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Abstract

This paper presents a finite volume discretization of two-phase Darcy flows in discrete fracture
networks taking into account the mass exchange between the matrix and the fracture. We con-
sider the asymptotic model for which the fractures are represented as interfaces of codimension
one immersed in the matrix domain, leading to the so called hybrid dimensional Darcy flow model.
The pressures at the interfaces between the matrix and the fracture network are continuous corre-
sponding to a ratio between the normal permeability of the fracture and the width of the fracture
assumed to be large compared with the ratio between the permeability of the matrix and the size
of the domain. The discretization is an extension of the Vertex Approximate Gradient (VAG)
scheme to the case of hybrid dimensional Darcy flow models. Compared with Control Volume
Finite Element (CVFE) approaches, the VAG scheme has the advantage to avoid the mixing of the
fracture and matrix rocktypes at the interfaces between the matrix and the fractures, while keeping
the low cost of a nodal discretization on unstructured meshes. The convergence of the scheme is
proved under the assumption that the relative permeabilities are bounded from below by a strictly
positive constant. This assumption is needed in the convergence proof in order to take into account
discontinuous capillary pressures in particular at the matrix fracture interfaces. The efficiency of
our approach compared with CVFE discretizations is shown on two numerical examples of fracture
networks in 2D and 3D.

Introduction

This article deals with the discretization of two-phase Darcy flows in fractured porous media for
which the fractures are modelized as interfaces of codimension one. In this framework, the d − 1
dimensional flow in the fractures is coupled with the d dimensional flow in the matrix leading to the
so called, hybrid dimensional Darcy flow model. We focus on the particular case where the pressure
is continuous at the interfaces between the fractures and the matrix domain. This type of hybrid
dimensional Darcy flow model has been introduced in [1] for single phase Darcy flows and in [29], [28],
[21] for two-phase Darcy flows. It corresponds physically to pervious fractures for which the ratio of
the transversal permeability of the fracture to the width of the fracture is large compared with the
ratio of the permeability of the matrix to the size of the domain. Note that it does not cover the case
of fractures acting as barriers for which the pressure is discontinuous at the matrix fracture interfaces
(see [18], [26], [3] for discontinuous pressure models).
It is also assumed in our model that the pressure is continuous at the fracture intersections. It
corresponds to a high ratio assumption between the permeability at the fracture intersections and the
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width of the fracture compared with the ratio between the tangential permeability of each fracture
and its lengh. We refer to [19] for a more general reduced model taking into account discontinuous
pressures at fracture intersections in dimension d = 2.

In the framework of two-phase Darcy flows in fractured porous media, high contrasts of capillary
pressures are expected in particular between the matrix and the fractures. Hence, it is crucial to
take into account in the model formulation the saturation jumps at the matrix fracture interfaces.
We refer to [11], [8], [9] for mathematical formulations taking into account discontinuous capillary
pressures. In the present work, we employ the phase pressures formulation (see e.g. [17]) which is an
ideal framework to capture the saturation jump condition at the interface between different rocktypes
without introducing any additional unknowns at these interfaces.

The discretization of the hybrid dimensional Darcy flow model with continuous pressures has been
the object of several works. In [24] a cell-centred Finite Volume scheme using a Two Point Flux Ap-
proximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic permeability
fields. Cell-centred Finite Volume schemes can be extended to general meshes and anisotropic perme-
ability fields using MultiPoint Flux Approximations (MPFA) following the ideas introduced in [31] for
discontinuous pressure models. Nevertheless, MPFA schemes can lack robustness on distorted meshes
and large anisotropies due to the non symmetry of the discretization. They are also very expensive
compared with nodal discretizations on tetrahedral meshes. In [1], a Mixed Finite Element (MFE)
method is proposed for single Darcy flows. It is extended to two-phase flows in [21] in an IMPES
framework using a Mixed Hybrid Finite Element (MHFE) discretization for the pressure equation and
a Discontinuous Galerkin discretization of the saturation equation. These approaches are adapted to
general meshes and anisotropy but require as many degrees of freedom as faces. Control Volume Finite
Element Methods (CVFE) [29], [28] have the advantage to use only nodal unknowns leading to much
fewer degrees of freedom than MPFA and MHFE schemes on tetrahedral meshes. On the other hand,
at the matrix fracture interfaces, the control volumes have the drawback to be shared between the
matrix and the fractures. It results that a strong refinement of the mesh is needed at these interfaces
in the case of large contrasts between the permeabilities of the matrix and of the fractures.

In this article we extend the Vertex Approximate Gradient (VAG) scheme to the framework of
hybrid dimensional two-phase Darcy flows. The VAG scheme has been introduced for the discretiza-
tion of multiphase Darcy flows in [14] for immiscible flows and in [15] for compositional models. The
VAG scheme basically uses nodal unknowns like the CVFE method but it also keep the cell-centred
unknowns, which are eliminated at the linear algebra level without any fill-in. Compared with CVFE
methods, it has the advantage to provide a large flexibility in the choice of the control volumes in
order to avoid mixing rocks with highly contrasted absolute permeabilities in a single control volume.
Compared with cell centred schemes such as the MPFA O scheme, it exhibits a better robustness
regarding anisotropy [20] and a much cheaper cost on tetrahedral meshes [15]. In [17] it is further
adapted to take into account discontinuous capillary pressures using a phase pressures formulation in
order to capture the saturation jumps at different rocktype interfaces. It is this latter approach that is
extended, in this article, to the case of hybrid dimensional two-phase Darcy flows in fractured porous
media.

The first convergence result for a finite volume discretization of single media two-phase Darcy flow
models has been obtained for cell-centred TPFA schemes on admissible meshes in [27] and [12]. In
[12] the convergence is obtained for the usual phase pressures and saturations formulation using a
phase by phase upwinding of the mobilities. In [27] the convergence is obtained for the global pressure
formulation introduced in [10] (see also [4]). This latter convergence result has been recently extended
in [6] to the case of the VAG discretization. The convergence is shown to hold whatever the choice of
the volumes at the nodal unknowns. In the case of two-phase Darcy flows with discontinuous capillary
pressure, the convergence of a TPFA type discretization is obtained in [7]. The extension to general
meshes is done in [17] assuming the non degeneracy of the relative permeabilities in the framework of
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gradient scheme discretizations introduced in [13].
To our knowledge, there is not yet a proof of convergence for hybrid dimensional two-phase Darcy

flows. In this paper, we propose to extend the results obtained in [17] in the particular case of the
VAG scheme to the hybrid dimensional Darcy flow model. The convergence of the VAG scheme to a
weak solution is obtained assuming that the relative permeabilities of both phases are bounded from
below by a strictly positive constant, and assuming that the family of meshes is shape regular.

The outline of the article is the following. In section 1, the hybrid dimensional model is introduced
and its discretization using the VAG scheme is described in section 2. The convergence of the scheme
is obtained in section 3 assuming the non degeneracy of the relative permeabilities and whatever the
choice of the volumes at the nodal unknowns. The numerical tests presented in section 4 exhibit the
efficiency of our approach in both 2D and 3D cases. In particular, for large contrasts of permeability
between the matrix and the fractures, it is shown that the VAG scheme provides a much more accurate
solution than CVFE approaches for a similar cost.

1 Hybrid dimensional Two-Phase Darcy Flow Model in Fractured

Porous Media

1.1 Hybrid Dimensional Model in Fractured Porous Media

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal for
d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for instance in the
naming of the geometrical objects or for the space discretization in the next section. The adaptations
to the case d = 2 are straightforward.

We consider the asymptotic model introduced in [1] where fractures are represented as interfaces
of codimension 1. Let Γ =

⋃

i∈I Γi and its interior Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω,
i ∈ I, such that each Γi is a planar polygonal simply connected open domain included in a plane Pi

of Rd. It is assumed that the angles of Γi are strictly lower than 2π and that Γi ∩Γj = ∅ for all i 6= j.
For all i ∈ I, let us set Σi = ∂Γi, Σi,j = Σi ∩Σj , j ∈ I, Σi,0 = Σi ∩ ∂Ω, Σi,N = Σi \ (

⋃

j∈I Σi,j ∪Σi,0),

and Σ =
⋃

(i,j)∈I×I,i 6=j Σi,j . It is assumed that Σi,0 = Γi ∩ ∂Ω.

Figure 1: Example of a 2D domain Ω and 3 intersecting fractures Γi, i = 1, 2, 3.

We will denote by dτ(x) the d− 1 dimensional Lebesgue measure on Γ. On the fracture network
Γ, we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}, endowed with the norm
‖v‖2L2(Γ) =

∑

i∈I ‖vi‖2L2(Γi)
and its subspace H1(Γ) consisting of functions v = (vi)i∈I such that

vi ∈ H1(Γi), i ∈ I with continuous traces at the fracture intersections. The space H1(Γ) is endowed
with the norm ‖v‖2H1(Γ) =

∑

i∈I ‖vi‖2H1(Γi)
and its subspace with vanishing traces on Σ0 =

⋃

i∈I Σi,0

is denoted by H1
Σ0
(Γ).

Let us also consider the trace operator γi from H1(Ω) to L2(Γi) as well as the trace operator γ
from H1(Ω) to L2(Γ) such that (γv)i = γi(v) for all i ∈ I.

On Ω, the gradient operator from H1(Ω) to L2(Ω)d is denoted by ∇. On the fracture network Γ,
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the tangential gradient is denoted by ∇τ from H1(Γ) to L2(Γ)d−1 and such that

∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1 by fixing a

reference Cartesian coordinate system of the plane Pi containing Γi. We also denote by divτi the
divergence operator from Hdiv(Γi) to L

2(Γi).

The function spaces used in the variational formulation of the hybrid dimensional Darcy flow model
are defined by

V = {v ∈ H1(Ω) such that γv ∈ H1(Γ)}, and its subspace V 0 = {v ∈ H1
0 (Ω) such that γv ∈ H1

Σ0
(Γ)}.

