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STEADY STATE BIFURCATIONS FOR PHASE FIELD CRYSTAL

EQUATIONS WITH UNDERLYING TWO DIMENSIONAL KERNEL

APPOLINAIRE ABOUROU ELLA & ARNAUD ROUGIREL

Abstract. This paper is concerned with the study of some properties of stationary solutions
to Phase Field Crystal Equations bifurcating from a trivial solution. It is assumed that at this
trivial solution, the kernel of the underlying linearized operator has dimension two. By means
of the multiparameter method, we give a second order approximation of these bifurcating
solutions and analyse their stability properties. The main result states that the stability of
these solutions can be described by the variation of a certain angle in a two dimensional
parameter space. The behaviour of the parameter curve is also investigated.

1. Introduction

During the last decades, Pattern Formation Equations have attracted much attention from
researchers in applied sciences; see for instance [Hoy06, CH93, CGP00, TAR+13].

In materials sciences, Pattern Formation Equations (as Allen-Cahn or Cahn-Hilliard equa-
tions) are obtained by phase field methods. In 2004, K. Elder and M. Grant have extended
these methods by introducing the so-called Phase Field Crystal modelling in order to describe
liquid/solid phase transitions in pure materials or alloys ([EG04]). The solid phase, which can
be a crystal, is represented by a periodic field whose wavelength accounts for the distance be-
tween neighbouring atoms. The liquid state is described by a (spatially) uniform field. We refer
the reader to [PE10, EG04, EHP10, SWWV13, PACI+13] for a more comprehensive exposition
of the Phase Field Crystal method.

The simplest Phase Field Crystal model is the following sixth order evolution equation:

∂tu− ∂xx
(

∂xxxxu+ 2∂xxu+ f(u)
)

= 0, t > 0, x ∈ (0, L). (1.1)

Here L is the length of the domain and f is the derivative of a double-well potential. This
equation can be viewed as a conservative Swift-Hohenberg equation exactly as the Cahn-Hilliard
equation is a conservative version of the Allen-Cahn equation. Performing a linear change of
variable mapping (0, L) onto (0, 1), Equation (1.1) can be rewritten as

∂tu− ε∂xx
(

ε2∂xxxxu+ 2ε∂xxu+ f(u)
)

= 0, t > 0, x ∈ (0, 1), (1.2)

with ε = 1/L2.
This paper focuses on the stationary solutions to (1.2) complemented with initial and bound-

ary conditions (see (2.7)). In order to gain insight properties of stationary solutions, we use a
bifurcation approach.

It is well known that bifurcations occur only if the kernel of the underlying linearized operator
is non trivial. For the Phase Field Crystal Equation (1.2), the case of a one dimensional kernel
has been investigated in [PR11]. In this paper, we focus on two dimensional kernels. We have
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2 APPOLINAIRE ABOUROU ELLA & ARNAUD ROUGIREL

choosen the multiparameter method (see [Kie04, Chapter I]) in order to obtain a wild set of
solutions; that is to say, a one parameter family of branches of solutions. Notice that one or
two branches can also be obtained (see [PR11, Subsection 5.3]) but this is indeed a smaller
solution set.

Since two dimensional kernels are considered, we need two independent parameters. It turns
out that ε which is the inverse of the domain size square, and the mass M of the initial condition
(which is conserved by the dynamics) match the independence condition.

The first step is to characterize the parameters values that give rise to two dimensional
kernels. The phase diagramm of Figure 1 features a simple geometric criterion for this (see
also Proposition 3.1 for a analytic result).

Then we implement the multiparameter method in order to get bifurcation branches and
expansions of solutions to (1.2). According to [Kie04], we have to choose a direction ( αβ ) in
the kernel which will be tangent to a branch of solutions. Let us denote by y 7→ v(y) this
branch, where y ∈ R, y ≃ 0. The parameters ε and M are also parametrized by y; this gives
a parameter curve y 7→ (ε(y),M(y)) in R

2. Theorem 4.1 states an existence result for these
bifurcation branches and gives second order expansions of ε(·), M(·) and v(·). In an explicit
way, for y ≃ 0, the function x 7→ v(y)(x) is solution to

ε(y)2∂xxxxv(y) + 2ε(y)∂xxv(y) + f(M(y) + v(y)) =

∫

Ω
f(M(y) + v(y)) dx a.e. in (0, 1).

We are then led to study two curves: the parameter curve y 7→ (ε(y),M(y)) and the function
valued curve y 7→ v(y). The former is studied by considering its oriented tangent at y = 0.
This tangent will be denoted by T (α). We show how T (α) behaves w.r.t. α: see Propositions
4.5, 4.9 and Figure 3.

In Proposition 4.10, we state a monotonicity result for α 7→ T (α). More precisely, in a well
identified region of the parameter space, T (α) turns clockwise when α goes from 0 to 1. In
a quiet surprising way, this monotonicity result is related to the stability of the bifurcating
solutions what we will introduce now.

The main result of this paper is stated in Theorem 5.3 and concerns the stability of the
bifurcating stationary solutions to the Phase Field Crystal Equation. If the wave numbers
of the interactive modes (i.e k∗ and k∗∗ in the sequel) are not consecutive integers then the
bifurcating solutions are unstable. This is easily proved. In order to show stability, we use
the principle of reduced stability from [Kie04, Section I-18] (see also [Mie95]). It allows us
to reduce some infinite dimensional eigenvalue problem to a two dimensional one. As evoked
above, it appears that the bifurcating solutions are stable exactly when the tangent T (α) turns
clockwise. So we connect the issue of stability in the PDE (2.7) with the variation of a one
dimensional object (the angle between T (α) and the horizontal axis).

Finally, we use a truncated bifurcation equation and symmetries to recover a bifurcation
diagramm obtained originally in [PR11] by numerical integration: see Figure 4.



BIFURCATIONS FOR PFC EQUATION WITH 2D KERNEL 3

2. Equations and Functional Setting

Let Ω denote the interval (0, 1) ⊂ R and r be a real number. We define

f : R → R, u 7→ (1 + r)u+ u3 (2.1)

V2 =
{

u ∈ H2(Ω) |u′(0) = u′(1) = 0
}

(2.2)

V4 =
{

u ∈ H4(Ω) |u′ = u′′′ = 0 on ∂Ω
}

(2.3)

L̇2(Ω) =
{

v ∈ L2(Ω) |
∫

Ω
v dx = 0

}

V̇4 = V4 ∩ L̇2(Ω), V̇2 = V2 ∩ L̇2(Ω). (2.4)

The space V̇4 is equipped with the bilinear form

(u, v)V̇0
=

∫

Ω
u(4)v(4) dx,

which becomes in turn a Hilbert space since every v ∈ V̇4 satisfies

‖v‖2 ≤ 1

σ2
1

‖v(4)‖2, (2.5)

where ‖ · ‖2 denotes the standard L2(Ω)-norm. Indeed,

‖v‖2 ≤ 1√
σ1

‖v′‖2 ≤
1

σ1
‖v′′‖2 (2.6)

by Poincaré-Wirtinger and Poincaré’s inequalities. Here σ1 := π2 denotes the first eigenvalue
of the one-dimensional Laplace operator with homogeneous Dirichlet boundary conditions on
Ω. Moreover v′′ belongs to V̇2 thus the same estimates give ‖v′′‖2 ≤ 1

σ1
‖v(4)‖2. Then (2.5)

follows. In the same way, if (u, v)V̇2
:=
∫

Ω u(2)v(2) dx then (V̇2, (·, ·)V̇2
) is a Hilbert space. Of

course, u(2) stands for the second derivative of u.
Given initial data u0 = u0(x) and a positive parameter ε, the Phase Field Crystal Equation

with homogeneous Neumann boundary condition reads










∂tu− ε∂xx
(

ε2∂xxxxu+ 2ε∂xxu+ f(u)
)

= 0 in Ω× (0,∞)

∂xu = ∂xxxu = ∂xxxxxu = 0 on ∂Ω× (0,∞)

u(0) = u0 in Ω.

(2.7)

Since every solution u = u(t, x) to (2.7) satisfies
∫

Ω
u(x, t) dx =

∫

Ω
u0(x) dx ∀t > 0,

the stationary solutions to the problem above solve

u ∈ M + V̇4, ε2u(4) + 2εu(2) + f(u) =

∫

Ω
f(u) dx in L2(Ω), (2.8)

where M :=
∫

Ω u0(x) is a real parameter.
Introducing the new function v defined by u = M + v, (2.8) is equivalent to

v ∈ V̇4, ε2v(4) + 2εv(2) + f(M + v) =

∫

Ω
f(M + v) dx in L2(Ω). (2.9)
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The bifurcation problem. We will formulate a bifurcation problem in order to get non trivial
solutions of (2.9). To this end, we will introduce some notation. Let ε > 0, ε∗ > 0 and M , M∗
be real parameters. We put

δ := (ε,M), δ∗ := (ε∗,M∗), µ = (µ1, µ2) := δ − δ∗ ∈ R
2.

Let also

L(δ, ·) : V̇4 → L̇2(Ω), v 7→ ε2v(4) + 2εv(2) + f ′(M)v (2.10)

L := L(δ∗, ·). (2.11)

In the sequel, δ∗ = (ε∗,M∗) is the bifurcation point and is fixed; the parameter δ will be closed
to δ∗. Then we define

F : (−ε∗,∞)× R× V̇4 → L̇2(Ω)

through

F (µ1, µ2, v) = (ε∗ + µ1)
2v(4) + 2(ε∗ + µ1)v

(2) + f(M∗ + µ2 + v)−
∫

Ω
f(M∗ + µ2 + v) dx− Lv.

With these notation, we will consider the following bifurcation problem

µ ∈ (−ε∗,∞)× R, v ∈ V̇4, Lv + F (µ, v) = 0 in L̇2(Ω) (2.12)

or equivalently

δ = (ε,M) ∈ (0,∞) × R, v ∈ V̇4, Lv + F (δ − δ∗, v) = 0 in L̇2(Ω). (2.13)

Remark that the equations in (2.9) and (2.13) are equivalent.
We Taylor expend F (µ, v) w.r.t. µ and v at (µ, v) = (0, 0). For this, we write

F (µ, v) = F1(µ)v + F2(µ)v
2 + F03v

3,

where

F1(µ)v = L(δ∗ + µ, v)− Lv

=
(

(ε∗ + µ1)
2 − ε2∗

)

v(4) + 2µ1v
(2) +

(

f ′(M∗ + µ2)− f ′(M∗)
)

v,

so that v 7→ F1(µ)v is a linear operator. Expending F1(µ)v w.r.t. µ, we get

F1(µ)v = F11(µ)v + F21(µ)v

with (see (2.1))

F11(µ)v = µ1(2ε∗v
(4) + 2v(2)) + 6µ2M∗v

F21(µ)v = µ2
1v

(4) + 3µ2
2v.

