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Continuous-time limit of dynamic games with incomplete

information and a more informed player.

Fabien Gensbittel∗

September 11, 2015

Abstract

We study a two-player, zero-sum, dynamic game with incomplete information where
one of the players is more informed than his opponent. We analyze the limit value as the
players play more and more frequently. The more informed player observes the realization
of a Markov process (X,Y ) on which the payoffs depend, while the less informed player
only observes Y and his opponent’s actions. We show the existence of a limit value as
the time span between two consecutive stages goes to zero. This value is characterized
through an auxiliary optimization problem and as the unique viscosity solution of a second
order Hamilton-Jacobi equation with convexity constraints.

Acknowledgments : The author gratefully acknowledges the support of the Agence Na-
tionale de la Recherche, under grant ANR JEUDY, ANR-10-BLAN 0112. The author is
grateful to the editor and to an anonymous referee for carefully reading this work and making
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1 Introduction.

This paper contributes to the literature on zero-sum dynamic games with incomplete infor-
mation, by considering the case where one player is always more informed than his opponent.

A key feature appearing in recent contributions to the field of zero-sum dynamic games is
the interplay between discrete-time and continuous-time dynamic models, as in Cardaliaguet-
Laraki-Sorin [10], Neyman [27] or Cardaliaguet-Rainer-Rosenberg-Vieille [9], where the au-
thors consider sequences of discrete-time dynamic games in which the players play more and
more frequently. Such an analysis is related to the study of a sequence of discretizations in
time of a given continuous-time dynamic game. In the present work, we adopt this method
in order to study a continuous-time zero-sum dynamic game where one player is always more
informed than his opponent and where the state variable evolves according to an exogenous
Markov process. Precisely, we consider a model with two payoff-relevant variables (Xt, Yt)t≥0

which are evolving over time: X is a Markov chain with finite state space and Y is a diffusion
process whose drift parameter depend on the current value of X. The process X is privately
observed by the more informed player (say player 1) while Y is publicly observed, allowing the
less informed player (player 2) to learn information about the variable X during the game. We
analyze the sequence of discrete-time games indexed by n ≥ 1 with incomplete information
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and perfect observation of actions, where stages occur at times q
n for q ≥ 0. At each stage,

player 1 observes a pair of signals (X q

n
, Y q

n
) while player 2 only observes Y q

n
. The stage payoff

function is assumed to depend on actions of both players and on (X q

n
, Y q

n
). The global payoff

is a discounted sum of the stage payoffs with discount factor λn =
∫ 1/n
0 re−rtdt = 1 − e−r/n,

where r > 0 is a given continuous-time discount rate. We assume that the stage payoffs are
not observed and we study the limit value of these games as the players play more and more
frequently.

We provide two characterizations for the limit value of these games as n goes to infinity.
The first one is a probabilistic representation formula where the optimization variable is the
set of admissible belief processes for the less informed player. Such a formula already appears
in Sorin [28] as an illustration of the classical Cav(u) theorem of Aumann and Maschler
[1]. A similar discrete-time formula was introduced by De Meyer in [12] in order to obtain
a continuous-time limit value in a class of financial games and this approach led to several
extensions in continuous-time models (see Cardaliaguet-Rainer [7, 8], Grün [19, 20], Gensbittel
[16, 17], and more recently Cardaliaguet-Rainer-Rosenberg-Vieille [9] and Gensbittel-Grün
[18]). This representation formula is important as it provides a characterization of optimal
processes of revelation (martingales of posteriors induced by optimal strategies).

The second one is a variational characterization, the limit value is shown to be the unique
viscosity solution of a second-order Hamilton-Jacobi equation with convexity constraints as
introduced by Cardaliaguet [4, 5] and generalized in Cardaliaguet-Rainer [6], Grün [19],
Cardaliaguet-Rainer-Rosenberg-Vieille [9] and Gensbittel-Grün [18].

2 Main results.

Notation 2.1. For any topological space E, ∆(E) denotes the set of Borel probability distri-
butions on E endowed with the weak topology and the associated Borel σ-algebra. δx denotes
the Dirac measure on x ∈ E. Finite sets are endowed with the discrete topology and Cartesian
products with the product topology. D([0,∞), E) denotes the set of càdlàg trajectories taking
values in E, endowed with the topology of convergence in Lebesgue measure. The notations
〈, 〉 and |.| stand for the canonical scalar product and the associated norm in Rm.

Let us at first describe the continuous-time game we will approximate. This description
is incomplete as we do not define strategies in continuous-time. Rather, we define below
strategies in the different time-discretizations of this game. The notion of value for this game
will therefore be the limit value along a sequence of discretizations when the mesh of the
corresponding partitions goes to zero.

We assume that (Xt)t∈[0,∞) is a continuous-time homogeneous Markov chain with finite state
space K, infinitesimal generator R = (Rk,k′)k,k′∈K and initial law p ∈ ∆(K). We identify
∆(K) with the canonical simplex of RK , i.e.:

∆(K) = {p ∈ RK |∀k ∈ K, p(k) ≥ 0 ,
∑

k∈K

p(k) = 1}.

Then, we define the real-valued process (Yt)t∈[0,∞) as the unique solution of the following
stochastic differential equation (SDE)

∀t ≥ 0, Yt = y +

∫ t

0
b(Xs, Ys)ds+

∫ t

0
σ(Ys)dWs, (2.1)
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where (Wt)t∈[0,∞) is a standard Brownian motion independent of X and y ∈ R is a given
initial condition. The process Y may be seen as some noisy observation of the process X.

We assume that the functions b and σ in (2.1) are bounded and Lipschitz, and that there
exists ǫ > 0 such that for all y ∈ R, σ(y) ≥ ǫ. The state process Z := (X,Y ) with values
in K × R is a well defined Feller Markov process, with semi-group of transition probabilities
denoted (Pt)t≥0.

Let I, J denote finite action sets for the two players (players 1 and 2), g : (K×R)×I×J → R

a bounded payoff function which is Lipschitz with respect to the second variable, and r > 0
a fixed discount rate.

We consider the following (heuristic) zero-sum game, played on the time interval [0,∞):

• Player 1 observes the trajectory of Z = (X,Y ).

• Player 2 observes only the trajectory of Y .

• They play the game G(p, y) with total expected payoff for player 1:

E[

∫ +∞

0
re−rtg(Xt, Yt, it, jt)dt],

where it (resp. jt) denote the action of player 1 at time t (resp. of player 2).

• Actions are observed during the game (and potentially convey relevant information).

We aim at studying the value function of this game and how information is used by the
more informed player when playing optimally. In order to achieve this goal, we introduce a
sequence of time-dicretizations of the game. For simplicity, and without loss of generality, let
us consider the uniform partition of [0,+∞) of mesh 1/n. The corresponding discrete-time
game, denoted Gn(p, y) proceeds as follows:

• The variable Z q

n
= (X q

n
, Y q

n
) is observed by player 1 before stage q for q ≥ 0.

• The variable Y q

n
is observed by player 2 before stage q for q ≥ 0.

• At each stage, both players choose simultaneously a pair of actions (iq, jq) ∈ I × J .

• Chosen actions are observed after each stage.

• Stage payoff of player 1 equals g(Z q

n
, iq, jq) (realized stage payoffs are not observed).

• The total expected payoff of player 1 is

E


λn

∑

q≥0

(1− λn)
qg(Z q

n
, iq, jq)


 ,

with λn = 1− e−r/n

Remark 2.2. When σ is constant and b depends only on X, the observation of player 2

correspond to a normally distributed random variable with mean
∫ q+1

n
q

n

b(Xs)ds and variance

σ2

n . It may therefore be interpreted as a noisy observation of X.
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The description of the game is common knowledge and we consider the game played in be-
havior strategies: at round q, player 1 and player 2 select simultaneously and independently
an action iq ∈ I for player 1 and jq ∈ J for player 2 using some lotteries depending on their
past observations.

Formally, a behavior strategy σ for player 1 is a sequence (σq)q≥0 of transition probabilities:

σq : ((K × R)× I × J)q × (K × R) → ∆(I),

where σq(Z0, i0, j0, ..., Z q−1
n

, iq−1, jq−1, Z q

n
) denotes the lottery used to select the action iq

played at round q by player 1 when past actions played during the game are (i0, j0, ..., iq−1, jq−1)
and the sequence of observations of player 1 is (Z0, ..., Z q

n
). Let Σ denote the set of behavior

strategies for player 1. Similarly, a behavior strategy τ for player 2 is a sequence (τq)q≥0 of
transition probabilities depending on his past observations

τq : (R× I × J)q × R → ∆(J).

Let T denote the set of behavior strategies for player 2.

Let P(n,p,y,σ,τ) ∈ ∆(D([0,∞),K×R)×(I×J)N) denote the probability on the set of trajectories
of Z and actions induced by the strategies σ, τ . The payoff function in Gn(p, y) is defined by

γn(ν, σ, τ) := EP(n,p,y,σ,τ)


λn

∑

q≥0

(1− λn)
qg(Z q

n
, iq, jq)


 .

It is well known that the value of the game exists, i.e.

Vn(p, y) := sup
σ∈Σ

inf
τ∈T

γn(p, y, σ, τ) = inf
τ∈T

sup
σ∈Σ

γn(p, y, σ, τ).