From Poincaré inequality on H1
0 (Ω) and the continuity of the trace operator γ, we deduce the following

inequality with a constant CP depending in particular on the number of fractures.

Proposition 1.1 There exists CP > 0 such that for all v ∈ V 0 one has

‖v‖L2(Ω) + ‖γv‖L2(Γ) ≤ CP ‖∇v‖L2(Ω)d .

Thus, the space V 0 is endowed with the following norm

‖v‖V =
(

‖∇v‖2L2(Ω)d + ‖∇τγv‖2L2(Γ)d−1

)1/2
,

and the space V with the norm ‖v‖2V = ‖v‖2V 0 + ‖v‖2L2(Ω).

For all i ∈ I, we can define the two sides ± of the fracture Γi in Ω \ Γ and the corresponding unit
normal vectors n±i at Γi outward to the sides ±. For all qm ∈ Hdiv(Ω \ Γ), let q±

m · n±i denote the
two normal traces at the fracture Γi in the sense of distributions. For all fractures Γi, i ∈ I, we also
denote by nΣi the unit vector normal to Σi in the fracture plane Pi and outward to Γi.

1.2 Two-Phase Darcy Flows in Phase Pressures Formulation

In the framework of two-phase Darcy flows in fractured porous media high contrasts of capillary pres-
sures are expected in particular at the interfaces between the matrix and the fractures. Hence, it is
crucial to take into account in the model formulation the saturation jumps at these interfaces (see
for example [8], [9] for the mathematical formulations of two-phase Darcy flows with discontinuous
capillary pressures). Our choice focuses on the phase pressures formulation (see e.g. [17]) which is
extended to the case of hybrid dimensional two-phase Darcy flows in a variational formulation frame-
work. The main advantage of this formulation is to choose as primary unknowns the phase pressures
which can be assumed to be continuous at the interfaces between different rocktypes while the jump
of the saturation is captured using the inverse of the capillary pressure monotone graph for each rock-
type. An alternative choice using a global pressure approach is presented in [23].

Let u2 (resp. u1) denote the wetting (resp. non wetting) phase pressure, p = u1 − u2 the capillary
pressure, and pini ∈ V the initial capillary pressure. For the sake of simplicity in the convergence
analysis, homogeneous Dirichlet boundary conditions are assumed for u1 and u2 at the boundary ∂Ω,
as well as at Σ0 for γu

1 and γu2. The gravity is also not taken into account in the model to simplify the
analysis. The extension of the convergence proof to the case with gravity and with non homogeneous
Dirichlet boundary conditions can be done easily following the same ideas as in [17].

Let us denote by S1
m(x, p) (resp. S1

f (x, p)) the inverses of the monotone graph extension of the
capillary pressure curves in the matrix domain Ω (resp. in the fracture network Γ), and let us set
S2
m = 1− S1

m (resp. S2
f = 1− S1

f ).
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In the matrix domain Ω (resp. in the fracture network Γ), let us denote by kαm(x, Sα
m) (resp.

kαf (x, S
α
f )), α = 1, 2, the phase mobilities, by φm(x) (resp. φf (x)) the porosity, and by Λm(x) (resp.

Λf (x)) the permeability tensor. We also denote by df (x),x ∈ Γ the width of the fractures, and by
dτf (x) the weighted Lebesgue d− 1 dimensional measure on Γ defined by dτf (x) = df (x)dτ(x).

Let us define the function space of the fluxes denoted by W (Ω,Γ) and defined by

W (Ω,Γ) =



















qm ∈ Hdiv(Ω \ Γ), qf = (qf,i)i∈I ∈ L2(Γ)d−1 such that

rf,i = divτ (qf,i)− q+
m · n+

i − q−
m · n−

i ∈ L2(Γi), i ∈ I, and
∫

Ω\Γ
(qm · ∇v + div(qm)v)dx+

∑

i∈I

∫

Γi

(qf,i · ∇τγv + rf,iγv)dτ = 0 for all v ∈ V 0



















,

Note that the last condition in this definition amounts to impose in a weak sense

(i) the sum to zero of the output normal fluxes at fracture intersections
∑

i∈I qf,i · nΣi = 0 on Σ,
assuming that the intersection volume can be neglected,

(ii) a zero normal flux boundary condition at the immersed boundaries of the fractures qf,i ·nΣi = 0
on Σi,N , i ∈ I, assuming that the width at the tip of the fracture is small compared to the lengh
of the fracture.

With these notations, the strong formulation of our hybrid dimensional two phase Darcy flow model
amounts to find formally uα ∈ L2(0, T ;V 0), α = 1, 2, and (qα

m,q
α
f ) ∈ L2(0, T ;W (Ω,Γ)) such that one

has for α = 1, 2:































φm∂t

(

Sα
m(x, p)

)

+ div(qα
m) = hαm on Ω \ Γ,

φfdf∂t

(

Sα
f (x, γip)

)

+ divτi(q
α
f,i)− q

α,+
m · n+

i − q
α,−
m · n−

i = dfh
α
f on Γi, i ∈ I,

−kαm(x, Sα
m(x, p))Λm∇uα = qα

m on Ω \ Γ,
−dfkαf (x, Sα

f (x, γip))Λf∇τiγiu
α = qα

f,i on Γi, i ∈ I,

p|t=0 = pini, on Ω,

where the function hαm (resp. hαf ), α = 1, 2 stands for the source terms in the matrix domain Ω (resp.
in the fracture network Γ).

The corresponding weak formulation amounts to find u1, u2 ∈ L2(0, T ;V 0) satisfying the following
variational equalities for α = 1, 2, and for all ϕ ∈ C∞

c ([0, T )× Ω):































































∫ T

0

∫

Ω

(

−φm(x)Sα
m(x, p)∂tϕ(x, t) + kαm(x, Sα

m(x, p))Λm(x)∇uα(x, t) · ∇ϕ(x, t)
)

dxdt

+

∫ T

0

∫

Γ
−φf (x)Sα

f (x, γp)∂tγϕ(x, t)dτf (x)dt

+

∫ T

0

∫

Γ
kαf (x, S

α
f (x, γp))Λf (x)∇τγu

α(x, t) · ∇τγϕ(x, t)dτf (x)dt

−
∫

Ω
φm(x)Sα

m(x, pini)ϕ(x, 0)dxdt−
∫

Γ
φf (x)S

α
f (x, γpini)ϕ(x, 0)dτf (x)dt

−
∫ T

0

∫

Ω
hαm(x, t)ϕ(x, t)dxdt−

∫ T

0

∫

Γ
hαf (x, t)γϕ(x, t)dτf (x)dt = 0.

(1)

As in [17], the following assumptions are made on the data:

(H1) φm is a measurable function from Ω to R with φm(x) ∈ [φmin, φmax], φmax ≥ φmin > 0. φf is a
measurable function from Γ to R with φf (x) ∈ [φmin, φmax]. df is a measurable function from Γ
to R with df (x) ∈ [dmin, dmax], dmax ≥ dmin > 0.

(H2) Λm is a measurable function from Ω to Md(R) (where Mr(R) denotes the set of r × r matrices
with real coefficients) such that for a.e. x ∈ Ω, Λm(x) is symmetric and the set of its eigenvalues
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is included in [λmin, λmax] with 0 < λmin ≤ λmax. Λf is a measurable function from Γ to
Md−1(R) such that for a.e. x ∈ Γ, Λf (x) is symmetric and the set of its eigenvalues is included
in [λmin, λmax].

(H3) S1
m(x, p) ∈ [0, 1] for all (x, p) ∈ Ω × R with S1

m(x, p) = S1
m,j(p) for a.e. x ∈ Ωj and all p ∈ R,

where S1
m,j is a non decreasing Lipschitz continuous function with constant LS and (Ωj)j∈Jm is a

finite family of disjoint connected polyhedral open sets such that
⋃

j∈Jm Ωj = Ω. S1
f (x, p) ∈ [0, 1]

for all (x, p) ∈ Γ × R with S1
f (x, p) = S1

f,j(p) for a.e. x ∈ Υj and all p ∈ R, where S1
f,j is a

non decreasing Lipschitz continuous function with constant LS and (Υj)j∈Jf is a finite family of

disjoint connected polygonal open sets such that
⋃

j∈Jf Υj = Γ.

(H4) kαm(x, s) (resp. kαf (x, s)) ∈ [kmin, kmax] for (x, s) ∈ Ω × [0, 1] (resp. (x, s) ∈ Γ × [0, 1]), kmax ≥
kmin > 0 and kαm(·, s) (resp. kαf (·, s)) measurable, kαm(x, ·) (resp. kαf (x, ·)) continuous, α = 1, 2.

(H5) pini ∈ V , hαm ∈ L2(Ω× (0, T )), hαf ∈ L2(Γ× (0, T )), α = 1, 2.

Assumptions (H1-H5) are quite general, except for kmin > 0 of hypothesis H4. This assumption is
needed in the mathematical part of this paper. Remark that it is not needed in the implementation of
the numerical scheme and will be dropped in the numerical section. The influence of this parameter has
already been studied numerically in [17]. The hypothesis (H3) that the functions S1

m(x, p) and S1
f (x, p)

are defined by given functions in a partition of the domain is classical and the index j corresponds to
the so called geological rocktypes.

2 Vertex Approximate Gradient Discretization

In the spirit of [13], we consider generalised polyhedral meshes of Ω. Let M be the set of cells that
are disjoint open polyhedral subsets of Ω such that

⋃

K∈MK = Ω. For all K ∈ M, xK denotes the
so-called “centre” of the cell K under the assumption that K is star-shaped with respect to xK . We
then denote by FK the set of interfaces of non zero d − 1 dimensional measure among the interior
faces K ∩ L, L ∈ M, and the boundary interface K ∩ ∂Ω, which possibly splits in several boundary
faces. Let us denote by

F =
⋃

K∈M
FK

the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence the term
“generalised polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non zero d−2 dimensional
measure among the interfaces σ ∩ σ′, σ′ ∈ F . Then, we denote by

E =
⋃

σ∈F
Eσ

the set of all edges of the mesh. Let Vσ =
⋃

e,e′∈Eσ ,e 6=e′
(

e ∩ e′
)

be the set of vertices of σ. For each
K ∈ M we define VK =

⋃

σ∈FK
Vσ, and we also denote by

V =
⋃

K∈M
VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a so-called
“centre” of the face xσ ∈ σ\⋃e∈Eσ e such that xσ =

∑

s∈Vσ
βσ,s xs, with

∑

s∈Vσ
βσ,s = 1, and βσ,s ≥ 0

for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the triangles Tσ,e defined
by the face centre xσ and each edge e ∈ Eσ.