Above, F2(µ) : V̇4 × V̇4 → L̇2(Ω) is a continuous bilinear symmetric operator and F2(µ)v
2

stands for F2(µ)(v, v). We proceed in the same way for F2(µ)v
2, so that

F2(µ)v
2 = F02v

2 + F12(µ)v
2

with

F02(µ)v
2 = 3M∗(v

2 −
∫

Ω
v2 dx)

F12(µ)v
2 = 3µ2(v

2 −
∫

Ω
v2 dx).
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ε 7→ −(σ2ε− 1)2 − r

The constant is stable

The constant is unstable

2D kernel

X := 3M2

ε 7→ −(σ1ε− 1)2 − r

Figure 1. Phase diagramm for r = 2 with four parabolas corresponding to k = 1, . . . , 4.

The last term is

F03v
3 = v3 −

∫

Ω
v3 dx.

Solutions to (2.9) are critical point of E(M+·, ε) in V̇4 where the energy E is defined through

E : V2 × (0,∞) → R, (u, ε) 7→
∫

Ω

1

2
(εu′′ + u)2 +

r

2
u2 +

1

4
u4 dx. (2.14)

3. The Linearised Equation

For δ = (ε,M) ∈ (0,∞)×R, we study the eigenvalue problem (see the previous section and
in particular (2.10), for notation)

{

L(δ, ϕ) = λϕ in L2(Ω)

ϕ ∈ V̇4 \ {0}, λ ∈ R.
(3.1)

The eigenvalues of (3.1) are

λk := (εσk − 1)2 + r + 3M2, where σk := (kπ)2, k = 1, 2, . . . , (3.2)

with corresponding eigenfunctions

ϕk : Ω → R, x 7→ cos(kπx).

Then 0 is an eigenvalue of (3.1) iff there exists a positive integer k such that

3M2 = −(εσk − 1)2 − r.
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That is to say, the point (ε, 3M2) is on the parabola given by the function

ε 7→ −(εσk − 1)2 − r. (3.3)

Thus the operator L(·, δ) will have a two dimensional kernel iff the point (ε, 3M2) lies at the
intersection of two such parabolas: see Figure 1. If we express this geometric property in an
analytical language, we obtain the following result whose proof is straightforward and will be
omitted.

Proposition 3.1. Let δ = (ε,M) ∈ (0,∞)×R and k∗, k∗∗ be integers satisfying 1 ≤ k∗∗ < k∗.
Then

kerL(δ, ·) = 〈ϕ∗, ϕ∗∗〉 ⇐⇒
{

(εσk∗ − 1)2 + r + 3M2 = 0

(εσk∗∗ − 1)2 + r + 3M2 = 0
.

Moreover, if kerL(·, δ) = 〈ϕ∗, ϕ∗∗〉 then

ε =
2

σk∗ + σk∗∗
. (3.4)

In the statement above, ϕ∗ := ϕk∗ , ϕ∗∗ := ϕk∗∗ and 〈ϕ∗, ϕ∗∗〉 denotes the real vector space
generated by ϕ∗ and ϕ∗∗.

Stability of the trivial solution. The trivial solution v = 0 of (2.9) is said to be linearly
stable if (3.1) has only positive eigenvalues. In Figure 1, this corresponds to the case where
the point (ε, 3M2) is above all parabolas of the form (3.3). If (3.1) has at least one negative
eigenvalue then v = 0 is linearly unstable.

Besides, The trivial solution is called neutrally stable if 0 is an eigenvalue of (3.1) and all
the other eigenvalues of (3.1) are positive. In order to have stability of solutions to (2.12)
bifurcating from v = 0, it is necessary that the trivial solution is neutrally stable. The next
result gives a simple criterion for neutrally stability of v = 0 in the case of a 2D kernel.

Proposition 3.2. Let δ = (ε,M) ∈ (0,∞) × R and k∗, k∗∗ be integers such that 1 ≤ k∗∗ < k∗
and

kerL(δ, ·) = 〈ϕ∗, ϕ∗∗〉.
Then v = 0 is neutrally stable iff k∗ = k∗∗ + 1.

Proof. For every k ≥ 1, we have with (3.2), (3.4)

λk − λk∗ = ε(σk − σk∗)
(

ε(σk + σk∗)− 2
)

=
2ε

σk∗ + σk∗∗
(σk − σk∗)(σk − σk∗∗)

=
2π4ε

σk∗ + σk∗∗
(k − k∗)(k − k∗∗). (3.5)

If v = 0 is neutrally stable and k 6= k∗, k∗∗ then λk > 0 = λk∗ . Hence

(k − k∗)(k − k∗∗) > 0, ∀k 6= k∗, k∗∗. (3.6)

The value of (k− k∗)(k− k∗∗) at k = k∗∗ +1 is k∗∗ +1− k∗. This number is non positive since
by assumption k∗∗ < k∗. Thus with (3.6) we get k∗ = k∗∗ + 1.

Conversely, if k∗ = k∗∗ + 1 then (3.5) imply that λk − λk∗ > 0 for k 6= k∗, k∗∗. Thus v = 0
is neutrally stable. �
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Figure 1 points out two values of the parameter δ for which the kernel of L(·, δ) has dimension
two. One of these values corresponds to the case where k∗ = 2 and k∗∗ = 1 and lies at the
intersection of the green and red parabolas. By Proposition 3.2, the trivial solution is neutrally
stable for this value of δ. The other value corresponds to the case where k∗ = 3 and k∗∗ = 1.
In this situation, v = 0 is not neutrally stable. Thus bifurcating solutions will be unstable.

4. Bifurcation with 2D kernel

The case where the kernel of L(·, δ∗) has dimension one has been investigated in [PR11].
Here, we focus on the case where this kernel is two dimensional. More precisely, let δ∗ :=
(ε∗,M∗) ∈ (0,∞) × R, p := −r − 3M2

∗ and k∗, k∗∗ be integers satisfying 1 ≤ k∗∗ < k∗. We
assume

M∗ 6= 0 (4.1)

(ε∗σk∗ − 1)2 + r + 3M2
∗ = (ε∗σk∗∗ − 1)2 + r + 3M2

∗ = 0 (4.2)

k∗
k∗∗

6= 2,
k∗
k∗∗

6= 3. (4.3)

From the geometrical point of view of Figure 1, (ε∗, 3M
2
∗ ) is a specified point at the intersection

of two parabolas. According to Proposition 3.1, it follows that

kerL(·, δ∗) = 〈ϕ∗, ϕ∗∗〉.
Consequently

ε∗σk∗ = 1 +
√
p, ε∗σk∗∗ = 1−√

p. (4.4)

We will implement the multiparameter method (see for instance [Kie04, Chapter I]). In view
of Equation (2.9), the parameters will be ε and M . Moreover we will assume that δ = (ε,M)
is closed to δ∗ := (ε∗,M∗) so that (see Section 2),

µ := δ − δ∗

will be closed to zero. We recall that we have put

ϕ∗ := ϕk∗ , ϕ∗∗ := ϕk∗∗ . (4.5)

Since the operator L (defined by (2.11)) is self-adjoint with compact resolvent, the set
{ ϕk

‖ϕk‖2
| k ∈ N \ {0}

}

is a spectral basis of L̇2(Ω). Thus

dimkerL = codim R(L),

where R(L) ⊂ L̇2(Ω) denotes the range of L, and

L̇2(Ω) = R(L)⊕ kerL

V̇4 =
(

R(L) ∩ V̇4

)

⊕ kerL.

This decomposition of L̇2(Ω), in turn, defines the projection

P : L̇2(Ω) → kerL along R(L). (4.6)

Denoting by (·, ·)2 the L2-scalar product, there holds

Pv = 2(v, ϕ∗)2ϕ∗ + 2(v, ϕ∗∗)2ϕ∗∗, ∀v ∈ L̇2(Ω). (4.7)
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We decompose every v ∈ V̇4 in a unique way into

v = u0 + u1, (4.8)

where u0 ∈ kerL, u1 ∈ R(L) ∩ V̇4. Moreover (u0, u1)2 = 0 since L is selfadjoint.

Projection on R(L). Applying I−P to (2.12) and using the notation of Section 2, we obtain

(I − P )
{

(L+ F1(µ))u1 + F2(µ)(u0 + u1)
2 + F03(u0 + u1)

3
}

= 0 in L̇2(Ω). (4.9)

By the Implicit Function Theorem, for (u0, u1, µ) close to (0, 0, 0), this equation is equivalent
to

u1 = U(µ, u0). (4.10)

Moreover, U(µ, 0) = 0 and

U(µ, u0) = O(u20), for (µ, u0) ≃ (0, 0). (4.11)

This means that there exist C0, C such that

‖U(µ, u0)‖V̇4
≤ C‖u0‖2V̇4

, ∀|µ| ≤ C0, ‖u0‖2V̇4
≤ C0.

Thus
U(µ, u0) = a02u

2
0 +O(µu20 + u30), (4.12)

where a02 : kerL×kerL → R(L)∩ V̇4 is a continuous bilinear symmetric operator independent
of µ and a02u

2
0 := a02(u0, u0). The equality (4.12) means that

‖U(µ, u0)− a02u
2
0‖V̇4

≤ C
(

|µ|‖u0‖2V̇4
+ ‖u0‖3V̇4

)

, for (µ, u0) ≃ (0, 0).

Computation of a02u
2

0
. For α, β ∈ R, we put u0 = αϕ∗ + βϕ∗∗ and v2 := a02u

2
0. At order

u20, (4.9) reads

(I − P )
{

(Lv2 + F02u
2
0

}

= 0 in L̇2(Ω). (4.13)

Since k∗ 6= 2k∗∗, we get

a02u
2
0 = v2 =

1

2

(

x2k∗ϕ2k∗ + xk∗+k∗∗ϕk∗+k∗∗ + xk∗−k∗∗ϕk∗−k∗∗ + x2k∗∗ϕ2k∗∗

)

, (4.14)

with

x2k∗ = −3M∗
λ2k∗

α2 xk∗+k∗∗ = − 6M∗
λk∗+k∗∗

αβ

xk∗−k∗∗ = − 6M∗
λk∗−k∗∗

αβ x2k∗∗ = − 3M∗
λ2k∗∗

β2.

(4.15)

Computation of a02(u0, ·). This quantity will be useful later on. Since

a02(u0, ·) =
1

2
Du0v2 =

1

2
Du0a02u

2
0,

we differentiate (4.13) w.r.t. u0 to get

(I − P )
{

La02(u0, ·) + F02(u0, ·)
}

= 0.

Since u0 = αϕ∗ + βϕ∗∗,

F02(u0, ϕ∗) =
3

2
M∗
(

αϕ2k∗ + βϕk∗+k∗∗ + βϕk∗−k∗∗

)

.

