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We study the genesis and the selective propagation of complex crack networks induced by thermal
shock or drying of brittle materials. We use a quasi-static gradient damage model to perform large
scale numerical simulations showing that the propagation of fully developed cracks follows Griffith
criterion and depends only on the fracture toughness, while crack morphogenesis is driven by the
material’s internal length. Our numerical simulations feature networks of parallel cracks and selective
arrest in two dimensions and hexagonal columnar joints in three dimensions, without any hypotheses
on cracks geometry and are in good agreement with available experimental results.

PACS numbers: 46.15.Cc 62.20.mt

Complex crack patterns are ubiquitous in nature and in
technology applications. Yet the theoretical understand-
ing and predictive numerical simulation of how and when
complex crack patterns arise (nucleation) and how they
evolve (crack propagation) is fraught with challenges. Al-
though approaches based on phase fields [1] or variational
regularizations [2] have led to significant advance in the
numerical simulation of complex crack patterns, short of
introducing initial flaws at the structural scale [3], pre-
scribing ad-hoc stress criteria [4], or accepting global en-
ergy minimization arguments whose physical relevance
is debated [5–7], the predictive understanding of crack
nucleation is still an elusive goal.

It is well-accepted that while Griffith–like models are
appropriate for crack propagation at the scale of a struc-
ture, they are inadequate for the modeling of crack nu-
cleation in brittle materials. Arguably, finer models,
where a microscopic (material) length scale plays a fun-
damental role, are necessary to determine the critical
load and crack geometry at the onset, especially in situ-
ations where complex crack patterns arise straight from
the nucleation. The consistent combined modeling and
numerical simulation of crack nucleation and propaga-
tion from the material to the structural length-scale is a
challenging and largely open issue.

In this Letter, we study the morphogenesis and the
selective growth of complex crack patterns induced by
material shrinking under thermal shock. We report
unprecedented quantitative agreement between numer-
ical simulations, a theoretical model, and experiments
at scales spanning from the material internal length to
the structural length-scale. Our numerical simulations
predict key features of fracture patterns observed in
experiments, such as the formation of periodic patterns
and the scaling laws governing their selective propaga-
tion in two and three dimensions, and do not require any
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FIG. 1: (color online). Full scale numerical simulation of
a ceramic slab submitted to a thermal shock. (a) Damage
field from the numerical simulation (blue α = 0, red α = 1).
(b) Experimental results from [8, FIG. 5(d)]. (c) Average
crack spacing d as a function of their depth a for (a) and
(b). The solid line is an approximate scaling law obtained
in [9] by imposing a period doubling condition on a Grif-
fith model. Here ℓ = 46 µm is the material internal length,
ℓ0 = Gc/

(

Eβ2∆T 2
)

= 14 µm the Griffith length (loading pa-
rameter), 2L = 9.8mm the total depth of the slab. See FIG. 2
for the meaning of the distributed damage zone.

a priori hypotheses on cracks geometry. The method
we use leverages recent progress in the understanding
of the links between damage models [10, 11] and the
variational approach to fracture [2, 12]. It is based
on a rate-independent gradient damage model with
stress-softening based on two material parameters: the
fracture toughness which rules the evolution of fully
developed cracks, and the material’s internal length
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which controls the initial stages of crack nucleation.

We investigate the thermal shock of a brittle ceram-
ics, a now classical experimental setup [3, 13, 14] where a
sample initially at a uniform temperature T0 is quenched
in a cold bath at temperature T0 − ∆T . We consider a
rectangular slab Ω exposed to the thermal shock through
its thin faces only. We focus first on very thin slabs,
which we represent by a two–dimensional body in plane
stress. We assume that within the range of temperatures
involved, the material properties remain constant. De-
noting by u the displacement field and ε = (∇u+∇T

u)/2
the linear strain tensor, we consider for the sound mate-
rial a linear elastic behavior of energy density ψt(ε) =
A0(ε− ε

th
t ) · (ε− ε

th
t )/2 where A0 is the isotropic elastic

stiffness tensor. The inelastic deformation induced by the
time-dependent temperature field Tt is ε

th
t = β(Tt−T0)I,

where I is the identity matrix. The index t is meant to
highlight the dependence on time. We neglect the cracks
influence on heat transfer so that the temperature field
Tt solves the heat equation ∂tTt − kc∇2Tt = 0 on Ω.
Phase changes, non-uniform convection and other non-
linear aspects of the heat exchange between the fluid and
the sample are neglected by assuming that the temper-
ature of the domain boundary exposed to the thermal
shock is constant and equal to that of the water bath,
i.e. Tt = T0 − ∆T . Inertial effects are not considered
because the diffusion velocity of the temperature field
is much slower than the wave speed in the material at
the relevant scales in time and space. This hypothesis is
universally accepted in the literature on thermal shock
problems [3, 4, 9, 14, 15]. We model material failure us-
ing a gradient damage model characterized by the energy
function