The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense that for
all i ∈ I there exist the subsets FΓiof F such that Γi =

⋃

σ∈FΓi
σ. We will denote by FΓ the set of

fracture faces
⋃

i∈I FΓi . This geometrical discretization of Ω and Γ is denoted in the following by D.
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The VAG discretization has been introduced in [13] for diffusive problems on heterogeneous
anisotropic media. Its extension to the hybrid dimensional Darcy model is based on the following
vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R,K ∈ M, s ∈ V, σ ∈ FΓ},

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext}.

where Vext = V ∩∂Ω denotes the set of boundary vertices, and Vint = V \∂Ω denotes the set of interior
vertices.

A finite element discretization of V is built using a tetrahedral sub-mesh of M and a second order
interpolation at the face centres xσ, σ ∈ F \ FΓ defined by the operator Iσ : XD → R such that

Iσ(v) =
∑

s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by T = {TK,σ,e, e ∈ Eσ, σ ∈ FK ,K ∈ M} where TK,σ,e is the
tetrahedron joining the cell centre xK to the triangle Tσ,e (see Figure 2 for examples of such tetrahedra).

Figure 2: Degrees of freedom of the VAG scheme: cell unknowns vK , vL, fracture face unknown vσ, and
node unknowns vs, vs1 , vs2 , vs3 , vs4 . The fracture faces of FΓ are in bold. The value of vσ′ is obtained
by interpolation of the node unknowns vs1 , vs2 , vs3 , vs4 of the face σ′ ∈ F \ FΓ while vσ is kept as an
unknown for σ ∈ FΓ.

For a given v ∈ XD, we define the function πT v ∈ V as the continuous piecewise affine function on
each tetrahedron of T such that πT v(xK) = vK , πT v(s) = vs, πT v(xσ) = vσ, and πT v(xσ′) = Iσ′(v)
for all K ∈ M, s ∈ V, σ ∈ FΓ, and σ

′ ∈ F \FΓ. We define the conforming approximation of the space
V by

VT = {πT v, v ∈ XD} ⊂ V

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

V 0
T = {πT v, v ∈ X0

D} = VT ∩ V 0.

The nodal basis of this finite element discretization will be denoted by ηK , ηs, ησ, for K ∈ M, s ∈ V,
σ ∈ FΓ.

Discrete gradient operators are obtained from this finite element discretization of V , defining, for
the matrix domain, the operator

∇Dm : XD → L2(Ω)d such that ∇Dmv = ∇πT v,
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and, for the fracture network, the operator

∇Df
: XD → L2(Γ)d−1 such that ∇Df

v = ∇τγπT v.

In addition to the conforming finite element discretization, the VAG discretization uses two non
conforming piecewise constant reconstructions of functions from XD into respectively L2(Ω) and L2(Γ)
based on a partition of the cells and of the fracture faces. These partitions are respectively denoted,
for all K ∈ M, by

K = ωK

⋃

(

⋃

s∈VK∩Vint

ωK,s

)

⋃

(

⋃

σ∈FK∩FΓ

ωK,σ

)

,

and, for all σ ∈ FΓ, by

σ = Σσ

⋃

(

⋃

s∈Vσ∩Vint

Σσ,s

)

.

Then, the function reconstruction operators are defined by

πDmv(x) =







vK for all x ∈ ωK , K ∈ M,

vs for all x ∈ ωK,s, s ∈ VK ∩ Vint, K ∈ M,

vσ for all x ∈ ωK,σ, σ ∈ FK ∩ FΓ, K ∈ M,

and

πDf
v(x) =

{

vσ for all x ∈ Σσ, σ ∈ FΓ,

vs for all x ∈ Σσ,s, s ∈ Vσ ∩ Vint, σ ∈ FΓ.

It is important to notice that in the particular case when the space discretization is conforming
with respect to the sets (Ωj)j∈Jm ,(Γj)j∈Jf and when the source term hαm (resp. hαf ) is a cellwise (resp.
facewise) constant function, the implementation of the VAG scheme does not require to build these
partitions. In that case, it is sufficient to define the matrix volume fractions

αK,s =

∫

ωK,s
dx

∫

K dx
, s ∈ VK ∩ Vint,K ∈ M, αK,σ =

∫

ωK,σ
dx

∫

K dx
, σ ∈ FK ∩ FΓ,K ∈ M,

constrained to satisfy αK,s ≥ 0, αK,σ ≥ 0, and
∑

s∈VK∩Vint
αK,s +

∑

σ∈FK∩FΓ
αK,σ ≤ 1, as well as the

fracture volume fractions

ασ,s =

∫

Σσ,s
dτf (x)

∫

σ dτf (x)
, s ∈ Vσ ∩ Vint, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ∩Vint
ασ,s ≤ 1. The convergence of the VAG scheme will be

shown to hold whatever the choice of these partitions or volume fractions. As will be detailed in the
numerical section, this flexibility is a crucial asset, compared with usual CVFE approaches, in order
to improve the accuracy of the scheme for highly heterogeneous test cases.

Let ρT denote the insphere diameter of a given tetrahedron T , hT its diameter, and hT =
maxT∈T hT . We will assume in the convergence analysis that the family of tetrahedral submeshes
T is shape regular and that the number of vertices of each cell K is uniformly bounded. Hence let us
set

θT = max
T∈T

hT

ρT
and γM = max

K∈M
Card(VK).

We state without proof two results that can be readily adapted from [6] noticing that the shape
regularity of T implies the shape regularity of the triangular submesh of Γ defined by T ∩ Γ.

Lemma 2.1 There exist C1, C2 > 0 depending only on γM and θT such that for all u ∈ XD

‖πDmu‖L2(Ω) ≤ C1‖πT u‖L2(Ω) and ‖πDf
u‖L2(Γ) ≤ C2‖γπT u‖L2(Γ). (2)
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Lemma 2.2 There exists C3 > 0 depending only on γM and θT such that, for all u ∈ XD,

‖πDmu− πT u‖L2(Ω) + ‖πDf
u− γπT u‖L2(Γ) ≤ C3 hT ‖πT u‖V . (3)

For any smooth function ϕ ∈ C∞(Ω), let us introduce the finite element interpolation operator

PT ϕ(x) =
∑

K∈M
ϕ(xK)ηK(x) +

∑

s∈V
ϕ(xs)ηs(x) +

∑

σ∈FΓ

ϕ(xσ)ησ(x).

We have the following classical finite element approximation result:

Proposition 2.1 For all ϕ ∈ C∞(Ω), then there exists C4 > 0 depending only on ϕ, γM, and θT
such that

‖ϕ− PT ϕ‖V ≤ C4hT .

The VAG scheme has been introduced for the discretization of multiphase immiscible Darcy flows
in [14] and in [15] for compositional models. Its convergence has been proved for two-phase flows using
a global pressure formulation in [6]. In [17] it has been adapted to take into account discontinuous
capillary pressures using a phase pressures formulation and the convergence proof is done in the gen-
eral framework of gradient schemes. We extend here this approach to the case of hybrid dimensional
two-phase Darcy flows.

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T of
the time interval [0, T ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , N while ∆t
stands for the whole sequence (∆tn)n=1,...,N .

Let us denote by uα,n ∈ X0
D, α = 1, 2 the discrete phase pressures, and by pn = u1,n − u2,n the

discrete capillary pressure at time tn for all n = 1, · · · , N . Given an approximation p0 ∈ XD of the
initial capillary pressure pini, the VAG discretization of the two-phase Darcy flow model in phase

pressures formulation (1) looks for uα =
(

uα,n ∈ X0
D
)

n=1,··· ,N
, α = 1, 2, such that for α = 1, 2, and

for all v ∈ X0
D one has



















































∫

Ω
φm

S
α,n
Dm

− S
α,n−1
Dm

∆tn
πDmv dx +

∫

Ω
k
α,n
Dm

Λm∇Dmu
α,n · ∇Dmv dx

+

∫

Γ
φf
S
α,n
Df

− S
α,n−1
Df

∆tn
πDf

v dτf (x) +

∫

Γ
k
α,n
Df

Λf∇Df
uα,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω
hαmπDmv dx+

∫

Γ
hαf πDf

v dτf (x)
)

dt,

(4)

where the saturations and relative permeabilities are discretized using the piecewise constant recon-
struction operators

S
α,n
Dm

(x) = Sα
m(x, πDmp

n(x)), Sα,n
Df

(x) = Sα
f (x, πDf

pn(x)),

and
k
α,n
Dm

(x) = kαm(x, Sα,n
Dm

(x)), kα,nDf
(x) = kαf (x, S

α,n
Df

(x)),

in order to capture the discontinuities at different rocktype interfaces.
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3 Convergence Analysis

3.1 A priori estimates

Using the phase pressures as test functions in the discrete variational formulation (4), we deduce the
following a priori estimate.