Hence

a02(u0, ϕ∗) = −3

2
M∗
( α

λ2k∗

ϕ2k∗ +
β

λk∗+k∗∗

ϕk∗+k∗∗ +
β

λk∗−k∗∗

ϕk∗−k∗∗

)

. (4.16)
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In a same way,

a02(u0, ϕ∗∗) = −3

2
M∗
( α

λk∗+k∗∗

ϕk∗+k∗∗ +
α

λk∗−k∗∗

ϕk∗−k∗∗ +
β

λ2k∗∗

ϕ2k∗∗

)

. (4.17)

Projection on kerL. Since k∗ 6= 2k∗∗,

PF02u
2
0 = 0, ∀u0 ∈ kerL. (4.18)

Then, with u1 given by (4.10), the bifurcation equation reads

P
{

F1(µ)u0 + 2F2(µ)(u0, u1) + F2(µ)u
2
1 + F03(u0 + u1)

3
}

= 0

or equivalently (see (4.12)),

P
{

F1(µ)u0 + 2F02(u0, a02u
2
0) + F03u

3
0 +O(µu30 + u40)

}

= 0. (4.19)

According to Lyapunov-Schmidt’s method, every solution (µ, u0) to the bifurcation equation
(4.19) provides a solution to (2.12). In order to solve (4.19), we use the Newton polygon
method. Namely, we fix α, β such that α2 + β2 = 1, set

ϕ0 = αϕ∗ + βϕ∗∗, u0 = yϕ0, for y ∈ R, y ≃ 0 (4.20)

and rescale the parameter µ by setting

µ = y2µ̃.

If y 6= 0 then (4.19) is equivalent to

P
{

F11(µ̃)ϕ0 + 2F02(ϕ0, a02ϕ
2
0) + F03ϕ

3
0 +O(y)

}

= 0.

We recast this equation under the form

G(µ̃, y) = 0. (4.21)

There holds in view of (4.4)

Dµ̃G(µ̃, 0) = F11(·)ϕ0 =

(

2
p+

√
p

ε∗
α 6M∗α

2
p−√

p

ε∗
β 6M∗β

)

. (4.22)

The above matrix is the matrix of the linear mapping Dµ̃G(µ̃, 0) : R2 → kerL, expressed in
the canonical basis of R2 and in the basis (ϕ∗, ϕ∗∗) of kerL. If α, β and M∗ are non zero then
Dµ̃G(µ̃, 0) is an isomorphism. Remark that p 6= 0 due to (4.2) and k∗ 6= k∗∗. In order to apply
the Implicit Function Theorem, it is enough to find µ̃0 6= 0 such that

G(µ̃0, 0) = 0, with µ̃0 = (µ̃1, µ̃2) ∈ R
2. (4.23)

For this, we notice that

G(µ̃0, 0) = P
{

F11(µ̃)ϕ0 + 2F02(ϕ0, a02ϕ
2
0) + F03ϕ

3
0

}

.

Moreover, by (4.22),

F11(µ̃)ϕ0 = 2α
(

µ̃1
p+

√
p

ε∗
+ 3M∗µ̃2

)

ϕ∗ + 2β
(

µ̃1
p−√

p

ε∗
+ 3M∗µ̃2

)

ϕ∗∗ (4.24)
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and, since k∗ 6= 3k∗∗,

PF02(ϕ0, a02ϕ
2
0) =

3M∗
4

(

x2k∗α+ (xk∗+k∗∗ + xk∗−k∗∗)β
)

ϕ∗+

3M∗
4

(

(xk∗+k∗∗ + xk∗−k∗∗)α+ x2k∗∗β
)

ϕ∗∗

PF03ϕ
3
0 =

3

2

(1

2
α3 + αβ2

)

ϕ∗ +
3

2

(1

2
β3 + α2β

)

ϕ∗∗.

If we assume α 6= 0 and β 6= 0 then (4.23) is equivalent to














2
p+

√
p

ε∗
µ̃1 + 6M∗µ̃2 = −3M∗

2

(

x2k∗ + (xk∗+k∗∗ + xk∗−k∗∗)
β

α

)

− 3

4
α2 − 3

2
β2

2
p−√

p

ε∗
µ̃1 + 6M∗µ̃2 = −3M∗

2

(

(xk∗+k∗∗ + xk∗−k∗∗)
α

β
+ x2k∗∗

)

− 3

4
β2 − 3

2
α2

. (4.25)

Since M∗ 6= 0 and p 6= 0, it is clear that (4.25) has a unique solution (µ̃1, µ̃2). Thus for every
y ≃ 0, we have a bifurcating solution (δ(y), v(y)) of (2.13). Moreover

δ(y) = (ε(y),M(y)) = (ε∗ + µ̃1y
2,M∗ + µ̃2y

2) +O(y3).

Next we would like to compute (ε̈(0), M̈ (0)) where ε̈(0) is the value at y = 0 of the second
derivative of ε(·). We readily have

ε̈(0) = 2µ̃1, M̈(0) = 2µ̃2.

Hence we obtain from (4.25) the following equations.














p+
√
p

ε∗
ε̈(0) + 3M∗M̈(0) = −3M∗

2

(

x2k∗ + (xk∗+k∗∗ + xk∗−k∗∗)
β

α

)

− 3

4
α2 − 3

2
β2

p−√
p

ε∗
ε̈(0) + 3M∗M̈(0) = −3M∗

2

(

(xk∗+k∗∗ + xk∗−k∗∗)
α

β
+ x2k∗∗

)

− 3

4
β2 − 3

2
α2

. (4.26)

We will rewrite these equations in a more convenient form. For this, we put

f∗ :=
9

2

M2
∗

λ2k∗

− 3

4
, f∗∗ :=

9

2

M2
∗

λ2k∗∗

− 3

4
(4.27)

CS := 9M2
∗

( 1

λk∗+k∗∗

+
1

λk∗−k∗∗

)

− 3

2
. (4.28)

In view of (4.15), Equations (4.26) reads














p+
√
p

ε∗
ε̈(0) + 3M∗M̈(0) = (f∗ − CS)α

2 + CS

p−√
p

ε∗
ε̈(0) + 3M∗M̈(0) = (−f∗∗ + CS)α

2 + f∗∗

. (4.29)

In (4.29), the unknown is (ε̈(0), M̈ (0)). ε∗, M∗, k∗, k∗∗ are fixed and α is a parameter ranging
in (0, 1).

Let us notice that f∗, f∗∗ and CS appear naturally if we consider the truncated bifurcation
equation of (4.19). Indeed if u0 = Xϕ∗+Y ϕ∗∗, that is X = yα, Y = yβ, this equation becomes

{

−f∗X
3 −CSXY 2 +

(

(εσk∗ − 1)2 + r + 3M2
)

X = 0

−CSX
2Y − f∗∗Y

3 +
(

(εσk∗∗ − 1)2 + r + 3M2
)

Y = 0
. (4.30)
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It turns out that this truncated equation has a Z2 ⊕ Z2 symmetry; unlike the bifurcation
equation (since the fact that u0 is a solution to (4.19) does not implies that −u0 is a solution
too).

Thus we derive from (4.29)

ε̈(0) =
3ε∗
8
√
p
(Aα2 +B), M̈(0) =

1

8M∗
(Cα2 +D), (4.31)

where A, B, C, D satisfy

3

8
(
√
p+ 1)A+

3

8
C = f∗ − CS (4.32)

3

8
(
√
p+ 1)B +

3

8
D = CS (4.33)

3

8
(
√
p− 1)A+

3

8
C = −f∗∗ + CS (4.34)

3

8
(
√
p− 1)B +

3

8
D = f∗∗. (4.35)

Subtracting (4.35) from (4.33), we obtain

3

4
B = −f∗∗ + CS . (4.36)

Also we obtain

D =
8

3
CS − (

√
p+ 1)B (4.37)

3

4
A = f∗ + f∗∗ − 2CS (4.38)

C =
8

3
(f∗ − CS)− (

√
p+ 1)A. (4.39)

In order to express A, B, C, D more simply, we put

x :=
( k∗
k∗∗

)2
.

Then, in view of (4.4),
√
p =

x− 1

x+ 1
and, since ε∗σk∗ = 1 +

√
p,

λ2k∗ = (4ε∗σk∗ − 1)2 − p = (4(1 +
√
p)− 1)2 − p

= 12x
4x− 1

(x+ 1)2
. (4.40)

Similarly,

λ2k∗∗ = −12
x− 4

(x+ 1)2
(4.41)

λk∗+k∗∗ = 4
√
x
(2
√
x+ 1)(

√
x+ 2)

(x+ 1)2
(4.42)

λk∗−k∗∗ = −4
√
x
(2
√
x− 1)(

√
x− 2)

(x+ 1)2
. (4.43)
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Then

A = 2−M2
∗
(x+ 1)2(2x2 − 61x+ 2)

x(4x− 1)(x− 4)
(4.44)

B = −1 +M2
∗
(x+ 1)2(4x− 61)

2(4x− 1)(x − 4)
(4.45)

C = −2
x− 1

x+ 1
+M2

∗
(x2 − 1)(4x2 − 57x+ 4)

x(4x− 1)(x− 4)
(4.46)

D = −2
x+ 2

x+ 1
−M2

∗
(x+ 1)(4x2 − x+ 60)

(4x− 1)(x− 4)
. (4.47)

Then we can state a bifurcation result whose proof comes from the above analysis.

Theorem 4.1. Let δ∗ = (ε∗,M∗) ∈ (0,∞) × R, (α, β) ∈ (−1, 1)2 and k∗, k∗∗ be integers
satisfying 1 ≤ k∗ < k∗∗. We assume that (4.1)−(4.3) hold and

α2 + β2 = 1, α 6= 0, β 6= 0. (4.48)

Then (δ, v) = (δ∗, 0) ∈ R
2× V̇4 is a bifurcation point for Equation (2.13). More precisely, there

exist r1 > 0 (close to zero) and smooth functions

δ = (ε(·),M(·)) : (−r1, r1) → R
2, v : (−r1, r1) → V̇4

depending on α, β, k∗ and k∗∗ such that for every y ∈ (−r1, r1), one has

ε(y)2v(y)(4) + 2ε(y)v(y)(2) + f(M(y) + v(y)) =

∫

Ω
f(M(y) + v(y)) dx in L2(Ω).

Moreover

ε(y) = ε∗ +
ε̈(0)

2
y2 +O(y3) (4.49)

M(y) = M∗ +
M̈(0)

2
y2 +O(y3) (4.50)

v(y) = yϕ0 + y2v2 +O(y3), (4.51)

where ε̈(0), M̈(0) are defined through (4.31) and (4.44)−(4.47), ϕ0 = αϕ∗ + βϕ∗∗ and v2 is
given by (4.14), (4.15).

4.1. Sign of ε̈(0) and M̈ (0). For every α ∈ (0, 1), Theorem 4.1 gives us the parameter curve

y 7→ δ(y) = (ε(y),M(y)).