Et(u, α) =
∫

Ω

ψt(ε)

s(α)
+

Gc

4cw

(

w(α)

ℓ
+ ℓ |∇α|2

)

dx, (1)

where α is a scalar damage field varying between 0 (sound
material) and 1 (fully damaged material), Gc is the
material’s fracture toughness, ℓ an internal length, and

cw =
∫ 1

0

√

w(s) ds a normalization constant. In a time-
discrete setting, the quasi-static evolution is obtained by
solving at time ti the following minimization problem
minu,α≥αi−1

Eti(u, α), where the unilateral constraint on
α enforces the irreversibility condition on the damage.
The compliance function s and the energy dissipation
function w should be chosen such that (1) converges as
ℓ → 0 to a Griffith–like energy

∫

Ω\Γ
ψt(ε) dx + GcS(Γ),

where S is the surface measure of the crack Γ [2, 16, 17].
In this model, material interpenetration in the fully dam-
aged area is possible. In all the simulations presented
here, it can be checked a posteriori that this issue does
not present itself. Here, we use s(α) = 1/(1 − α)2 and
w(α) = α, a choice motivated by the convenience of its
numerical implementation and specific analytical stud-
ies [11, 18]. With this choice the damage model has a

stress-softening behavior and remains purely elastic with-
out damage until the stress reaches the critical value:

σc :=

√

GcE w
′(0)

2 cw ℓ s′(0)
=

√

3GcE

8ℓ
. (2)

The relation above may be used to determine the numeri-
cal value of the internal length for a specific material from
the knowledge of its elastic limit σc, Young modulus E,
and fracture toughness Gc [18]. The present model is in
many aspects similar to the phase-field models of frac-
ture developed independently [19]. Those with single–
well dissipation potentials [1, 20] are in the form of (1)
with w(α) = c(1 − g(1 − α)), where g(φ) = 4φ3 − φ4.
One significant difference is that while phase-field mod-
els typically involve some form of viscous regularizations,
our formulation is rate-independent. In addition, the cur-
rent literature based on phase-field models is concerned
only with the propagation of a pre-existing cracks and
does not consider the initiation problem.
The dimensional analysis of the energy (1) highlights

three characteristic lengths: the geometric dimension
of the domain L, the internal length ℓ and the Griffith
length ℓ0 = Gc/

(

Eβ2∆T 2
)

. Using the material’s
internal length as the reference unit, the problem can
be reformulated in terms of two dimensionless param-
eters, the dimension of the structure L/ℓ (a geometric
parameter) and the intensity of the thermal shock ℓ0/ℓ
(a loading parameter). This is a significant departure
from the classical Griffith setting where the only relevant
parameter is L/ℓ0 [4, 5, 9].

Figure 1 compares the experiment from [8, FIG. 5(d)]
(1mm × 9.8mm × 50mm ceramic slab, ∆T = 380 ◦C)
with the damage field from a numerical solution of
the gradient damage model. The material properties,
communicated by the authors of [8] are E = 340GPa,
ν = 0.22, Gc = 42.47 Jm−2, σc = 342.2MPa, and
β = 8× 10−6 K−1, which using (2) gives ℓ = 46µm
and ℓ0 = 14µm. As our model is rate independent
its solution are independent of kc, up to a change
of time scale. The numerical results are obtained
through a finite element discretization and the approach
of [2, 18, 21]. The main technical difficulties are the
constrained minimization of a non-convex energy, and
the need for a spatial discretization adapted to the
material length-scale scale ℓ. Cracks correspond to the
localized bands where α goes from 0 to 1 and back to
0. The qualitative agreement between experiments and
simulation is very good. In particular, our simulations
reproduce the key phenomenon: the emergence of a
periodic array of parallel short cracks at the initiation
and their selective propagation toward the interior of
the slab. Figure 1(c) shows a quantitative comparison
between the numerical simulation of FIG. 1(a) and
experimental data from [8] by plotting the average crack
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(a)
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FIG. 2: (color online). Crack nucleation: (a) Damage field
near the shock surface before (left) and after (right) bifur-
cation time t∗ for ℓ0/ℓ = 0.107 showing the bifurcation of a
horizontally-homogeneous damaged band of depth D∗ toward
a periodic solution with wavelength λ∗. (b) Wavelength, time
and damage penetration in numerical simulations for several
intensities of the thermal shock ℓ0/ℓ (dots), compared to the
semi-analytical results from [23] (solid lines).