We also need to consider the value function u of the non-revealing one-stage game Γ(p, y),
which is a finite game with payoff g in which player 1 cannot use his private information.
Precisely,

u(p, y) := sup
σ∈∆(I)

inf
τ∈∆(J)

∑

i∈I

∑

j∈J

∑

k∈K

p(k)σ(i)τ(j)g(k, y, i, j),

and the value exists (i.e. the sup and inf commute in the above formula) as it is a finite game.
It follows from standard arguments that u is Lipchitz in (p, y).

The main results proved in sections 3 and 4 are two different characterizations for the
limit of the sequence of value functions Vn.

Let us now introduce some notations.

Notation 2.3.

• The natural filtration FA of a process (At)t∈[0,∞) is defined by FA
t = σ(As, s ≤ t). The

associated right-continuous filtration is denoted FA,+ with FA,+
t := ∩s>tF

A
s .

• For any topological space E, D([0,∞), E) denotes the set of E-valued càdlàg trajectories.

• For all (p, y) ∈ ∆(K)× R, Pp,y ∈ ∆(D([0,+∞),K × R)) denotes the law of the process
Z = (X,Y ) with initial law p⊗ δy.
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Our first main result is the following probabilistic characterization.

Theorem 2.4. For all (p, y) ∈ ∆(K)× R,

Vn(p, y)−→
n→∞

V (p, y) := max
(Zt,πt)t≥0∈B(p,y)

E[

∫ +∞

0
re−rtu(πt, Yt)dt], (2.2)

where B(p, y) ⊂ ∆(D([0,∞), (K × R) × ∆(K))) denotes the set of laws of càdlàg processes
(Zt, πt)t∈[0,∞) such that:

• (Zt)t≥0 has law Pp,y and is an F (Z,π)-Markov process.

• For all t ≥ 0, for all k ∈ K, πt(k) = P(Xt = k|F
(π,Y )
t ).

Let us comment briefly this result. We generalize here the idea that the problem the informed
player is facing can be decomposed into two parts: at first he may decide how information
will be used during the whole game, and then maximize his payoff under this constraint. To
apply this method of decomposition, we need to identify precisely the set B(p, y) of achievable
processes of posterior beliefs on X of the less informed player. The filtration F (π,Y ) represents
the information of player 2, which observes the process Y (a lower bound on information). The
condition that Z is F (Z,π)-Markov reflects the fact that player 2 cannot learn any information
on the process X which is not known by player 1 (an upper bound on information) and
the second condition simply says that π represents the process of beliefs of player 2 on Xt.
Maximizers of the right-hand side of equation (2.2) represent optimal processes of revelation
for the informed player and induce asymptotically optimal strategies for the informed player
in the sequence of discretized games (see the proof of Theorem 2.4).

We now turn to the second characterization. Define b(y) := (b(k, y))k∈K ∈ RK and for all
k ∈ K and t ≥ 0, define the optional projection1:

χt(k) := P(Xt = k|FY,+
t ).

Using Theorem 9.1 in [24] (see also the Note p.360 about the Markov property), the process
ψ := (χ, Y ) with values in RK × R is a diffusion process satisfying the following stochastic
differential equation:

∀t ≥ 0, ψt = ψ0 +

∫ t

0
c(ψs)ds+

∫ t

0
κ(ψs)dW̄s, (2.3)

where W̄ is a standard FY,+-Brownian motion and the vectors c(p, y) and κ(p, y) in RK+1 =
RK × R are defined by

c(p, y) := (TRp, 〈p, b(y)〉),

κ(p, y) := ((
pk
σ(y)

(b(k, y)− 〈b(y), p〉))k∈K , σ(y)),

where TR denotes the transpose of the matrix R and probabilities are seen as column vectors.
We deduce from standard properties of diffusion processes that for any function f ∈ C2(RK+1)
with polynomial growth (say) and for all 0 ≤ s ≤ t:

E[f(ψt)|F
ψ
s ] = f(ψs) + E[

∫ t

s
A(f)(ψu)du|F

ψ
s ]

1In all the proofs, we consider only natural or right-continuous filtrations, but we adopt the same convention
as in [21] and do not complete the filtrations to avoid complex or ambiguous notations. Note that optional
projections of càdlàg processes are well-defined and have almost surely càdlàg paths (see appendix 1 in [13]).
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where A(f) is the differential operator defined by (using the notation z = (p, y))

Af(z) = 〈Df(z), c(z)〉 +
1

2
〈κ(z),D2f(z)κ(z)〉.

In order to state our second main result, we need to define precisely the notion of weak
solution we will use. Let p ∈ ∆(K), we define the tangent space at p by

T∆(K)(p) := {x ∈ RK | ∃ε > 0, p + εx, p− εx ∈ ∆(K)}.

Let Sm denote the set of symmetric matrices of size m. For S ∈ SK and p ∈ ∆(K), we define

λmax(p, S) := max

{
〈x, Sx〉

〈x, x〉
|x ∈ T∆(K)(p) \ {0}

}

and by convention λmax(p,X) = −∞ whenever T∆(K)(p) = {0}.

Theorem 2.5. V is the unique continuous viscosity solution of

min{rV +H(z,DV (z),D2V (z)) ; −λmax(p,D
2
pV (z))} = 0 (2.4)

where for all (z, ξ, S) ∈ (∆(K)× R)× RK+1 × SK+1:

H(z, ξ, S) := −〈ξ, c(z)〉 −
1

2
〈κ(z), Sκ(z)〉 − ru(z),

and where DV,D2V denote the gradient and the Hessian matrix of V and D2
pV (z) the Hessian

matrix of the function V with respect to the variable p.

Let us recall the definitions of sub and super-solutions.

Definition 2.6. We say that a bounded lower semi-continuous function f is a (viscosity)
supersolution of the equation (2.4) on ∆(K)×R if for any test function φ, C2 in a neighborhood
of ∆(K)×R (in RK ×R) such that φ ≤ f on ∆(K)×R with equality in (p, y) ∈ ∆(K)×R,
we have

λmax(p,D
2
pφ(p, y)) ≤ 0 and rφ(p, y)−A(φ)(p, y) − ru(p, y) ≥ 0.

We say that a bounded upper semi-continuous function f is a (viscosity) subsolution of the
equation (2.4) on ∆(K)×R if for any test function φ, C2 in a neighborhood of ∆(K)×R (in
RK × R) such that φ ≥ f on ∆(K)× R with equality in (p, y) ∈ ∆(K)× R, we have

λmax(p,D
2
pφ(p, y)) < 0 ⇒ rφ(p, y)−A(φ)(p, y) − ru(p, y) ≤ 0.

The proof of Theorem 2.5 is based on theorem 2.4 and on dynamic programming.

2.1 Possible extensions and open problems.

We list below miscellaneous remarks.

• In comparison to [9], in the statement of Theorem 2.4, we maximize over a set of joint
distributions (Z, π) rather than on the set of induced distributions for (π, Y ), which are
the only relevant variables for the computation of the objective functional. The latter
set of distributions is exactly the set of joint laws of càdlàg processes (π, Y ) such that

6



for all bounded continuous function φ on ∆(K) × R which are convex with respect to
the first variable, we have:

∀ 0 ≤ s ≤ t, E[φ(πt, Yt)|F
(π,Y )
s ] ≥ Qt−s(φ)(πs, Ys),

where Q is the semi-group of the diffusion process ψ. We do not prove this claim but it
follows quite easily from Strassen’s Theorem and the same techniques used in Lemma
4 in [9] and Lemma 5.11 in [18]. However, such a proof would not be constructive
(due to Strassen’s theorem) and therefore, we do not think that this result would be
more interesting stated this way. Indeed, in order to construct asymptotically optimal
strategies following the proof of Theorem 2.4, player 1 has to compute the joint law of
(Z, π) anyway (precisely the conditional law of π given Z at times q/n for q ≥ 0).

• One may generalize all the present results for the lower value functions to the case of
infinite actions spaces I, J (even if the value u does not exist) by adapting the method
developed in [16]. Note that the proof of the same kind of results for the upper value
functions may rely on different tools as shown in [16], and that the extension of these
results in the present model remains an open question.

• It can be shown directly (with classical arguments) that the functions Vn and V are
continuous. However, this does not simplify nor shorten the proofs.

• It is reasonable to think that Theorem 2.4 can be extended to the case of a more general
Feller processes (X,Y ), at least for diffusions with smooth coefficients. However, such an
extension leads to the following open question: is it possible to write an Hamilton-Jacobi
equation in the case of a diffusion process Z = (X,Y ) taking values in Rm × Rp? Note
that such an equation would be stated in an infinite dimensional space of probability
measures.

• It would be interesting to try to find explicit solutions for simple examples with two
states for X and with simple payoff functions and simple diffusion parameters for Y .
Such an analysis and the comparison with the examples studied in [9] is left for future
research.

3 Proof of Theorem 2.4

Recall the definition of conditional independence.

Definition 3.1. Let (Ω,A,P) a probability space and F ,G,H three sub σ-fields of A. We say
that F and G are conditionally independent given H if

∀F ∈ F ,∀G ∈ G, P(F ∩G|H) = P(F |H)P(G|H).

This relation is denoted F
∐

H G and the definition extends to random variables by considering
the σ-fields they generate.

The next definition is related to the characterization of the Markov property in terms of
conditional independence and will be useful in the sequel.

