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Abstract—TerraSAR-X data are processed for an operational mapping of bare soils moisture in agricultural areas. Empirical relationships 

between TerraSAR-X signal and soil moisture were established and validated over different North European agricultural study sites. The 

results show that the mean error on the soil moisture estimation is less than 4% regardless of the TerraSAR-X configuration (incidence angle, 

polarization) and the soil surface characteristics (soil surface roughness, soil composition). Furthermore, the potential of TerraSAR-X data 

(signal, texture features) to discriminate bare soils from other land cover classes in an agricultural watershed was evaluated. The mean signal 

backscattered from bare soils can be easily differentiated from signals from other land cover classes when the neighboring plots are covered by 

fully developed crops. This was observed regardless of the TerraSAR-X configuration and the soil moisture conditions. When neighboring 

plots are covered by early growth crops, a TerraSAR-X image acquired under wet conditions can be useful for discriminating bare soils. Bare 

soil masks were calculated by object-oriented classifications of mono-configuration TerraSAR-X data. The overall accuracies of the bare soils 

mapping were higher than 84% for validation based on object and pixel. The bare soils mapping method and the soil moisture relationships 

were applied to TerraSAR-X images to generate soil moisture maps. The results show that TerraSAR-X sensors provide useful data for 

monitoring the spatial variations of soil moisture at the within-plot scale. The methods of bare soils moisture mapping developed in this paper 

can be used in operational applications in agriculture, and hydrology. 

 
Index Terms—SAR, soil moisture, map, X-band, TerraSAR-X, within field plot scale 

 

INTRODUCTION 

UR Earth is not the desolate planet depicted in the famous 

science fiction novel "Dune" [1]; however, its water is a 

precious and often scarce resource. Soil moisture is the life-

giving substance for crop growth and governs the proportion 

of rainfall that percolates, is lost to runoff, or evaporates from 

the land. Soil moisture has also been widely recognized as a 

key variable of the water cycle in numerous environmental 

studies focusing on climate change, flood forecasting, crop 

monitoring, and other applications [2]-[3]. For sustainable 

development to occur, operational tools for evaluating land 

management scenarios, providing sound references for natural 

resource protection, and targeting land use planning are 

required. Therefore, it is important to accurately monitor and 

estimate spatial and temporal variations of soil moisture. 

Moreover, because essentially bare soils are associated with a 

considerable risk of runoff and erosion in agricultural areas 

[4], maintaining soil moisture over bare soil surfaces is 

especially important. 

Active and passive microwave sensors have already shown 

their potential for use in soil moisture estimations, regardless 

of the weather conditions, over a vast surface and at regular 

time intervals. Currently, a variety of sensors with various 

ranges of spatial resolution are available. Some of these 

provide estimates of soil moisture at low resolutions that are 

suitable for regional or global climatic studies (ERS/WSC, 

ASCAT/METOP, and SMOS) [5]-[6]-[7]; others, such as 

ERS, Envisat/ASAR, TerraSAR-X, RADARSAT, and 

Palsar/ALOS, provide soil moisture estimations at high spatial 

resolution (better than 30 m) to provide a diagnosis suited to 

agricultural watershed areas (e.g., [8]-[9]-[10]). 

It is well known that the SAR (Synthetic Aperture Radar) 

backscattered signal from bare soils is a function of the sensor 

configuration, which includes the wavelength, polarization, 

and incidence angle, as well as the soil surface characteristics 

such as soil moisture and surface roughness [11]-[12]-[13]-

[14]. A major limiting factor in the estimation of bare soil 

moisture is the separation of the individual scattering effects 

of soil moisture and surface roughness. Moreover, the 

estimation of soil moisture is even more complicated in the 

case of single-configuration SAR observations (one SAR 

datum and at least two unknowns, such as the soil moisture 

and surface roughness), leading to an underdetermined 

problem. Thus, with only one image acquired at one incidence 

and one polarization, the estimation of bare soil surface 

moisture requires knowledge of the relationship between the 

radar signal and the soil moisture regardless of the surface 

roughness. To overcome the effect of soil roughness on soil 

moisture estimation processes conducted using only one set of 

SAR data (one incidence and one polarization), methodologies 

have been developed based on empirical relationships or 
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multi-incidence SAR acquisitions. 

For retrieving bare soil moisture from single SAR data at C- 

and L-bands, some approaches based on empirical 

relationships between radar signal and soil moisture are used 

without taking the soil roughness into account [15]-[9]-[16]-

[17]-[18]. These methods are based on linear or logarithmic 

regressions between in situ soil moisture measurements and 

radar signals for each SAR configuration (incidence, 

polarization, and radar wavelength). At C- and L-bands, soil 

moisture estimation has shown that the coefficients that 

describe the relationship between the SAR signal and soil 

moisture may depend on watershed soil surface characteristics 

such as soil surface roughness and soil composition [9]. In the 

X-band, investigations with TerraSAR-X data have 

demonstrated high sensitivity of the radar signal to soil 

moisture and low sensitivity to agricultural surface roughness  

[19]. Moreover, the TerraSAR-X signal was not directly 

sensitive to the soil composition of bare agricultural plots 

[19]-[20]. 

To overcome the influence of soil roughness on soil 

moisture estimation, other methods based on multi-incidence 

SAR images have been developed. When two images acquired 

at different incidence angles, one low and one high, are used, 

it is typically assumed that the soil roughness remains 

unchanged between the two acquisitions and that the change in 

backscattered signal is due to a change in soil moisture. 

Several studies using C-band data have shown that the use of 

two incidence angles improves soil moisture estimation in 

comparison with results obtained using only one incidence 

angle [21]-[22]-[10]. The high temporal repetitiveness of the 

TerraSAR-X sensor permits the acquisition of image pairs at 

low and high incidence angles at the same study site within 

one day. Nevertheless, [23] have demonstrated that the 

accuracy of soil moisture estimates based on TerraSAR-X data 

is not improved when two incidence angles (26°-28° or 50°-

52°) are used instead of one. Thus, TerraSAR-X data at a 

single incidence angle are sufficient to estimate soil moisture  

[23].  

 

In the operational process of bare soil moisture mapping, 

the greatest challenge may be bare soil detection from SAR 

images. Commonly, bare soil detection is conducted using 

optical or in situ data [24]-[9]-[18]. Nevertheless, due to cloud 

cover, it is sometimes difficult to acquire optical images from 

dates close to those of the SAR acquisitions, especially during 

the autumn and winter seasons. Moreover, to reduce the cost 

of operational soil moisture mapping from SAR images, it 

would be very useful to extract the bare soils from these same 

SAR images. 

Previous studies have shown that the SAR signal is 

correlated with the NDVI (Normalized Vegetation Index); 

consequently, the SAR signal can be used to detect bare soil 

from vegetation cover. At the L-band, the signal ratio HV/VV 

can be used to distinguish bare soils from vegetation cover 

[25]. Using single SAR images, [12] indicated that the 

classification of bare surface, short and tall vegetation reached 

an accuracy of approximately 75% at the C-band (VV-23°) 

and of approximately 98% at the L-band (HH-35°). Using 

both C- and L-band data at HV and HH polarizations, the 

classification accuracy of bare soil from vegetation cover is 

approximately 98% [26]. Recently, [27] showed that bare soil 

areas could be distinguished from areas with short and tall 

vegetation using PALSAR polarimetric data (L-band).  

At the X-band, previous studies on sugarcane have shown 

that X-band signals increase with NDVI [28]. Nevertheless, 

few studies have used the X-band to distinguish bare soil from 

other landcover. Preliminary studies have been conducted on 

the potential of using TerraSAR-X classification to 

discriminate different types of forests and crops. Using 

TerraSAR-X time series acquired during the spring and 

summer, crop types could be classified with an accuracy of 

78.5% using VV polarization and with an accuracy of 90.4% 

using dual polarization (VV, VH) [29]. Reference [30] 

proposed  landcover classification into urban area, 

agricultural, forest, and open water using single TerraSAR-X 

data acquired in the summer. The results of that study yielded 

an overall accuracy of approximately 94% for both HH and 

VV polarizations (88% with HH alone and 90% for VV 

alone). HH polarization was slightly better suited to separate 

forest and urban areas, whereas the use of VV polarization 

permitted better separation of forest and agricultural lands 

[30]. Moreover, a variety of studies have shown that the use of 

both texture and signal data improves the classification 

accuracy of agricultural cover (crops and forest) because the 

information content of an image depends both on each pixel’s 

intensity (signal) and on the spatial arrangement of pixels[31]-

[32]-[33]-[13]. Using TerraSAR-X data acquired in the spring, 

[34] showed that, when Haralik texture and signal are used 

together, crop type classification can reach an overall accuracy 

of 95%. 