Lemma 3.1 Assuming that hypotheses (H1 − H5) hold, let uα, α = 1, 2, be a solution to (4), then,
there exists C5 > 0 depending only on the data and on γM and θT such that

∑

α=1,2

N
∑

n=1

∆tn‖πT uα,n‖2V ≤ C5. (5)

Let us introduce the following notations. For all v ∈ XD we define the terms

A
α,n
Dm

(v) =

∫

Ω
φm

S
α,n
Dm

− S
α,n−1
Dm

∆tn
πDmv dx, A

α,n
Df

(v) =

∫

Γ
φf
S
α,n
Df

− S
α,n−1
Df

∆tn
πDf

v dτf (x), (6)

B
α,n
Dm

(v) =

∫

Ω
k
α,n
Dm

Λm∇Dmu
α,n · ∇Dmv dx, B

α,n
Df

(v) =

∫

Γ
k
α,n
Df

Λf∇Df
uα,n · ∇Df

v dτf (x), (7)

C
α,n
Dm

(v) =
1

∆tn

∫ tn

tn−1

∫

Ω
hαmπDmv dxdt, C

α,n
Df

(v) =
1

∆tn

∫ tn

tn−1

∫

Γ
hαf πDf

v dτf (x)dt. (8)

In order to prove Lemma 3.1, we first derive some estimates of the accumulation, gradient and right
hand side terms of in the following propositions.

Firstly, the following estimate of the accumulation terms is a straightforward adaptation from
Lemma 3.1 of [17].

Proposition 3.1 Let uα, α = 1, 2, be a solution of (4), then

N
∑

n=1

∑

α=1,2

∑

j=m,f

∆tnAα,n
Dj

(uα,n) ≥ −φmaxLS

2

(

‖πDmp
0‖2L2(Ω) + dmax‖πDf

p0‖2L2(Γ)

)

.

Secondly, thanks to the assumptions (H2) and (H4) the following estimate readily holds for the
gradient terms.

Proposition 3.2 Let uα, α = 1, 2, be a solution of (4), then

N
∑

n=1

∑

j=m,f

∆tnBα,n
Dj

(uα,n) ≥ kminλmin

N
∑

n=1

∆tn
(

‖∇Dmu
α,n‖2L2Ω)d + dmin‖∇Df

uα,n‖2L2(Γ)d−1

)

,

for all α = 1, 2.

Thirdly, we have the following straightforward estimate for the right hand side.

Proposition 3.3 Let uα, α = 1, 2, be a solution of (4), then there exists C > 0 depending only on
dmax, CP , γM and θT such that

N
∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(uα,n) ≤ C
(

‖hαm‖2L2(Ω×(0,T )) + dmax‖hαf ‖2L2(Γ×(0,T ))

)1/2(
N
∑

n=1

∆tn‖πT uα,n‖2V
)1/2

for all α = 1, 2.
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Proof of Lemma 3.1: To complete the proof of Lemma 3.1, it follows from (4) that

N
∑

n=1

∑

α=1,2

∑

j=m,f

∆tn
(

A
α,n
Dj

(uα,n) +B
α,n
Dj

(uα,n)− C
α,n
Dj

(uα,n)
)

= 0,

so that in view of Propositions 3.1, 3.2 and 3.3 there exists C > 0 depending only on the data and on
γM and θT such that

∑

α=1,2

N
∑

n=1

∆tn‖πT uα,n‖2V ≤ C






1 +





∑

α=1,2

N
∑

n=1

∆tn‖πT uα,n‖2V





1/2





.

The estimate (5) is then obtained using Young’s inequality. �

Lemma 3.2 Assuming that hypotheses (H1−H5) hold, there exists at least one solution to the problem
(4).

Proof: Let us consider the functions S1,θ
m = θS1

m+(1− θ) and S1,θ
f = θS1

f +(1− θ) instead of S1
m and

S1
f as well as the functions S2,θ

m = 1 − S
1,θ
m and S2,θ

f = 1 − S
1,θ
f instead of S2

m and S2
f . The problem

corresponding to θ = 0 reads : For each α = 1, 2 and for each n = 1, . . . , N find uα,n ∈ X0
D satisfying







































































∫

Ω
k1m(x, 1)Λm∇Dmu

1,n · ∇Dmv dx+

∫

Γ
k1f (x, 1)Λf∇Df

u1,n · ∇Df
v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω
h1mv dx+

∫

Γ
h1fπDf

v dτf (x)
)

dt ∀v ∈ X0
D,

∫

Ω
k2m(x, 0)Λm∇Dmu

2,n · ∇Dmv dx+

∫

Γ
k2f (x, 0)Λf∇Df

u2,n · ∇Df
v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω
h2mv dx+

∫

Γ
h2fπDf

v dτf (x)
)

dt ∀v ∈ X0
D.

(9)

In view of Lemma 2.1 and the assumptions on the data one deduces from Lax-Milgram theorem the
existence and uniqueness of the solution to (9). We remark that the estimate (5) holds for all θ ∈ [0, 1].
Therefore the existence of a solution for all θ ∈ [0, 1] can be deduced from a classical topological degree
argument. �

3.2 Estimates on the time and space translates

Proposition 3.4 Let T > 0, N ∈ N and (tn)n=0,...,N ∈ R such that 0 = t0 < t1 < . . . < tN = T . Let
v be a piecewise constant mapping from [0, T ] to some space X (endowed with a semi-norm ‖ · ‖X)
such that v(0) = v0 and v(t) = vn for all t ∈ (tn−1, tn]. Then,

∫ T−τ

0
‖v(t+ τ)− v(t)‖X ≤ τ

N
∑

n=1

‖vn − vn−1‖X ∀τ ∈ [0, T ].

Proof: For all t ∈ [0, T ] we set

n∆t(t) =

{

0 if t = 0,
n if t ∈ (tn−1, tn],
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so that
∫ T−τ

0
‖v(t+ τ)− v(t)‖Xdt ≤

∫ T−τ

0

n∆t(t+τ)
∑

k=n∆t(t)+1

‖vk − vk−1‖Xdt.

We conclude the proof by applying Lemma 6.1 of [2]. �

Let us set XD,∆t = (XD)N , and for all v = (vn)n=1,··· ,N ∈ XD,∆t let us define

πDm,∆tv(x, t) = πDmv
n(x) for all (x, t) ∈ Ω× (tn−1, tn],

πDf ,∆tv(x, t) = πDf
vn(x) for all (x, t) ∈ Γ× (tn−1, tn],

πT ,∆tv(x, t) = πT v
n(x) for all (x, t) ∈ Ω× (tn−1, tn].

We also define the functions Sα
Dm,∆t(x, t) = Sα(x, πDm,∆tp(x, t)) and S

α
Df ,∆t(x, t) = Sα(x, πDf ,∆tp(x, t)).

Lemma 3.3 Assuming that hypotheses (H1 − H5) hold, let uα, α = 1, 2, be a solution to (4), then
there exists C > 0 only depending on the data, on γM and θT such that for all τ > 0 one has

∑

α=1,2

‖Sα
Dm,∆t(·, ·+ τ)− Sα

Dm,∆t‖2L2(Ω×(0,T )) + ‖Sα
Df ,∆t(·, ·+ τ)− Sα

Df ,∆t‖2L2(Γ×(0,T )) ≤ C
√
τ ,

where we have set Sα
Dm,∆t(x, t) = Sα

Df ,∆t(x, t) = 0 for all t > T .

Proof: Let us denote by U the space L2(Ω) × L2(Γ) equipped with the scalar product 〈u, v〉U =
∫

Ω φmumvmdx +
∫

Γ φfufvfdτf (x). For all u = (um, uf ) ∈ U we also define the dual semi-norm
‖u‖−1,D by

‖u‖−1,D = sup
v∈X0

D
,v 6=0

〈u, (πDmv, πDf
v)〉U

‖πT v‖V
.

Setting Sα,n
D = (Sα,n

Dm
, S

α,n
Df

) ∈ U , and using the assumptions (H1), (H2), (H4), (H5) on the data,

we deduce from (4) that there exists C > 0 depending only on the data and on γM and θT such that

∣

∣

∣

∣

1

∆tn
〈Sα,n

D − S
α,n−1
D , (πDmv, πDf

v)〉U
∣

∣

∣

∣

≤ C
(

‖πT uα,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω)+‖hf (., t)‖L2(Γ))dt
)

‖πT v‖V

for all v ∈ X0
D. Therefore, one obtains the estimate

1

∆tn
‖Sα,n

D − S
α,n−1
D ‖−1,D ≤ C

(

‖πT uα,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω) + ‖hf (., t)‖L2(Γ))dt
)

.

Multiplying by ∆tn, summing over n = 1, . . . , N , and using Lemma 3.1, there exists C > 0 depending
only on the data and on γM and θT such that

N
∑

n=1

‖Sα,n
D − S

α,n−1
D ‖−1,D ≤ C. (10)

Next setting p = u1 − u2 and Sα,n
D,∆t = (Sα

Dm,∆t, S
α
Df ,∆t) ∈ L2(U × (0, T )) we have

∫ T

0
‖Sα

D,∆t(t+ τ)− Sα
D,∆t(t)‖Udt

≤
√

LS

∫ T

0
‖Sα

D,∆t(t+ τ)− Sα
D,∆t(t)‖

1/2
−1,D ‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖1/2V dt

≤
√
LS

2
√
τ

∫ T

0
‖Sα

D,∆t(t+ τ)− Sα
D,∆t(t)‖−1,Ddt+

√
LS

√
τ

2

∫ T

0
‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖V dt.
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In view of Proposition 3.4, the estimates (10), Lemma 3.1, and the assumption (H3), there exists
C > 0 depending only on the data and on γM and θT such that

√
LS

2
√
τ

∫ T

0
‖Sα

D,∆t(t+ τ)− Sα
D,∆t(t)‖−1,Ddt ≤ C

√
τ ,

and
∫ T

0
‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖V dt ≤ C,

which implies that
∫ T

0
‖Sα

D,∆t(t+ τ)− Sα
D,∆t(t)‖Udt ≤ C

√
τ

with C > 0 depending only on the data and on γM and θT . One concludes the proof using 0 ≤
Sα
m, S

α
f ≤ 1 . �

Lemma 3.4 It is assumed that hypotheses (H1 − H5) hold. Let (D(m),∆t(m))m∈N be a sequence of
space-time discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ,
γM(m) ≤ γ for all m ∈ N and such that hT (m) → 0 as m→ ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and Sα

D(m)
f ,∆t(m)

,

α = 1, 2, be such that (4) holds for all m ∈ N.