Definition 3.2. Given two random processes (Aq, Bq)q≥0 (with values in some Polish spaces)
defined on (Ω,A,P). We say that (Aq)q≥0 is non-anticipative with respect to (Bq)q≥0 if

∀q ≥ 0, (A0, ..., Aq)
∐

B0,...,Bq

(Bm)m≥0.
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The next result is a classical property of conditional independence and its proof is post-
poned to the appendix.

Lemma 3.3. Given two random processes (Aq, Bq)q≥0 (with values in some Polish spaces),
the process (Aq)q≥0 is non-anticipative with respect to (Bq)q≥0 if and only if there exists
(on a possibly enlarged probability space) a sequence of independent random variables (ξq)q≥0

uniformly distributed on [0, 1] and independent of (Bq)q≥0, and a sequence of measurable
functions fq (defined on appropriate spaces) such that for all q ≥ 0

Aq = fq(Bm, ξm,m ≤ q).

The proof of Theorem 2.4 is divided in two steps and relies on the technical Lemma 3.8,
whose proof is postponed to the next subsection.

Step 1: We prove that lim inf Vn ≥ V .

Let σ∗(p, y) and τ∗(p, y) be measurable selections of optimal strategies for player 1 and 2
respectively, in the game Γ(p, y) with value u(p, y).

We start with a continuous-time process (Zt, πt)t≥0 in B(p, y). We consider the discrete-time
process (Z q

n
, π q

n
)q≥0. Using the Markov property at times q

n , we deduce that (π q

n
)q≥0 is non-

anticipative with respect to (Z q

n
)q≥0. We now construct a strategy σ in Gn(p, y) depending

on the process (Z, π). Using the conditional independence property (see Lemma 3.3), there
exists a sequence (ξq)q≥0 of independent random variables uniformly distributed on [0, 1] and
independent from (Z q

n
)q≥0, and a sequence of measurable functions (fq)q≥0 such that

π q

n
= fq((Zm

n
, ξm)m≤q) for all q ≥ 0.

We define player 1’s strategy σ as follows:

σq(Z0, ..., Z q

n
, ξ0, ..., ξq) := σ∗(π q

n
, Y q

n
).

This does not define formally a behavior strategy but these transition probabilities induce
a joint law for (Z q

n
, iq)q≥0 which can always be disintegrated in a behavior strategy (that

does not depend on player 2’s actions) since the induced process (iq)q≥0 is by construction
non-anticipative with respect to (Z q

n
)q≥0 (using again Lemma 3.3). By taking the conditional

expectation given (Y ℓ
n

, π ℓ
n

, iℓ, jℓ)ℓ=0,...,q, the payoff at stage q against any strategy τ is such

that:

En,p,σ,τ [g(X q

n
, Y q

n
, iq, jq)] = En,p,σ,τ [

∑

k∈K

π q

n
(k)g(k, Y q

n
, iq, jq)] ≥ En,p,σ,τ [u(π q

n
, Y q

n
)].

Therefore, σ is such that

Vn(p, y) ≥ inf
τ
γn(p, y, σ, τ) ≥

∑

q≥0

λn(1− λn)
qE[u(π q

n
, Y q

n
)].

Define (π̃n, Z̃n) as the piecewise-constant process equal to (Z, π) at times q
n for q ≥ 0. Then

(π̃n, Z̃n) converges in probability to (Z, π) (see e.g. Lemma VI.6.37 in [21]) and therefore

∑

q≥0

λn(1− λn)
qE[u(π q

n
, Y q

n
)] = E[

∫ ∞

0
re−rtu(π̃nt , Ỹ

n
t )dt]−→n→∞

E[

∫ ∞

0
re−rtu(πt, Yt)dt]

8



As (Z, π) ∈ B(p, y) was chosen arbitrarily, we deduce that:

lim inf
n→∞

Vn(p, y) ≥ V (p, y)

Step 2: We prove that lim supVn ≤ V .

Let us fix (p, y) and let (εn)n≥1 a positive sequence going to zero. For all n ≥ 1, let σn be
an εn-optimal behavior strategy for player 1 in Gn(p, y). We will construct a strategy τn for
player 2 by induction such that for all q ≥ 0 the expected payoff at round q is not greater
than

En,p,y,σn,τn [u(p̂q, Y q

n
) + C|pq − p̂q|1], (3.1)

for some constant C independent of n, where |.|1 denotes the ℓ1-norm and where for all q ≥ 0,
p̂q and pq denote respectively the conditional laws of X q

n
given the information of player 2

before and after playing round q. Precisely, for all k ∈ K:

p̂q(k) := P(n,p,y,σn,τn)(X q

n
= k | Y0, i0, j0, ..., Y q−1

n

, iq−1, jq−1, Y q

n
),

pq(k) := P(n,p,y,σn,τn)(X q

n
= k | Y0, i0, j0, ..., Y q

n
, iq, jq).

Note that the computation of p̂q does not depend on τnq . We can therefore define by induction
τnq := τ∗(p̂q, Y q

n
). Then, inequality (3.1) follows directly from Lemmas V.2.5 and V.2.6 in [25].

We now suppress the indices (n, p, y, σn, τn) from the probabilities and expectations. Using
that u is Lipschitz with respect to p, we have

E[u(p̂q, Y q

n
) + C|pq − p̂q|1] ≤ E[u(pq, Y q

n
) + 2C|pq − p̂q|1]

Define also:
p̃q+1 := P(X q+1

n

= k|Y0, i0, j0, ..., Y q

n
, iq, jq) = (e

1
n

TRpq)(k).

Note that for all q ≥ 0, the sequence (p̃q+1, p̂q+1, pq+1) is a martingale so that using Jensen’s
inequality.

E[(p̃q+1)
2] ≤ E[(p̂q+1)

2].

On the other hand, using the previous equality, we can choose the constant C so that almost
surely

∀q ≥ 0, |p̃q+1 − pq| ≤
C

n
.

Mimicking the proof of [9], we have

E[
∑

q≥0

λn(1− λn)
q|pq − p̂q|1] =

∑

k∈K

∑

q≥0

λn(1− λn)
qE[|pq(k)− p̂q(k)|]

≤
∑

k∈K


∑

q≥0

λn(1− λn)
qE[|pq(k)− p̂q(k)|

2]




1/2

=
∑

k∈K


∑

q≥0

λn(1− λn)
qE[(pq(k))

2 − (p̂q(k))
2]




1/2

9



which is also equal to

∑

k∈K


∑

q≥0

λn(1− λn)
qE[(pq(k))

2 − (p̃q+1(k))
2 + (p̃q+1(k))

2 − (p̂q+1(k))
2 + (p̂q+1(k))

2 − (p̂q(k))
2]




1/2

and therefore is bounded from above by

∑

k∈K


∑

q≥0

λn(1− λn)
qE[(p̂q+1(k))

2 − (p̂q(k))
2] +

2C

n




1/2

≤ K(λn +
2C

n
)1/2

We proved that:

Vn(p, y) ≤
∑

q≥0

λn(1− λn)
qE[u(π q

n
, Y q

n
)] +K(λn +

2C

n
)1/2 + εn

In order to conclude the proof, we consider the continuous-time process (Z̃n, π̃n) which is
piecewise-constant and equal to (Z q

n
, pq) at times q/n. Let us at first extract a subsequence

of Vn(p, y) which converges to lim supVn(p, y). Then, using Lemma 3.8, there exists a further
subsequence of (Z̃n, π̃n) which converges in law to some process (Z, π) in B(p, y). We have
therefore along this subsequence

∑

q≥0

λn(1− λn)
qE[u(π q

n
, Y q

n
)] = E[

∫ ∞

0
re−rtu(π̃nt , Ỹ

n
t )dt] −→ E[

∫ ∞

0
re−rtu(πt, Yt)dt],

so that

lim sup
n→∞

Vn(p, y) ≤ E[

∫ ∞

0
re−rtu(πt, Yt)dt] ≤ V (p, y).

3.1 A technical Lemma

In reference to the paper of Meyer and Zheng [26], we will denote MZ the following topology
on the set of càdlàg paths.

Notation 3.4. For a separable metric space (E,d), the MZ-topology on the set D([0,∞), E)
of càdlàg functions is the topology of convergence in measure when [0,∞) is endowed with the
measure e−xdx. The associated weak topology over the set ∆(D([0,∞), E)) when D([0,∞), E)
is endowed with the MZ-topology will be denoted L(MZ).

Remark 3.5. In contrast to the Skorokhod topology (Sk hereafter), if E = F ×F ′ is a product
of separable metric spaces, the MZ topology is a product topology, i.e. (as topological spaces)

(D([0,∞), F × F ′),MZ) = (D([0,∞), F ),MZ) × (D([0,∞), F ′),MZ).

The following remark will be used in the proofs.

Remark 3.6. If E is a Polish space, the space (D([0,∞), E),MZ) is a separable metric
space which is not topologically complete. However, its Borel σ-algebra is the same as the
one generated by the Sk topology and its topology is weaker than the Sk topology for which
the space is Polish, implying that all the probability measures are MZ-tight. Therefore, all
the results about disintegration and measurable selection usually stated for Polish spaces and
which depend only on the Borel structure apply to this space.
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Recall that the transition probabilities of Z are denoted (Pt)t≥0, i.e. for any bounded mea-
surable function φ on K × R, we have

Pt(φ)(z) := Ez[φ(Zt)] =

∫

Z
φdPt(z),

and that P is a Feller semi-group implying that (z, t) → Pt(φ)(z) is continuous for any
bounded continuous function φ.

