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INTRODUCTION

In neuroscience, understanding of brain functioning requires the investigation of activated cortical networks, in particular the detection of interactions between different cortical sites. The concept of causality between time series was first introduced by Wiener [START_REF] Wiener | The theory of prediction[END_REF] in 1956, then formulated by Granger [START_REF] Granger | Investigating causal relations by econometric models and cross-spectral methods[END_REF] and known as Granger Causality Index (GCI). Later, the frequency decomposition of this fundamental tool was given by Geweke [START_REF] Geweke | Measurement of linear dependence and feedback between multiple time series[END_REF][START_REF] Geweke | Measures of conditional linear dependence and feedback between time series[END_REF]. Over the last decade, other measures have been derived being applied to chaotic systems and multivariate neurobiological signals [START_REF] Blinowska | Granger causality and information flow in multivariate processes[END_REF][START_REF] Chen | Analyzing multiple nonlinear time series with extended Granger causality[END_REF][START_REF] Chen | Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data[END_REF][START_REF] Wang | Granger causality between multiple interdependent neurobiological time series: Blockwise versus pairwise methods[END_REF][START_REF] Hesse | The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies[END_REF][START_REF] Ding | Granger causality: basic theory and application to neuroscience[END_REF]. Furthermore, cross correlation in the time domain and coherence functions in the spectral domain were also used to estimate statistical causal relations between neural signals [START_REF] Wolf | New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steady-state sources[END_REF][START_REF] Bendat | Decomposition of wave forces into linear and non-linear components[END_REF][START_REF] Schelter | Testing for directed influences among neural signals using partial directed coherence[END_REF][START_REF] Möller | Instantaneous multivariate EEG coherence analysis by means of adaptive highdimensional autoregressive models[END_REF]. Recently, a measure named Phase Slope Index (PSI) was proposed by Nolte [START_REF] Nolte | Identifying true brain interaction from EEG data using the imaginary part of coherency[END_REF][START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF] to detect the information flow direction. This method, based on linear phase between two signals, estimates the causal direction by computing the slope of the phase of ordinary coherence function. However, in multivariate time series, when two time series have direct and/or indirect causal relations as in Figure 1, PSI based on ordinary coherence function is not able to distinguish them. In order to detect direct causal relations and distinguish patterns of connectivity as those presented in Figure 1, we recommend a new phase slope index based on partial coherence function instead of ordinary coherence function. Moreover, in [START_REF] Nolte | Identifying true brain interaction from EEG data using the imaginary part of coherency[END_REF][START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF], ordinary coherence function is obtained using Fourier transforms. Another way is to derive the coherences (ordinary and partial) by means of autoregressive (AR) modelling of signals as proposed hereafter. In the following, phase slope based measures are detailed theoretically. Then, some linear and non linear time series are considered to test them and compare their performance with that of GCI. Finally, some conclusions are drawn. 

METHODS

AR modelling
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where each signal depends not only on its own past but also on the past of the second signal, () 
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Reciprocally, the LGCI from 2 X to 1 X can be evaluated.

In the multivariate case, we can analyze independently each pair of signals (pairwise analysis). However, pairwise analysis in the multivariate case cannot distinguish between direct and indirect coupling. For example, for the two coupling schemes displayed in Figure 1, a pairwise analysis gives the same patterns of connectivity. In the multivariate case, to disambiguate such cases, direct causality from m X to n X conditionally to other signals is defined by Eq. ( 10) where the numerator is the variance of the prediction error by taking all signals into account except m x
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Phase Slope Index (PSI)

PSI is a method to evaluate the direction of information flow in multivariate time series [START_REF] Nolte | Robustly estimating the flow direction of information in complex physical systems[END_REF]. Hereafter, the principle of PSI method is first recalled. In a second step, partial coherence function is introduced to detect only direct relations in multivariate case. Finally, an AR modelling based method for estimating coherence functions is presented.

PSI principle

The basic hypothesis relies on the phase linearity between signals.

