ = E + V̄−, which implies that

x− = x+ = −1. Then, the function g realizing the supremum supρ

∫ 1
−1(−s)(g(x))dx with

the constraint
∫ 1
−1 g(x)dx = (1− x+)y+ is constant and equals to y+. Therefore, the profile

uρ+ is given by 1−y+. Using the definition of y+ and the fact that γ+ = E +V̄−, it follows

that

uρ+ ≡
log(ρ+)−E +V̄−

log(ρ+)− log(1−ρ+)
.

Finally, putting together (1.7), (1.8), (1.4) and the expression for uρ+ we recover the ex-

pression for S−(E) that is S−(E) = Sρ+,ρ+(−(E +V̄−)).

C.2. The case ρ− < ρ+ ≤ 1
2
:

This case corresponds to ϕ− < ϕ+ ≤ 0, therefore m = (−s)(ρ−) and M = (−s)(ρ+).
Since γ ′(y±) = ϕ± < 0, then both functions γ± are decreasing. Notice that γ+(1) =
E−
−∞ + V̄− and γ−(0) = E+

−∞ + V̄−. Then −M = γ+(ρ+) ≥ γ+(1) = − log(1 + e−ϕ+).
Analogously, −m = γ−(ρ−) ≤ γ−(0) = − log(1 + eϕ−). As a consequence we have the

following inequalities:

− log(1+ e−ϕ+) = γ+(1) ≤ γ+(ρ+) = −M < −m ≤ γ−(ρ−) ≤ γ−(0) = − log(1+ eϕ−).

These inequalities imply that γ+ < γ−. As in the previous case we have to check whether

the intersection points are in the domain D. At first we notice that X0 belongs to [−1,1]2

if and only if γ+ ≤ E + V̄− ≤ γ−. Since −(E + V̄−) /∈ [m,M] we have only to distinguish

two cases: γ+ ≤ E +V̄− < −M and −m ≤ E +V̄− < γ−.

If X0 is not in [−1,1]2, i.e. E + V̄− > γ− then Xm and XM are not in D and as a conse-

quence D is empty; and if E +V̄− < γ+ then Ym and YM are not in D and as a consequence

D is empty. So we restrict to γ+ ≤ E +V̄− <−M and −m ≤ E +V̄− < γ−. We start by the

former.

(a) γ+ ≤ E + V̄− < −M: In this case, a simple computation shows that Xm and XM are

in D, but Ym and YM are not in D. Then we have to compute

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Xm,y−,y+),F(XM,y−,y+)
}

,

where Γ := {(y−,y+) : γ+ ≤ E +V̄− < −M}.

As above, by noticing that the function t → −((E + V̄−) + t)/(γ+ + t) is increasing,

m ≤ M and Jρ+,ρ+(−γ+) ≥ 0, we get that F (Xm,y−,y+) ≤ F (XM,y−,y+). On the other

hand

F (X0,y−,y+) = −
(E +V̄−)− γ+

γ−− γ+
Jρ−,ρ−(−γ−)−

γ−− (E +V̄−)

γ−− γ+
Jρ+,ρ+(−γ+).

Since the function Jρ−,ρ− is positive, γ− > γ+ and E +V̄− > γ+, we have that

F (X0,y−,y+) ≤−
γ−− (E +V̄−)

γ−− γ+
Jρ+,ρ+(−γ+) = −

(E +V̄−)− γ−

γ+ − γ−
Jρ+,ρ+(−γ+).

Finally , since the function t → −((E + V̄−) + t)/(γ+ + t) is increasing, −γ− < M and

Jρ+,ρ+(−γ+) ≥ 0 we obtain that F (X0,y−,y+) ≤ F(XM,y−,y+). Since the function Jρ+,ρ+
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is convex, with a unique minimum at M equal to 0, it follows that

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Xm,y−,y+),F(XM,y−,y+)
}

= sup
(y−,y+)∈Γ

F(XM,y−,y+)

= sup
γ+≤(E+V̄−)

F(XM,y−,y+)

=− Jρ+,ρ+

(

− (E +V̄−)
)

.

(b) −m < E +V̄− ≤ γ−: In this case, a simple computation shows that Ym and YM are in

D, but Xm and XM are not in D. Then we have to compute

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Ym,y−,y+),F(YM,y−,y+)
}

,

where Γ := {(y−,y+) : −m < E +V̄− ≤ γ−}.

As above, by noticing that the function t → −((E + V̄−) + t)/(γ− + t) is increasing,

m ≤ M and Jρ−,ρ−(−γ−) ≥ 0, we get F (Ym,y−,y+) ≤ F (YM,y−,y+) .
As above we can show that F(X0,y−,y+) ≤ F(YM,y−,y+) and as a consequence

sup
(y−,y+)∈Γ

{

F(X0,y−,y+),F(Ym,y−,y+),F(YM,y−,y+)
}

= sup
(y−,y+)∈Γ

F(YM,y−,y+)

= sup
γ−≤(E+V̄−)

F(YM,y−,y+)

=− Jρ−,ρ−

(

− (E +V̄−)
)

.