Notation 3.7. Given a process (Zt)t∈[0,∞) of law Pp,y, we define the process (Ẑnt )t∈[0,∞) ∈
D([0,∞),K × R) by

∀t ≥ 0, Ẑnt := Z ⌊nt⌋
n

where ⌊a⌋ denotes the greatest integer lower or equal to a.

Lemma 3.8. Let (p, y) be given, and let us consider a sequence of càdlàg processes (Zn, πn)
that are piecewise constant on the partition {[ qn ,

q+1
n )}q≥0 and such that

• Zn has the same law as Ẑn (see the above notation).

• (π q

n
)q≥0 is non-anticipative with respect to (Z q

n
)q≥0.

• For all t ≥ 0, for all k ∈ K, πnt (k) = P(Xn
t = k|F

(πn,Y n)
t ).

Then, the sequence (Zn, πn) admits an L(MZ)-convergent subsequence and all the limit points
belong to B(p, y).

Proof. Let Qn denote a sequence of laws of processes (Znt , π
n
t )t∈[0,∞). It follows from Proposi-

tion VI.6.37 in [21] that Zn L(MZ)-converges to Z of law Pp,y. On the other hand, Theorem 4
in [26] together with a diagonal extraction implies that the set of possible laws for (Znt , π

n
t )t≥0

is MZ-relatively sequentially compact, and we may extract some convergent subsequence2.

Let us now prove that the limit belongs to B(p, y). Assume (without loss of generality) that the
sequence of processes (Znt , π

n
t )t≥0 L(MZ)-converges to (Zt, πt)t≥0. Note at first that the law

of (Zt)t≥0 is Pp,y since the projection of the trajectories on the first coordinate is continuous
(see Remark 3.5).

Using Skorokhod’s representation Theorem for separable metric spaces (see Theorem 11.7.31
in [14]), we can assume that the processes are defined on the same probability space and that

(Znt , π
n
t )t≥0

MZ
→ (Zt, πt)t≥0 almost surely. Up to extracting a subsequence, we can also assume

that there exists a subset I of full measure in [0,∞) (i.e.
∫
I e

−xdx = 1) such that for all t ∈ I,
(Znt , π

n
t ) → (Zt, πt) almost surely.

We now prove that for all t ≥ 0 and all k ∈ K

πt(k) = P(Xt = k|F
(Y,π)
t ).

For any t ∈ I, any finite family (t1, ..., tr) in I ∩ [0, t] and any bounded continuous function φ
defined on (R×∆(K))r, we have

E[(πnt (k)− 1Xn
t =k

)φ(Y n
t1 , π

n
t1 , ..., Y

n
tr , π

n
tr )] = 0.

2Precisely, for all T > 0 we may first apply this result to each coordinate of the processes (Zn
t∧T , π

n
t∧T )t≥0.

Then, since convergent sequences are tight (see Theorem 11.5.3 in [14] and remark 3.6), we apply Lemma A.3
to deduce that the set of laws {Qn, n ≥ 1} is tight. Applying the direct part of Prohorov’s theorem, which is
valid for separable metric spaces, we may extract some convergent subsequence.
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It follows by bounded convergence that

E[(πt − 1Xt=k)φ(Yt1 , πt1 , ..., Ytr , πtr)] = 0.

We deduce that
πt(k) = P(Xt = k|F

(Y,π)
t ).

Given an arbitrary t, we take a decreasing sequence in I with limit t and applying Lemma
A.6 (see apendix), we obtain:

πt(k) = P(Xt = k|F
(Y,π),+
t ),

which implies the result using the tower property of conditional expectations.

It remains to prove the Markov property. Let t1 ≤ ... ≤ tm ≤ s ≤ t in I, and φ, φ′ some
bounded continuous functions defined on ((K × R)×∆(K))m and K × R, we claim that

E[φ′(Zt)φ(Zt1 , πt1 , ..., Ztm , πtm)] = E[Pt−s(φ
′)(Zs)φ(Zt1 , πt1 , ..., Ztm , πtm)].

Indeed, for all n, we have

E[φ′(Znt )φ(Z
n
t1 , π

n
t1 , ..., Z

n
tm , π

n
tm)] = E[P ⌊nt⌋−⌊ns⌋

n

(φ′)(Zns )φ(Z
n
t1 , π

n
t1 , ..., Z

n
tm , π

n
tm)],

and the conclusion follows by bounded convergence. The property extends to arbitrary t1 ≤
... ≤ tm ≤ s ≤ t by taking decreasing sequences in I and we conclude as above that Z is an
F (Z,π) Markov process.

Let us end this section with a second technical lemma whose proof is similar to Lemma 3.8.

Lemma 3.9. The set-valued map (p, y) → (B(p, y),L(MZ)) has a closed graph with compact
values.

Proof. Since Z is a Feller process, the map (p, y) → Pp,y is L(Sk)-continuous (hence L(MZ)-
continuous, see e.g. [15]). We omit the rest of the proof as it follows exactly from the same
arguments as Lemma 3.8 with obvious modifications.

4 The variational characterization

We state at first some properties of the function V .

Proposition 4.1. V is upper-continuous and for all y ∈ R, p→ V (p, y) is concave on ∆(K).

Proof. That V is upper semi-continuous follows directly from Lemma 3.9.

Concavity follows from the same method as the well-known splitting Lemma (see e.g. Chapter
V.1 in [25]). Given y ∈ R, p1, p2 ∈ ∆(K) and λ ∈ [0, 1], P1 ∈ B(p1, y) and P2 ∈ B(p2, y), let
us construct Pλ ∈ B(λp1 + (1 − λ)p2, y) as follows. Assume that (Z1, π1) and (Z2, π2) are
independent and of respective laws P1 and P2. Let ξ be a random variable independent of
(Z1, π1) and (Z2, π2) and such that P(ξ = 1) = λ and P(ξ = 2) = 1− λ. Define (Z, π) as the
process equal to (Zi, πi) on {ξ = i}. It follows easily by conditioning on ξ that

E[

∫ ∞

0
re−rtu(πt, Yt)dt] = λE[

∫ ∞

0
re−rtu(π1t , Y

1
t )dt] + (1− λ)E[

∫ ∞

0
re−rtu(π2t , Y

2
t )dt].
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If we assume that (Z, π) has a law Pλ ∈ B(λp1 + (1 − λ)p2, y), then for any ε > 0, we can
choose P1 and P2 as ε-optimal probabilities so that

V (λp1 + (1− λ)p2, y) ≥ E[

∫ ∞

0
re−rtu(πt, Yt)dt]

= λE[

∫ ∞

0
re−rtu(π1t , Y

1
t )dt] + (1− λ)E[

∫ ∞

0
re−rtu(π2t , Y

2
t )dt]

≥ λV (p1, y) + (1− λ)V (p2, y)− ε,

and this proves that V is concave with respect to p as ε can be chosen arbitrarily small.

In order to conclude, it remains therefore to prove that (Z, π) has a law Pλ ∈ B(λp1 + (1 −
λ)p2, y). Note at first that (Zt)t≥0 has law Pλp1+(1−λ)p2,y by construction. Moreover, Fπ,Y

t is

included in σ(ξ) ∨Fπ1,Y 1

t ∨Fπ2,Y 2

t . Using independence, we have therefore for all k ∈ K and
all t ≥ 0:

P(Xt = k|FY 1,π1

t ,FY 2,π2

t , ξ)

= P(X1
t = k|FY 1,π1

t ,FY 2,π2

t , ξ)1ξ=1 + P(X2
t |F

Y 1,π1

t ,FY 2,π2

t , ξ)1ξ=2

= P(X1
t = k|FY 1,π1

t )1ξ=1 + P(X2
t = k|FY 2,π2

t )1ξ=2 = π1t (k)1ξ=1 + π2t (k)1ξ=2 = πt(k),

and using the tower property of conditional expectations, we deduce that

πt(k) = P(Xt = k|F
(π,Y )
t ).

To prove the Markov property, let s ≥ t and φ some bounded continuous function on ∆(K)×R.
As above, we have:

E[φ(Zs)|F
Z1,π1

t ,FZ2,π2

t , ξ] =
∑

i

1ξ=iE[φ(Z
i
s)|F

Z1,π1

t ,FZ2,π2

t , ξ]

=
∑

i

1ξ=iE[φ(Z
i
s)|F

Zi

t ]

=
∑

i

1ξ=iPs−t(φ)(Z
i
t) = Ps−t(φ)(Zt).

The conclusion follows by using the tower property of conditional expectation with the inter-
mediate σ-field FZ,π

t .

4.1 Dynamic programming.

Notation 4.2. In the following, we will use the notation Ep,y to denote the expectation
associated to the diffusion process ψ starting at time 0 with initial position ψ0 = (p, y).

We now state a dynamic programming principle which will be the key element for the
proof of Theorem 2.5.