PSI is based on the slope of the phase of cross-spectrum between two time series ( )

m
x t and ( )

n x t .
The idea is to define an average phase slope in such a way that this quantity properly represents relative time delays of different signals. denotes the expectation. The magnitudes of the coherences allow to weight the phase difference between two consecutive frequencies and, consequently, to decrease its impact when the coherence magnitudes are low. The sign of PSI indicates the flow direction and its magnitude increases along with the delay. Given Eqs. [START_REF] Wolf | New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steady-state sources[END_REF] to [START_REF] Schelter | Testing for directed influences among neural signals using partial directed coherence[END_REF], when the information flow is from ( ) m x t to ( ) n x t , PSI mn is positive. In the following, PSI using the ordinary coherence is named PSI-OC.
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PSI using partial coherence

The partial coherence function gives the level of coupling between two signals 
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Coherence functions estimators

In Eq. ( 13), the auto-spectral and cross-spectral density functions may be obtained by two different techniques, either from direct Fourier transforms of signals ( )

m
x t and ( )

n
x t , or from AR modelling.

In the first one, the expectation required to get the spectral density functions is obtained by averaging and overlap.

In the second one, even if the approach is intended for the multivariate case, we derive hereafter the methodology in the bivariate case for reasons of simplicity. We rewrite Eqs. ( 3) and ( 4) in the following form using the lag operator L ( ) ( ) ( ) 
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Fourier transforming both sides of Eq. ( 15) leads to:
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Then, we get the spectral matrix Finally, the corresponding PSI-OC can be calculated using Eqs. [START_REF] Wolf | New theory of partial coherence in the spacefrequency domain. Part I: spectra and cross spectra of steady-state sources[END_REF], [START_REF] Bendat | Decomposition of wave forces into linear and non-linear components[END_REF], and (18). Practically, the above algorithm is extended to the multivariate case to get PSI-OC and PSI-PC.
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EXPERIMENTAL RESULTS

In this section, two examples of linear and nonlinear stochastic systems are tested. In the first one, we consider a linear stochastic model consisting of three time series simulating (i) the case shown in Figure 1.a, in which the causal influence from signal 1

x to signal 3

x is indirect and completely mediated by signal 2

x , (ii) the case shown in Figure 1.b, containing both direct and indirect causal influences from signal 1

x to signal 3 x . The second example corresponds to the same situations considering non linear signals with linear coupling. For AR modelling, the order is given by Akaike's criterion.

Linear signals and linear couplings

For the linear stochastic system we consider, the following three signals are generated: ).
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Results on PSI

In section 2, ordinary and partial coherence functions are used to obtain two phase slope indices, respectively PSI-OC and PSI-PC. In Eq. ( 13), spectra can be obtained by two different techniques, either based on Fourier transform or using multivariate AR modelling. So, in the following, we denote by PSI-OC(FFT) (resp. PSI-PC(FFT)) the situation where ordinary coherence (resp. partial coherence) is estimated by fast Fourier transform. In the same way, PSI-OC(AR) (resp. PSI-PC(AR)) denotes the situation where ordinary coherence (resp. partial coherence) is estimated by AR modelling. Phase and amplitude of ordinary coherence between 1 x and 2

x are displayed in Figure 3. Results on OC(FFT) are in solid lines, and results on OC(AR) are in dashed lines. x (Eq. ( 19)), obtained by FFT and AR modelling. When using FFT, spectra are obtained using a sliding window of 64-point length and a 50% overlap. As for AR modelling, it is realized on the whole signal length. For one time delay between two signals (for example, in Eq. ( 19), from 1 x to 2 x ), the theoretical value of the variation of the phase spectrum is π on the whole frequency band. In the upper panel of Figure 3, the variation of OC(AR) is actually close to π. For OC(FFT), some fluctuations appear in the low and high frequency bands. Since coherence amplitude is not unity on the whole frequency band, PSI is smaller than π for one time delay. Moreover, in the frequency band [40, 90]Hz, around 65 Hz, the slope of the coherence phase (OC(FFT) and OC(AR)) is more regular than outside this band. Consequently, hereafter, the four measures PSI-OC(FFT), PSI-PC(FFT), PSI-OC(AR) and PSI-PC(AR) are computed in the whole frequency band [0, 256]Hz and in the frequency band [40,90]Hz. As previously, we generate a set of 100 realizations of 1024 data points each. Means and standard deviations (std) are computed and shown in Table 2. First of all, if we compare Tables 1 and2, PSI-OC takes into consideration the importance of the delay contrary to LGCI: for example, . The latter inequality does not respect the pecking order. Secondly, we can analyze the results given in Table 2 according to the three following points:

= c 0.5 = c 0 = c 0.5 = c [0,
• PSI-OC versus PSI-PC Both PSI-OC and PSI-PC perfectly point out the flow direction of information among the 3 signals. PSI-PC reveals the direct relations and distinguishes the two patterns shown in Figure 1.a and 1.b while PSI-OC cannot distinguish them, whatever the frequency band and the computation mode (FFT or AR).

• FFT versus AR model The results obtained with AR modelling are preferred since (i) the mean values are generally higher with AR modelling (except for the case 13 → x x and 0 = c

, where PSI-PC(AR) remains closer to the theoretical null value than PSI-PC(FFT)), and (ii) the corresponding standard deviations are smaller.

• Whole frequency band versus [40, 90]Hz band As expected, values of PSI computed on the limited band are lower than those computed in the whole frequency band. On the other hand, considering the limited band allows to reveal the pecking order of the time delays in the phase slope indicator. As for the standard deviations, they are comparable in both situations.

Nonlinear signals and linear couplings

For this study on nonlinear stochastic systems, we start from the example given in [START_REF] Chen | Analyzing multiple nonlinear time series with extended Granger causality[END_REF]: , are independent white Gaussian processes, with zero means and variances equal to 0.04. We simulated Eq. ( 20) to generate a data set of 100 realizations of 1024 time points each.
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Results on LGCI

Since we already demonstrated that LGCI-M outperforms LGCI-P, we only present results on LGCI-M. Means and standard deviations are reported in Table 3. After analyzing the results in Table 4, we come to the conclusion that (i) PSI-OC(FFT), PSI-PC(FFT), PSI-OC(AR) and PSI-PC(AR) identify carefully the flow direction of information in this nonlinear stochastic system, (ii) PSI-PC(FFT) and PSI-PC(AR) can reveal the direct relations and distinguish between patterns. PSI-OC(AR) and PSI-PC(AR) are more relevant than PSI-OC(FFT) and PSI-PC(FFT), mainly in terms of standard deviation.

CONCLUSIONS

In this paper, we focused on information propagation between multi-site observations using a phase slope index based approach. The technique proposed relies on (i) the introduction of partial coherence instead of ordinary coherence to deal with causal relations, (ii) AR modelling to reduce estimator variance. Combining both improvements allow to distinguish direct and indirect causal relations in linear and non linear time series with the lowest error. Compared to Granger causality index, the new index takes into account the importance of the delay. In a next work, we plan to test it on real neurobiological time series.
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 1 Figure 1 -Two patterns of causal interactions (a) causality from signal x 1 to x 3 is indirect and mediated by x 2 (b) both direct and indirect causalities exist from signal x 1 to x 3 .

  density function. Spectral densities are given by:

  the influence of the 2 -Q other signals is removed[START_REF] Bendat | Decomposition of wave forces into linear and non-linear components[END_REF]. It is defined by

  are conditioned auto-spectral density functions of signals ( ) respectively. In PSI given in Eq. (11), we replace the ordinary coherence with the partial coherence and the corresponding PSI is noted PSI-PC: the influence of the 2
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 223 Figure 2 -Spectral amplitudes of ( ),1 , 2 , 3 , =
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 2 Results PSI on two different bands. The first line is the mean, the second line in parentheses is the std. 256]Hz [40,90]Hz [0,256]Hz [40,90]Hz [0,256]Hz [40,90]Hz [0,256]Hz [40,90]Hz