Finally, landcover mapping from SAR images is most 

appropriately performed using an object-based approach rather 

than a pixel-based method because the grouping of 

neighboring pixels into objects based on similar properties 

results in minimization of the SAR speckle noise. Reference 

[35] have shown that the optimum scale for mapping 

agricultural areas is the plot scale because of the inherent plot 

structure of such areas. 

The present study proposes an operational methodology for 

soil moisture mapping over bare soils that is based only on 

TerraSAR-X data. An empirical soil moisture estimation 

algorithm will be developed and validated over several 

agricultural study sites. The potential of TerraSAR-X data for 

mapping bare soils will also be investigated for different 

TerraSAR-X configurations, soil moisture conditions, and 

crop growth stages. Finally, an operational mapping process of 

soil moisture that proceeds from bare soil detection to soil 

moisture estimation will be carried out over a TerraSAR-X 

time series. All processes are  based on a single configuration 

of TerraSAR-X data, thus reducing both processing time and 

cost. 
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I. MATERIALS AND METHODS 

A. Study Sites 

Six sites were used in this study. These sites are located in 

contrasting geographic and climatic environments, a feature 

that allowed us to test the robustness and the transferability of 

the approaches that were developed (Fig. 1). 

- Orgeval watershed: This study site is located to the east of 

Paris, France (Lat. 48°51'N; Long. 3°07'E). The main land use 

is arable farming for wheat and maize. The terrain is flat, and 

the topsoil composition is predominantly loamy (17% clay, 

78% silt, and 5% sand). This soil composition promotes crust 

development, which increases soil sealing and causes runoff 

[36]-[37]. The Orgeval watershed has been managed since 

1962 as an experimental basin for hydrological research by the 

National Research Institute of Science and Technology for 

Environment and Agriculture (IRSTEA).  

- Versailles plain: This study site is located near Paris, 

France (Lat. 48° 51'N; Long. 1° 58'E). Its territory is 

characterized by a discontinuous urban fabric and intensive 

development of agricultural activities. Due to its geographical 

proximity to the Parisian urban zone, this agricultural territory 

recycles considerable organic waste through agricultural 

activities. It is flat, and its topsoil composition is 

predominantly loamy (24% clay, 59% silt, and 17% sand). 

- Villamblain site: This study site is located southwest of 

Paris, France (Lat. 48°00'N; Long. 1°34'E). It is characterized 

by large agricultural fields, and the main crops are wheat and 

corn. It is flat, and its topsoil composition is loamy (30% clay, 

60% silt, and 10% sand).  

- Yzeron watershed: This study site is located southwest of 

Lyon, France (Lat. 45°46'N; Long. 4°39'E). It is a peri-urban 

watershed that is regularly subjected to flooding. Its land use 

is dominated by forest, pasture and crops, although a 

significant part of the catchment is heavily impacted by human 

activity. The topography is very marked, with slope gradients 

of over 10%. Its topsoil composition is predominantly sandy 

loam (13% clay, 20% silt, and 67% sand). 

- Thau watershed: This study site is located near 

Montpellier, France (Lat. 43°26'N; Long. 3°40'E). Its land is 

primarily used for cereal crops (wheat) and vineyards. The soil 

composition is predominantly loamy (35% clay, 52% silt, and 

12% sand). 

- Garon site: This study site is located near Montpellier, 

France (Lat. 43°45'N; Long. 4°23'E). It is flat and 

characterized by highly diversified agricultural use (field 

crops, orchards, vineyards, market gardens, meadows, 

and fallow land). The soil composition is predominantly 

loamy (40% clay, 54% silt, and 6% sand). 

 

B. TerraSAR-X Data 

Thirty-nine TerraSAR-X images were acquired between 

2008 and 2010. The images are acquired in spotlight mode 

(pixel spacing ~1 m), with incidence angles between 23° and 

54° and using HH or VV polarization (Table 1). 

TerraSAR-X data were radiometrically calibrated using the 

following equation (1) [38]: 

σ° (dB) = 10.log10 (Ks. DNi² - NEBN) 

                           +10.log10 (sin ) 

 

(1) 

This equation converts the digital number of each pixel 

( ) into a backscattering coefficient in decibels ( ) that is 

corrected for sensor noise (NEBN). This calibration process 

takes into account the radar incidence angle ( ) and a 

calibration constant (Ks) provided in the image data. The 

images were then georeferenced using aerial orthophotographs 

(50 cm spatial resolution). The root mean square error of the 

control points was approximately one pixel (i.e., 1 m). For the 

Yzeron data, a radiometric terrain correction was performed 

with the radiometric correction module implemented in the 

ERDAS Leica geosystem software using a Lidar DEM (2 m 

spatial resolution). The use of these calibration processes not 

only permitted multi-temporal analysis of different images of 

a single study site but also made possible the comparison of 

radar signals between the different study sites.  

Finally, the dataset was divided into four sets, as described 

below (Table 1): 

SMAC (Soil Moisture Algorithm Calibration) was used to 

define relationships between radar signals and soil moisture 

(182 plots measured in situ: Orgeval 2009, Versailles, 

Villamblain); 

SMAV (Soil Moisture Algorithm Validation) was used to 

validate the relationships between radar signals and soil 

moisture derived from the SMAC dataset and to test the 

robustness of these relationships (121 plots measured in situ: 

Yzeron, Thau, Garon, Orgeval 2010);  

BSD (Bare Soil Detection) was used to evaluate the 

potential of TerraSAR-X data for bare soil mapping (Orgeval 

2009 and 2010); 

BSMOM (Bare Soil Moisture Operational Mapping) was 

used to test the applicability of the bare soil moisture 

operational mapping method (48 plots measured in situ: 

Orgeval 2010). 

 

C. Optical Data 

Optical data are used both to identify training objects and to 

validate the accuracy of the TerraSAR-X bare soil mapping 

approaches (Table 2). In a first step, optical images were 

calibrated in ‘Top Of the Atmosphere’ (TOA) reflectance and 

georeferenced using aerial orthophotographs (50 cm spatial 

resolution). The NDVI images were then calculated from each 

image in TOA spectral reflectance. Oriented object 

classifications were then conducted to obtain landcover maps 

from each optical image using eCognition software. 

Segmentation processes were based on the NDVI image 

because it is the best feature by which to differentiate bare soil 

from vegetation and because it permits easily obtaining 

homogenous objects without jagged boundaries at field scale. 

Table 3 lists the segmentation parameters that were used. 

Once each image had been segmented, different rules were 

used to differentiate bare soil, developed crop, sprouting crop, 
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open water, forest and urban areas. Rules were based on the 

mean and standard deviation of the NDVI, the mean and 

standard deviation of the spectral values, and on border 

features (the ratio between the border lengths of the image 

object and the smallest enclosing rectangle). Border features 

were used to differentiate bare and sprouting crops from urban 

objects; this was possible because the shapes of urban objects 

are strongly jagged, whereas crops have a compact shape. 

The comparison of landcover maps obtained from optical 

images with in situ observations and expert photo-

interpretation showed good agreement. Bare soils are very 

well identified, but there is sometimes confusion between bare 

soils and urban areas. Moreover, pixels of images of forests 

and developed crops are sometimes mixed in the same object 

during the segmentation process. As a result, after the 

classification process, some confusion between forest and 

developed crop areas persisted.  

To evaluate the potential of TerraSAR-X data in 

differentiating bare soils from other landcover classes, the 

same training objects were used from the beginning (March) 

to the end (May) of the 2009 time series and from the 

beginning (March) to the end (March) of the 2010 time series. 

For the 2009 BSD TerraSAR-X dataset, training plots are 

identified from IKONOS and SPOT-5 landcover maps (Fig. 

2). Only training plots classified as bare soil, forest, or 

developed crop on both IKONOS and SPOT-5 landcover 

maps were selected. Consequently, possible inaccuracies in 

the IKONOS and SPOT-5 landcover maps due to 

classification or segmentation were overcome. In our 

separability study, urban areas and open waters are not used 

because they are easily detectable on TerraSAR-X images. 