1. Let ξ ∈ Rd and

T (m)
m (ξ) =

∑

α=1,2

‖Sα

D(m)
m ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
m ,∆t(m)

‖L2(Rd×(0,T )),

where Sα

D(m)
m ,∆t(m)

is extended by 0 on
(

Rd\Ω
)

×(0, T ). Then, one has lim|ξ|→0 supm∈N T
(m)
m (ξ) =

0.

2. For all i ∈ I let τ(Pi) denote the vector subspace tangent to Pi, let ξ ∈ τ(Pi), and let us set

T
(m)
f (ξ) =

∑

α=1,2

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖L2(Pi×(0,T )),

where Sα

D(m)
f,i ,∆t(m)

denotes the restriction of Sα

D(m)
f ,∆t(m)

to Γi, extended by 0 on
(

Pi\Γi

)

×(0, T ).

Then one has lim|ξ|→0 supm∈N T
(m)
f (ξ) = 0

Proof: For each i ∈ I and for all ξ ∈ τ(Pi) let us define the set Γξ
i = {x ∈ Γi,x + ξ ∈ Γi}. Since

0 ≤ Sα
Df,i

≤ 1 there exists a positive C depending only on the geometry of Γi and on T such that

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)−Sα

D(m)
f,i ,∆t(m)

‖2L2(Γi×(0,T )) ≤ C|ξ|+ ‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)−Sα

D(m)
f,i ,∆t(m)

‖2
L2(Γξ

i×(0,T ))
.

Denoting by πD(m)
f,i ,∆t(m)p

(m) the restriction of πD(m)
f ,∆t(m)p

(m) to Γi, one deduces from Lemma 2.2 and

Lemma 3.1 that

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖
L2(Γξ

i×(0,T ))

≤ LS‖πD(m)
f,i ,∆t(m)p

(m)(·+ ξ, ·)− πD(m)
f,i ,∆t(m)p

(m)‖
L2(Γξ

i×(0,T ))

≤ LS‖γiπT (m),∆t(m)p(m)(·+ ξ, ·)− γiπT (m),∆t(m)p(m)‖
L2(Γξ

i×(0,T ))
+ 2LSC3

√
C5hT (m) .

Therefore, using Lemma 5.2 in the Appendix and Lemma B.2 of [16], we deduce that

lim
ξ→0

sup
m∈N

‖Sα

D(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D(m)
f,i ,∆t(m)

‖L2(Pi×(0,T )) = 0 ∀i ∈ I.

One proves the first statement of the lemma using similar arguments. �
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3.3 Convergence

In view of Lemma 3.3 and Lemma 3.4, the Kolmogorov-Fréchet theorem allows to establish the fol-
lowing relative compactness result for the saturation.

Lemma 3.5 It is assumed that hypotheses (H1 − H5) hold. Let (D(m),∆t(m))m∈N be a sequence of
space-time discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ,
γM(m) ≤ γ for all m ∈ N and such that hT (m) ,max∆t(m) → 0 as m→ ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and

Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t (4) holds for all m ∈ N. Then, for each α = 1, 2 one has the following

result.

1. The sequence (Sα

D(m)
m ∆t(m)

)m∈N is relatively compact in L2(Ω× (0, T )).

2. For each i ∈ I the sequence (Sα

D(m)
f,i ,∆t(m)

)m∈N is relatively compact in L2(Γi × (0, T )).

The limit of the saturation can be identified thanks to the following result.

Lemma 3.6 It is assumed that hypotheses (H1 − H5) hold. Let (D(m),∆t(m))m∈N be a sequence of
space-time discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ,
γM(m) ≤ γ for all m ∈ N and such that hT (m) ,max∆t(m) → 0 as m→ ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and

Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t (4) holds for all m ∈ N. Then, there exists a function pair (uα)α=1,2 ∈
(

L2(0, T ;V 0)
)2

such that up to a subsequence

πT (m),∆t(m)u
α,(m) ⇀ uα in L2(Ω× (0, T )) and γπT (m),∆t(m)u

α,(m) ⇀ γuα in L2(Γ× (0, T ))

as m→ ∞; moreover setting p = u1 − u2, one has

Sα

D(m)
m ,∆t(m)

→ Sα
m(., p) in L2(Ω× (0, T )) and Sα

D(m)
f ,∆t(m)

→ Sα
f (., γp) in L

2(Γ× (0, T ))

as m→ ∞.

Proof: The existence of the weak limit (uα)α=1,2 follows from Lemma 3.1 and Lemma 5.1. In order
to prove the second statement we remark that it follows from Lemma 2.2 that πD(m)

m ,∆t(m)u
α and

πD(m)
f ,∆t(m)u

α also converge weakly to uα in L2(Ω× (0, T )) and to γuα in L2(Γ× (0, T ))) respectively.

From Lemma 3.5, there exist four functions sαm ∈ L2(Ω × (0, T )) and sαf ∈ L2(Γ × (0, T )), α = 1, 2,

with s1m + s2m = 1, s1f + s2f = 1, such that, up to a subsequence, Sα

D(m)
m ∆t(m)

converges strongly to sαm

in L2(Ω× (0, T )), and Sα

D(m)
f ∆t(m)

converges strongly to sαf in L2(Γ× (0, T )). Then, one can conclude

the proof using the Minty trick stated in Lemma 3.6 of [17] to show that sαm = Sα
m(., u1 − u2) and

sαf = Sα
f (., γ(u

1 − u2)). �

Theorem 3.1 It is assumed that hypotheses (H1− H5) hold. Let (D(m),∆t(m))m∈N be a sequence of
space-time discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ,
γM(m) ≤ γ for all m ∈ N and such that hT (m) ,maxn∆t

(m),n → 0 as m → ∞. Let uα,(m), Sα

D(m)
m ,∆t(m)

and Sα

D(m)
f ,∆t(m)

, α = 1, 2, be s.t (4) holds for all m ∈ N. It is also assumed that πD(m)
m
p0,(m) converges

strongly to pini in L2(Ω), and that πD(m)
f

p0,(m) converges strongly to γpini in L2(Γ). Then there exists

a weak solution (u1, u2) to the problem (1) such that for each phase α = 1, 2

πT (m),∆t(m)u
α,(m) ⇀ uα in L2(Ω× (0, T )) and γπT (m),∆t(m)u

α,(m) ⇀ γuα in L2(Γ× (0, T ))

up to a subsequence.
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Proof: For all α = 1, 2 we denote by uα a weak limit of πT (m),∆t(m)uα,(m), whose existence is stated by

Lemma 3.6. We show below that (u1, u2) satisfies the variational formulation (1). In order to simplify
the notation we drop the index (m).

Let ψ be an arbitrary function from C∞
c (Ω× [0, T )) and ψ(t) the projection of ψ(., t) to X0

D defined
by ψν(t) = ψ(xν , t) for all ν ∈ M∪V∪FΓ. Taking v = ψ(tn−1) in (4) for all n = 1, . . . , N and summing
over n = 1, . . . , N we obtain that

N
∑

n=1

∑

j=m,f

∆tn
(

A
α,n
Dj

(ψ(tn−1)) +B
α,n
Dj

(ψ(tn−1))
)

=

N
∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(ψ(tn−1)).

for each phase α = 1, 2.
Accumulation terms. Let us consider the term

∑N
n=1∆t

nA
α,n
Dm

(ψ(tn−1)). Applying the chain rule
we obtain that

N
∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) = −
N
∑

n=1

∫ tn

tn−1

∫

Ω
φm S

α,n
Dm
∂tπDmψ(t) dxdt−

∫

Ω
φm S

α,0
Dm
πDmψ(t

0) dx.

Thanks to the strong convergence of the function Sα
Dm,∆t given by Lemma 3.6, to the regularity of ψ,

and to the convergence of πDmp
0, one deduces that

N
∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) → −
∫ T

0

∫

Ω
φmS

α
m(., p)∂tψ dxdt−

∫

Ω
φmS

α
m(., pini)ψ(x, 0) dxdt.

Similarly we obtain that

N
∑

n=1

∆tnAα,n
Df

(ψ(tn−1)) → −
∫ T

0

∫

Γ
φfS

α
f (., γp)∂tγψ dτf (x)dt−

∫

Γ
φfS

α
f (., γpini)γψ(x, 0) dτf (x)dt.

Diffusion terms. From Lemma 5.1 in the Appendix, Proposition 2.1, Lemma 3.6 and hypothesis
(H4), we deduce that

N
∑

n=1

∆tnBα,n
Dm

(ψ(tn−1)) →
∫ T

0

∫

Ω
kαm(x, Sα

m(., p))Λm∇u · ∇ψ dx

and
N
∑

n=1

∆tnBα,n
Df

(ψ(tn−1)) →
∫ T

0

∫

Γ
kαf (x, S

α
f (., p))Λf∇τγu · ∇τγψ dτf (x).

Source terms. From Lemma 2.2 and Proposition 2.1, we deduce that

N
∑

n=1

∆tnCα,n
Dm

(ψ(tn−1)) =
N
∑

n=1

∫ tn

tn−1

∫

Ω
hαmπDmψ(t

n−1) dxdt→
∫ T

0

∫

Ω
hαmψ dxdt

and

N
∑

n=1

∆tnCα,n
Df

(ψ(tn−1)) =

N
∑

n=1

∫ tn

tn−1

∫

Γ
hαf πDf

ψ(tn−1) dτf (x)dt→
∫ T

0

∫

Γ
hαf γψ dτf (x)dt.