The tangent to this curve at y = 0 is given by

δ̈(0) = (ε̈(0), M̈ (0))

provided that this vector do not vanish. In the sequel, we will compute the signs of ε̈(0) and

M̈(0) in order to have informations on the profile of the above curve near y = 0. For instance,

if ε̈(0) and M̈(0) are positive then δ(y) belongs to the first quadrant of the plane (ε,M).
We denote by A = A(x,M∗) the function defined on (1,∞) \ {4} × R by the left hand

side of (4.44). In the same way, we define the functions B = B(x,M∗), C = C(x,M∗) and
D = D(x,M∗) with (4.45)−(4.47).
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Sign of ε̈(0). Under the assumptions and notation of Theorem 4.1, it follows from (4.31) that
ε̈(0) and Aα2 + B have the same sign. So for every (x,M,α) ∈ (1,∞) \ {4} × R × (−1, 1),
we will compute the sign of A(x,M)α2 + B(x,M). Taking advantage of the monotonicity of
A(x,M)α2 + B(x,M) w.r.t. α2, we will look at the sign of B(x,M) and (A + B)(x,M). For
this, we introduce the so-called cancellation functions of B and A+B, namely

B0 : (1,∞) \ {61/4} → R, x 7→ 2
(4x− 1)(x − 4)

(x+ 1)2(4x− 61)
(4.52)

(A+B)0 : (1,∞) → R, x 7→ −2
x(4x− 1)(x− 4)

(x+ 1)2(61x − 4)
. (4.53)

These functions satisfy

M2 = B0(x) ⇐⇒ B(x,M) = 0

M2 = (A+B)0(x) ⇐⇒ (A+B)(x,M) = 0.

The sign of B(x,M) is given in the following result.

Lemma 4.2. If x ∈ (1, 4) ∪ (614 ,∞) then B0(x) > 0 and

M2 < B0(x) =⇒ B(x,M) < 0

B0(x) < M2 =⇒ B(x,M) > 0.

If x ∈ (4, 614 ) then B(x,M) < 0 for every M .

The statement of Lemma 4.2 and those of the seven forcoming results are easily proved; thus
their proof will be omitted. Regarding the sign of A+B, we have the lemma below.

Lemma 4.3. If x ∈ (1, 4) then (A+B)0(x) > 0 and

M2 < (A+B)0(x) =⇒ (A+B)(x,M) > 0

(A+B)0(x) < M2 =⇒ (A+B)(x,M) < 0.

If x ∈ (4,∞) then (A+B)(x,M) > 0 for every M .

Moreover the cancellation functions are ordered or are simultaneously negative.

Lemma 4.4. For every x ∈ (1, 4),

0 < (A+B)0(x) < B0(x).

For every x ∈ (4, 614 ), one has (A+B)0(x) < 0 and B0(x) < 0.

For every x ∈ (614 ,∞), one has (A+B)0(x) < 0 < B0(x).

Then we can give the sign of ε̈(0).

Proposition 4.5. Under the assumptions and notation of Theorem 4.1, the sign of

ε̈(0) =
3ε∗
8
√
p
(A(x,M∗)α

2 +B(x,M∗))

is as follows.

(i) If x ∈ (1, 4) then
(a) if M2

∗ < (A + B)0(x) then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on
(0, 1);

(b) if (A+B)0(x) ≤ M2
∗ ≤ B0(x) then ε̈(0) < 0 for every |α| ∈ (0, 1);

(c) if B0(x) ≤ M2
∗ then α 7→ ε̈(0) is decreasing on (0, 1) and changes its sign on (0, 1).
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(ii) If x ∈ (4, 614 ) then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on (0, 1).

(iii) If x ∈ (614 ,∞) then

(a) if M2
∗ < B0(x) then α 7→ ε̈(0) is increasing on (0, 1) and changes its sign on (0, 1);

(b) if B0(x) ≤ M2
∗ then ε̈(0) > 0 for every |α| ∈ (0, 1).

Sign of M̈(0). We proceed as above. We define the cancellation functions D0 and (C +D)0 of
D and C +D, namely

D0 : (1,∞) → R, x 7→ 2
(x+ 2)(4x − 1)(x− 4)

(x+ 1)2(−4x2 + x− 60)
(4.54)

(C +D)0 : (1,∞) → R, x 7→ 2
(2x+ 1)x(4x − 1)(x− 4)

(x+ 1)2(−60x2 + x− 4)
. (4.55)

The signs ofD(x,M) and (C+D)(x,M) are easily determinated with the use of the cancellation
functions. More precisely, the following lemmas hold.

Lemma 4.6. If x ∈ (1, 4) then D0(x) > 0 and

M2 < D0(x) =⇒ D(x,M) < 0

D0(x) < M2 =⇒ D(x,M) > 0.

If x ∈ (4,∞) then D0(x) < 0 and D(x,M) < 0 for every M .

Lemma 4.7. If x ∈ (1, 4) then (C +D)0(x) > 0 and

M2 < (C +D)0(x) =⇒ (C +D)(x,M) < 0

(C +D)0(x) < M2 =⇒ (C +D)(x,M) > 0.

If x ∈ (4,∞) then (C +D)0(x) < 0 and (C +D)(x,M) < 0 for every M .

Lemma 4.8. For every x ∈ (1, 4),

0 < (A+B)0(x) < B0(x) < (C +D)0(x) < D0(x).

For every x ∈ (4,∞), one has (C +D)0(x) < 0 and D0(x) < 0.

Proposition 4.9. Under the assumptions and notation of Theorem 4.1, the sign of

M̈(0) =
1

8M∗
(C(x,M∗)α

2 +D(x,M∗))

is as follows.

(i) If x ∈ (1, 4) then

(a) if M2
∗ ≤ (C +D)0(x) then M̈(0) < 0 for every |α| ∈ (0, 1);

(b) if (C + D)0(x) < M2
∗ < D0(x) then α 7→ M̈ (0) is increasing on (0, 1) and changes

its sign on (0, 1);

(c) if D0(x) ≤ M2
∗ then M̈ (0) > 0 for every |α| ∈ (0, 1).

(ii) If x ∈ (4,∞) then M̈(0) < 0 for every |α| ∈ (0, 1).

The result of Propositions 4.5 and 4.9 are illustrated by Figure 2 for x ranging in (1, 4).
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ε̈(0) −ր+

M̈(0) −ր+

M
2

ε̈(0)<0

M̈(0)<0

M̈(0)>0

ε̈(0) +ց−

Figure 2. The sign of ε̈(0) and M̈(0) in the parameter space (x,M2) with x := (k∗/k∗∗)
2.

4.2. Variations of α 7→ M̈(0)
ε̈(0) . We will prove a monotonicity result for the function α 7→ M̈(0)

ε̈(0) .

In the parameter space (ε,M), M̈(0)
ε̈(0) is the tangent of the angle between the unit vector (1, 0)

and (ε̈(0), M̈ (0)). We recall that (ε̈(0), M̈ (0)) is tangent to the curve (ε(·),M(·)) at y = 0.

As we will see later on, the monotonicity of α 7→ M̈(0)
ε̈(0) is related to the stability of bifurcating

solutions given by Theorem 4.1.
If A(x,M∗)α

2 +B(x,M∗) 6= 0 then

M̈(0)

ε̈(0)
=

√
p

3M∗ε∗

Cα2 +D

Aα2 +B
(4.56)

and

∂

∂X

CX +D

AX +B
=

BC −AD

(AX +B)2
.

Thus it is enough to compute the sign of BC −AD. For this, we write

BC −AD = B(C +D)−D(A+B).

The previous results give informations on the signs of B, C + D, D and A + B. Thus the
following assertions hold.

(i) If x ∈ (1, 4) then
(a) if M2

∗ < (A+B)0(x) or D0(x) < M2
∗ then BC −AD > 0;

(b) B0(x) ≤ M2
∗ < (C +D)0(x) then

BC −AD < 0. (4.57)

(ii) If x ∈ (4, 614 ) then BC −AD > 0.

(iii) If x ∈ (614 ,∞) and M2
∗ < B0(x) then BC −AD > 0.
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In the other cases, we have to push the analysis a little bit further.

(i) If x ∈ (1, 4) then there remains to consider two cases. The first one is when (A+B)0(x) <
M2

∗ < B0(x). Let us denote by M1 the positive number satisfying M2
1 = (A+B)0(x). We

have

(BC −AD)(x,M1) = B(C +D)(x,M1).

Moreover B(x,M1) < 0 (according to Lemmas 4.2 and 4.4) and (C +D)(x,M1) < 0 (due
to Lemmas 4.7 and 4.8). Thus

(BC −AD)|M2=(A+B)0(x)
> 0. (4.58)

Besides, by (4.57),

(BC −AD)|M2=B0(x)
< 0. (4.59)

Moreover,

1

2
(BC −AD)(x,M) = 3 +

(x+ 1)2b1(x)

x(4x− 1)(x− 4)
M2 +

(x+ 1)4b2(x)

4x2(4x− 1)2(x− 4)2
M4, (4.60)

with

b1(x) = −2x2 + 121x− 2

b2(x) = x(4x2 + 3583x + 4).

In particular, (BC −AD)(x,M) is a quadratic polynomial w.r.t. the variable X := M2.
With (4.58), (4.59), we deduce that, for every x ∈ (1, 4), there exists a unique J1(x) ∈
((A+B)0(x), B0(x)) such that

(BC −AD)(x,
√

J1(x)) = 0. (4.61)

The second case we will consider is when (C + D)0(x) < M2
∗ < D0(x). Arguing as

above, we prove that there exists a unique J2(x) ∈ ((C +D)0(x),D0(x)) such that

(BC −AD)(x,
√

J2(x)) = 0. (4.62)

Then the sign of BC −AD follows easily by using (4.60), J1(x) and J2(x).
(ii) If x ∈ (614 ,∞) and B0(x) < M2 then in view of (4.60), the discriminant ∆(x) of the

polynomial

X 7→ 3 +
(x+ 1)2b1(x)

x(4x− 1)(x− 4)
X +

(x+ 1)4b2(x)

4x2(4x− 1)2(x− 4)2
X2 (4.63)

satisfies

∆(x) =
4(x+ 1)4

x2(4x− 1)2(x− 4)2
(x4 − 124x3 + 975x2 − 124x+ 1).

We check that there exists x3 ∈ (115, 116) such that

∆(x) < 0 on (
61

4
, x3) (4.64)

∆(x) > 0 on (x3,∞)

∆(x3) = 0.

From (4.60), (4.64), we immediately obtain that

(BC −AD)(x,M) > 0 ∀(x,M2) ∈ (
61

4
, x3)× (B0(x),∞).
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There remains to consider the case where x > x3. With straightforward computations,
we prove that the polynomial (4.63) has two positive roots J1(x) < J2(x) in the interval
(B0(x),∞). Hence for every x > x3, there holds

(BC −AD)(x,M)

{

< 0 if M2 ∈ (J1(x), J2(x))

> 0 if M2 ∈ (B0(x), J1(x)) ∪ (J2(x),∞)
.

We may summarize the above results in the proposition below.