Moreover, because sprouting crops and bare plots give similar 

TerraSAR-X signals, their separation is not possible. 

Consequently, sprouting crops are not studied. 

For the 2010 BSD dataset, only one optical image acquired 

in May is available on the Orgeval study site, whereas the 

TerraSAR-X time series was acquired in March (Table 1). 

Nevertheless, all bare soils and forests in the landcover map of 

May 2010 were also bare soils and forests in March 

(TerraSAR-X acquisitions). Of the plots identified as 

developed crops on the landcover map in May, only the plots 

with the highest NDVI were assumed be developed crops in 

March. These plots were selected as training plots and were 

used to analyze the potential of the TerraSAR-X data for 

distinguishing bare soil from the other landcover classes.   

Finally, to test the accuracy of the bare soil map obtained 

from the BSMOM TerraSAR-X dataset (Table 1), a reference 

bare soil map is created from the RapidEye landcover map 

(Fig. 8). To accomplish this, each pixel classified as bare soil 

or sprouting crops in the RapidEye landcover map of May 

2010 is classified as bare soil in the bare soil map of validation 

of March 2010. The fact that sprouting crops in May were 

bare soils in March is confirmed by the fact that two bare soils 

measured in situ in March 2010 are classified as sprouting 

crops in the RapidEye May 2010 landcover map. Moreover, 

this observation is coherent with the evolution observed in the 

2009 TerraSAR-X time series: sprouting crops in the SPOT-5 

landcover map were bare soil in the IKONOS landcover map. 

All other pixels are classified in the ‘other’ class (Fig. 8).  

 

D. Ground Measurements 

Simultaneously with TerraSAR-X acquisitions (between 

2008 and 2010), ground measurements of soil moisture and 

surface roughness were obtained on several bare training plots. 

Gravimetric and TDR (time-domain reflectometry probe) soil 

moistures were collected over depths of 0-5 cm at the time of 

the satellite overpasses. For each training plot, twenty 

gravimetric samples were taken and 20 to 40 TDR 

measurements were performed. Gravimetric measurements 

were converted into volumetric moisture (mv) based on bulk 

density. The location of each in situ measurement was 

recorded using a GPS device. The soil moisture of each 

training plot was assumed to be equal to the mean value 

estimated from the measurements collected in each training 

plot. Ground surveys conducted between 2008 and 2010 

produced soil moisture values ranging between 5.7% and 

40.6% (Table 1). 

Soil roughness measurements were also conducted using ten 

profiles of a 1 m long profilometer with a 2 cm sampling 

interval. The surface roughness of a given bare soil is defined 

statistically using the standard deviation of surface height 

(Hrms) and the correlation length (L). The Hrms values of the 

plots obtained during the ground surveys varied between 0.4 

and 4.6 cm (Table 1). The lowest values (0.4 to 1.5 cm) 

corresponded to recently sown plots, whereas the highest 

values (above 1.5 cm) corresponded to winter and recently 

ploughed plots. The correlation length (L) varied from 1.7 cm 

in sown plots to 9.3 cm in ploughed plots. Thus, data collected 

between 2008 and 2010 covered a very wide range of soil 

surface conditions (dry to wet and smooth to rough).  

 

II. RESULTS 

A. Sensitivity of TerraSAR-X signals to soil moisture  

The SMAC dataset (Table 1) was used to establish 

empirical relationships between the backscattered signal and 

the in situ soil moisture. At C- or L-bands, it is commonly 

assumed that the backscattered signal of bare soils can be 

formulated as the sum of a function dependent on soil 

moisture  (f) and a function dependent on surface roughness 

(g) [21]-[10]. Early investigations showed a logarithmic 

dependence between the radar signal and the soil moisture 

[39]-[17]. This logarithmic function could be approximated by 

a linear relationship for moisture contents between 10-15% 

and 35-40% (e.g., [21], [40]). The relationship between the 

radar signal and the soil surface roughness is exponential [15]-

[10]. The backscattered signal (σ°) can be written as (2): 

σ° (dB) = f (mv, θ, pp, k)dB + g (Hrms, θ, pp, 

k)dB +C 

for 10-15% < mv < 35-40%: 

(2) 
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        = A. mv + B e – k.Hrms + C 

for 5% < mv < 40%: 

       = A. ln(mv)+ B e – k.Hrms + C  

 

where k is the radar wave number, θ is the radar incidence 

angle (degree), pp is the polarization and (A, B, C) correspond 

to coefficients that depend on the radar incidence angle, 

polarization, and radar wave number. In the X-band, for bare 

agricultural plots, the effect of soil roughness on the 

TerraSAR-X signal is low and is mainly a function of the 

moisture content [19]. 

In the case of single SAR configurations (one incidence and 

one polarization), the bare agricultural soil moisture estimate 

requires that the relationship between the backscattered signal 

and the soil moisture be determined without taking into 

account the soil roughness (e.g., [15]-[41]). In our study, the 

SMAC dataset (Table 1) included soil moisture values below 

and above 15%. Consequently, the backscattered signal was 

described by a logarithmic function of soil moisture. Thus, the 

relationship between the SAR signal and soil moisture can be 

written as follows (3): 

σ° (dB) = A. ln(mv) + β (3) 

For a given SAR configuration, the sensitivity of the SAR 

signal to soil moisture (A) is principally controlled by the 

SAR acquisition configuration (incidence angle, polarization, 

and radar wavelength). To determine the coefficients A and β, 

the mean backscattering coefficient calculated for each 

training plot of the SMAC dataset was plotted as a function of 

in situ soil moisture regardless of soil roughness. TerraSAR-X 

data acquired at HH and VV polarizations were plotted 

together because they are very well correlated [42]-[28]. One 

graphic was created for each range of incidence angle (25° and 

33°, 50° and 54°) (Fig. 3). 

Fig. 3 shows that the sensitivity of TerraSAR-X signals to 

soil moisture is higher for a low incidence angle and low soil 

moisture than for a high incidence angle and high soil 

moisture. However, the dependence of the TerraSAR-X signal 

on soil moisture shows high sensitivities for both low and high 

incidence angles (0.34 dB/% at 25°-33° and 0.28 dB/% at 50°-

54° for moisture contents between 15% and 40%). In 

conclusion, the estimation of  bare soil moisture using mono 

configuration TerraSAR-X data could be performed with 

either low (25°-33°) or high (50°-54°) incidence angles, 

regardless of the polarization (HH or VV). In comparison with 

C-band studies, the sensitivity of the TerraSAR-X signal to 

soil moisture appears to be higher in the X-band than in the C-

band data, regardless of the incidence angle (e.g., [8]-[9]-

[43]). Indeed, the relationship between the radar signal at the 

C-band and soil moisture varies commonly between 0.15 

dB/% and 0.3 dB/% according to the incidence angle and the 

characteristics of the study sites.  

The estimation of soil moisture from TerraSAR-X data is 

based on the inversion of the relationships established between 

σ° and mv from the SMAC dataset (3) (Fig. 3). A linear 

interpolation of the relationships obtained for low (25°-33°) 

and high (50°-54°) incidence angles was also performed to 

compute the coefficients of the relationship between σ° and 

mv for 40° (4). Thus, the soil moisture estimation using single 

TerraSAR-X configuration can be obtained from the following 

relationships (4): 

HH and VV at 25°-33° 

mv= e [ (σ° (dB)+33.167)/8.8054] 

HH and VV at 50°-54° 

mv = e [ (σ° (dB)+30.974)/6.9482] 

HH and VV at 40°            

mv = e [ (σ° (dB)+32.120)/7.9190]                

(4) 

 

 

 

B. Validation of relationships between radar signal and 

soil moisture 

The SMAV dataset (Orgeval 2010, Yzeron, Thau, Garon) 

was used to test the robustness of the relationships between 

TerraSAR-X signals and soil moisture. In a first step, the 

mean backscattering coefficient was calculated for each bare 

training plot of the SMAV dataset.  Then, according to the 

incidence angle of the TerraSAR-X image, the relationship 

between mv and σ° defined in (4) is used to invert the 

backscattered signal into soil moisture. The inversion 

procedure was performed using TerraSAR-X data acquired at 

HH23°-25°, VV26°-35°, VV52°, and VV-41° (Table 1). The 

TerraSAR-X soil moisture estimates were compared to the in 

situ soil moisture measurements. The comparisons showed 

good agreement between the estimated and measured soil 

moistures (Table 4 and Fig. 4).  