spacing d as a function of the distance a to the edge
exposed to the thermal shock for the final configuration,
the agreement is striking. Note that in the experimental
results shorter cracks are probably filtered out by the
adopted experimental crack detection methods [18]. In a
first regime, very short equi-distributed cracks nucleate
(the plateaus of the crack spacing for short depth
in the numerical experiments), followed by selective
arrest and period doubling [22]. In the central region
of the plot, we can compare experimental and simu-
lation data with a scaling law obtained in [9] through
linear fracture mechanics calculations by imposing a
bifurcation condition between crack propagation modes
with period doubling or not (solid line). For larger
values of a, we observe the final crack arrest caused
by the finite size of the sample, again in very good
agreement with the experiments. Whereas classical
theories can be applied in the second and third regimes
consisting of fully developed cracks, they cannot prop-
erly account for the nucleation phenomenon observed
here without preexisting flaws. Our simulations are
initialized with a null damage field, an homogenous ma-
terial, and an unflawed geometry. The crack nucleation
is due to the softening character of the material behavior.

The second series of simulations focuses precisely on
the crack nucleation process and hence on short times.
In this setting, one can assume that the domain is semi-
infinite so that the geometric parameter L/ℓ is infinite
and the only parameter is the intensity of the thermal
shock ℓ0/ℓ. For an undamaged material, the stress is
uniaxial and reaches its maximum value σmax = Eβ∆T
at the surface of the thermal shock. Since (σmax/σc)

2 =

3ℓ/8ℓ0, for mild-enough thermal shocks (ℓ0/ℓ > 8/3), the
critical stress is never reached and the solution remains
elastic at all time. If ℓ0/ℓ < 8/3, damage takes place at
t = 0, is homogeneous in the horizontal direction, and
non-null in a band of finite thickness D, which pene-
trates progressively inside the body until a critical time
t∗. At t = t∗ the horizontally–homogeneous solution be-
comes unstable and the damage field develops oscillations
of periodicity λ∗ (FIG. 2(a)). An analytical solution
for the damage field in the first stage of the evolution
and its bifurcation and stability analysis is reported in
[23], providing semi-analytical results for the periodicity
λ∗, the damage penetration D∗, and the time t∗ at the
bifurcation. Here we perform several simulations vary-
ing ℓ0/ℓ and detect the critical parameter at the bifurca-
tion. In Figure 2(b) the numerical simulations (dots) are
compared to [23] (solid lines). The good agreement pro-
vides an excellent verification of our numerical model.
For severe shocks (ℓ0 ≪ ℓ), the results disclose a well-
definite asymptotic behavior with λ∗ ∼

√
ℓ0ℓ, D

∗ ∼ ℓ,
and t∗ ∼ ℓ0ℓ/kc. In this regime we observe numerically
that all oscillations at the bifurcation develop in fully
formed cracks (maxα = 1), which is not the case for
milder shocks (ℓ0 ∼ ℓ). However, the full post-bifurcation
analysis remains an open problem at this time.

Experimental studies show that in three-dimensions
cracks delineate cells with coarsening polygonal cross-
sections [24]. Because of the complexity of the prob-
lem, the few available theoretical and numerical stud-
ies are based either on simplified two–dimensional mod-
els [25, 26] or on strong assumptions on the crack geom-
etry [27]. The numerical simulation and analysis of the
full three–dimensional problem is a major challenge for
classical fracture mechanics tools and remains therefore
largely unexplored.

(a)

(b)

(c)

(d)

FIG. 3: (color online). Three–dimensional version of the ex-
periment from FIG. 1(b) showing the transition from two to
three–dimensional crack patterns. The simulations are per-
formed on a subdomain of dimension 5mm × 1mm × 1mm
and temperature contrast (a) 380 ◦C (ℓ0 = .27 ℓ); (b) 480 ◦C
(ℓ0 = 0.17 ℓ); (c) 580 ◦C (ℓ0 = 0.12 ℓ); (d) 680 ◦C (ℓ0 = 0.08 ℓ).