Proposition 4.3. For all (p, y) ∈ ∆(K)× R, for all h ≥ 0, we have

V (p, y) = max
(π,Y )∈B(p,y)

E[

∫ h

0
re−rtu(πt, Yt)dt+ e−rhV (πh, Yh)]. (4.1)
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As a consequence,

V (p, y) ≥ Ep,y[

∫ h

0
re−rtu(ψt)dt+ e−rhV (ψt)]. (4.2)

Moreover, if (π, Y ) is an optimal process for V (p, y), then for all h ≥ 0:

V (p, y) = E[

∫ h

0
re−rtu(πt, Yt)dt+ e−rhV (πh, Yh)]. (4.3)

Proof. We prove at first that the maximum is reached in the right-hand side of (4.1). Let us
define the MZ-topology on the set D([0, h],K × R ×∆(K)) as the convergence in Lebesgue
measure of the trajectories together with the convergence of the value of the process at time
h. Note that this topology coincides (up to an identification) with the induced topology on
the subset of D([0,∞),K × R × ∆(K)) made by trajectories that are constant on [h,∞).
Using this identification and adapting the arguments of Lemma 3.8, the set of laws of the
restrictions of the processes (Z, π) ∈ B(p, y) to the time interval [0, h] is L(MZ)-sequentially
relatively compact in ∆(D([0, h],K ×R×∆(K))). The existence of a maximum follows since
the map

P ∈ ∆(D([0, h],K × R×∆(K))) −→ EP[

∫ h

0
re−rtu(πt, Yt)dt+ e−rhV (πh, Yh)],

is L(MZ) upper-semi-continuous.

We now prove (4.1). We begin with a measurable selection argument.

The function P ∈ B(p, y) → J(P) := E[
∫∞
0 re−rtu(πt, Yt)dt] is L(MZ)-continuous, and the

set-valued map (p, y) → B(p, y) is L(MZ) upper-semi-continuous. We deduce that the subset
O of the space ∆(K)× R×∆(D([0,∞), (K × R)×∆(K))) defined by

O := {(p, y,P)|P ∈ B(p, y), J(P) ≥ V (p, y)}

is Borel-measurable (see Remark 3.6). Moreover, Lemma 3.8 implies that for any (p, y), there
exists some P such that (p, y,P) ∈ O. It follows therefore from Von Neumann’s selection
Theorem (see e.g. Proposition 7.49 in [2]) that there exists an optimal universally-measurable
selection φ from ∆(K)× R to B(p, y) such that for all (p, y) ∈ ∆(K)× R, φ(p, y) ∈ O.

Let (Z, π) ∈ B(p, y) and h ≥ 0 and let µh denote the joint law of (πh, Yh). By construction,
φ is µh-almost surely equal to a Borel map φ̃. Using Lemma A.5, we can construct a pro-
cess (π̃s)s≥h (on some extension of the probability space) such that the conditional law of

(Zh+s, π̃h+s)s≥0 given F
(Y,π)
h is precisely φ̃(πh, Yh) and such that there exists a variable U ,

uniformly distributed on [0, 1] and independent of (Z, π), and a measurable map Φ such that

(π̃s)s≥h = Φ((Zs)s≥h, (πh, Yh), ξ). (4.4)

Let us consider the process (Z, π̂) where π̂ is equal to π on [0, h) and to π̃ on [h,∞). Using the
preceding construction, if we assume that the process (Z, π̂) has a law in B(p, y), we deduce
that:

V (p, y) ≥ E[

∫ ∞

0
re−rtu(π̂t, Yt)dt]

= E[

∫ h

0
re−rtu(πt, Yt)dt] + e−rhE[E[

∫ ∞

0
re−rtu(π̃h+t, Yh+t)dt|F

(Y,π)
h ]]

≥ E[

∫ h

0
re−rtu(πt, Yt)dt] + e−rhE[V (πh, Yh)]
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which would prove that

V (p, y) ≥ max
(Z,π)∈B(p,y)

E[

∫ h

0
re−rtu(πt, Yt)dt+ e−rhV (πh, Yh)]. (4.5)

To conclude the proof of (4.5), we now check that the process (Z, π̂) has a law in B(p, y).

At first, note that (Zt)t≥0 is a Markov process with initial law p⊗ δy by construction. Let us

prove that for all t ≥ 0, π̂t(k) = P(Xt = k|F
(Y,π̂)
t ]. The result is obvious by construction for

t < h. For t ≥ h, let us consider two finite families (t1, ..., tm) in [h, t] and (t′1, ..., t
′
ℓ) in [0, h)

and two bounded continuous function φ, φ′ defined on (∆(K)×R)m and (∆(K)×R)ℓ. Then:

E[1Xt=kφ(π̂t1 , Yt1 , ..., π̂tm , Ytm)φ
′(π̂t′1 , Yt′1 , ..., π̂t′ℓ , Yt

′
ℓ
)]

= E[E[1Xt=kφ(π̃t1 , Yt1 , ..., π̃tm , Ytm)|F
(π,Y )
h ]φ′(πt′1 , Yt′1 , ..., πt′ℓ , Yt

′
ℓ
)]

= E[π̃t(k)φ(π̃t1 , Yt1 , ..., π̃tm , Ytm)φ
′(πt′1 , Yt′1 , ..., πt′ℓ , Yt

′
ℓ
)]

= E[π̂t(k)φ(π̂t1 , Yt1 , ..., π̂tm , Ytm)φ
′(π̂t′1 , Yt′1 , ..., π̂t′ℓ , Yt

′
ℓ
)].

This property extends to bounded measurable functions of any finite family (ti) in [0, t] by

monotone class and we deduce that π̂t(k) = P(Xt = k|F
(Y,π̂)
t ).

We now prove the Markov property. For t ≥ 0, we have to prove that

(Zs)s≥t
∐

(Zs)s∈[0,t]

(π̂s)s∈[0,t]. (4.6)

The case t < h follows directly by construction. Let us consider the case t ≥ h.

At first, since the conditional law of (Zs, π̃s)s≥h given (πh, Yh) belongs to B(πh, Yh), we have:

(π̃s)s∈[h,t]
∐

(Zs)s∈[h,t],(πh,Yh)

(Zs)s≥t. (4.7)

Using (4.4) and that Z is an FZ,π-Markov process, we also have

(π̃s)s∈[h,t]
∐

(Zs)s∈[h,t],(πh,Yh)

(Zs, πs)s∈[0,h], (4.8)

(π̃s)s∈[h,t]
∐

(Zs)s≥t,(Zs)s∈[h,t],(πh,Yh)

(Zs, πs)s∈[0,h]. (4.9)

From the characterization of conditional independence in terms of conditional laws recalled
in Lemma A.2, properties (4.7), (4.8) and (4.9) together imply that:

(π̃s)s∈[h,t]
∐

(Zs,πs)s∈[0,h],(Zs)s∈[h,t],(πh,Yh)

(Zs)s≥t (4.10)

Using again the fact that Z is an FZ,π-Markov process, we also have

(Zs)s≥t
∐

(Zs)s∈[0,t]

(πs)s∈[0,h] (4.11)
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Finally (4.10) and (4.11) imply

(Zs)s≥t
∐

(Zs)s∈[0,t]

(
(πs)s∈[0,h], (π̃s)s∈[h,t]

)
, (4.12)

from which we deduce (4.6) since (π̂s)s∈[0,t] is a function of
(
(πs)s∈[0,h], (π̃s)s∈[h,t]

)
. This

concludes the proof of (4.5).

In order to conclude the proof of (4.1), we now prove the reverse inequality.

Let (Z, π) be an admissible process and h > 0. We check easily that the conditional law of

(Zh+s, πh+s)s≥0 given F
(π,Y )
h belongs almost surely to B(πh, Yh). It follows that

E[

∫ ∞

0
re−rtu(πt, Yt)dt] = E[

∫ h

0
re−rtu(πt, Yt)dt] + e−rhE[E[

∫ ∞

0
re−rtu(πh+t, Yh+t)dt|F

(π,Y )
h ]]

≤ E[

∫ h

0
re−rtu(πt, Yt)dt] + e−rhE[V (πh, Yh)].

The conclusion follows by taking the supremum over all admissible processes (Z, π).

The inequality (4.2) follows directly from (4.1). Precisely, given a process Z with initial law
p ⊗ δy, define π by πt(k) := χt(k) = P[Xt = k|FY,+

t ] (optional projection). As explained
before, (Z, π) has a law in B(p, y) and (π, Y ) is a diffusion process of semi-group Q.

We finally prove (4.3). If (Z, π) ∈ B(p, y) is an optimal process (existence of a maximum
follows from Lemma 3.9), then using the same arguments as above, we have for all h ≥ 0:

V (p, y) = E[

∫ ∞

0
re−rtu(πt, Yt)dt] ≤ E[

∫ h

0
re−rtu(πt, Yt)dt] + e−rhE[V (πh, Yh)],

and the conclusion follows from (4.1).

4.2 Proof of Theorem 2.5.

Proof of theorem 2.5. The proof is divided in two parts showing respectively that the lower
semicontinuous envelope V∗ of V is subsolution and that V is supersolution of (2.4). Unique-
ness and continuity will follow from the comparison result (Theorem A.8) whose proof is
postponed to the appendix.

part 1: We prove that the lower semicontinuous envelope of V , denoted V∗, is a supersolution
of (2.4).

Let φ be any smooth test function such that φ ≤ V∗ with equality in (p, y) ∈ ∆(K)×R. As V∗
is bounded, we may assume without loss of generality that φ is bounded. Consider a sequence
(pn, yn) → (p, y) such that V (pn, yn) → V∗(p, y). From (4.2), we deduce that

V (pn, yn)− e−rhEpn,yn [φ(ψh)]− Epn,yn [

∫ h

0
re−rsu(ψs)ds] ≥ 0.