The soil moisture was estimated with a Root Mean Square 

Error (RMSE) of 3.8% (mean bias = 0.7%) when all of the 

site-by-site data were pooled; the error ranged from 2.5% to 

5.0% (Table 4). Moreover, the TerraSAR-X soil moisture 

estimation accuracy is of the same order at low and at high 

incidence angles (RMSE = 3.7% for HH and VV polarizations 

and incidence angles between 23° and 35°, 2.1% for VV-41°, 

and 4.5% for HH and VV49°-52°). The accuracy of the soil 

moisture estimates derived from TerraSAR-X data is of the 

same order for sandy loam (Yzeron) and for loamy soil 

compositions (Orgeval, Thau, and Garon) (Table 4). In 

summary, the results show that relationship between the 

TerraSAR-X signal and soil moisture is robust regardless of 

the study site and the TerraSAR-X configuration. High and 

low incidence angles (23° to 52°) both give satisfactory 

performance (RMSE < 4%). 

 

 

C. Potential of TerraSAR-X data for bare soil detection  

For soil moisture mapping from SAR images over bare 

agricultural areas, it is essential that the bare soil map be 

available. Commonly, the bare soil map is obtained by 

classifying optical images (e.g., [23]-[9]-[18]). Nevertheless, 

due to bad weather conditions during the autumn and winter, it 

is sometimes difficult to acquire optical images from dates 
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close to those of the SAR acquisitions. Moreover, it would be 

operationally very useful to extract the bare soils from these 

same SAR images. Thus, it is important to be able to create 

bare soil maps without optical data and from the primary 

TerraSAR-X data of the time series. 

The potential of TerraSAR-X data to differentiate bare soil 

from other landcover classes was evaluated using the BSD 

dataset acquired over the Orgeval study site in 2009 and 2010 

(Table 1). This analysis allows us to determine the best SAR 

configuration (incidence angle) and the optimal soil moisture 

conditions for bare soil mapping from TerraSAR-X data. 

Training objects with their landcover class identified from 

optical landcover maps allow us to validate the potential of 

TerraSAR-X data for use in differentiating bare soil from 

other landcover classes such as forest areas and crops. 

 

1) Effect of TerraSAR-X configurations and soil moisture 

conditions 

The objective of this study is to determine the best 

TerraSAR-X incidence angle and the optimal soil moisture 

condition to differentiate bare soil from forest and crops. For 

each TerraSAR-X image, the mean and the standard deviation 

of the TerraSAR-X signal is calculated for each landcover 

class using all training plots of each class. The signal of each 

landcover class is then analyzed with respect to soil moisture 

conditions for three incidence angles: low (25°), medium (40°) 

and high (50°) (Fig. 5). Because HH and VV are strongly 

correlated in the X-band for vegetation cover [28]-[44], HH 

and VV polarization are analyzed together. Reference [28] 

observed that, for bare soils and crops, the HH response in the 

X-band is slightly higher than that of the VV response (less 

than 1 dB). 

As shown, the backscattered signal of bare soils follows the 

behavior of the soil moisture regardless of the TerraSAR-X 

acquisition parameters (i.e., incidence angle) (Fig. 5). For 

example, the signal of bare soils for HH-25° decreases by 6.8 

dB between March 26 and April 17, 2009 for a decrease of 

soil moisture of 13.1%. Moreover, the TerraSAR-X signal 

dynamic with the moisture content of bare soils is higher at a 

low incidence angle (25°) than at a high incidence angle (50°) 

[19].  

In the two BSD TerraSAR-X time series (2009, 2010), the 

forest signal at HH polarization is almost constant (± 1dB) for 

each incidence angle (25° and 50°) regardless of the soil 

moisture content (Fig. 5). This is due to the low penetration 

depth of the X-band in the forest cover (almost zero). The 

standard deviation of the backscattered signal from forest is 

constant and below 1 dB whatever the TerraSAR-X 

configuration (incidence angle, polarization). At the beginning 

of crop growth (approximately April 17, 2009), the TerraSAR-

X signal backscattered from crops (mainly winter wheat) is 

dominated by direct backscatter from the soil. Indeed, the 

TerraSAR-X signal follows the in situ soil moisture variation 

regardless of the incidence angle (25° and 50°) (Fig. 5). This 

result confirms the results of previous studies in which it was 

demonstrated that the TerraSAR-X signal can penetrate the 

vegetation cover at the early crop stage [28]. Indeed, between 

March and April 2009, the measured wheat height over the 

Orgeval study site varies between 10 and 20 cm. Moreover, 

the wide TerraSAR-X time series of 2009 at the incidence 

angle of 25° allows us to observe the multitemporal 

backscattered signal behavior of wheat crops. After April 17, 

2009, the direct soil contribution is attenuated by the presence 

of stems. The backscattered signal obtained on April 28, 2009 

is  dominated by direct scatter from the leaves and stems; 

later, on May 11, 2009, it is strongly affected by scatter from 

the ears. The contribution of the stems is also important in the 

final growth phase. This result is in agreement with the results 

of many other studies [45]-[44]. Regardless of the incidence 

angle, the standard deviation of the backscattered signal from 

the crops is approximately 1.5 dB during the early season. For 

developed crops from April 27 to May 11, 2009, the standard 

deviation is approximately 2.5 dB at 25° and 3.6 dB at 50°.  

In conclusion, at the early crop growth stage, although the 

signal from crops is slightly attenuated by the vegetation 

cover, the total backscattered signal is dominated by the direct 

soil backscatter (i.e., by soil moisture). The signal difference 

between bare soil and crops is slightly greater at 25° than at 

the 50° incidence angle. Moreover, this difference is greater at 

high (>25%) than at low soil moistures. The signal difference 

between bare soils and crops increases with crop growth, and 

this difference becomes important under all soil moisture 

conditions when crops are developed. The signal difference 

between bare soils and forest is important for TerraSAR-X 

data acquired at wet (25-30%) and dry (<10-15%) soil 

moisture conditions regardless of the TerraSAR-X incidence 

angle. For a soil moisture content of approximately 15%, 

forests and bare soils have similar TerraSAR-X signals at 25° 

and 50° incidence angles. Indeed, the forest signal is almost 

constant at these two angles, and its value is of the same order 

as the signal value obtained from bare soils with a moisture 

content of approximately 15-20%.  

 

2) Separability between landcover classes 

Previous studies have shown that the use of both SAR 

signals and textural features improves the SAR classification 

of different types of crops [34] or forests [30]-[13]. To test the 

potential of textural features in differentiating bare soils from 

forests and crops, 64 textural features are calculated in 

addition to the SAR signal (mean and standard deviation 

computed at plot scale); these include the 4 textural features 

described by [46] (computed from windows 7x7 pixels in size 

and averaged at plot scale) and the 12 textural features defined 

by [47] and computed for 5 directions (all directions, 0°, 45°, 

90°, and 135°) (Table 5). 

Textural and signal features are computed for each training 

object (Table 4) and each TerraSAR-X image of the BSD 

dataset (Table 1).  

To reflect the overall classification accuracy that will be 

attained in using a feature to differentiate bare soil from crops 

or forest, the Jeffry-Matusita distance is used. Indeed, the 

Jeffries-Matusita distance measures the separability between 

two classes on a scale of 0 to 2, as described by the following 

equation (5): 
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 (5) 

where B is the Bhattacharyya distance [48]. 

Total separability between two classes in using a given 

feature is indicated by J = 2 (no misclassifications). The lower 

the J value, the poorer the separability and the higher the 

number of misclassified objects [49]. Thus, a minimum Jeffry-

Matusita distance between two classes of approximately 1.5 is 

suitable to yield a limited number of misclassified objects 

[50].

Fig. 6 shows the separability (mean and standard deviation) 

for each signal feature and for each Irons & Petersen textural 

feature.   

 

2.1) Separability between bare soils and forests 

At an incidence angle of 25°, the minimum Euclidian 

distance and variance of bare soils and forests show 

separabilities of greater than 1.5 under all soil moisture 

conditions (Fig. 6a). Moreover, when using the mean signal, 

the separability between bare soils and forests is above 1.5 

(J>1.5) only for soil moistures above 25% (March 17 and 26, 

2009; May 11, 2009; March 2 and 4, 2010). At an incidence 

angle of 50°, the separability between bare soils and forests 

increases between March 18 and April 27, 2009 when using 

the signal standard deviation (leaves development) (Fig. 6a). 