Collecting the previous facts and by (4.9), we have that the restriction of the entropy

function S− to [E−
−∞ ; E+

−∞] is given by

S−(E) =

=



























Sρ+,ρ+

(

− (E +V̄−)
)

,− log(1+ e−ϕ+) ≤ E +V̄− < −ϕ+
1+eϕ+ − log(1+ e−ϕ+),

−(E +V̄−), −ϕ+
1+eϕ+ − log(1+ e−ϕ+) ≤ E +V̄− ≤ −ϕ−

1+eϕ− − log(1+ e−ϕ−),

Sρ−,ρ−

(

− (E +V̄−)
)

, −ϕ−
1+eϕ− − log(1+ e−ϕ−) < E +V̄− ≤− log(1+ eϕ−)

Now, we prove the last assertion of the theorem. As above, we have to split into several

cases, whether E + V̄− < s(ρ+), s(ρ+) ≤ E + V̄− ≤ s(ρ−) or E + V̄− > s(ρ−). We start

by the first case, the third being completely similar. Analogously to what we have done for

ρ− ≤ 1/2 ≤ ρ+, it is enough to notice that in the cases (a) and (b) above, the supremum is

attained at XM and YM , respectively, with γ+ = E +V̄−, which implies that x− = x+ = −1.

The rest of the argument follows as above. The second case, follows by reasoning as in the

case ρ− ≤ 1
2
≤ ρ+.

C.3. The case 1
2
≤ ρ− < ρ+:

Repeating the same computations as performed in the previous situation, we can show

that the restriction of the entropy function S− to [E−
−∞ ; E+

−∞] is given by
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S−(E) =

=



























Sρ−,ρ−

(

− (E +V̄−)
)

,− log(1+ eϕ−) ≤ E +V̄− < −ϕ−
1+eϕ− − log(1+ e−ϕ−),

−(E +V̄−), −ϕ−
1+eϕ− − log(1+ e−ϕ−) ≤ E +V̄− ≤ −ϕ+

1+eϕ+ − log(1+ e−ϕ+)

Sρ+,ρ+

(

− (E +V̄−)
)

, −ϕ+
1+eϕ+ − log(1+ e−ϕ+) < E +V̄− ≤− log(1+ e−ϕ+).

We notice that to prove the last assertion of the theorem is is enough to invert the role

of ρ− with ρ+ in the proof of the previous case.

APPENDIX D. PROOF OF THEOREM 3.3

To prove this theorem we compute explicitly the Legendre transform of P−, namely,

S̃−(E) = infθ∈R {θE −P−(θ)} and we show that it coincides with the expression for

S−(E) obtained in the previous section. Since the Legendre transform is a one to one

correspondence between concave functions, this is sufficient to conclude. We denote by P0

the function defined by P0(θ) = −θ log(m(θ)).

D.1. The case ρ− ≤ 1
2
≤ ρ+:

This case corresponds to ϕ− ≤ 0 ≤ ϕ+. Recall that ϕ0 = sup(|ϕ−|, |ϕ+|). Since

m(θ) = min( fθ (ϕ−), fθ (ϕ+)) =















fθ (ϕ0), θ < −1,

1, θ = −1,

fθ (0), θ > −1,

,

we have that

P0(θ) =















−θ log(1+ e−ϕ0)− log(1+ eθϕ0), θ < −1,

0, θ = −1,

−(θ +1) log2, θ > −1.

As a consequence

P′
0(θ) =











− log(1+ e−ϕ0)−
ϕ0

1+ e−θϕ0
, θ < −1,

− log(2), θ > −1.

The function P0 is differentiable everywhere except for θ = −1. A simple computation

show that P′
0 is decreasing in (−∞,−1). We have that

P′
0(−1−) = lim

θ→−1
θ<−1

P′
0(θ) = − log(1+ e−ϕ0)−

ϕ0

1+ eϕ0
,

P′
0(−∞) = lim

θ→−∞
P′

0(θ) = − log(1+ e−ϕ0).

Observe that P′
0(−∞) > P′

0(−1−) > − log(2), which is a consequence of the function t →
− log(1+ e−t)− t/(1+ et) being decreasing on (−∞,0]. This implies that the function P0
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is concave. Now we compute S̃−(E). By the previous observations we have that

S̃−(E) = inf
{

inf
θ>−1

{θ(E +V̄−)−P0(θ)},−(E +V̄−), inf
θ<−1

{θ(E +V̄−)−P0(θ)}
}

.