Proposition 4.10. Under the assumptions and notation of Theorem 4.1, there exists x3 ∈
(115, 116) such that for every x ∈ (1, 4) ∪ (x3,∞), the polynomial (4.63) has two positive roots
J1(x) < J2(x). Moreover,

(i) If M2
∗ ∈ (J1(x), J2(x)) then the function α 7→ M̈(0)

ε̈(0) is decreasing on the positive intervals

of its domain of definition, i.e. on (0, 1) if AB(x,M∗) > 0 or on (0,
√

|B/A|) and on

(
√

|B/A|, 1) if AB(x,M∗) < 0.

(ii) If M2
∗ ∈ (0, J1(x)) ∪ (J2(x),∞) then (BC −AD)(x,M∗) > 0 and α 7→ M̈(0)

ε̈(0) is increasing

on the positive intervals of its domain of definition.

If x ∈ (4, x3) then α 7→ M̈(0)
ε̈(0) is increasing on the positive interval of its domain of definition.

Remark 4.1. • J1(x3) = J2(x3).
• We may compute explicitly J1(x) and J2(x) thanks (4.60) (see [AE13]).
• ε̈(0) = 3ε∗

8
√
p
(Aα2 + B) may vanish. This occurs for instance for some α0 ∈ (0, 1) if x ∈ (1, 4)

and M2
∗ < (A+B)0(x). See Proposition 4.5. In this case, the function α 7→ M̈(0)

ε̈(0) is defined on

(−1, 1) \ {−
√

|B/A|,
√

|B/A|}.
• Fig 3 is a phase diagram in the parameter space (ε, 3M2). We have choosen some x ∈ (1, 4)
and M2

∗ ∈ (J1(x), J2(x)). The vector ~u is positively colinear to the tangent to the curve
(ε(·), 3M2(·)) at y = 0 for α = 0.6. If α = 0 or α = 1 then ~u = 0 since there is no bifurcation
branch according to Theorem 4.1. When α goes from 0 to 1, the vector ~u turns clockwise; in
accordance with the assertion (i) of Proposition 4.10. Its range is depicted by the blue curve.

Finally we can combine the above results on the signs of ε̈(0), M̈(0) and the variation of
M̈(0)
ε̈(0) to obtain a better insight of the behaviour of the curve y 7→ δ(y) w.r.t. α. We will only

investigate the cases useful in the sequel.
We assume that x ∈ (1, 4) and recall that

(A+B)0(x) < J1(x) < B0(x) < (C +D)0(x) < J2(x) < D0(x). (4.65)

(a) If (C + D)0(x) < M2 < J2(x) then, due to Proposition 4.5 and (4.65), α 7→ ε̈(0) has a

unique zero α0 in (0, 1) and α0 =
√

|B/A|. Also (see Proposition 4.9), α 7→ M̈(0) has a

unique zero α1 ∈ (0, 1) and α1 =
√

|D/C|.
Let us show that α0 < α1. By Proposition 4.10 and (4.65), α 7→ M̈(0)

ε̈(0) is decreasing on

(0, α0) and on (α0, 1). Moreover, Lemmas 4.2 and 4.6 imply that

M̈ (0)

ε̈(0)

∣

∣

∣

∣

∣

α=0

=
D

B
< 0. (4.66)

Thus
M̈(0)

ε̈(0)
< 0 ∀α ∈ (0, α0).
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(ε∗, 3M
2

∗
)

~u

α = 0.6

α = 0.1

ε 7→ −(εσk∗∗
− 1)2 − r

ε 7→ −(εσk∗
− 1)2 − r

Figure 3. Phase diagramm for k∗ = 3, k∗∗ = 2 (thus x = 9/4) and M2
∗ =

0.4(C +D)0(x) + 0.6J2(x). See Remark 4.1.

Hence M̈(0) 6= 0 for every α ∈ (0, α0), and consequently, α1 ≥ α0. That is to say −D/C ≥
−B/A. However, these two numbers are not equal since M2 6= J1(x), J2(x). Then α0 < α1.
Summing up, we get

ε̈(0) ≥ 0, M̈(0) < 0 ∀α ∈ (0, α0] (4.67)

ε̈(0) < 0, M̈(0) < 0 ∀α ∈ (α0, α1)

ε̈(0) < 0, M̈(0) > 0 ∀α ∈ (α1, 1].

This behaviour may be observed in Figure 3.
(b) If J2(x) < M2 < D0(x) then, as above, α0, α1 belong to (0, 1) and α0 6= α1. Moreover,

α 7→ M̈(0)
ε̈(0) is increasing on (0, α0), hence

lim
α→α0,α<α0

M̈ (0)

ε̈(0)
= ∞.

Since (4.66) still holds, we deduce that M̈(0) vanishes in (0, α0). Thus α1 < α0. Summing
up, we get

ε̈(0) > 0, M̈(0) < 0 ∀α ∈ (0, α1)

ε̈(0) ≥ 0, M̈(0) > 0 ∀α ∈ (α1, α0] (4.68)

ε̈(0) < 0, M̈(0) > 0 ∀α ∈ (α0, 1].
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5. Properties of bifurcating solutions

5.1. Energy of the bifurcating solutions. In this section, we will compare the energy of
the bifurcating solutions u = M(y) + v(y) given by Theorem 4.1 and the energy of the trivial
solution u = M(y). Let us recall that, for (u, ε) ∈ V2 × (0,∞), the energy of u is given by
(2.14). Moreover, δ(y) := (ε(y),M(y)) for y ≃ 0.

Theorem 5.1. Let y 7→ (δ(y), v(y)) be a bifurcation branch given by Theorem 4.1. Then

E
(

M(y) + v(y), ε(y)
)

− E
(

M(y), ε(y)
)

=
1

8
G(α)y4 +O(y5),

where

G(α) := (2
√
pα2 + p−√

p)
ε̈(0)

ε∗
+ 3M∗M̈(0). (5.1)

Proof. We put u(y) := M(y)+v(y). For y ≃ 0, the derivative of the function S defined through

S(y) = E
(

u(y), ε(y)
)

− E
(

M(y), ε(y)
)

satisfies

d

dy
S(y) = DuE

(

u(y), ε(y)
)(

Ṁ(y) + v̇(y)
)

+DεE
(

u(y), ε(y)
)

ε̇(y)

−DuE
(

M(y), ε(y)
)

Ṁ (y)−DεE
(

M(y), ε(y)
)

ε̇(y). (5.2)

Since u(y) and M(y) solve (2.8) with M = M(y) and
∫ 1
0 v̇(y) dx = 0, we have

DuE
(

M(y), ε(y)
)

Ṁ(y) =

∫ 1

0
f
(

M(y)
)

dx Ṁ(y)

DuE
(

u(y), ε(y)
)(

Ṁ(y) + v̇(y)
)

=

∫ 1

0
f
(

u(y)
)

dx Ṁ (y).

Furthermore, by Taylor expansions,
∫ 1

0
f
(

u(y)
)

− f
(

M(y)
)

dx = 3M(y)

∫ 1

0
v(y)2 dx+

∫ 1

0
v(y)3 dx

= 3M∗y
2

∫ 1

0
ϕ2
0 dx+O(y3),

in view of (4.50), (4.51). Thus
∫ 1

0
f
(

u(y)
)

− f
(

M(y)
)

dx Ṁ(y) =
3

2
M∗M̈(0)y3 +O(y4).

Considering, in (5.2), the derivatives w.r.t. ε, we have

DεE
(

M(y), ε(y)
)

= 0

DεE
(

u(y), ε(y)
)

=

∫ 1

0
ε(y)

(

v(y)xx
)2 −

(

v(y)x
)2

dx.

Thanks to (4.51), we get the following expansions.
∫ 1

0

(

v(y)x
)2

dx = y2
∫ 1

0
(ϕ0x)

2 dx+O(y3)

∫ 1

0

(

v(y)xx
)2

dx = y2
∫ 1

0
(ϕ0xx)

2 dx+O(y3).



20 APPOLINAIRE ABOUROU ELLA & ARNAUD ROUGIREL

By (4.49), we have ε̇(y) = ε̈(0)y +O(y2); and since ϕ0 = αϕ∗ + βϕ∗∗, we infer

DεE
(

u(y), ε(y)
)

ε̇(y) = y3
ε̈(0)

2ε∗
(2
√
pα2 + p−√

p).

By combining the above results, we prove the assertion of the theorem. �

According to Theorem 5.1, it is enough to compute the sign of G(α). Before to state our
result, we will introduce some notation. In view of (4.27), (4.40) and (4.41), we have

f∗ = f∗(x,M) =
3

8

M2
∗

x(4x− 1)
(x+ 1)2 − 3

4
, f∗∗ = f∗∗(x,M) = −3

8

M2
∗

x− 4
(x+ 1)2 − 3

4
.

Then we denote by (f∗)0 the cancellation function of f∗, i.e.

(f∗)0(x) := 2
x(4x− 1)

(x+ 1)2
. (5.3)

Similarly

(f∗∗)0(x) := −2
x− 4

(x+ 1)2
. (5.4)

Theorem 5.2. Let M∗ > 0, α ∈ (0, 1) and G(α) be given by (5.1).

(i) If x ∈ (1, 4) then
(a) if M2

∗ < J2(x) then G < 0 on (0, 1) and consequently,

E
(

u(y), ε(y)
)

< E
(

M(y), ε(y)
)

for y ≃ 0;

(b) if J2(x) < M2
∗ < (f∗∗)0(x) then G has two zeros 0 < α1 < α2 < 1 and

G < 0 on (0, α1) ∪ (α2, 1), G > 0 on (α1, α2);

(c) if (f∗∗)0(x) < M2
∗ < (f∗)0(x) then G has one zeros 0 < α1 < 1 and

G > 0 on (0, α1), G < 0 on (α1, 1);

(d) if (f∗)0(x) < M2
∗ then G > 0 on (0, 1).

(ii) If x ∈ (4,∞) then
(a) if M2

∗ < (f∗)0(x) then G < 0 on (0, 1);
(b) if (f∗)0(x) < M2

∗ then G has one zeros 0 < α1 < 1 and

G < 0 on (0, α1), G > 0 on (α1, 1).

Proof. By (4.29), we can write

G(α) = 2
√
p
ε̈(0)

ε∗
α2 + (−f∗∗ + CS)α

2 + f∗∗.

With (4.31) and (4.36), we get

G(α) =
3

4
Aα4 +

3

2
Bα2 + f∗∗.

Thus we will study the quadratic polynomial H(·) defined through

H(X) =
3

4
AX2 +

3

2
BX + f∗∗.

We readily have

H ′(α2) = 4
√
p
ε̈(0)

ε∗
(5.5)

H(0) = f∗∗.
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Then
H(0) > 0 ⇐⇒ x ∈ (1, 4) and M2

∗ > (f∗∗)0(x). (5.6)

Regarding H(1), it turns out that, with (5.1) and (4.29), there holds

H(1) = G(1) = (p +
√
p)

ε̈(0)

ε∗
+ 3M∗M̈(0)

∣

∣

∣

∣

α=1

= f∗.