Moreover, the standard deviation is greater than 1.5 for all 

images. The results also show that the mean signal provides 

high separability between bare soils and forests for soil 

moistures above 35% and below 15-20%. The textural features 

of bare soils and forests have lower separability than their 

signal features. The Haralick textural features are above 1.5 

only after April 20, 2009 (developed leaves) regardless of the 

incidence angle. The best features are GLCM correlation 0°, 

GLDV entropy 45°, and GLDV contrast in all directions. 

 

2.2) Separability between bare soils and crops 

At early crop growth stages (before April 17, 2009 and 

during the 2010 time series), the separability between bare 

soils and crops is greater when using the mean signal than 

when using the signal standard deviation or textural features, 

regardless of the TerraSAR-X configuration (incidence angle) 

or soil moisture conditions (Fig. 6b). The maximum 

separability between bare soils and crops (approximately 1.4) 

is observed when using the mean signal for soil moisture 

conditions above 35% at 50° incidence angle (March 1, 2010) 

or for soil moisture contents above 25% at 25° incidence angle 

(March 26 and April 8, 2009; March 2, 2010). For incidence 

angles of 25° and 50°, the separability between bare soils and 

crops obtained using the mean signal decreases with decreased 

soil moisture (for example, between April 8 and 17, 2009 at 

25° and between March 25 and April 9, 2009 at 50°). The 

presence of slaking crust on March 17 and 18, 2009, which 

generates signal variations at the bare plot scale due to soil 

moisture variation, results in a decrease of the separability 

between bare soils and crops. 

The separability between bare soils and crops increases with 

the development of crops at incidence angles of both 25° and 

50°. When using the mean signal feature, the separability 

between bare soils and crops is greater than 1.5 (April 20, 27, 

and 28 and May 11, 2009) regardless of the soil moisture 

conditions. The best feature is the mean signal, but the 

minimum Euclidian distance and the variance give also good 

separabilities (J>1.5). When Haralick textural features are 

used, the separability between bare soils and crops is greater 

than 1.5 only when the crops are well developed. At both 25° 

and 50° incidence angles, the best features are GLCM 

contrast, GLCM dissimilarity, GLCM second moment, GLCM 

entropy, GLDV contrast, and GLDV mean (all directions). 

Finally, the separability between bare soils and crops is not 

influenced by the computation angle (0°, 45°, 90°, 135°) 

(similar separability as with features all directions) when using 

Haralick texture. 

In conclusion, bare soils and forests could be differentiated 

from TerraSAR-X data at 25° incidence angle regardless of 

the soil moisture conditions by using the minimum Euclidian 

distance or the variance. At a 50° incidence angle, the signal 

standard deviation is the best feature to use whatever the soil 

moisture conditions. To obtain a limited number of 

misclassified objects between bare soils and crops at early 

crop stages, the mean signal of TerraSAR-X data acquired in 

high soil moisture conditions (approximately 35%) is required. 

Moreover, the separability between bare soils and developed 

crops obtained by using the mean signal feature is the highest 

regardless of the soil moisture conditions. Thus, although 

textural features have previously been shown to improve the 

SAR classification (X-band) of different crop types when 

crops are well developed [34], their potential to improve the 

discrimination of bare soils from crops appears limited. 

Moreover, the separability between bare soils and other 

landcover (forests and crops) does not improve the 

discrimination when two incidence angles are used instead of 

one. 

  

D. Operational TerraSAR-X soil moisture mapping 

The BSMOM dataset is used to test the applicability of a 

bare soil moisture mapping method (Table 1). This dataset 

permits monitoring of the temporal variations of soil moisture 

during a winter drying period of 13 days. It also permits the 

observation of the spatial variations of soil moisture both at 

the ‘within-plot’ and watershed scales.  

 

1) Bare soil mapping 

The first step in bare soil moisture mapping is to identify 

bare soils from the other landcover classes. Thus, the bare soil 

map should be obtained as soon as the beginning of the 

TerraSAR-X time series. Because the BSMOM TerraSAR-X 

dataset is acquired during early crop growth (March, 2010), 

bare soils mapping requires TerraSAR-X data acquired in wet 

soil moisture conditions, as demonstrated previously. Thus, a 

bare soils map is created from the first TerraSAR-X image 

(March 1, 2010; HH-50°) of the BSMOM dataset. Moreover, 

the soil moisture, which is approximately 36% at this stage, is 

optimal for differentiating bare soils from other landcover 

classes. An object-oriented approach based on segmentation 
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and supervised classification is used to map bare soils based 

on the TerraSAR-X data of March 1, 2010. 

 

1.1) Segmentation of TerraSAR-X image 

To obtain the best bare soils object boundaries, the 

segmentation of the March 1, 2010 image is based on signal 

(backscattering coefficient) and minimum Euclidian distance. 

Indeed, for this TerraSAR-X acquisition, these two features 

are optimal to differentiate bare soils from forest and crops 

(Fig. 7). Because the signal has a greater separability value 

than the minimum Euclidian distance, a higher weight is 

assigned to the signal layer in the segmentation process. To 

improve the segmentation, the signal is filtered three times by 

a 7x7 Lee filter [51]-[52]-[53].  

The visual evaluation of the segmentation quality of March 

1, 2010 shows homogeneous and representative objects (Fig. 

7). Compared to the results of optical segmentation, the 

TerraSAR-X segmentation results showed more ragged 

delineated segments. Well contrasted boundaries between 

landcover classes are correctly shaped by the segmentation, 

but the areas with low contrast are inaccurately shaped by the 

segmentation. 

 

1.2) Bare soil detection using TerraSAR-X images 

After segmentation, a supervised classification of each 

object is conducted to obtain a bare soils map for the BSMOM 

dataset. Several training objects representing bare soils, forests 

and crops are selected, and their signal values are computed. 

The backscattering coefficient feature is chosen because, as 

demonstrated previously, it is the best feature to use to 

differentiate bare soils from forests and crops. The optimal 

thresholds for differentiating bare soils from forests and crops 

are determined using the approach developed by [49]. The 

results show that bare soils are distinguished from forest by 

the condition σ°March 1, 2010 ≥ -10.8dB and from crops by the 

condition σ°March 1, 2010 ≥ -8.8 dB. Thus, bare soils can be 

distinguished from other landcover classes based on the 

condition σ°March 1, 2010 ≥ -9 dB. Above this threshold, all 

objects are classified as “bare soils”; below this threshold, all 

objects are classified as “other”.  

The validation of the March 1, 2010 bare soils map is 

performed in comparison to the reference bare soils map 

created from the RapidEye landcover map (Fig. 8). Both pixel 

and object-based confusion matrices are performed because 

these two methods do not lead to the same measure of 

accuracy. A pixel-based confusion matrix evaluates the global 

accuracy (influenced by boundary errors), whereas an object-

based confusion matrix measures the thematic accuracy and is 

only influenced by labeling error [54]. The pixel-based 

confusion matrix shows an overall accuracy of 84.6% and a 

kappa value of 0.65, and the object-based confusion matrix 

shows an overall accuracy of 92.2% and a kappa value of 0.83 

(Table 6). Thus, the bare soils map obtained using only a 

single configuration (HH-50°) of TerraSAR-X has a good 

level of accuracy regardless of the confusion matrix sampling 

approach. The comparison made here between pixel- and 

object-based accuracies emphasizes the problem of ragged 

plot boundaries in the results obtained using the TerraSAR-X 

segmentation process.  

Commission errors are imputed mainly to crop growth 

between the acquisition dates of RapidEye (May 26) and the 

TerraSAR-X image (March 1). Indeed, sprouting crops in 

March become developed crops in May. Because sprouting 

crops and bare soils cannot be differentiated using TerraSAR-

X signals, sprouting crops are classified as bare soils in the 

TerraSAR-X bare soils map (March 1). Consequently, some 

objects classified as crops in the RapidEye reference map were 

sprouting crops in March and were classified as bare soils in 

the TerraSAR-X classification.  