Letting n→ ∞, we obtain that (recall that ψ is a Feller process):

φ(p, y)− e−rhEp,y[φ(ψh)]− Ep,y[

∫ h

0
re−rsu(ψs)ds] ≥ 0.
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Applying Itô’s formula, we have

Ep,y[φ(ψh)] = φ(p, y) + Ep,y[

∫ h

0
A(φ)(ψs)ds].

Dividing by h and letting then h→ 0, it follows from usual arguments that

rφ(p, y)−A(φ)(p, y) − ru(p, y) ≥ 0. (4.13)

Let us prove that V∗ is concave with respect to p. Let y ∈ R and p = λp1 + (1 − λ)p2 for
some p, p1, p2 ∈ ∆(K) and λ ∈ [0, 1]. Let (pn, yn) a sequence converging to (p, y) such that
V (pn, yn) → V∗(p, y). Then, there exists pn1 , p

n
2 ∈ ∆(K) such that pn = λpn1 + (1 − λ)pn2 and

(pn1 , p
n
2 ) → (p1, p2) (it is for example a consequence of Lemma 8.2 in [23]). It follows that

V (pn, yn) ≥ λV (pn1 , y
n) + (1− λ)V (pn2 , y

n).

By letting n→ ∞ and using the definition of V∗, we deduce that

V∗(p, y) ≥ λV∗(p1, y) + (1− λ)V∗(p2, y),

which proves that V∗ is concave. We deduce that λmax(p,D
2φp(p, y)) ≤ 0, and together with

(4.13) this concludes the proof of the supersolution property.

part 2: We prove that V is subsolution of (2.4).

Let φ be smooth test function such that φ ≥ V with equality at z̄ = (p̄, ȳ). We have to prove
that if λmax(p̄,D

2
pφ(z̄)) < 0, then rV (z̄)−A(φ)(z̄)− ru(z̄) ≤ 0.

Using Proposition 4.3, let (Z, π) ∈ B(z̄) be an optimal process, so that for all h ≥ 0, we have

V (z̄) = E[

∫ h

0
re−rsu(πs, Ys)ds + e−rhV (πh, Yh)]. (4.14)

Since λmax(p̄,D
2
pφ(z̄)) < 0 (see e.g. the proof of Theorem 3.3. in [5]), there exists δ > 0 such

that for all z = (p, ȳ) with p ∈ ∆(K) such that p− p̄ ∈ T∆(K)(p̄), we have:

V (z) ≤ V (z̄) + 〈Dpφ(z̄), p − p̄〉 − δ|p − p̄|2.

As E[π0] = p̄, the variable π0 belongs almost surely to the smallest face of ∆(K) containing
p̄ so that π0 − p̄ ∈ T∆(K)(p̄). On the other hand, Y0 = ȳ so that (4.14) with h = 0 implies

V (z̄) = E[V (π0, ȳ)] ≤ V (z̄)− δE[|π0 − p̄|2].

We deduce that π0 = p̄ almost surely.

Recall the definition of the process χ as an optional projection:

∀k ∈ K,∀s ≥ 0, χs(k) = P(Xs = k|FY,+
s ).

Lemma A.6 implies that πs(k) = P(Xs = k|F
(π,Y ),+
s ), and we deduce that E[πs|F

Y,+
s ] =

χs using the tower property of conditional expectations. Coming back to (4.14), Jensen’s
inequality implies:

V (z̄) = E[

∫ h

0
re−rsu(πs, Ys)ds+ e−rhV (πh, Yh)] ≤ E[

∫ h

0
re−rsu(πs, Ys)ds + e−rhV (χh, Yh)].
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Since V ≤ φ, we obtain

V (z̄) = φ(z̄) ≤ E[

∫ h

0
re−rtu(πs, Ys)ds+ e−rhφ(χh, Yh)].

Dividing the above inequality by h, and letting h go to zero, it follows from the usual arguments
(using that πs → π0 when s→ 0, and Itô’s formula) that:

rV (z̄)−A(φ)(z̄)− ru(z̄) ≤ 0.

A Technical Proofs and auxiliary tools.

A.1 Proofs of Lemma 3.3

Let us now recall some properties of conditional independence. As we will manipulate condi-
tional laws, we introduce a specific notation in order to shorten statements and proofs.

Notation A.1. Let E be a Polish space and A be an E-valued random variable defined on
some probability space (Ω,A,P).

• JAK denotes the law of A.

• Given a σ-field F ⊂ A, JA | FK denotes a version of the conditional law of A given F ,
hence an F-measurable random variable with values in ∆(E) (see e.g. [2] Proposition
7.26 for this last point).

Lemma A.2.

• Let A,B,C be three random variables (with values in some Polish space) defined on
the same probability space. A is independent of B conditionally on C if and only if
JB|CK = JB|C,AK.

• A
∐
C B if and only if there exists (on a possibly enlarged probability space) a random

variable ξ uniform on [0, 1] independent of (A,C), and a measurable function f such
that B = f(C, ξ).

Proof. See Proposition 5.6 and 5.13 in [22].

Proof of Lemma 3.3. The “if” part is obvious. Let us prove the “only if” part. For q = 0, this
is just Lemma A.2. However, we need to be more precise on how to construct this variable.
We assume that there exists a family of independent variables (ζ0, ..., ζn) uniformly distributed
on [0, 1] and independent of (A0, B0, ..., An, Bn). Then, the variable ξ0 given by Lemma A.2
can be constructed as a function of (A0, B0, ζ0) (see the proof of Proposition 5.13 in [22]). Let
us now proceed by induction and assume the above property is true for p ≤ q and that ξp is
measurable with respect to (A0, B0, ζ0, ..., Ap, Bp, ζp). Since

(A0, ..., Aq+1)
∐

(B0,...,Bq+1)

(B0, ..., Bn),

we have
JB0, ..., Bn|B0, ..., Bq+1, A0, ..., Aq+1K = JB0, ..., Bn|B0, ..., Bq+1K.
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We deduce that

JB0, ..., Bn|B0, ..., Bq+1, Aq+1K = JB0, ..., Bn|B0, .., Bq+1K.

Using now the induction hypothesis and independence, we also have

JB0, ..., Bn|B0, ..., Bq+1, ξ0, ..., ξqK = JB0, ..., Bn|B0, ..., Bq+1K,

JB0, ..., Bn|B0, ..., Bq+1, ξ0, ..., ξq, Aq+1K = JB0, ..., Bn|B0, ..., Bq+1, Aq+1K.

Finally, we deduce that Aq+1
∐

(ξ0,...,ξq,B0,...,Bq+1)
(B0, ..., Bn) and the result follows then by

applying Lemma A.2.

A.2 Auxiliary Tools

The following lemma is classical.

Lemma A.3. Let E,E′ be two separable metric spaces and A,A′ two tight (resp. closed,
convex) subsets of ∆(E) and ∆(E′). Then the set P(A,A′) of probabilities on E ×E′ having
marginals in the sets A and A′ is itself tight (resp. closed, convex).

Proof. Let us prove the tightness property. Let µ ∈ A, ν ∈ A′ and π ∈ P(µ, ν). By as-
sumption, for any ε > 0 there is a compact Kε of E, independent of the choice of µ in A,
such that µ(E/Kε) ≤ ε, and a compact K ′

ε, independent of the choice of ν in A′ such that
ν(E′/K ′

ε) ≤ ε. Then for any pair of random variables (U, V ) of law π:

P[(U, V ) /∈ Kε × Lε] ≤ P[U /∈ Kε] + P[V /∈ Lε] ≤ 2ε

The closed and convex properties follow directly from the continuity and linearity of the
application mapping π to its marginals.

The following theorem is well-known and allows to construct variables with prescribed
conditional laws.

Theorem A.4. (Blackwell-Dubins [3])
Let E be a polish space with ∆(E) the set of Borel probabilities on E,and ([0, 1],B([0, 1]), λ)
the unit interval equipped with Lebesgue’s measure. There exists a measurable mapping

Φ : ∆(E)× [0, 1] −→ E

such that for all µ ∈ ∆(E), the law of Φ(µ,U) is µ where U is the canonical element in [0, 1].

In the proof of Proposition 4.3, we use indirectly this result together with a disintegration
theorem. Precisely:

Lemma A.5. Let E,F be Polish spaces, (Ω,A,P) be some probability space, Y be an E-valued
random variable defined on Ω, and F a sub-σ-field of A. Assume that f is an F-measurable
map from Ω to ∆(E×F ) such that the marginal f1(ω) ∈ ∆(E) of f(ω) on the first coordinate
is a version of the conditional law of Y given F . Then, (up to enlarging the probability space,
there exists a random variable Z such that f(ω) is a version of the conditional law of (Y,Z)
given F .
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Proof. Up to enlarging the probability space, we may assume that there exists some random
variable U uniformly distributed on [0, 1] and independent of (Y,F). One can define using
Theorem A.4 a variable (Ỹ , Z̃) = Φ(f(ω), U) having the property that f1(ω) is a version of
the conditional law of Ỹ given F . Let g(ω, Ỹ ) be a version of the conditional law of Z̃ given
(F , Ỹ ), it follows easily that Z = Φ(g(ω, Y ), U) fulfills the required properties.

The next Lemma is a generalized martingale backward convergence theorem directly
adapted from the corresponding result for classical forward martingales that can be found
in chapter III of [25].

Lemma A.6. Let (Xn)n≥0 be an uniformly bounded sequence of real-valued random vari-
ables defined on some probability space (Ω,A,P). Let (Fn)n≥0 be a decreasing sequence of
sub σ-fields of A. Assume that (Xn)n≥0 converges almost surely to some variable X, then
(E[Xn|Fn])n≥0 converges almost surely to E[X|

⋂
n≥0Fn].