  256]Hz [40,90]Hz [0,256]Hz [40,90]Hz [0,256]Hz [40,90]Hz [0,256]Hz [40,90

  to examine the same patterns of causal interactions as in Figure1. Noises () ,1 , 2 , 3 = j wt j

2.2 Granger Causality Index (GCI)

  

	-x tk on n	( ) x t , whatever , m mn. These coefficients are esti-
	mated by solving Yule-Walker equations.
	GCI proposed by Granger is an effective tool to describe causal
	interactions between signals. Hereafter, the bivariate case is detailed
	and extended to the multivariate case.
	Let us begin with the case of two signals by studying the causality
	12 → x x . From the univariate model given in Eqs. (1) and (2), the
	quality of the representation of 2 X may be evaluated from the vari-
	ance of the prediction error	22 | -Γ x x	, where 2 -x symbolizes 2 x past
					22 | -Γ= xx	var	(	( ) ut 2	)	(7)
	where	() var . denotes the variance. Using the bivariate model of
	Eqs. (3) and (4), we have	
					22 1 |, --Γ= xx x	var	(	() wt. ) 2	(8)
	If 1 X causes 2 X in the Granger sense, then	22 1 |, --Γ x xx	is smaller
	than	22 | -Γ x x	. The level of Linear Granger Causality Index (LGCI)
	from 1 X to 2 X is then evaluated by
							22 |
					12
							22 1 |,

  This quantity is termed PSI and defined by

		PSI	mn	=ℑ	() ( ⎛⎞ ) δ * ∈ ⎜⎟ + ⎜⎟ ⎝⎠ fF ∑ mn mn Cf Cf f	(11)
	where	( )			

mn Cf is the coherence function between signals m x and n x , δ f is the frequency resolution, () ℑ i denotes taking the imaginary part and the asterisk denotes conjugate value. F is the set of frequencies over which PSI is computed. In this equation, the coherence function used by Nolte is the ordinary coherence between signals ( ) m x t and ( ) n x t , noted as ( ) mn OC f hereafter, and defined by

Table 3 -

 3 Results on LGCI-M. The first line is the mean, the second line in parentheses is the std. Reciprocal indices tend to zero.From this table, it is clear that LGCI-M can point out the direct causality and distinguish the two patterns of causal interactions in the nonlinear stochastic system.3.2.2. Results on PSISince there is no dominant frequency in these nonlinear signals, the PSI is only estimated on the whole frequency band. Means and standard deviations are shown in Table4.

				LGCI-M
		c	=	0	c	=	0.5
	12 LGCI → x x	0.2248 (0.0283)	0.2310 (0.0241)
	13 LGCI → x x	0.0003 (0.0013)	0.2289 (0.0287)
	23 LGCI → x x	0.1053 (0.0208)	0.1022 (0.0192)

Table 4 -

 4 Results on PSI. The first line is the mean, the second line in parentheses is the std.

				PSI-OC(FFT)		PSI-OC(AR)
			c	=	0	c	=	0.5	c	=	0	c	=	0.5
	12 PSI	0.6104 (0.1289)	0.6388 (0.1313)	0.6275 (0.0706)	0.6456 (0.0616)
	13 PSI	0.1182 (0.1408)	(0.1442)	0.1279 (0.0295)	0.6500 (0.0682)
	PSI	23	0.3017 (0.1366)	0.2338 (0.1207)	0.3108 (0.0579)	0.2372 (0.0484)
				PSI-PC(FFT)		PSI-PC(AR)
			c	=	0	c	=	0.5	c	=	0	c	=	0.5
	12 PSI	0.5538 (0.1426)	0.4859 (0.1365)	0.5760 (0.0672)	0.5049 (0.0502)
	13 PSI	-0.0156 (0.1425)	0.5204 (0.1469)	0.0008 (0.0044)	0.5300 (0.0677)
	PSI	23	0.2438 (0.1331)	0.2458 (0.1290)	0.2524 (0.0484)	0.2515 (0.0448)
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