 

An unsupervised object classification (Isodata: 3 classes and 

6 iterations) based on the TerraSAR-X segmentation and a 

supervised object classification using digitalized object 

boundaries were also evaluated and compared to the 

previously described classifications (TerraSAR-X 

segmentation and supervised classification). Although the 

overall object-based accuracies are similar (between 92% and 

94%) (Table 7), the overall pixel-based accuracy of the 

supervised classification using digitalized object boundaries is 

considerably higher (94%) than that of other methods of 

classification using TerraSAR-X segmentation (85%) (Table 

7). Indeed, digitalized object boundaries overcome the error of 

segmentation (no ragged boundaries); consequently, there are 

no misclassifications of the boundary pixels. Moreover, only a 

short processing time is needed for unsupervised 

classification. Thus, unsupervised object classification could 

be sufficient to detect bare soils with good accuracy in an 

operational process of soil moisture estimation. 

 

2) Bare soil moisture mapping 

For each TerraSAR-X image of the BSMOM dataset (Table 

1), the mean backscattering coefficient is calculated for each 

bare soil object detected on the March 1, 2010 TerraSAR-X 

image. The same bare soils map is used throughout the 

TerraSAR-X time series because the BSMOM dataset covers a 

short winter time period (13 days) during which the landcover 

change is assumed to be negligible. A window size of 7x7 

pixels was used to compute the backscattering coefficient 

from the acquired TerraSAR-X images. Indeed, this window 

size results in reduction of speckle noise and retains the high 

resolution of TerraSAR-X data necessary to observe ‘within-

plot’ soil moisture variations [19]. Subsequently, for each 

TerraSAR-X image, the relationship σ°dB (mv) corresponding 

to the same radar configuration (incidence) was used to invert 

the backscattered signal into soil moisture. A flowchart 

depicting the bare soil moisture mapping method is presented 

in Fig. 9. 

Fig. 10 shows the results of bare soils moisture mapping of 

the BSMOM dataset; this data allows the investigator to 

monitor the temporal variations in soil moisture during a 

winter drying period of 13 days. At the beginning of the 

TerraSAR-X time series acquired in 2010, the average 

estimate of soil moisture on the watershed is approximately 

36% (standard deviation = 11.1%) for March 1, 2010 (Fig. 10, 
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and Table 8). The mean soil moisture then decreases to 27.8% 

on March 4, in accordance with the lack of precipitation and 

an air temperature between 0°C and 10.6° C (Table 8).  

On March 5, the moisture content estimate for the 

watershed is approximately 17.7%. The marked decrease in 

soil moisture that occurs between March 4 and March 5 (-10% 

in only one day) is not in accordance with the decrease shown 

by in situ measurements (-1.2%). Indeed, the TerraSAR-X 

image was acquired at 05h52 (UTC) at a minimal air 

temperature of approximately 2.5°C. The low ambient 

temperature resulted in the freezing of a portion of the liquid 

water in the soil and caused a significant decrease in the 

microwave signal due to the difference in the dielectric 

properties of liquid and solid water [55]. Thus, the low 

backscattered signal on March 5 produced a lower soil 

moisture estimate because the soil content of liquid water is 

small (ice crystals are present in the pores of the soil). Thus, 

the relationship between the radar signal and the soil moisture 

developed in this paper is not applicable in cases of frozen 

soils. In the C-band, a decrease of -3 dB to -5 dB in the 

backscattered signal has already been observed for freezing 

soil [56]-[57]-[58]. 

The lack of precipitation between March 5 and March 10 

explains the decrease in in situ soil moisture measurements on 

March 10 (20% vs. 30.4% on March 5). The estimated 

moisture content estimated from TerraSAR-X images also 

decreases between March 5 and March 10 (12.2% on March 

10 vs. 17.7% on March 5). Nevertheless, the soil moisture 

estimate obtained using TerraSAR-X images is 

underestimated, and the decrease in soil moisture is less (~ -

5.5%) than that observed in situ (~ -10.4%). This difference 

can be explained by the frozen condition of the soil (the 

minimum air temperature between March 5 and March 10 was 

approximately -3°C, and the images were acquired during the 

early morning). This is an important consideration when the 

imaged soil is frozen because the TerraSAR-X signal is only 

sensitive to liquid water, whereas gravimetric measurements 

integrate all water content. 

Between March 10 and March 12, the minimal air 

temperature remained around -3°C. In situ measurements 

show a slight decrease in soil moisture between March 10 and 

12 (20% and 18%, respectively), whereas the estimated soil 

moisture increases slightly between these two dates (12.2% 

and 14.7%, respectively). The observed increase in soil 

moisture in the absence of rain is explained by the effect of 

frozen soil on the SAR signal. Indeed, on March 10, the 

TerraSAR-X signal, which was acquired at 06h47 UTC, 

measures only the liquid water, whereas on March 12 the 

TerraSAR-X signal acquired at 17h43 UTC measures both the 

soil liquid water of March 10 and the portion of the total water 

that thawed during the day on March 12. Thus, the amount of 

liquid water in the soil is greater on March 12 than on March 

10, and the TerraSAR-X sensor measures an increase in soil 

moisture despite the fact that the gravimetric measurements 

show a decrease in soil moisture due to lack of precipitation 

and soil drying. 

In a similar manner, the soil moisture estimated using the 

TerraSAR-X data increases from 14.7% to 17.5% between 

March 12 and 13, whereas the soil moisture measured in situ 

remains constant (~18.5%). The increase in the soil moisture 

estimate is consistent with the thawing of the soil; such 

thawing engenders a decrease in the amount of ice crystals in 

the macroporosity and an increase in the amount of liquid 

water in the soil (the radar image was acquired at 17h26 UTC 

at an air temperature above 0°C).  

The presence of slaking crust on some bare soil plots leads 

to within-plot variations in the soil moisture on March 4, 12 

and 13 (Fig. 10). Reference [19] have shown, using data 

obtained in winter 2009, that the soils on this watershed 

consist of two loamy soils, one of which is sensitive to slaking 

crust formation on the topsoil layer (16% clay, 78% silt, and 

6% sand) and one that is without slaking crust (24% clay, 71% 

silt, and 5% sand). Their results show that crusted soils (CS) 

have greater soil moisture than soils without crusts (SWC). 

Indeed, slaking crusts are resistant to water infiltration and 

favor hydric inertia; consequently, soil moisture content is 

retained longer in soils covered by crusts than in soils without 

crusts [19]. 

At the beginning of the TerraSAR-X time series (March 1 

and 2), there was no difference in the soil moisture estimates 

for SC and SWC soils (below 1.5%). The in situ difference in 

soil moisture between the two types of soil was of the same 

order of magnitude (below 4%) in comparison to the 

TerraSAR-X radiometric precision (1dB). For these dates, no 

variation in soil moisture was observed within the plots 

because the previous rainy events (19.4 mm between February 

25 and March 1) balanced the difference in soil moisture 

between the two soil structures. Slight variations in soil 

moisture within plots are detected on March 4 (difference in 

soil moistures approximately 3.7% between SC and SWC) 

(Fig. 10). Indeed, during the dry period that occurred between 

March 2 and 4, the soil moisture of SC remains constant 

because the crust of this soil limits water evaporation; during 

the same period, the soil moisture of SWC decreases due to 

evaporation. Consequently, the difference in soil moisture 

between the two soils structure increases (7.8%). 

On March 5 and 10 (data acquired approximately 6 h UTC), 

no difference in the soil moisture estimates for SC and SWC 

obtained using TerraSAR-X was observed (below 1%), 

whereas the gravimetric measurements show a difference in 

soil moisture greater than 10%. Because the soils were frozen 

on these two acquisition dates, the difference in the moisture 

content estimates of the two soils is likely due to the slight 

difference in liquid water content of SC and SWC, whereas 

the gravimetric measurements represent the total water content 

(solid and liquid) of the two soils. 

On March 12 and 13 (acquired approximately 17h30 UTC), 

within-plot variations in soil moisture are clearly discernible 

on the TerraSAR-X bare soils moisture maps. Indeed, on 

March 12, the two soil structures have begun to thaw, and the 

difference in the soil moisture estimates between SC and SWC 

(9.7%) are in accordance with those measured in situ (12.5%) 

(Fig. 10). Nevertheless, the SCs with high soil moisture cover 

a greater area on March 13 than on March 12 because some 
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areas of SC are still frozen on March 12 but have thawed on 

March 13. The SC areas that thawed later show an increase in 

soil moisture of about +7% between March 12 and 13 (without 

rainy events), whereas the other areas have constant soil 

moisture (only +1.3% between March 12 and 13). Thus, 

slaking crust slows the thawing of soil because the crust on the 

topsoil layer limits heat exchange between the soil and the 

atmosphere (i.e., it limits soil warming). 