Proof. Define X+
n = supm≥nXm and Y +

n = E[X+
n |Fn]. The sequence X+

n is non-increasing
with limit X and we have

Y +
n+1 = E[X+

n+1|Fn+1] ≤ E[X+
n |Fn+1] = E[Y +

n |Fn+1].

Y +
n is therefore a backward sub-martingale and converges almost surely to some variable Y +

(see e.g. Theorem 30 p.24 in [13]) which is
⋂
n≥0 Fn-measurable. Similarly, define X−

n =
infm≥nXm, and Y

−
n = E[X−

n |Fn]. Then Y −
n is a backward supermartingale which converges

almost surely to Y −. To conclude, note that

Y −
n ≤ E[X|Fn] ≤ Y +

n ,

and that E[Y +
n − Y −

n ] = E[X+
n − X−

n ] → 0 by bounded convergence. Since E[X|Fn] con-
verges almost surely to E[X|

⋂
n≥0Fn], we deduce that E[Xn|Fn] converges almost surely to

E[X|
⋂
n≥0Fn] as Y

−
n ≤ E[Xn|Fn] ≤ Y +

n .

A.3 comparison

In this section we adapt the comparison principle given in [9] for super solutions and sub
solutions of (2.4).

Remark A.7. Note that the process χ takes values in ∆(K), and that our assumptions on b
and σ imply that the functions c and κ are Lipschitz continuous and bounded on ∆(K)×R. In
the following, we will assume without loss of generality that the functions c and κ are bounded
and Lipschitz on the whole space RK+1 (the explicit formula cannot be used directly since the
resulting functions would be unbounded and only locally Lipschitz). Similarly, we assume that
the function u is bounded and Lipschitz on the whole space RK+1.

With our assumptions on c and κ, it is well known (see e.g. [11], p.19) that there exists
a constant C (depending on the Lipschitz constants of c, κ, u) such that for any η > 0,
z, z′ ∈ ∆(K)× R, ξ ∈ RK+1 and symmetric matrices S, S′ ∈ SK+1 with

(
S 0
0 S′

)
≤ η

(
I −I
−I I

)
,

we have
|u(z) − u(z′)| ≤ C|z − z′|
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|〈b(z), ξ〉 − 〈b(z′), ξ〉| ≤ C|ξ||z − z′|,

−
1

2
〈κ(z′),−S′κ(z′)〉 ≤ −

1

2
〈κ(z), Sκ(z)〉 + Cη|z − z′|2.

Let us state the comparison principle.

Theorem A.8. Let w1 be a subsolution and w2 be a supersolution of (2.4), then w1 ≤ w2.

The rest of this subsection is devoted to the proof of this result. Let w1 be a subsolution
and w2 be a supersolution of (2.4) (recall that w1, w2 are bounded functions). Our aim is to
show that w1 ≤ w2. We argue by contradiction, and assume that

M := sup
z∈∆(K)×R

{w1(z)− w2(z)} > 0 . (A.1)

Because of the lack of compactness, let β > 0 and g(y) :=
√

(1 + y2). Define

M ′ := sup
z∈∆(K)×R

{w1(z)− w2(z)− 2βg(y)} .

We choose β sufficiently small so that M ′ > 2C1β
r > 0 with C1 = ‖κ‖2∞ + ‖b‖∞.

We first regularize the maps w1 and w2 by quadratic sup and inf-convolution respectively.
This technique is classical (see [11] for details), for δ > 0 and z ∈ RK+1 we define:

wδ1(z) := max
z′∈∆(K)×R

{
w1(z

′)−
1

2δ
|z − z′|2

}

and

w2,δ(z) := min
z′∈∆(K)×R

{
w2(z

′) +
1

2δ
|z − z′|2

}
.

Note that wδ1 and w2,δ are defined on the whole space RK+1 and that wδ1 is semiconvex while
w2,δ is semiconcave. Moreover, we have the following growth property (uniformly in y)

lim
|p|→+∞

|p|−1wδ1(p, y) = −∞, lim
|p|→+∞

|p|−1w2,δ(p, y) = +∞ .

Define (with zi = (pi, yi)):

Mδ := sup
z1,z2∈RK+1

{
wδ1(z

1)− w2,δ(z
2)− β(g(y1) + g(y2))−

1

2δ
|z1 − z2|2

}
. (A.2)

The following result is classical.

Lemma A.9. For any δ > 0, the problem (A.2) has at least one maximum point. If (z1δ , z
2
δ )

is such a maximum point and if (z1)′δ ∈ ∆(K)× R and (z2)′′δ ∈ ∆(K)× R are such that

wδ1(z
1
δ ) = w1((z

1)′δ)−
1

2δ
|z1δ − (z1)′δ|

2 and w2,δ(z
2
δ ) = w2((z

2)′′δ ) +
1

2δ
|z2δ − (z2)′′δ |

2 (A.3)

then, as δ → 0, Mδ →M ′ while

|z1δ − z2δ |
2

2δ
+

|z1δ − (z1)′δ|
2

2δ
+

|z2δ − (z2)′′δ |
2

2δ
→ 0.
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We first prove that the regularized sub/supersolutions are sub/supersolutions of sligthly
modified equations.

Lemma A.10. Assume that wδ1 has a second order Taylor expansion at a point z. Then

min{rw1(z) +H(z′,Dwδ1(z),D
2w1

δ (z)) ; −λmax(p
′,D2

pw
δ
1(z))} ≤ 0, (A.4)

where z′ ∈ ∆(K)× R is such that wδ1(z) = w1(z
′)− 1

2δ |z − z′|2.
Similarly, if w2,δ has a second order Taylor expansion at a point z, then

rw2(z) +H(z′′,Dw2,δ(z),D
2w2,δ(z)) ≥ 0, (A.5)

where z′′ ∈ ∆(K)×R is such that w2,δ(z) = w2(z
′′) + 1

2δ |z − z′′|2.

Proof. We do the proof for wδ1, the second part being similar. Assume that wδ1 has a second
order Taylor expansion at a point z̄ and set, for γ > 0 small,

φγ(z) := 〈Dwδ1(z̄), z − z̄〉+
1

2
〈z − z̄, D2wδ1(z̄)(z − z̄)〉+

γ

2
|z − z̄|2.

Let z̄′ denote a point in ∆(K)× R such that wδ1(z̄) = w1(z̄
′)− 1

2δ |z̄ − z̄′|2.
Then wδ1 − φγ has a maximum at z̄, which implies, by definition of wδ1, that

w1(z
′)−

1

2δ
|z′ − z|2 ≤ φγ(z) − φγ(z̄) + wδ1(z̄) ∀z ∈ RK+1,∀ z′ ∈ ∆(K)× R,

with an equality for (z, z′) = (z̄, z̄′). If we choose z = z′ − z̄′ + z̄ in the above formula, we
obtain:

w1(z
′) ≤ φγ(z

′ − z̄′ + z̄) +
1

2δ
|z̄′ − z̄|2 − φγ(z̄) + wδ1(z̄) ∀z′ ∈ ∆(K)× R,

with an equality at z′ = z̄′. As w1 is a subsolution, we obtain therefore, using the right-hand
side of the above inequality as a test function,

min
{
rw1(z̄

′) +H(z̄′,Dφγ(z̄),D
2φγ(z̄)) ; −λmax(z̄

′,D2
pφγ(z̄))

}
≤ 0. (A.6)

By construction, we have Dφγ(z̄) = Dwδ1(z̄), D
2φγ(z̄) = D2wδ1(z̄) + γI and w1(z̄

′) ≥ wδ1(z̄).
The conclusion follows therefore by letting γ → 0.

In order to use inequality (A.4), we have to produce points at which wδ1 is strictly con-
cave with respect to the first variable. For this reason, as in [9], we introduce a additional
penalization. For σ > 0 and zi = (pi, yi) ∈ RK+1, we consider

Mδ,σ := sup
(z1,z2)∈(RK+1)2

{
wδ1(z

1)− w2,δ(z
2)− β(g(y1) + g(y2)) + σg(|p1|)−

1

2δ
|z1 − z2|2

}
.