Now, for θ > −1 we have that

inf
θ>−1

{

θ(E +V̄−)−P0(θ)} = log(2)+ inf
θ>−1

{θ((E +V̄−)+ log(2))
}

.

This equals to −(E +V̄−) if (E +V̄−) > − log(2) and equals −∞ if (E +V̄−) < − log(2).
On the other hand, for θ < −1 we have that

inf
θ<−1

{

θ(E +V̄−)−P0(θ)} = inf
θ<−1

{θ(E +V̄−)−P(−ϕ0,−θ)
}

,

where P(·, ·) is defined in (1.6). Let I1 :=
[

−ϕ0

1+eϕ0
− log(1 + e−ϕ0) ; − log(1 + e−ϕ0)

]

⊂

(−∞,0). We have that

inf
θ∈R

{

θ(E +V̄−)−P(−ϕ0,−θ)
}

=
1

2
inf

θ∈R

{

θ2(E +V̄−)−2P(−ϕ0,−θ)
}

=
1

2
inf

θ∈R

{

θ(−2(E +V̄−))−2P(−ϕ0,θ)
}

= −s

(

− (E +V̄−)− log(1+ e−ϕ0)

ϕ0

)

= Sρ0,ρ0

(

− (E +V̄−)
)

,

for any E +V̄− ∈ I1. Then, we conclude that

inf
θ>−1

{

θ(E +V̄−)−P0(θ)
}

= Sρ0,ρ0

(

− (E +V̄−)
)

,

for E +V̄− ∈ I1. Now we look for S̃−(E) for E +V̄− outside I1. Let I−1 :=
(

−∞ ;
−ϕ0

1+eϕ0
−

log(1 + e−ϕ0)
)

and I+
1 :=

(

− log(1 + e−ϕ0) ; +∞

)

. Then, if E + V̄− ∈ I−1 , we have that

sign(E + V̄−−P′
0(θ)) = sign((E + V̄−)−P′

0(−∞)) = sign((E + V̄−)+ log(1 + e−ϕ0)) <

0, and as a consequence the infimum is attained at θ = −1 and in this case S̃−(E) =
−(E + V̄−). On the other hand if E + V̄− ∈ I+

1 , we have that sign(E + V̄− −P′
0(θ)) =

sign((E + V̄−)−P′
0(−∞)) > 0, and as a consequence the infimum is attained at θ = −∞

and in this case S̃−(E) = −∞.

Finally we conclude that S̃− when restricted to the energy band [E−
−∞ ; E+

−∞] is given by

S̃−(E) =

=











−(E +V̄−), − log(2) ≤ E +V̄− ≤ −ϕ0

1+eϕ0
− log(1+ e−ϕ0),

Sρ0,ρ0

(

− (E +V̄−)
)

, −ϕ0

1+eϕ0
− log(1+ e−ϕ0) < E +V̄− ≤− log(1+ e−ϕ0)

and equal to −∞ outside the energy band. Thus S̃− coincides with S−.
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D.2. The case ρ− < ρ+ ≤ 1
2
:

In this case we have that

m(θ) = min( fθ (ϕ−), fθ (ϕ+)) =















fθ (ϕ−), θ < −1,

1, θ = −1,

fθ (ϕ+), θ > −1,

and as a consequence

P′
0(θ) =















−
ϕ−

1+ e−θϕ−
− log(1+ e−ϕ−), θ < −1,

−
ϕ+

1+ e−θϕ+
− log(1+ e−ϕ+), θ > −1.

The function P0 is differentiable everywhere except for θ = −1. We have that P′
0 is de-

creasing on (−∞,−1) and

P′
0(−∞) > P′

0(−1−) = lim
θ→−1
θ<−1

P′
0(θ) > lim

θ→−1
θ>−1

P′
0,(θ) = P′

0(−1+) > P′
0(+∞)

which is a consequence of the function t → log(1 + e−t)+ t/(1 + et) being increasing on

(−∞,0). This implies that the function P0 is concave. Now we compute S̃−(E). From the

previous observations it follows that

S̃−(E) = inf
{

inf
θ>−1

{θ(E +V̄−)−P0(θ)},−(E +V̄−), inf
θ<−1

{θ(E +V̄−)−P0(θ)}
}

.

We start by the case θ > −1. Since P0 is concave, then P′
0 is decreasing. A simple compu-

tation shows that P′
0(θ) = E +V̄− for

θ(E) := −
1

ϕ+
log
(−ϕ+ − (E +V̄−)− log(1+ e−ϕ+)

E +V̄− + log(1+ e−ϕ+)

)

.

Since P′
0 is decreasing, its image is given by I1 := [P′

0(+∞) ; P′
0(−1)], that is I1 =

[− log(1+ e−ϕ+) ;
−ϕ+

1+eϕ+ − log(1+ e−ϕ+)]. Then, for E +V̄− ∈ I1 we have that

S̃−(E) = θ(E)(E +V̄−)−P0(θ(E)) = Sρ+,ρ+

(

− (E +V̄−)
)

.