Finally, some plots do not show soil moisture variations at 

the within-plot level on the March 12 and 13 images. These 

plots correspond to recently ploughed plots. Indeed, because 

tillage operations destroyed the soil crust, no variation in soil 

moisture, either measured or estimated, was observed within 

these plots. 

To conclude, the bare soils moisture map time series of 

2010 clearly illustrates the difference in hydric processes 

between crusted (SC) and non-crusted (SWC) soils under the 

conditions of a winter dry period (March 1 to 13, 2010). In 

cases where freezing occurred, no difference in soil moisture 

estimates made using TerraSAR-X data was observed between 

the two soil structures. In cases in which thawing occurs, the 

crusted soils are less sensitive to thawing than the soils 

without crust. Thus, SC required more time than SWC to thaw 

fully. Moreover, bare soils moisture maps that show within-

plot variations in soil moisture can be used to derive other 

products, such as slaking crust extent maps or recently 

ploughed plots maps. 

 

III. CONCLUSIONS AND PERSPECTIVES 

This study proposes a methodology to exploit TerraSAR-X 

images in an operational process of bare soils moisture 

mapping. The mapping process uses only mono-configuration 

TerraSAR-X data (incidence angle, polarization) both for bare 

soils detection and for the estimation of soil moisture content. 

The empirical relationships between the bare soils moisture 

content and the TerraSAR-X signal acquired at different SAR 

configurations were first developed using a training database 

of 182 bare plots. The validation of these relationships was 

performed using a second database acquired over four study 

sites (121 plots). The results show that, regardless of the 

TerraSAR-X configuration and the soil surface conditions 

(roughness and soil composition), the Root Mean Square Error 

of the soil moisture estimate is less than 4%. Thus, TerraSAR-

X sensor data can be used to develop soil moisture operational 

products over an extremely wide range of agricultural soil 

surface conditions for soil compositions ranging from loamy 

to sandy clay, for soils with or without slaking crust, and for 

soils with surface roughness ranging from that present at 

sowing (smooth) to that present during winter plowing 

(rough). 

In this work, the differentiation of bare soils from other 

landcover classes was analyzed using the TerraSAR-X mean 

signal (backscattering coefficient) and the same textural 

features that are often used in SAR studies to improve 

discrimination between landcover classes. The results show 

that the potential of TerraSAR-X data to differentiate bare 

soils from other classes is influenced mainly by crop growth 

and the soil moisture conditions regardless of the TerraSAR-X 

incidence angle. Indeed, when crops are fully developed, it is 

always possible to detect bare soils from crops, regardless of 

the soil moisture content, and the mean signal provides better 

separability than the textural features. Nevertheless, at early 

crop growth stages, bare soils detection can only be performed 

using the mean signal acquired under wet conditions. 

The process of retrieving bare soils moisture from 

TerraSAR-X data has been applied using a time series 

acquired at an early crop stage (winter). In this study, bare 

soils mapping was conducted without optical data and using 

only the first TerraSAR-X data of the time series. An object-

based classification was used to create the bare soils map. In 

the segmentation process using the TerraSAR-X image, the 

bare object boundaries were well defined by the minimum  

Euclidian distance and mean signal features. Supervised and 

unsupervised classifications using only the mean signal of 

segmented objects provides bare soils maps with overall 

accuracies based on objects of approximately 92%. The 

overall accuracies of bare soils maps of the same areas based 

on pixels decreased to 84% because of misclassified pixels 

present in the ragged object boundaries created by the 

TerraSAR-X segmentation. The overall accuracy based on 

pixels can be improved by using digitalized plot boundaries 

instead of TerraSAR-X segmentation (94%). The estimation 

of soil moisture was performed on each image of the 

TerraSAR-X time series using the bare soil map and the 

relationships developed previously; the results showed that 

TerraSAR-X sensor data can be used to accurately estimate 

soil moisture and to monitor soil moisture variations at the 

within-plot scale.  

The proposed methodology can provide the bare soils 

hydric state of a specified agricultural area with a short 

processing time of a few hours after image reception. 

Moreover, TerraSAR-X bare soil moisture maps could be used 

to derive other useful products for environmental studies, such 

as slaking crust maps (erosion and agriculture) and soil 

freezing maps (climate change studies). Finally, the high 

periodicity of the TerraSAR-X sensor (~1 day) permits 

acquiring soil moisture maps at time scales suitable for 

hydrologic process monitoring. Future work will address the 

use of the TerraSAR-X soil moisture maps described here as 

input for the development of hydrological models. 
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Figures 

 

Fig. 1. Locations of study sites: Orgeval (1), Versailles (2), Villamblain (3), Yzeron (4), Thau (5), and 
Garon (6). 

 

 

 

 

 

Fig. 2.  Process used in creating training plots for the period March to May 2009 (Orgeval) 
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(a) HH-25°, VV-33° (b) HH-50°, VV-54° 

Fig. 3. Sensitivity of TerraSAR-X signals to surface soil moisture (SMAC dataset) for HH and VV 
polarization acquired with incidence angles from 25 to 33° (a) and from 50 to 54° (b). Each point 

corresponds to the average backscattering coefficient for one training plot. 

 

Fig. 4. Comparison between soil moisture estimates made using TerraSAR-X data and in situ soil 
moisture measurements at the training-plot scale. The SMAV dataset was used. For 95% of the 

training plots, the standard deviation of the in situ soil moisture measurements at the plot scale varied 
between 2.0 and 7.1% (mean=3.8%). 
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Fig. 5.  TerraSAR-X backscattered signal for each landcover class of the BSD dataset (2009 and 
2010). In situ soil moisture is also plotted. Bars correspond to the standard deviation of the TerraSAR-

X signal obtained using all training plots of each landcover class. 
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(a) Bare soils - Forests 

  

(b) Bare soils - Crops 

  

 

Fig. 6. Temporal variation of Jeffry-Matusita distance (J) for each signal and texture features. 
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Fig. 7. March 1, 2010 TerraSAR-X segmentation. Central coordinates: lat. 48°51’N and long. 3°07’E. 

 

 

 

(a) 

 
(b) 

 

Fig. 8.  Bare soils map obtained from March 1, 2010 TerraSAR-X image (a) and the reference bare soils 

map (RapidEye) (b). Central coordinates: Lat. 48°51’N and Long. 3°07’ E (Orgeval). 
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Fig. 9. Flowchart for the moisture mapping of bare soils. First phase: bare soil detection. Second 
phase: soil moisture estimation. 
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March 1, 2010 (HH-50°; 17h43 UTC) 

 

March 2, 2010 (HH-25°; 17h26 UTC) 

 

March 4, 2010 (HH-25°; 6h09 UTC) 

 

March 5, 2010 (HH-50°; 5h52 UTC) – Frozen soil  

 

March 10, 2010 (VV-40°; 6h47 UTC) – Frozen soil  

 

March 12, 2010 (HH-50°; 17h43 UTC) 

 

 
March 13, 2010 (HH-25°; 17h26 UTC) 

 

 

Fig. 10. Multitemporal evolution of bare soil moisture estimated from TerraSAR-X images acquired 
on the Orgeval watershed (BSMOM dataset). For each date, a zoomed representation of the variations 
in soil moisture within a training plot is presented. Soil I is outlined with a white line, and Soil II is 

outlined with a black line. The dotted black line shows soil II frozen on March 12 and thawed on 

March 13. 
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Tables 

Table 1. Characteristics of the TerraSAR-X images and in situ soil moisture measurements. SMAC: 

Soil Moisture Algorithm Calibration; BSD: Bare Soil Detection; SMAV: Soil Moisture Algorithm 
Validation; BSMOM: Bare Soil Moisture Operational Mapping. (* Frozen soil:  data are only used 

in the soil moisture mapping of the BSMOM dataset.) 