�
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4 Numerical experiments

The implementation of the VAG scheme is based on a flux formulation with upwinding of the mobilities
rather than the discrete variational formulation (4) in order to improve the stability of the solution
on coarse meshes for convective dominant regimes. For a given u ∈ XD, the definition of the fluxes
follows the same ideas as in [15], [6]. The matrix fluxes connect the cell K ∈ M to its vertices or
fracture faces ν ∈ ΞK = VK ∪ (FΓ ∩ FK):

FK,ν(u) = −
∫

K
Λm(x)∇πT u(x) · ∇ην(x)dx =

∑

ν′∈ΞK

aν
′

K,ν(uK − uν′)

with aν
′

K,ν =
∫

K Λ(x)∇ην(x) · ∇ην′(x)dx. The fracture fluxes connect the face σ ∈ FΓ to its vertices
s ∈ Vσ:

Fσ,s(u) = −
∫

σ
Λf (x)∇τγπT u(x) · ∇τγηs(x)dτf (x) =

∑

s
′∈Vσ

as
′

σ,s(uσ − us′)

with as
′

σ,s =
∫

σ Λf (x)∇τγηs(x) · ∇τγηs′(x)dτf (x).

Given cellwise constant rocktypes in the matrix and facewise constant rocktypes in the fracture
network, let us define for α = 1, 2

Sα
K = Sα

m(xK , pK), K ∈ M, Sα
K,ν = Sα

m(xK , pν), K ∈ M, ν ∈ ΞK ,

and
Sα
σ = Sα

f (xσ, pσ), σ ∈ FΓ, Sα
σ,s = Sα

f (xσ, ps), σ ∈ FΓ, s ∈ Vσ.

Let us set φK =
∫

K φm(x)dx and φσ =
∫

σ φf (x)dτf (x). Given p0 ∈ X0
D, the VAG upwind scheme

looks for u1,n ∈ X0
D, u

2,n ∈ X0
D, n = 1, · · · , N , such that for all α = 1, 2 and for all v ∈ X0

D one has:























































∑

K∈M

( φK

∆tn
(1−

∑

ν∈ΞK∩Vint

αK,ν)(S
α,n
K − S

α,n−1
K ) +

∑

ν∈ΞK

kα(xK , S
α,n
K,ν,up)FK,ν(u

α,n)
)

vK

+
∑

K∈M

∑

ν∈ΞK∩Vint

( φK

∆tn
αK,ν(S

α,n
K,ν − S

α,n−1
K,ν )− kα(xK , S

α,n
K,ν,up)FK,ν(u

α,n)
)

vν

+
∑

σ∈FΓ

( φσ

∆tn
(1−

∑

s∈Vσ∩Vint

ασ,s)(S
α,n
σ − Sα,n−1

σ ) +
∑

s∈Vσ

kαf (xσ, S
α,n
σ,s,up)Fσ,s(u

α,n)
)

vσ

+
∑

σ∈FΓ

∑

s∈Vσ∩Vint

( φσ

∆tn
ασ,s(S

α,n
σ,s − Sα,n−1

σ,s )− kαf (xσ, S
α,n
σ,s,up)Fσ,s(u

α,n)
)

vs = 0,

(11)

with the upwinding

{

S
α,n
K,ν,up = S

α,n
K if FK,ν(u

α,n) ≥ 0,

S
α,n
K,ν,up = S

α,n
K,ν if FK,ν(u

α,n) < 0,

{

S
α,n
σ,s,up = S

α,n
σ if Fσ,s(u

α,n) ≥ 0,
S
α,n
σ,s,up = S

α,n
σ,s if Fσ,s(u

α,n) < 0.

In the following numerical experiments, the volume fractions αK,ν , ασ,s are chosen to avoid the
mixing of the fracture and matrix rocktypes. They are such that αK,ν = 0 if ν ∈ ΞK belongs to the
fracture network Γ, αK,ν = ωm otherwise, and such that ασ,s = ωf for s ∈ Vσ.

To illustrate the importance of non mixing rocktypes with large permeability contrasts, this choice
denoted by VAG-1 will be compared with a second choice denoted by VAG-2 for which we simply
set αK,ν = ωm and ασ,s = ωf for all ν ∈ ΞK , s ∈ Vσ. In order to roughly balance the volumes, the
parameters ωm and ωf are set in the following tests to ωm = 0.15 in 2D and 0.05 in 3D, and to
ωf = 0.25 in 2D and 0.1 in 3D. Figure 3 exhibits an example of the control volumes at cells, fracture
face and nodes for both the VAG-1 and VAG-2 choices.
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Figure 3: For VAG-1 (left) and VAG-2 (right), example of the choices of the control volumes at cells,
fracture face, and nodes, in the case of two cells K and L splitted by one fracture face σ (the width
of the fracture has been enlarged in this figure).

The nonlinear systems obtained at each time step are solved by a Newton Raphson algorithm.
The time stepping is defined by an initial time step, a maximum time step and the following rule:
if the Newton solver does not converge after 20 iterations, the time step is chopped by a factor 2
and recomputed. The time step is increased by a factor 1.2 after each successful time step until it
reaches the maximum time step. The stopping criteria on the relative residuals are fixed to 10−7 for
the GMRes solver and to 10−6 for the Newton solver. A CPR-AMG right preconditioner [25], [30] is
used in the GMRes iterative solver. Let us also stress that, using the two equations in each cell, the
cell unknowns are eliminated from the discrete linearized system at each Newton iteration without
any fill-in, reducing the Jacobian system to nodal and fracture face unknowns only. Note that the
above discretization is readily extended to take into account gravity using the fluxes

Fα
K,ν(u

α) = FK,ν(u
α) + ραgFK,ν(z), Fα

σ,s(u
α) = Fσ,s(u

α) + ραgFσ,s(z),

where g is the gravitational constant, ρα is the density of the phase α, and z =
(

zK ,K ∈ M, zσ, σ ∈
FΓ, zs, s ∈ V

)

. The upwinding of the mobilities is defined with respect to these new fluxes.

In the following test cases, the inverse of the capillary pressure monotone graph will be defined by
the Corey law

S1
j (p) =

{

0 if p < aj ,

(1− s2r,j)(1− e

aj−p

bj ) if p ≥ aj ,
(12)

and the mobilities of the two phases are given by the Corey laws

kαj (x, s
α) =











0 if s̄α < 0,
1
µα if s̄α > 1,
(s̄α)2

µα else,

(13)

for phase α = 1 (oil), and phase α = 2 (water) where s̄1 =
s1−s1r,j

1−s1r,j−s2r,j
, and s̄2 =

s2−s2r,j
1−s2r,j−s1r,j

are the

reduced saturations, s1r,j , s
2
r,j are the residual saturations for both phases, aj is the entry pressure,

and µ1, µ2 are the viscosities of the phases.

4.1 Oil migration in a 2D basin with one barrier and a fault

We consider the simulation of the oil migration process, within the 2D cross section Ω = (0, L)×(0, H)
of a basin with H = L = 100 m (see Figure 4). Let us denote by (x, y) the Cartesian coordinates of x
and let us define the two points x1 = (50, 50) and x2 = (50, 69.177). The basin includes an immersed
fault Γ = (x1,x2), a barrier Ω2 = {(x, y) ∈ Ω | 25 + x

2 < y < 35 + x
2 , x ∈ (0, 1)} \ Γ, and a drain

Ω1 = Ω \ (Ω2 ∪ Γ). The permeability Λm(x) is defined by the tensor

Λm(x) = λ1

(

0.82 −0.36
−0.36 0.28

)

.
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for x ∈ Ω1, and by Λm(x) = λ1
100 Id for x ∈ Ω2, with λ1 = 10−12 m2. Note that the eigenvalues of

Λm(x) for x ∈ Ω1 are 0.1λ1 and λ1 and the corresponding eigenvectors are ( 1√
5
, 2√

5
), ( 2√

5
,− 1√

5
).

The permeability of the fault Γ is defined by Λf = 100λ1Id and its width is equal to df = 0.1 m.
The porosity is constant and equal to φm = φf = 0.1.

The inverse of the capillary pressure monotone graph in each subdomain Ωj , j = 1, 2 is exhibited
in figure 4 and defined by (12) with the parameters a1 = 105 Pa, a2 = 2 105 Pa, b1 = 102 Pa, and
b2 = 104 Pa, s2r,1 = s2r,2 = 0. In the matrix S1

m(x, p) is equal to S1
1(p) for x ∈ Ω1, and to S1

2(p) for

x ∈ Ω2. In the fault, the inverse of the capillary pressure is defined by S1
f (x, p) = S1

1(p) for x ∈ Γ.

The mobilities of the two phases are given by (13) with µ1 = 0.005 Pa.s and µ2 = 0.001 Pa.s and
s1r = s2r = 0 both in the matrix and in the fracture.

The migration occurs by gravity due to the lower density of the oil phase ρ1 = 850 Kg/m3 compared
with the water phase ρ2 = 1000 Kg/m3. Phase 1 is injected at the bottom boundary (0, 10) × {0}
with imposed pressures u2 = 8 106 + ρ2gH Pa, u1 = u2 + (S1

1)
−1(0.8) corresponding to an input

phase 1 saturation s1 = 0.8. At the top boundary the phase pressures are fixed to u2(x) = 8 106, and
u1(x) = u2(x)+a1. The remaining boundaries are assumed to be impervious as well as the boundaries
of the fault. At initial time the porous media is saturated with phase 2 with a hydrostatic pressure
u2ini(x) = 8 106 + ρ2g(H − y), and a phase 1 pressure defined by u1ini(x) = u2ini(x) + aj for x ∈ Ωj ,
j = 1, 2, and u1ini(x) = u2ini(x) + a1 for x ∈ Γ.

The mesh is a nx×nx topologically Cartesian quadrangular grid which is refined below the barrier
as exhibited in figure 4. The simulation is done over 1800 days with an initial time step equal to the
maximum time step and fixed to 5 days. The VAG-1 choice of the control volumes is fixed for all
simulations of this test case.

Figure 5 exhibits the oil (phase 1) saturation at final time. We clearly see that the oil phase rises
by gravity along the direction of the highest permeability and accumulates below the barrier. Due to
the saturation jump condition at the barrier drain interface given by the capillary pressure functions,
oil can only cross the barrier through the fault. Figure 5 exhibits the convergence of the oil saturation
s1 at final time for the family of meshes obtained with nx = 50, 100, 200, 400. Figure 6 plots the
volume of oil below the barrier, above the barrier, and in the fault function of time for this family of
meshes. In both cases, we observe the numerical convergence of the solution when the mesh is refined.