Now we look for S̃−(E) for E +V̄− outside I1. Let I−1 := (−∞ ; − log(1+e−ϕ+)) and I+
1 :=

( −ϕ+
1+eϕ+ − log(1+e−ϕ+) ; +∞). Then, if E +V̄− ∈ I−1 , we have that sign(E +V̄−−P′

0(θ)) =

sign(E + V̄−−P′
0(+∞)) = sign(E + V̄− + log(1 + e−ϕ+)) < 0, and as a consequence the

infimum is attained at θ = +∞ and in this case S̃−(E) = −∞. On the other hand if E +
V̄− ∈ I+

1 , we have that sign(E + V̄− −P′
0(θ)) = sign(E + V̄− −P′

0(+∞)) > 0, and as a

consequence the infimum is attained at θ = −1 and in this case S̃−(E) = −∞.

Now we look to the case θ < −1. Since P0 is concave, then P′
0 is decreasing. A simple

computation shows that P′
0(θ) = E +V̄− for

θ(E) := −
1

ϕ−
log
(−ϕ−− (E +V̄−)− log(1+ e−ϕ−)

E +V̄− + log(1+ e−ϕ−)

)

.

Since P′
0 is decreasing, its image is given by I2 := [P′

0(−1) ; P′
0(−∞)], that is I2 = [ −ϕ−

1+eϕ− −

log(1 + e−ϕ−) ; − log(1 + eϕ−)]. Then, for E + V̄− ∈ I2 we have that S−(E) := θ(E)(E +

V̄−)−P0(θ(E)) which can be written as Sρ−,ρ−

(

− (E + V̄−)
)

. Now we look for S̃−(E)

for E + V̄− outside I2. Let I−2 := (−∞ ;
−ϕ−

1+eϕ− − log(1 + e−ϕ−)) and I+
2 := (− log(1 +
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eϕ−) ; +∞). Then, if E + V̄− ∈ I−2 , we have that sign(E + V̄−−P′
0(θ)) = sign(E + V̄−−

P′
0(−∞)) = sign(E +V̄−+ log(1+eϕ−)) < 0, and as a consequence the infimum is attained

at θ = −1 and in this case S̃−(E) = −(E + V̄−). On the other hand if E + V̄− ∈ I+
2 , we

have that sign(E + V̄−−P′
0(θ)) = sign(E + V̄−−P′

0(θ)) > 0, and as a consequence the

infimum is attained at θ = −∞ and in this case S̃−(E) = −∞.

Now, a simple computation shows that the function t →− log(1 + e−t)− t/(1 + et) is

decreasing on (−∞,0] so that the sets I1 and I2 do not intersect. The restriction of the

function S̃− to [E−
−∞ ; E+

−∞] has the expression:

S̃−(E) =

=



























Sρ+,ρ+

(

− (E +V̄−)
)

, − log(1+ e−ϕ+) ≤ E +V̄− < −ϕ+
1+eϕ+ − log(1+ e−ϕ+),

−(E +V̄−), −ϕ+
1+eϕ+ − log(1+ e−ϕ+) ≤ E +V̄− ≤ −ϕ−

1+eϕ− − log(1+ e−ϕ−),

Sρ−,ρ−

(

− (E +V̄−)
)

, −ϕ−
1+eϕ− − log(1+ e−ϕ−) < E +V̄− ≤− log(1+ eϕ−)

and is equal to −∞ outside the energy band. Thus S̃− coincides with S−.

D.3. The case 1
2
≤ ρ− < ρ+:

In this case, by inverting the role of ρ− with ρ+ and of ϕ− with ϕ+ in the previous case,

we obtain that S̃− restricted to [E−
−∞ ; E+

−∞] is given by

S̃−(E) =

=



























Sρ−,ρ−

(

− (E +V̄−)
)

, − log(1+ eϕ−) ≤ E +V̄− < −ϕ−
1+eϕ− − log(1+ e−ϕ−),

−(E +V̄−), −ϕ−
1+eϕ− − log(1+ e−ϕ−) ≤ E +V̄− ≤ −ϕ+

1+eϕ+ − log(1+ e−ϕ+),

Sρ+,ρ+

(

− (E +V̄−)
)

, −ϕ+
1+eϕ+ − log(1+ e−ϕ+) < E +V̄− ≤− log(1+ e−ϕ+)

and is equal to −∞ outside the energy band. Thus S̃− coincides with S−.
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CAMPUS DE GUALTAR, 4710-057 BRAGA, PORTUGAL.

E-MAIL: patricia@mat.puc-rio.br and patg@math.uminho.pt

IMPA, ESTRADA DONA CASTORINA 110, CEP 22460 RIO DE JANEIRO, BRASIL AND CNRS UMR
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