Set Site 

Acquisition 

date 

dd/mm/yy 

Incidence 

angle 
Polarization 

Number 

of plots 

Roughness 

(Hrms) 

[Min; Max] 

In situ soil 

moisture 

(%) 

[Min; Max] 

S
M

A
C

 

Orgeval 

 

12/02/08 50° HH 10 [0.5; 3.3] [31.4; 35.6] 

13/02/08 25° HH 10 [0.7; 3.3] [31.0; 35.9] 

15/02/08 25° HH 10 [0.7; 3.3] [30.6; 35.3] 

30/04/08 25° HH 4 - [31.8; 32.9] 

S
M

A
C

 /
 B

S
D

 

17/03/09 25° HH 9 [1.8; 2.4] [24.7; 32.3] 

18/03/09 50° HH 10 [1.8; 2.4] [24.5; 29.8] 

25/03/09 50° HH 3 [2.3; 2.8] [24.1; 31.0] 

26/03/09 25° HH 10 [1.8; 2.8] [23.9; 32.7] 

08/04/09 25° HH 10 [1.2; 2.5] [16.8; 27.5] 

09/04/09 50° HH 10 [1.3; 2.6] [15.2; 26.3] 

17/04/09 25° HH 8 [1.0; 2.6] [14.1; 16.4] 

20/04/09 50° HH 9 [1.0; 2.6] [18.3; 23.9] 

27/04/09 50° VV 8 [1.0; 4.6] [10.4; 20.7] 

28/04/09 25° VV 8 [1.0; 4.6] [18.7; 26.9] 

11/05/09 25° HH 5 [1.0; 4.6] [25.8; 31.3] 

S
M

A
C

 

Versailles 

 

15/03/10 33° VV 6 [1.1; 2.6] [9.7; 14.3] 

17/03/10 54° VV 6 [0.5; 1.6] [8.4; 13.4] 

18/03/10 33° VV 5 [0.5;1.4] [8.5; 13.6] 

26/03/10 33° VV 7 [0.5; 2.4] [17.2; 22.2] 

27/03/10 54° VV 6 [0.5; 2.4] [18.1; 26.2] 

29/03/10 33° VV 6 [0.9; 2.4] [13.3; 24.5] 

Villamblain  

15/01/08 52° HH 3 [0.4; 2.9] [27.8; 31.8] 

16/01/08 28° HH 2 [0.7; 3.0] [27.8; 32.3] 

06/02/08 52° HH 8 [0.6; 3.1] [26.7; 34.0] 

07/02/08 28° HH 9 [0.7; 3.1] [26.7; 34.0] 

S
M

A
V

 

Yzeron 12/03/09 23° HH 8 - [15.3; 24.3] 

Thau 

28/10/10 52° VV 13 [0.8; 4.1] [8.9; 14.7] 

02/11/10 41° VV 11 [0.8; 3.7] [8.9; 18.7] 

04/11/10 35° VV 10 [0.8; 3.7] [5.7; 11.4] 

15/11/10 35° VV 10 [1.3; 3.7] [8.3; 19.8] 

18/11/10 26° VV 9 [0.8; 3.7] [6.8; 14.5] 

Garon 
09/06/09 49° HH 6 [0.9; 2.9] [24.9; 40.6] 

11/06/09 25° HH 6 [0.9; 2.9] [10.3; 26.4] 

S
M

A
V

/ 
B

S
D

  

/B
S

M
O

M
 

Orgeval 

01/03/10 50° HH 6 [1.8; 2.8] [33.4; 39.8] 

02/03/10 25° HH 6 [1.9; 2.8] [32.7; 39.0] 

04/03/10 25° HH 8 [1.9; 2.8] [27.3; 34.3] 

05/03/10* 50° HH 8 [1.8; 2.8] [27.6; 33.5] 

10/03/10* 40° VV 9 [1.1; 2.8] [13.4; 22.5] 

12/03/10 50° HH 10 [1.1; 2.8] [12.6; 29.0] 

13/03/10 25° HH 9 [1.9; 2.6] [14.9; 26.3] 
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Table 2. Main characteristics of optical data acquired over the Orgeval. 

NIR=Near Infrared; MIR= Mid-Infrared 

Study site 
Acquisition date 

dd/mm/yy 
Sensor Resolution (m) Bands 

Orgeval 

14/03/09 IKONOS-2 4 Blue, Green, Red, NIR 

23/04/09 SPOT-5 10 Green, Red, PIR, MIR 

26/05/10 RapidEye 5 Blue, Green, Red, Red Edge, NIR 

 

Table 3. Multiresolution segmentation parameters used for optical data. 

Acquisition 

date 

dd/mm/yy 

Input 

Segmentation parameters 

Scale Shape Compactness 

14/03/09 NDVI IKONOS-2 90 0.1 0.7 

23/04/09 NDVI SPOT-5 30 0.1 0.5 

26/05/10 NDVI RapidEye 80 0.1 0.7 

 

Table 4: Comparison of the soil moistures estimated from TerraSAR-X data and those measured in 
situ (SMAV dataset). Bias corresponds to the difference between the in situ measurements and the 

estimated data. 

Study site Orgeval 

2010 

Yzeron Garon Thau 

Polarization HH HH HH VV VV VV 

Incidence angle (°) 25 50 23 25 49 26-35 41 52 

Number of training plots 22 15 8 6 6 29 11 13 

Bias (vol. %) -1.0 1.2 -1.6 0.8 -1.0 2.5 1.2 1.4 

RMSE (vol. %) 3.5 5.0 2.9 3.4 4.3 4.1 2.5 4.0 

 

Table 5. Signal and texture features computed from each training plot and from each TerraSAR-X 
image of the BSD dataset. 

Signal  

Texture feature 

Irons & 

Petersen 

(1981) 

Haralick et al. (1973) 

GLCM 

Gray Level Co-occurrence 

Matrices 

GLDV 

Gray Level Difference 

Vector 

Mean 

Standard 

Deviation 

 

Mean 

Euclidian 

Distance 

Variance 

Kurtosis 

Skewness 

 

GLCM mean 

GLCM standard deviation 

GLCM homogeneity 

GLCM correlation 

GLCM contrast 

GLCM dissimilarity 

GLCM entropy 

GLCM angular 2
nd

 moment 

GLDV mean 

GLDV angular 2
nd

 

moment 

GLDV entropy 

GLDV contrast 

2 4 8 features  x 5 directions=40 
4 features x 5 
directions=20 
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Table 6. Confusion matrix and kappa statistics for the March 1, 2010 TerraSAR-X bare soil map. 

 

TerraSAR-X pixel-based accuracy TerraSAR-X object-based accuracy 

Bare soils Other Sum 
Omission 

error 
Bare soils Other Sum 

Omission 

error 

R
ap

id
E

y
e 

Bare soil 21750510 5669951 27420461 20.7% 96 17 113 9.5% 

Other 8031576 53711156 61742732 13.0% 6 182 188 6.7% 

Sum 29782086 59381107 89163193  102 199 301  

Commission 

error 
27.0% 9.5%   11.2% 5.7%   

Overall accuracy 84.6% 92.2% 

Kappa 0.65 0.83 

 

 

Table 7. Comparison of three classification methods used to create bare soils maps from the 

TerraSAR-X images. 
 

Process Supervised Unsupervised 

Segmentation Digitalization TerraSAR-X multi-résolution segmentation 

Classification 
Supervised object: 

SEaTH on training areas 

Unsupervised object: 

Isodata 

Overall accuracy 

(pixel /object) 
94.4 / 94.3% 84.6 / 92.2% 84.2 / 93.6% 

Kappa value 

(pixel/object) 
0.86 / 0.88 0.65 / 0.83 0.64 / 0.86 

 
 

 
 

Table 8.  Comparison of the estimated and measured mean soil moistures over the Orgeval watershed. 
Mean values and standard deviations are shown. 

Date (dd/mm/yy) 01/03/10 02/03/10 04/03/10 05/03/10 10/03/10 12/03/10 13/03/10 

Average estimate of soil 

moisture on the watershed 

(%) 

36.3 

±11.1 

33.7 

±9.1 

27.8 

±7.8 

17.7 

±5.7 

12.2 

±3.6 

14.7 

±5.4 

17.5 

±7.0 

Average of soil moisture 

measurements over 6 training 

plots 

37.2  

±2.9 

35.6 

±2.3 

31.6 

±3.5 

30.4 

±2.6 

20.0 

±3.0 

18.0 

±2.8 

19.1 

±2.7 

 

 

 

 

 