Then
H(1) > 0 ⇐⇒ M2

∗ > (f∗)0(x). (5.7)

Moreover we prove easily that

D0(x) < (f∗∗)0(x) < (f∗)0(x) ∀x ∈ (1, 4). (5.8)

Hence we are in position to study the different cases appearing in the statement of the theorem
and labelled from (i)(a) to (ii)(b).

(i)(a) First we claim that H(0) and H(1) are negative due (5.6), (5.7), (5.8) and (4.65). Thus
if ε̈(0) has a sign on (0, 1) then (5.5) implies that H < 0 on (0, 1). Otherwise ε̈(0) has
a unique zero α0 in (0, 1) and, by (5.5), X := α2

0 is the unique critical point of H in
(0, 1). Moreover by (5.1),

H(α2
0) = G(α0) = 3M∗M̈(0)

∣

∣

∣

α=α0

. (5.9)

If M2
∗ ≤ (C +D)0(x) then at α = α0, we have M̈(0) < 0 by Proposition 4.9.

If (C + D)0(x) < M2
∗ ≤ J2(x) then at α = α0, M̈(0) is also negative by (4.67).

Consequently,
G(α) < 0 ∀α ∈ (0, 1).

(i)(b) We still have H(0) and H(1) negative. If J2(x) < M2
∗ < D0(x) then

M̈(0)
∣

∣

∣

α=α0

> 0

by (4.68). Thus H(α2
0) > 0 in view of (5.9) and we are able to conclude in this case

since X := α2
0 is the unique critical point of H in (0, 1).

If D0(x) ≤ M2
∗ < (f∗∗)0(x) then M̈(0) > 0 for every α ∈ (0, 1), according to Proposition

4.9. So the assertion follows in this case also.

The other case can be proved easily by using the above methods together with Proposition
4.9. �

5.2. Stability of bifurcation solutions. We refer to the appendix hereafter for the back-
ground concerning the one-dimensional Phase Field Crystal Equation (2.7). The main result
of this paper is the following.

Theorem 5.3. Under the assumptions and notation of Theorem 4.1, let us suppose that

M2
∗ 6= −(4x− 1)(x− 4)

15(x + 1)2
. (5.10)

Then the stability of the stationary solution v(y) to the Phase Field Crystal Problem (A.1) is
as follows.
If k∗ = k∗∗ +1 (i.e. x = (1+ 1

k∗∗
)2) and M2

∗ ∈ (J1(x), J2(x)) then v(y) is asymptotically stable
in the sense of Lyapunov.
If k∗ = k∗∗ + 1 and M2

∗ 6∈ [J1(x), J2(x)] then v(y) is not stable in the sense of Lyapunov.
If k∗ 6= k∗∗ + 1 then v(y) is not stable in the sense of Lyapunov.



22 APPOLINAIRE ABOUROU ELLA & ARNAUD ROUGIREL

Remark 5.1. • For x ∈ (1, 4), J1(x) and J2(x) are defined by (4.61) and (4.62). Notice that
they are the cancellation function of BC −AD.
• If x ∈ (1, 4) and M2

∗ ∈ (J1(x), J2(x)) then the tangent at y = 0 (denoted by T (α)) to the
parameter curve y 7→ δ(y) turns clockwise when α goes from 0 to 1. See Proposition 4.10 and
Figure 3.
• The above result was unexpected since it connects the stability of bifurcating solutions with
the variation of the angle of T (α) with the horizontal axis.
• In view of (4.42), (4.43), CS defined by (4.28) satisfies

CS = −45

2

(x+ 1)2

(4x− 1)(x− 4)
M2

∗ − 3

2
.

Thus (5.10) is equivalent to CS 6= 0.
• Let x ∈ (1, 4). Recalling that (f∗∗)0(x) is defined by (5.4), let us suppose that M2 ∈
(J2(x), (f∗∗)0(x)). Then v(y) is unstable according to the above result. However, the energy of
v(y) may be less than the energy of the trivial solution. More precisely, by Theorem 5.2, there
exists α1 ∈ (0, 1) such that for every α ∈ (0, α1) and y ≃ 0,

E
(

M(y) + v(y), ε(y)
)

< E
(

M(y), ε(y)
)

.

This is a quiet unusual result. Let us recall that v(y) depends on α in the following way:

v̇(0) = αϕ∗ + βϕ∗∗.

Proof of Theorem 5.3. According to Proposition A.1, it is enough to consider the constrained
Swift-Hohenberg Equation (A.2). As explain in Section 3, if the trivial solution v = 0 is not
neutrally stable then v(y) is unstable. By Proposition 3.2, it follows that v(y) is unstable if
k∗ 6= k∗∗ + 1.

Let us now assume that k∗ = k∗∗ + 1. We use the principle of reduced stability from [Kie04,
Section I-18] (see also [Mie95]). According to this result, it is enough to consider the two-
dimensional eigenvalue problem obtained from the linearization of the bifurcation equation
(4.19) at u0 = yϕ0. That is to say (by differentiating (4.19) w.r.t. u0), we have to find λ ∈ R

such that the following linear equation set on kerL, namely

P
{

F1(µ) ·+2F02(·, a02u20)+4F02(u0, a02(u0, ·))+3F03(·, u20)+O(µu20+u30)
}

= λ IdkerL (5.11)

has non trivial solutions. For the bifurcating solution (µ(y), v(y)) of (2.12), we have u0 = yϕ0

with ϕ0 = αϕ∗ + βϕ∗∗ and µ(y) = y2µ2 + O(y3). Here µ2 stands for the vector 1
2(ε̈(0), M̈ (0)).

Thus we rescale the eigenvalue λ into λ = y2λ̃ and we denote by A : kerL → kerL, the linear
operator defined by

Aw := P
{

F11(µ2)w + 2F02(w, a02ϕ
2
0) + 4F02(ϕ0, a02(ϕ0, w)) + 3F03(w,ϕ

2
0)
}

. (5.12)

So that (5.11) reads

A+O(y) = λ̃ IdkerL. (5.13)

Then eigenvalues λ̃ satisfy

g(y, λ̃) := det(A+O(y)− λ̃ IdkerL) = 0.

In view of Lemma 5.4 below, A is a symmetric and non diagonal operator since (5.10) is

equivalent to CS 6= 0. Hence A possesses two distinct real eigenvalues λ̃1 < λ̃2. Then, for
i = 1, 2,

g(0, λ̃i) = 0,
∂

∂λ̃
g(0, λ̃i) =

d

dλ̃
det(A− λ̃)

∣

∣

∣

λ̃=λ̃i

6= 0,
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since λ̃i is a simple eigenvalue. Therefore, by the Implicit function theorem, we get for y ≃ 0,
two eigenvalues of (5.13), namely

λ̃1(y) = λ̃1 +O(y), λ̃2(y) = λ̃2 +O(y).

The principle of reduced stability states that the eigenvalue problem

ε(y)2w(4) + 2ε(y)w(2) + f ′(M(y) + v(y))w −
∫

Ω
f ′(M(y) + v(y))w dx = λw,

w ∈ V̇4, w 6= 0, λ ∈ R,

has two critical eigenvalues λ1(y), λ2(y) (i.e. eigenvalues close to zero for y ≃ 0) with the
following expansions

λ1(y) = y2λ̃1 +O(y3), λ2(y) = y2λ̃2 +O(y3).

Hence it remains to compute the sign of the eigenvalues λ̃1 and λ̃2 of A.
If M2

∗ 6∈ [J1(x), J2(x)] then according to (4.56) and Proposition 4.10, we have (BC −
AD)(x,M∗) > 0. So detA = λ̃1λ̃2 < 0 by Lemma 5.5 below. Hence v(y) is unstable.

In the same way, if M2
∗ ∈ (J1(x), J2(x)) then λ̃1λ̃2 = detA > 0. Since (see (4.65), (5.8))

J2(x) < (f∗∗)0(x) < (f∗)0(x),

one has

f∗ < 0, f∗∗ < 0.

Thus, with Lemma 5.4,

λ̃1 + λ̃2 = trace(A) = −2(f∗α
2 + f∗∗β

2) > 0. (5.14)

Therefore λ̃1 and λ̃2 are positive and v(y) is stable for y ≃ 0. This completes the proof of the
theorem. �

We now state and prove the lemmas used in the proof of Theorem 5.3.

Lemma 5.4. Let A : kerL → kerL be the linear operator defined by (5.12). Then the matrix
M(A) of A in the basis (ϕ∗, ϕ∗∗) is

M(A) = 2

(

−f∗α
2 −CSαβ

−CSαβ −f∗∗β
2

)

. (5.15)

Remark 5.2. The simple formula (5.15) can be obtained, at least at a formal level, by differen-
tiation starting from (4.30). Since (4.30) has a Z2 ⊕Z2 symmetry, (5.15) is in accordance with
the results of [GS85, Chap X]. These results are obtained by using symmetries and universal
unfolding theory. Moreover the analog of v(y) is obtained in [GS85] as a secondary bifurcation.
Here, there is no Z2 ⊕ Z2 symmetry in (2.12) and v(y) is a primary bifurcating solution in the
sense that it bifurcates from the trivial solution.

Proof. We compute the first column of the matrix.

Aϕ∗ = P
{

F11(µ2)ϕ∗ + 2F02(ϕ∗, a02ϕ
2
0) + 4F02

(

ϕ0, a02(ϕ0, ϕ∗)
)

+ 3F03(ϕ∗, ϕ
2
0)
}

.

We have µ2 =
1
2(ε̈(0), M̈ (0)), thus with (4.24),

PF11(µ2)ϕ∗ =
(p+

√
p

ε∗
ε̈(0) + 3M∗M̈(0)

)

ϕ∗.
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Due to (4.14), (4.15), we infer

2PF02(ϕ∗, a02ϕ
2
0) = −9

2
M2

∗
α2

λ2k∗

ϕ∗ − 9M2
∗αβ

( 1

λk∗+k∗∗

+
1

λk∗−k∗∗

)

ϕ∗∗.

In view of (4.16), we obtain

4PF02

(

ϕ0, a02(ϕ0, ϕ∗)
)

=

− 9M2
∗

{

( α2

λ2k∗

+ β2(
1

λk∗+k∗∗

+
1

λk∗−k∗∗

)
)

ϕ∗ + αβ
( 1

λk∗+k∗∗

+
1

λk∗−k∗∗

)

ϕ∗∗
}

.

Besides

3PF03(ϕ∗, ϕ
2
0) =

(9

4
α2 +

3

2
β2
)

ϕ∗ + 3αβϕ∗∗.

Let us denotes the entries of M(A) by

M(A) =

(

a11 a12
a21 a22

)

.