Figure 3 is a three–dimensional version of the simula-
tion from FIG. 1 on a plate of thickness 1mm, for in-
creasing values of ∆T . The fracture geometry is repre-
sented by the level surface α = 0.95. In order to reduce
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FIG. 4: (color online). Complex fracture pattern for ℓ0 =
Gc/

(

Eβ2∆T 2
)

= 0.05 ℓ in a domain of size 150ℓ× 150ℓ× 20ℓ
color-coded by distance from the bottom surface where the
thermal shock is applied. The problem was discretized in 44M
linear finite elements in space (mesh size h = ℓ/5) and 100
time steps. The computation was performed on 1536 cores of
the NSF-XSEDE cluster Stampede at Texas Advanced Com-
puting Center in 10 h.

(a) (b)

(c)

FIG. 5: (color online). Average size d (square root of the
average cross-sectional area) of the fracture–delimited cells as
a function of the depth a (distance to the exposed face) in
cubic domains with edge length L ranging from 2mm to 2m
compared with the two–dimensional scaling law from [9] (solid
line). All the simulations are with ℓ0 = 14 µm and ℓ = L/40.
Inset: top view to the crack patterns for (a) L = 2mm; (b)
L = 63.2mm; (c) L = 2m.

the computational cost, the computation is performed
on a fragment of width 5mm and height 1mm of the do-
main, and the temperature is assumed constant through-
out the thickness of the sample. We observe a transi-
tion from transverse cracks to three–dimensional fracture
patterns delimiting polygonal cells between 480 ◦C and
580 ◦C, which is consistent with [8, Fig 5]. Another se-
ries of simulations performed at constant temperature for
increasing sample thickness (not shown here) highlight

the same behavior: transverse cracks for thin domains,
transitioning to three–dimensional cracks for thicknesses
between 1mm and 2mm. This is also consistent with
the observations in [8, Fig 5] and justifies the use of a
two–dimensional model, a posteriori.

Figure 4 shows a fully tri–dimensional crack pattern
obtained for a domain of dimension 150ℓ × 150ℓ × 20ℓ
for ℓ0 = 0.05 ℓ. During the simulation, a disordered pat-
tern of small cells nucleates in the first time steps and
propagates quasi-statically inside the domain. A selec-
tion mechanism leading to honeycomb patterns with in-
creasingly large and regular cell arises from energy mini-
mization. Tracking the propagation of three-dimensional
crack front of Figure 4 using a classical Griffith–based
model requiring an explicit description of the crack sur-
face and its propagation criterion would be prohibitively
complex. Instead, our three-dimensional computations
are performed through a straightforward extension of
the discretization and minimization algorithm for the en-
ergy (1). Obtaining an accurate scaling law for the cell
diameter as a function of the depth as the one of the
two–dimensional case of Figure 1 would require simu-
lations on larger domains which would rapidly become
computationally prohibitive. Hence, we perform a se-
ries of numerical experiments by fixing the loading ℓ0
and by varying at the same time the internal length ℓ
and the domain size L so as to keep their ratio equal
to L/ℓ = 40. The number of element is kept constant
with a mesh size h = ℓ/5. For each computation, we
compute the average cell diameter d as a function of dis-
tance from the bottom edge a using a post-processing
software. This process does not involve any adjustable
parameter, yet our results match the two–dimensional
scaling law of [9] over several orders of magnitude, lead-
ing us to conclude that the scale selection mechanism
in two and three dimensions are identical. In addition,
while the initial phase of the evolution depends strongly
on ℓ, later time evolution of fully developed cracks at
the structural is unaffected by this parameter, matching
the general scaling law for a Griffith–based model. This
finding is consistent with the properties of the energy
functional Et which is known to lead to a Griffith-type
propagation criterion [17, 20, 28, 29].

Our simulations show that a purely quasi-static model
based on energy minimization can fully explain the for-
mation of imperfect polygonal patterns and their selec-
tive coarsening as “maturation” mechanism during prop-
agation, a phenomenon sometimes attributed to non-
equilibrium processes [24]. We show that a carefully cho-
sen gradient damage model can be used to account simul-
taneously for the nucleation of complex crack patterns
and their propagation following Griffith criterion. Fur-
ther works will be carried on to perform a careful statisti-
cal analysis of the geometry of the 3D crack patterns and
further comparisons to experimental results. The present
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modeling framework has a general validity and can be
applied to other domains including for example the for-
mation of basalt columns with uniform cross-sectional
diameters through the solidification of lava fronts [24] or
shaping of biological systems as observed of the scales
on the heads of crocodiles [30]. We are also considering
stronger thermo-mechanical coupling including the effect
of cracks on heat transfer as in [15, 31].
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