Table 4.1 exhibits the numerical behavior of the simulation for the family of quadrangular meshes
with a rather good scalability both in terms of linear and nonlinear solvers.

Mesh N∆t NChop NNewton NGMRes CPU (s)

50× 50 360 0 2.11 9.35 22.20

100× 100 364 2 2.34 11.75 106

200× 200 369 5 3.37 14.45 637

400× 400 392 17 4.41 17.84 3933

Table 1: For each mesh: number N∆t of successful time steps, number NChop of time step chops,
number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations
by Newton iteration, CPU time in seconds.
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Figure 4: Inverses of the extended monotone graphs of the capillary pressures S1
1 (in blue in subdomain

Ω1 and in the fault Γf ) and S
1
2 (in red in subdomain Ω2). Mesh of the basin with the barrier in red,

the drain in blue, and the fault in cyan.

Figure 5: Discrete oil saturations at final time obtained for nx = 50, 100, 200, 400.
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Figure 6: Volume of oil above the barrier, below the barrier and in the fault function of time for
nx = 50, 100, 200, 400.

4.2 Oil migration in a basin with a random network of fractures

We consider the migration of oil in the 2D cross section Ω = (0, L)×(0, H) of a basin withH = L = 100
m. The basin comprises a random network of 927 fractures exhibited in Figure 7. The permeability
of the matrix Λm = λmId and the permeability of the fractures Λf = λf Id are highly contrasted with
λm = 10−15 m2, λf = 10−10 m2. The width of the fractures is fixed to df = 0.01 m and their porosity
to φf = 0.3. The porosity of the matrix is set to φm = 0.1.

The inverses of the capillary pressure monotone graph in the matrix (j = m) and in the fractures
(j = f) are exhibited in Figure 7 and defined by the Corey law (12) with the rocktype bm = 5 103 Pa,
s2r,m = 0.2, s1r,m = 0 in the matrix and the rocktype bf = 102 Pa, s2r,f = s1r,f = 0 in the fractures. The

mobilities are defined for j = m and j = f by the Corey law (13) with µ1 = 0.005 Pa.s and µ2 = 0.001
Pa.s.

The densities of phases are fixed to ρ1 = 700 Kg/m3 for the oil phase and ρ2 = 1000 Kg/m3 for
the water phase.

Phase 1 is injected at the bottom boundary (25, 75)×{0} with imposed pressures u2(x) = 8.1 106+
ρ2gH Pa, u1(x) = u2(x) + (S1

f )
−1(0.999999) corresponding to an input phase 1 saturation s1 =

0.999999 in the fractures. At the top boundary, the phase pressures are fixed to u2(x) = 8 106 and
u1(x) = u2(x). The remaining boundaries of the basin are assumed to be impervious. The boundaries
of the fracture network not located at the top boundary of the basin nor at the bottom boundary
(25, 75)× {0} are also assumed impervious.

At initial time the porous media is saturated with phase 2 with a hydrostatic pressure u2ini(x) =
8 106 + ρ2g(H − y), and a phase 1 pressure defined by u1ini(x) = u2ini(x).

The mesh is a nx×nx topologically Cartesian quadrangular grid obtained by a uniform refinement
of a given randomly distorted 30× 30 Cartesian grid (see figure 7). The simulation is fixed to 75 days
with an initial time step of 0.01 day and a maximum time step of 0.1 day. All the runs for this test
case are performed on a laptop equipped with a dual core 3GHz.

Figure 8 exhibits the discrete oil saturation at final time obtained with a topologically Cartesian
mesh of size nx = 480, and a non uniform refinement of the mesh with cell widths away from the
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fracture equal to roughly 2.6, 4.1, 6.45, 10.1, 16.0, 25.2, 39.6, 62.4 cm (to be compared with the width
of say 21 cm obtained with the uniform mesh for nx = 480). The choice of the volume fractions αK,ν ,
ασ,s is set to VAG-1. The numerical convergence of this solution has been checked and it will be our
reference solution for the comparison of the VAG-1 and VAG-2 choices. The Figures 9, 10 compare the
convergence of the oil saturation on the family of uniformly refined meshes with nx = 60, 120, 240, 480,
for the two choices of the volume fractions. It is clear that the choice VAG-1 which avoids to mix matrix
and fracture volumes provides a much better convergence. It is explained in Figure 11 exhibiting that
the choice VAG-2 of the volume distribution yields a too large volume of oil in the matrix and a too
small volume of oil in the fractures due to the enlarged volumes at the matrix fracture interfaces.
This is a clear advantage of the VAG scheme compared with usual CVFE approaches which cannot
avoid the mixing of fracture and matrix volumes due to the use of a dual mesh and the absence of cell
unknowns.

The numerical behavior of the simulations for both choices of the distribution of the volumes and
for the family of meshes is exhibited in Table 4.2 showing the number of successful time steps, the
number of time step chops, the number of Newton iterations by successful time steps, the number of
GMRes iterations by Newton iteration, the CPU time in seconds, and the maximum CFL number.
This maximum CFL number is the one obtained for the oil saturation Buckley Leverett equation
(without the capillary diffusion) discretized by an upwind monotone scheme and an Euler explicit
time integration, and using the total Darcy velocity and the buoyancy forces of the simulation.

In both cases a rather good scalability is obtained both in terms of nonlinear and linear solvers
although very large CFL numbers are observed in the fracture network. The results are slightly better
for VAG-2 due to the larger control volumes at the matrix fracture interfaces as can be checked on
the comparison of the maximum CFL numbers in table 4.2.

Figure 7: Network of 927 fractures and mesh obtained for nx = 60. Inverses of the extended monotone
graphs of the capillary pressures S1

m in the matrix, and S1
f in the fractures.

Figure 8: Discrete oil saturation at final time obtained for nx = 480 with refinement at the matrix
fracture interfaces and the choice VAG-1 of the volumes.
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Figure 9: Discrete oil saturation at final time obtained for the family of uniformly refined meshes
nx = 60, 120, 240, 480, and the choice VAG-1 of the volumes.

Figure 10: Discrete oil saturation at final time obtained for the family of uniformly refined meshes
nx = 60, 120, 240, 480, and the choice VAG-2 of the volumes.
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Figure 11: Volume of oil in the fracture and in the matrix function of time for nx = 60, 120, 240, 480,
and for the two choices VAG-1 and VAG-2 of the distribution of the volumes.

Volumes nx N∆t NChop NNewton NGMRes CPU (s) CFL

VAG-1 60 759 0 2.62 8.08 164 210

VAG-1 120 759 0 2.90 8.84 535 420

VAG-1 240 777 14 3.94 9.44 2480 840

VAG-1 480 889 69 5.79 9.85 15062 1675

VAG-2 60 759 0 2.08 6.26 126 6.4

VAG-2 120 759 0 2.48 6.81 441 27

VAG-2 240 759 0 3.16 7.83 1868 106

VAG-2 480 788 21 4.98 8.53 11074 384

Table 2: For each choice VAG-1 and VAG-2 of the volume distribution and each mesh size nx =
60, 120, 240, 480: number N∆t of successful time steps, number NChop of time step chops, number
NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations by
Newton iteration, CPU time in seconds, maximum CFL number.

4.3 3D network of fractures

This test case considers the migration of oil in a 3D basin Ω = (0, L)×(0, L)×(0, H) with H = L = 100
m. Figure 12 exhibits the test case geometry where the fractures in the cube are represented by
parallelograms and are intersected with the top and the bottom of the basin. The family of tetrahedral
meshes is generated using TetGen [32] in order to be refined at the neighbourhood of the fracture
network. Figure 12 shows the coarsest mesh imesh = 1, and Table 3 defines for each mesh the number
Nbcells of cells, the number Nbnodes of nodes, the number NbFracF of fracture faces, the number of
d.o.f. Card(V ∪ M ∪ FΓ) of the scheme (with two unknowns per d.o.f.), and the number of d.o.f.
Card(V�VD ∪ FΓ) of the linear system (with two unknowns per d.o.f.) after elimination without
fill-in of the cells and Dirichlet nodes, where VD is the set of Dirichlet nodes at the boundary of Ω.
It also specifies for each mesh the cubic root of the mean volume of all cells at the matrix fracture
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interface, denoted by ρi, and defined by

̺i =
( 1

Card{K ∈ M|K ∩ Γ 6= ∅}
∑

K∈M|K∩Γ 6=∅
|K|

)1/3
. (14)

Figure 12: Geometry of the basin, fracture network, and coarsest three-dimensional Delaunay mesh
imesh = 1.

imesh Nbcells Nbnodes NbFracF ̺i scheme d.o.f. linear system d.o.f. θT
1 47 670 8 348 1 678 2.42 57 696 9 278 209

2 253 945 41 043 6 655 1.23 301 643 46 283 86

3 837 487 132 778 16 497 0.78 986 762 147 148 142

4 3 076 262 483 786 42 966 0.48 3 603 014 523 453 200

Table 3: For each mesh: number Nbcells of mesh cells, number Nbnodes of nodes, number NbFracF of
fracture faces, scheme and linear system number of d.o.f. (with 2 unknowns per d.o.f), cubic root of
the average cell volume at the matrix fracture interface ̺i, and shape regularity θT .

We suppose again a high contrast between the permeability of the matrix Λm = λmId and the
permeability of the fractures Λf = λf Id with λm = 10−17 m2, λf = 10−11 m2. The porosities, the
phase densities, the mobilities and the capillary pressures are the same than in the previous test case.
The initial and boundary conditions are also the same except that the oil phase is injected at the
full bottom side of the domain. The simulation is run over a period of 10 years with an initial time
step of 0.2 days, and a maximum time step fixed to 5 days, except on mesh 4 for which a smaller
maximum time step of 2.5 days is used. All the numerical tests have been performed on the Cicada
Cluster located at the University Nice Sophia-Antipolis and which includes 1152 nodes equipped with
two eight-core Intel(R) E5-2670 processors. Figure 13 exhibits the oil saturation obtained on the
coarsest mesh imesh = 1 at final simulation time. We observe that the oil phase injected at the bottom
side in the domain initially saturated with water, quickly rises by gravity along the faults and slowly
penetrate in the matrix.
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Figure 13: Discrete solution obtained by the VAG-1 scheme with the first mesh imesh = 1 at final
simulation time: oil saturation in the fracture network and in the matrix using the lower threshold in
the matrix equal to 0.001.