Then, since α2 + β2 = 1,

a11 = (p+
√
p)

ε̈(0)

ε∗
+ 3M∗M̈(0) +

3

4
α2 +

3

2

− 9M2
∗

{

( 3

2λ2k∗

− (
1

λk∗+k∗∗

+
1

λk∗−k∗∗

)
)

α2 +
1

λk∗+k∗∗

+
1

λk∗−k∗∗

}

.

Recalling the notation (4.27), (4.28) and using (4.29), we obtain

a11 = (f∗ −CS)α
2 + Cs + (−3f∗ + CS)α

2 − CS

= −2f∗α
2.

Regarding a21, we have

a21 = −18M2
∗
( 1

λk∗+k∗∗

+
1

λk∗−k∗∗

)

αβ + 3αβ

= (−2CS − 3)αβ + 3αβ

= −2CSαβ.

This gives the first column of M(A). By using symmetries resulting from the non raisonnant
condition x 6= 4, 9, we may obtain the second column from the first one. More precisely, the
second column is obtained by exchanging k∗ and k∗∗ on one hand, and by exchanging α and β
on the other hand. Thus a12 = a21 and

a22 = −2f∗∗β
2.

This completes the proof of the lemma. �

Lemma 5.5. Let M∗ ∈ R, k∗, k∗∗ be positive integers such that k∗∗ < k∗ and f∗, f∗∗, CS be
defined by (4.27), (4.28). Let A, B, C, D be given by (4.36)−(4.39) and A be the operator
defined through (5.12) (whose matrix is given by (5.15)). Then

detA = −9

8
α2β2(BC −AD). (5.16)
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Remark 5.3. To our knowledge, the relation (5.16) is new. It explains why the statement of
the stability of v(y) is quiet simple in the sense that the stability is linked to quantities relying
on the parameter curve y 7→ δ(y). In particular, if

α 7→ M̈(0)

ε̈(0)

is increasing then (5.16) implies that v(y) is unstable.

Proof. By using (4.36)−(4.39), we get

BC −AD = B
(8

3
(f∗ − CS)− (

√
p+ 1)A

)

−A
(8

3
CS − (

√
p+ 1)B

)

=
8

3

(

B(f∗ − CS)−ACS

)

=
8

3

(4

3
(−f∗∗ + CS)(f∗ − CS)−

4

3
(f∗ + f∗∗ − 2CS)CS

)

=
32

9
(−f∗f∗∗ + C2

S).

However by (5.15),

detA = 4α2β2(f∗f∗∗ − C2
S).

Thus (5.16) follows. �

5.3. Symmetries. We start to state precisely a local uniqueness result for bifurcating branches.
In particular, we will emphasize the dependence of these solutions w.r.t. α and β.

Theorem 5.6. Under the assumptions and notation of Theorem 4.1, there exist

R1 = R1(α, β) > 0, δ1 = δ1(α, β) > 0

and a smooth function

µ(·, α, β) : (−δ1, δ1) → (−R1, R1)

such that for every y ∈ (−δ1, δ1) and µ ∈ (−R1, R1), one has

PF
(

µ, yϕ0 + U(µ, yϕ0)
)

= 0 ⇐⇒ µ = µ(y, α, β).

Remark 5.4. • We recall that ϕ0 := αϕ∗ + βϕ∗∗.
• δ1 and R1 may be choosen independently of α and β provided that α and β remain bounded
away from 0.
• In this setting, the bifurcating solution v(y) of Theorem 4.1 will be denoted by v(y, α, β).

Let (α, β) ∈ (−1, 1)2 satisfy (4.48). For y close to zero, we have four (distinct) solutions
(

µ(y,±α,±β), v(y,±α,±β)
)

to Equation (2.12). In view of the remark above, we may suppose that the numbers
δ1(y,±α,±β) are equal. So we will denote their common value by δm.

The goal of this subsection is to establish relations between these solutions. This is achieved
by using a suitable translation of the space variable. Let us write k∗ and k∗∗ under the form

k∗ = 2r1ℓ∗, k∗∗ = 2r2ℓ∗∗, (5.17)

where r1, r2 are non negative integers and ℓ∗, ℓ∗∗ are positive odd integers. Let us denote by
r the minimum of r1 and r2.
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The above mentioned translation consists, roughly speaking, in the translation x 7→ x+2−r.
To be more specific, for every v ∈ L2(Ω), let us denote by Jv : R → R the 2−periodic and even
function satisfying

Jv = v a.e. in [0, 1].

We put

Tv := (Jv)(· + 2−r)
∣

∣

Ω
,

which means that Tv is the restriction to Ω of the function (Jv)(· + 2−r).
Let

L̇2
21−r (Ω) =

{

v ∈ L̇2(Ω) |Jv is 21−r periodic
}

.

Then L + F (µ, ·) maps V̇4 ∩ L̇2
21−r(Ω) into L̇2

21−r(Ω) and ϕ∗, ϕ∗∗ belong clearly to L̇2
21−r(Ω).

Then we infer that Theorem 4.1 still holds if we restrict our analysis to 21−r−periodic functions.
Thus, each bifurcating solution given by Theorem 4.1 satisfies

v(y, α, β) ∈ L̇2
21−r (Ω).

Moreover,

T
(

L̇2
21−r(Ω)

)

⊂ L̇2
21−r(Ω)

T
(

V̇4 ∩ L̇2
21−r(Ω)

)

⊂ V̇4 ∩ L̇2
21−r(Ω)

since every v ∈ V̇4 ∩ L̇2
21−r(Ω) has the representation

v =
∑

m≥1

xm2rϕm2r in V̇4.

Thus T commutes with L+ F (µ, ·).
Since ℓ∗ and ℓ∗∗ are odd, we have

Tϕ∗ = (−1)2
r1−r

ϕ∗ =

{

−ϕ∗ if r1 = r

ϕ∗ if r1 > r
, Tϕ∗∗ = (−1)2

r2−r

ϕ∗∗ =

{

−ϕ∗∗ if r2 = r

ϕ∗∗ if r2 > r
.

We then deduce in a standard way that, for every y ∈ (−δm, δm),

v
(

y, (−1)2
r1−r

α, (−1)2
r2−r

β
)

= Tv(y, α, β), µ(y, (−1)2
r1−r

α, (−1)2
r2−r

β) = µ(y, α, β).
(5.18)

Thus, among the four (distinct) solutions (µ, v)(y,±α,±β) to (2.12), only two are essentially
different. The other ones are obtained through T (since at least one of the numbers r1 − r,
r2 − r vanishes). For instance, if r = r1 < r2 then

v(y,−α, β) = Tv(y, α, β), µ(y,−α, β) = µ(y, α, β)

v(y,−α,−β) = Tv(y, α,−β), µ(y,−α,−β) = µ(y, α,−β).

If r = r1 = r2 then µ(·, α, β) is even. Indeed, by Theorem 5.6 and (5.18), we have

µ(−y, α, β) = µ(y,−α,−β) = µ(y, (−1)2
r1−r

α, (−1)2
r2−r

β)

= µ(y, α, β).

However, if k∗ = 4k∗∗ then we can prove that µ(·, α, β) is not even.
Let us notice that (2.12) has the trivial symmetry

S : L2(Ω) → L2(Ω), u 7→ u(1− ·).
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This symmetry allows to relate solutions in some cases. However, if k∗, k∗∗ are even then it
turns out that each of the four solutions

(

µ(y,±α,±β), v(y,±α,±β)
)

is invariant under S. So S is useless in what case unlike T (see (5.18)).

6. Rough approximation of the 8−loop

The aim of this section is to recover by means of two analytical approximations the so-called
8−loops appearing in [PR11, Figure 15]. More precisely, we will use the truncated bifurcation
equation (4.30) to approximate the bifurcating solutions (µ, v) to (2.12) given by Theorem 4.1.
By suitable choices of parameters values, we will reconstruct analytically the first 8−loop on
the left of [PR11, Figure 15], which was obtained by numerical integration.

Under the assumptions and notation of Theorem 4.1, we set for δ = (ε,M) ∈ (0,∞)× R

P∗(δ) := (εσk∗ − 1)2 + r + 3M2

P∗∗(δ) := (εσk∗∗ − 1)2 + r + 3M2.

If we neglect the higher order terms in (4.19), we may assume that (X,Y ) solves (4.30). This
is the first approximation. Thus, if y, α and β are not zero, we have

{

f∗y
2α2 + CSy

2β2 = P∗(δ)

CSy
2α2 + f∗∗y

2β2 = P∗∗(δ)
. (6.1)

In order to clarify things, we would like to highlight that, in (6.1), f∗ depends on δ∗ and not
on δ, since in (4.27), we have

λ2k∗ = (ε∗σ2k∗ − 1)2 + r + 3M2
∗ .

Our second approximation is a second order approximation of the function v(y, δ, α), namely

v(y, α, β) ≃ yϕ0 + y2a02ϕ
2
0,

where ϕ0 = αϕ∗+βϕ∗∗ and a02ϕ
2
0 is given by (4.14) and (4.15). Unlike to our previous analysis,

we will no more assume that y is close to zero. This is why the above approximation is said to
be rough.

In order to solve (6.1), we choose a suitable value M0 of M , close to M∗. The solutions are
parametrized by ε ≃ ε∗ as in [PR11]. We obtain

y2α2 =
−f∗∗P∗(ε,M0) + CSP∗∗(ε,M0)

−f∗f∗∗ + C2
S

(6.2)

y2 =
P∗(ε,M0)− (f∗ − CS)y

2α2

CS
. (6.3)

If, in the above equations, y2 ∈ (0, 1) and α2 ∈ (0, 1) then we choose w.l.o.g. y, α to be positive

and β :=
√
1− α2. So what for δ = (ε,M0), we obtain four approximated solutions to (2.8) of

the form M0 + ṽ(y,±α,±β) with

ṽ(y, α, β) = y(αϕ∗ + βϕ∗∗)

− 3M∗
2

y2
( α2

λ2k∗

ϕ2k∗ + 2
αβ

λk∗+k∗∗

ϕk∗+k∗∗ + 2
αβ

λk∗−k∗∗

ϕk∗−k∗∗ +
β2

λ2k∗∗

ϕ2k∗∗

)

.
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(εk∗
,M0)

M0 + v|
x=0

α > 0, β > 0

α < 0, β < 0

α > 0, β < 0

α < 0, β > 0α < 0, β > 0

Figure 4. The blue curves represent four branches bifurcating from the point
(ε∗,M∗) with 2D kernel. The two red curves show bifurcation branches with
1D kernel, fixed mass M0 and bifurcation points εk∗ (pointed on the figure) and

εk∗∗ . We have choosen k∗ = 4, k∗∗ = 3, r = −0.5 and M0 =
√

2/15. See also
Remark 6.1.

Remark 6.1. Let us make some comments on the bifurcation diagramm of Figure 4.
• The top blue curve is the graph of

ε 7→ M0 + ṽ(y, α, β)|x=0 ,

where the dependence of (y, α, β) w.r.t. ε is given by (6.2), (6.3).