One easily checks that there exists a maximizer (ẑ1, ẑ2) to the above problem. In order to use
Jensen’s Lemma (Lemma A.3 in [11]), we also need this maximum to be strict. For this we
modify the penalization: we set for i = 1, 2:

ξ1(p
1) = g(|p1|)− σg(|p1 − p̂1|), ζi(y

i) = −βg(yi)− σg(yi − ŷi).
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We choose σ > 0 sufficiently small so that ξ1 has a positive second order derivative. By
definition,

Mδ,σ = sup
(z1,z2)∈(RK+1)2

{
wδ1(z

1)−w2,δ(z
2) + ζ1(y

1) + ζ2(y
2) + σξ1(|p

1|)−
1

2δ
|z1 − z2|2

}
,

and the above problem has a strict maximum at (ẑ1, ẑ2). As the map (z1, z2) → wδ1(z
1) −

w2,δ(z
2) + ζ1(y

1) + ζ2(y
2) + σξ1(p

1)− 1
2δ |z

1 − z2|2 is semiconcave, Jensen’s Lemma (together
with Alexandrov theorem) states that, for any ε > 0, there is vector aε ∈ (RK+1)2 with
|aε| ≤ ε, such that the problem

Mδ,σ,ε := sup
z1,z2∈(RK+1)2

{
wδ1(z

1)− w2,δ(z
2) + ζ1(y

1) + ζ2(y
2) + σξ1(|p

1|)−
1

2δ
|z1 − z2|2 + 〈aε, (z

1, z2)〉

}
,

has a maximum point (z1δ,σ,ε, z
2
δ,σ,ε) ∈ (RK+1)2 at which the maps wδ1 and w2,δ have a second

order Taylor expansion. From Lemma A.10, we have

min
{
rw1(z

1
δ,σ,ε)+H((z1)′δ,σ,ε,Dw

δ
1(z

1
δ,σ,ε),D

2wδ1(z
1
δ,σ,ε)) ; −λmax((z

1)′δ,σ,ε,D
2
pw

δ
1(z

1
δ,σ,ε))

}
≤ 0,
(A.7)

and
rw2(z

2
δ,σ,ε) +H((z2)′′δ,σ,ε,Dw2,δ(z

2
δ,σ,ε),D

2w2,δ(z
2
δ,σ,ε)) ≥ 0, (A.8)

where (z1)′δ,σ,ε and (z2)′′δ,σ,ε are points in ∆(K)× R at which one has

wδ1(z
1
δ,σ,ε) = w1((z

1)′δ,σ,ε)−
1

2δ
|z1δ,σ,ε−(z1)′δ,σ,ε|

2 and w2,δ(z
2
δ,σ,ε) = w2((z

2)′′δ,σ,ε)+
1

2δ
|z2δ,σ,ε−(z2)′′δ,σ,ε|

2.

Using the properties of inf and sup-convolutions, we have:

Dwδ1(z
1
δ,σ,ε) = −

1

δ

(
z1δ,σ,ε − (z1)′δ,σ,ε

)
and Dw2,δ(z

2
δ,σ,ε) =

1

δ

(
z2δ,σ,ε − (z2)′′δ,σ,ε

)
. (A.9)

By definition of Mδ,σ,ε we have for all (z1, z2) ∈ (RK+1)2:

wδ1(z
1)− w2,δ(z

2) + ζ1(y
1) + ζ2(y

2) + σξ1(p1) ≤Mδ,σ,ε +
1

2δ
|z1 − z2|2 − 〈aε, (z

1, z2)〉,

with an equality at (z1δ,σ,ε, z
2
δ,σ,ε). Hence

Dwδ1(z
1
δ,σ,ε) +

(
σDξ1(p

1
δ,σ,ε)

−βg′(y1δ,σ,ε)− σg′(y1δ,σ,ε − ŷ1)

)
=

1

δ
(z1δ,σ,ε − z2δ,σ,ε)− a1ε (A.10)

−Dwδ2(z
2
δ,σ,ε) +

(
0

−βg′(y2δ,σ,ε)− σg′(y2δ,σ,ε − ŷ1)

)
=

1

δ
(z2δ,σ,ε − z1δ,σ,ε)− a2ε (A.11)

while (
S 0
0 S′

)
≤

1

δ

(
I −I
−I I

)
(A.12)

with

S := D2wδ1(z
1
δ,σ,ε) +

(
σD2ξ1(p

1
δ,σ,ε) 0

0 −βg′′(y1δ,σ,ε)− σg′′(yδ,σ,ε − ŷ1)

)
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S′ := −D2w2,δ(z
2
δ,σ,ε) +

(
0 0
0 −βg′′(y2δ,σ,ε)− σg′′(y2δ,σ,ε − ŷ2)

)

This implies that S ≤ −S′ (see [11] p.19) and therefore

D2
pw

δ
1(z

1
δ,σ,ε) ≤ D2

pw2,δ(z
2
δ,σ,ε)− σD2ξ1(p

1
δ,σ,ε). (A.13)

We now check that λmax(((p
1)′δ,σ,ε),D

2
pw

δ
1(z

1
δ,σ,ε)) < 0. Using the definition of w2,δ, for all

p ∈ RK and p′′ ∈ ∆(K),

w2,δ(p, y
2
δ,σ,ε) ≤ w2(p

′′, (y2)′′δ,σ,ε) +
1

2δ

(
|p− p′′|2 + |y2δ,σ,ε − (y2)′′δ,σ,ε|

2
)
,

with an equality at (p, p′′) = (p2δ,σ,ε, (p
2)′′δ,σ,ε). If m ∈ T∆(K)((p

2)′′δ,σ,ε) with |m| small enough,

taking p := p2δ,σ,ε +m and p′′ = (p2)′′δ,σ,ε +m gives

w2,δ(p
2
δ,σ,ε+m, y

2
δ,σ,ε) ≤ w2((p

2)′′δ,σ,ε+m, (y
2)′′δ,σ,ε)+

1

2δ

(
|p2δ,σ,ε − (p2)′′δ,σ,ε|

2 + |y2δ,σ,ε − (y2)′′δ,σ,ε|
2
)
,

(A.14)
with equality for m = 0. As w2 is concave with respect to the first variable (see e.g. Lemma
3.2 in [5]), the above inequality implies that λmax((p

2)′′δ,σ,ε,D
2
pw2,δ(z

2
δ,σ,ε)) ≤ 0. In view of

(A.13) we get therefore

λmax((p
1)′δ,σ,ε,D

2
pw

δ
1(z

1
δ,σ,ε)) ≤ −σλmin((p

1)′δ,σ,ε,D
2ξ1(p

1
δ,σ,ε)) < 0,

because D2ξ1 > 0 by construction. So (A.7) becomes

rw1(z
1
δ,σ,ε) +H((z1)′δ,σ,ε),Dw

δ
1(z

1
δ,σ,ε),D

2wδ1(z
1
δ,σ,ε)) ≤ 0 (A.15)

We compute the difference of the two inequalities (A.15) and (A.8) above:

r(wδ1(z
1
δ,σ,ε)−w2,δ(z

2
δ,σ,ε)) +H((z1)′δ,σ,ε,Dw

δ
1(z

1
δ,σ,ε),D

2wδ1(z
1
δ,σ,ε))

−H((z2)′′δ,σ,ε,Dw2,δ(z
2
δ,σ,ε),D

2w2,δ(z
2
δ,σ,ε)) ≤ 0,

where, in view of (A.9) and the definitions of S, S′ (and using that g′, g′′ and |Dξ1|, |D
2ξ1|

are bounded by 1)

H((z1)′δ,σ,ε,Dw
δ
1(z

1
δ,σ,ε),D

2wδ1(z
1
δ,σ,ε)) ≥ H((z1)′δ,σ,ε,

1

δ
(z1δ,σ,ε − z2δ,σ,ε), S) − C1(β + ε+ σ),

H((z2)′′δ,σ,ε,Dw2,δ(z
2
δ,σ,ε),D

2w2,δ(z
2
δ,σ,ε)) ≤ H((z2)′′δ,σ,ε,

1

δ
(z1δ,σ,ε − z2δ,σ,ε),−S

′) + C1(β + ε+ σ),

Next, we have:

|u((z1)′δ,σ,ε)− u((z2)′′δ,σ,ε)| ≤ C|(z1)′δ,σ,ε − (z2)′′δ,σ,ε|,

|〈b((z1)′δ,σ,ε),
1

δ
(z1δ,σ,ε − z2δ,σ,ε)〉 − 〈b(z2)′′δ,σ,ε),

1

δ
(z1δ,σ,ε − z2δ,σ,ε)〉| ≤

C

δ
|(z1)′δ,σ,ε − (z2)′′δ,σ,ε||z

1
δ,σ,ε − z2δ,σ,ε|,

−
1

2
〈κ((z2)′′δ,σ,ε),−S

′κ((z2)′′δ,σ,ε)〉 ≤ −
1

2
〈κ((z1)′δ,σ,ε), Sκ((z

1)′δ,σ,ε)〉+
C

δ
|(z1)′δ,σ,ε − (z2)′′δ,σ,ε|

2.
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We deduce that:

r(wδ1(pδ,σ,ε)− w2,δ(pδ,σ,ε)) ≤ C

(
1

δ

∣∣(z1)′δ,σ,ε − (z2)′′δ,σ,ε
∣∣2 +

∣∣(z1)′δ,σ,ε − (z2)′′δ,σ,ε
∣∣
)

+
C

δ
|(z1)′δ,σ,ε − (z2)′′δ,σ,ε||z

1
δ,σ,ε − z2δ,σ,ε|+ 2C1(β + ε+ σ).

As σ and ε tend to 0, the z1δ,σ,ε, z
2
δ,σ,ε, (z

1)′δ,σ,ε and (z2)′′δ,σ,ε converges (up to a subsequence)

to z1δ , z
2
δ , (z

1)′δ and (z2)′′δ , where (z1δ , z
2
δ ) is a maximum in (A.2) and where (z1)′δ and (z2)′′δ

satisfy (A.3). The above inequality together with the definition of Mδ implies:

rMδ ≤ r(wδ1(z
1
δ )− w2,δ(z

2
δ )) ≤C

(
1

δ

∣∣(z1)′δ − (z2)′′δ
∣∣2 +

∣∣(z1)′δ − (z2)′′δ
∣∣
)

+
C

δ
|(z1)′δ − (z2)′′δ ||z

1
δ − z2δ |+ 2C1β.

We finally let δ → 0: in view of Lemma A.9 the above inequality yields to rM ′ = limδ→0 rMδ ≤
2C1β, which contradicts our initial assumption. Therefore w1 ≤ w2 and the proof is complete.
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