Figure 14 compares the convergence of the oil saturation on the family of refined meshes for the
two choices of the volume fractions VAG-1 and VAG-2. It is clear, as in the 2D test case, for such
high ratio of the fracture and matrix permeabilities, that VAG-1 provides a much better convergence
than VAG-2 since it does not mix porous volumes from the matrix and the fracture network. It
illustrates again the advantage of the VAG scheme compared with CVFE discretizations which cannot
avoid such mixing of porous volumes. Table 4.3 presents the numerical behavior of the simulations
for both choices of the distribution of the volumes and for the family of meshes. The results obtained
demonstrate the good robustness and scalability of the proposed numerical scheme both in terms of
Newton convergence, linear solver convergence and CPU time. As for the 2D network test case, the
robustness of the nonlinear solver is slightly better for VAG-2 due to the larger control volumes at the
matrix fracture interfaces for VAG-2 than for VGA-1.

Figure 14: Volumes of oil in the fracture and in the matrix function of time for the family of meshes
imesh = 1, .., 4, and for both choices VAG-1 and VAG-2 of the volume distribution.
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Volumes imesh N∆t NChop NNewton NGMRes CPU (s)

VAG-1 1 384 6 2.20 10.05 588

VAG-1 2 390 10 3.08 15.11 5 898

VAG-1 3 415 21 4.02 15.93 31 806

VAG-1 4 784 30 3.37 16.75 209 485

VAG-2 1 373 0 1.87 6.94 482

VAG-2 2 373 0 2.42 13.05 4 452

VAG-2 3 375 1 3.02 14.56 21 645

VAG-2 4 747 13 2.92 16.55 172 946

Table 4: For each choice VAG-1 and VAG-2 of the volume distribution and for each mesh imesh =
1, .., 4: number N∆t of successful time steps, number NChop of time step chops, number NNewton of
Newton iterations per successful time step, number NGMRes of GMRes iterations by Newton iteration,
CPU time in seconds.

5 Conclusion

This paper has introduced the VAG discretization of hybrid dimensional two-phase Darcy flows mod-
elling discrete fracture networks with mass exchange between the matrix and the fractures. Our
discretization takes into account general polyhedral meshes, general discrete fracture networks, the
anisotropy of the matrix and of the fracture permeability fields, and discontinuous rocktypes.

Compared with CVFE approaches, the numerical tests clearly exhibit that the VAG scheme has
the advantage to avoid the mixing of the fracture and matrix rocktypes at the interfaces between the
matrix and the fractures, while keeping the low cost of a nodal discretization on unstructured meshes.

The convergence of the scheme to a weak solution of the model has been proved for arbitrary choices
of the volumes at the nodal unknowns assuming the non degeneracy of the relative permeabilities and
a network of planar fractures. To our knowledge, this is the first convergence result for this type
of hybrid dimensional two-phase Darcy flow model, and it also provides an existence result for such
models.

Appendix

This appendix presents two technical lemmas used in the convergence proof. The following lemma
states the weak compactness of bounded sequences in L2(0, T ;V 0).

Lemma 5.1 Let (v(m))m∈N be a sequence of functions in L2(0, T ;V 0) such that ‖v(m)‖L2(0,T ;V ) ≤ C

for some positive C. Then, there exists v ∈ L2(0, T ;V 0) such that up to the same subsequence

v(m) ⇀ v in L2(Ω× (0, T )) and γv(m) ⇀ γv in L2(Γ× (0, T ));

moreover

∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d and ∇γv(m) ⇀ ∇γv in L2(Γ× (0, T ))d−1.

Proof: First, let us recall that the normal trace operator γn : Hdiv(Ω) → H−1/2(∂Ω) is surjective.
Indeed, for any l ∈ H−1/2(∂Ω) we consider the unique weak solution u ∈ H1(Ω) of −∆u + u = 0 on
Ω with ∇u · n = l on ∂Ω defined by 〈u, v〉H1(Ω) = 〈l, γ∂Ωv〉H−1/2(∂Ω),H1/2(∂Ω) for all v ∈ H1(Ω), where

γ∂Ω is the trace operator from H1(Ω) to H1/2(∂Ω). Hence the function G := ∇u is in Hdiv(Ω) and
satisfies γnG = l.

Next, from the Poincaré inequality and the continuity of the trace operators γi, the sequence v(m)

is bounded in L2(0, T ;H1(Ω)) and the sequences v
(m)
i = γiv

(m) are bounded in L2(0, T ;H1(Γi)) for all
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i ∈ I. Hence, it is classical to show that there exist v ∈ L2(0, T ;H1
0 (Ω)) and vi ∈ L2(0, T ;H1

Σi,0
(Γi))

such that up to the same subsequence:



















v(m) ⇀ v in L2(Ω× (0, T )),

∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d,

v
(m)
i ⇀ vi in L2(Γi × (0, T )),

∇v(m)
i ⇀ ∇vi in L2(Γi × (0, T ))d−1,

for all i ∈ I, where H1
Σi,0

(Γi) is the subspace of H1(Γi with vanishing trace on Σi,0. It remains to

show that v ∈ L2(0, T ;V 0) with (γv)i = vi. Let us first show that γiv = vi. We extend the fracture
Γi in the direction of the plane Pi in order to reach ∂Ω and to decompose the domain Ω into two
subdomains, say Ωi and Ωi

′ . Now let us introduce ri ∈ L2(Γi) and a function l ∈ L2(∂Ωi) which is
defined by

l =

{

ri on Γi,

0 otherwise.

Thus, since l ∈ L2(∂Ωi) ⊂ H−1/2(∂Ωi) and, thanks to the surjectivity of the normal trace operator
recalled above, there exists qi ∈ Hdiv(Ωi) such that qi · ni = l. Then, passing to the limit in the
equality

∫ T

0

∫

Ωi

(

qi(x) · ∇v(m)(x, t) + v(m)(x, t)divqi(x)
)

ϕ(t)dxdt =

∫ T

0

∫

Γi

ϕ(t)ri(x)v
(m)
i (x, t)dτ(x)dt,

yields
∫ T

0

∫

Γi

ϕ(t)ri(x)(vi(x, t)− γiv(x, t))dτ(x)dt = 0,

for all ri ∈ L2(Γi) and ϕ ∈ L2(0, T ), hence vi = γiv. Next, let us introduce the following trace
operators

γi,j : H
1(Γi) → L2(Σi,j),

for each (i, j) ∈ I2Σ where I2Σ is the subset of I × I such that Σi,j has a non zero d − 2 dimensional
Lebesgue measure. We will prove that γi,jvi = γj,ivj for all (i, j) ∈ I2Σ. Let us introduce ri,j = −rj,i ∈
L2(Σi,j) and the function li and lj defined by

li =

{

ri,j on Σi,j ,

0 on ∂Γi \ Σi,j ,

and

lj =

{

rj,i on Σi,j ,

0 on ∂Γj \ Σi,j .

Thus, thanks again to the surjectivity of the normal trace operator, there exist qi ∈ Hdiv(Γi) and
qj ∈ Hdiv(Γj) such that qi · ni = li and qj · nj = lj . Then, passing to the limit in the equality

∫ T

0
ϕ(t)

∫

Γi

∇v(m)
i · qi + v

(m)
i div(qi) dτ(x)dt+

∫ T

0
ϕ(t)

∫

Γj

∇v(m)
j · qj + v

(m)
j div(qj) dτ(x)dt = 0,

we obtain that
∫ T

0

∫

Σi,j

ϕ(t)ri,j(x)
(

γi,jvi(x, t)− γj,ivj(x, t)
)

dl(x)dt = 0,

for all ri,j ∈ L2(Σi,j), ϕ ∈ L2(0, T ) which implies that γi,jvi = γj,ivj , and hence that v ∈ L2(0, T ;V 0).
�

The following Lemma states an estimate on the space translates for bounded sequences in L2(0, T ;H1
0 (Ω))

or in L2(0, T ;H1
0 (Γi)).
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Lemma 5.2 Let d ∈ N∗, t > 0 and let Υ be an open polyhedral (d = 3) or polygonal (d = 2) domain in
Rd. Let (u(m))m∈N be a sequence of functions from L2(0, T ;H1

0 (Υ)) such that ‖u(m)‖L2(0,T ;H1(Υ)) < C

for some positive C. Then, extending the functions u(m) by 0 on (Rd \Υ)× (0, T ), one has

sup
m∈N

‖u(m)(·, ·+ ξ)− u(m)‖2L2(Rd×(0,T )) → 0 as |ξ| → 0.

Proof : It is sufficient to notice that for all ϕ ∈ Cc
∞(Rd × (0, T )) one has

‖ϕ(·+ ξ)− ϕ‖L2(Rd×(0,T )) = |ξ|‖∇ϕ‖(L2(Rd×(0,T )))d .

Therefore the result is deduced form the density of the set Cc
∞(Rd × (0, T )) in L2(0, T ;H1(Rd)) and

from the fact that u(m) ∈ L2(0, T ;H1(Rd)). �
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[16] R. Eymard, P. Féron, T. Gallouët, R. Herbin, C. Guichard. Gradient schemes for the Stefan
problem. IJFV - International Journal on Finite Volumes, june 2013.

[17] R. Eymard, C. Guichard, R. Herbin, R. Masson, Gradient schemes for two-phase flow in hetero-
geneous porous media and Richards equation, article first published online, ZAMM - Journal of
Applied Mathematics and Mechanics, 2013. doi: 10.1002/zamm.201200206

[18] E. Flauraud, F. Nataf, I. Faille, R. Masson, Domain Decomposition for an asymptotic geological
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