• Following [PR11, Figure 15], we have choosen k∗ = 4, k∗∗ = 3, r = −0.5 and M0 =
√

2/15.
Then by (4.4),

√
p =

7

25

ε∗ =
2

25π2

M∗ =

√

−1

3
(r + p) =

√
3162

150
.
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• We have

0 <
M∗ −M0

M∗
< 0.026.

So M0 is close to M∗ as required by the theory. Moreover, M0 must be choosen smaller than
M∗. Indeed, one has

(x,M2
∗ ) ≃ (1.8, 0.14).

Thus, in view of Figure 2, we have M̈ (0) < 0 for all |α| ∈ (0, 1) and, by (4.50), each bifurcating
branch of mass y 7→ M(y) satisfies

M(y) < M∗, ∀y ≃ 0.

This estimate can also be obtained by analytical arguments thanks Proposition 4.9.
• The translation T of subsection 5.3 acts on the approximate solutions ṽ(y,±α,±β) as well.
Indeed, we have 0 = r = r2 < r1 = 2. Thus

ṽ(y, α,−β) = T ṽ(y, α, β), ṽ(y,−α,−β) = T ṽ(y,−α, β).

Thus, in Figure 4, the curve corresponding to α > 0, β > 0 can be related to the curve
corresponding to α > 0, β < 0 by means of T . Also the curve corresponding to α < 0, β < 0
can be related to the curve corresponding to α < 0, β > 0 by means of T .
• We can see secondary secondary bifurcations between interactive modes solutions and single
modes solutions. At the bifurcation point, we have α = 0 or β = 0.
• Let k∗ = 4, k∗∗ = 3 and r = −0.5. If y is small enough then v(y, α, β) is an asymptotically
stable solution to

∂tv − ε(y)∂xx
(

ε(y)2∂xxxxv + 2ε(y)∂xxv + f(M(y) + v)
)

= 0.

Indeed, (4.65) implies that the graphs of x 7→ J1(x) and x 7→ J2(x) lie respectively between
the red curves and the blue curves of Figure 2. Thus in view of the remark above M2

∗ ∈
(J1(x), J2(x)). The claim follows then from Theorem 5.3. This stability result is in accordance
with the numerical simulations featured in [PR11, Figure 15].

Appendix A. Phase Field Crystal Equation and stability

The aim of this appendix is to show that stability for the Phase Field Crystal Equation (2.7)
and for the following constrained Swift-Hohenberg Equation,



















∂tu+ ε2∂xxxxu+ 2ε∂xxu+ f(u) =

∫

Ω
f(u) dx in Ω× (0,∞)

∂xu = ∂xxxu = 0 on ∂Ω× (0,∞)

u(0) = u0 in Ω,

are essentially the same. Since the linearized operator corresponding to (2.7) is not symmetric,
we will consider for this equation, asymptotic stability in the sense of Lyapunov ; see for instance
[Har91, Chap 3]. We will first define the semigroup associated to (2.7). For simplicity, the
derivatives ∂x and ∂xx will be denoted by ∇ and ∆. Moreover, notice that all of the results
below still hold if the interval Ω is replaced by a smooth bounded domain of R2 or R3.

Recalling the notation (2.3), we put

V̇5 :=
{

u ∈ H5(Ω) |u′ = u′′′ = 0 on ∂Ω
}

Ḣ−1(Ω) := dual of H1(Ω) ∩ L̇2(Ω).
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Let v0 ∈ V̇2 and T ∈ (0,∞). We say that v is a weak solution to (2.7) in Ω× (0, T ) if

v ∈ L2(0, T, V̇5) ∩ C([0, T ], V̇2),
d

dt
v ∈ L2(0, T, Ḣ−1(Ω))

d

dt
v − ε∆

(

ε2∆2v + 2ε∆v + f(M + v)−
∫

Ω f(M + v) dx
)

= 0 in L2(0, T, Ḣ−1(Ω))

v|t=0 = v0 in V̇2.

(A.1)

By implementing the Galerkin scheme, we prove that (A.1) admits a unique solution v (see

[Tem88], [GH13]). Moreover, the map SPFC : [0,∞) × V̇2 → V̇2, (t, v0) 7→ v(t) is a semigroup
in the sense of Temam. Thus SPFC(t)v0 stands for v(t).

In the same way but referring to the above constrained Swift-Hohenberg Equation, the prob-
lem

v ∈ L2(0, T, V̇4) ∩C([0, T ], V̇2),
d

dt
v ∈ L2(0, T, L̇2(Ω))

d

dt
v + ε2∆2v + 2ε∆v + f(M + v)−

∫

Ω f(M + v) dx = 0 in L2(0, T, L̇2(Ω))

v|t=0 = v0 in V̇2

(A.2)

has a unique (strong) solution and infer also a semigroup denoted by ScSH . Without los of
generality, we may assume ε = 1 and M =

∫

Ω u0 dx = 0. It is clear that (A.1) and (A.2) have
the same steady states. Moreover, the energy E − see (2.14) − defined through

E(v) =
1

2
‖∆v‖22 − ‖∇v‖22 +

∫

Ω

r + 1

2
v2 +

1

4
v4 dx

is a Lyapunov functional for SPFC and ScSH . It is clear for the later. For the former, we test
the equation of (A.1) with (−∆−1) d

dtv where −∆ : H1(Ω) ∩ L̇2(Ω) → Ḣ−1(Ω). We find

d

dt
E
(

v(t)
)

= −‖ d

dt
v‖2

Ḣ−1 ≤ 0.

Notice that the linearized operator for (A.2) at any stationary solution v∞ is self adjoint
with compact resolvant. Thus its spectrum consists on an increasing sequence of eigenvalues.

The main result of this appendix is the following.

Proposition A.1. Let v∞ be a stationary solution to (A.1). If v∞ is linearly stable for the
semigroup ScSH (i.e. the corresponding eigenvalues are positive) then v∞ is asymptotically
stable in the sense of Lyapunov, for the semigroup SPFC.

If one of these eigenvalues is negative and 0 is not an eigenvalue then v∞ is not stable in
the sense of Lyapunov, for the semigroup SPFC.

Roughly speaking, the above results states that if 0 is not an eigenvalue then the stationary
solution v∞ has the same stability for the semigroup SPFC and for the semigroup ScSH .

Proof. Let us assume that v∞ is linearly stable for ScSH . Expending the energy E(v) for v ∈ V̇2,
v ≃ v∞, we get

E(v) = E(v∞) +
1

2
D2E(v∞)(v − v∞)2 +O(‖v − v∞‖3

V̇2
).

With Lemma A.2 below, we deduce that there exist ε > 0 and r2 > 0 such that

E(v) ≥ E(v∞) + 2ε, ∀v ∈ V̇2, ‖v − v∞‖V̇2
= r2. (A.3)
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Since v∞ is linearly stable, we may assume without los of generality, that v∞ is the only one
stationary solution in the ball B(v∞, r2) of V̇2 with radius r2 and center v∞. Since (A.1)
and (A.2) have the same steady states, v∞ is also the unique stationary solution to (A.1) in
B(v∞, r2).

Besides, by continuity of E(·), there exists r1 ∈ (0, r2) such that

E(v0) ≤ E(v∞) + ε, ∀v0 ∈ B(v∞, r1).

Since the energy is a Lyapunov function for the semigroup SPFC , there holds

E(SPFC(t)v0) ≤ E(v∞) + ε, ∀v0 ∈ B(v∞, r1), ∀t ≥ 0.

Hence by (A.3),

SPFC(t)v0 ∈ B(v∞, r2), ∀t ≥ 0.

Moreover, by standard methods (see [Tem88]), we can show that the trajectory {SPFC(t)v0 | t ≥
0} is relatively compact in V̇2. Since v∞ is a isolated stationary solution, we deduce from
Lassalle’s Invariance Principle (see [Har91]) that

SPFC(t)v0 −−−→
t→∞

v∞ in V̇2.

Thus v∞ is asymptotically stable equilibrium of SPFC .

Conversely, since 0 is not in the spectrum of the linearized operator for (A.2) at v∞, there
exists r3 > 0 such that v∞ is the only one stationary solution to (A.1) in B(v∞, r3).

Since v∞ is linearly unstable, there exists v0 ∈ V̇2 arbitrary close to v∞ such that

E(v0) < E(v∞).

By continuity of E, there exists a positive number r1 depending on v0 such that

E(v) > E(v0), ∀v ∈ B(v∞, r1).

Moreover,

E(SPFC(t)v0) ≤ E(v0), ∀t ≥ 0,

since E is a Lyapunov function for the semigroup SPFC . Thus

SPFC(t)v0 6∈ B(v∞, r1), ∀t ≥ 0.

Moreover, the Lassalle Invariance Principle implies that

d
(

SPFC(t)v0, E
)

:= inf
w∈E

‖SPFC(t)v0 − w‖V̇2
−−−→
t→∞

0,

where E denotes the set of all stationary solutions to (A.1). Thus for some positive time t1 and
w∞ ∈ E , there holds

‖SPFC(t1)v0 −w∞‖V̇2
≤ r3

2
.

However, since v∞ is the only steady states of (A.1) in B(v∞, r3), we have

‖v∞ − w∞‖V̇2
≥ r3.

Thus

‖SPFC(t1)v0 − v∞‖V̇2
≥ ‖v∞ − w∞‖V̇2

− ‖SPFC(t1)v0 − w∞‖V̇2
≥ r3

2
,

which means that v∞ is not stable in the sense of Liapunov. This completes the proof of the
proposition. �
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Lemma A.2. Let v∞ ∈ V̇2. Let us assume that, for some positive constant c, we have

D2E(v∞)v2 ≥ c‖v‖22, ∀v ∈ V̇2, (A.4)

where ‖·‖2 denote the standard norm in L2(Ω). Then the bilinear mapping D2E(v∞) is coercive

on V̇2, that is there exists c1 > 0 such that

D2E(v∞)v2 ≥ c1‖v‖2V̇2
, ∀v ∈ V̇2. (A.5)

Proof. Let ε > 0 to be choosen later. Since v∞ ∈ L∞(Ω), there exists C > 0 such that for

every v ∈ V̇2,

ε

∫

Ω
f ′(v∞)v2 dx ≥ −εC‖v‖22.

With (A.4),

‖∆v‖22 − 2‖∇v‖22 + (1 + ε)

∫

Ω
f ′(v∞)v2 dx ≥ (c− εC)‖v‖22.

Then
(1 + ε−1)D2E(v∞)v2 ≥ ‖∆v‖22 − 2‖∇v‖22 + (cε−1 − C)‖v‖22.

We use the interpolation inequality

‖∇v‖22 ≤ ‖∆v‖2‖v‖2 ≤ 1

4
‖∆v‖22 + ‖v‖22,

to get

(1 + ε−1)D2E(v∞)v2 ≥ 1

2
‖∆v‖22 + (cε−1 − C − 2)‖v‖22.

We obtain (A.5) by choosing ε small enough. �
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