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Abstract

This paper presents a finite volume discretization of two-phase Darcy flows in discrete fracture networks
taking into account the mass exchange between the matrix and the fracture. We consider the asymptotic
model for which the fractures are represented as interfaces of codimension one immersed in the matrix
domain, leading to the so called hybrid dimensional Darcy flow model. The pressures at the interfaces
between the matrix and the fracture network are continuous corresponding to a ratio between the normal
permeability of the fracture and the width of the fracture assumed to be large compared with the ratio
between the permeability of the matrix and the size of the domain. The discretization is an extension of
the Vertex Approximate Gradient (VAG) scheme to the case of hybrid dimensional Darcy flow models.
Compared with Control Volume Finite Element (CVFE) approaches, the VAG scheme has the advantage
to avoid the mixing of the fracture and matrix rocktypes at the interfaces between the matrix and the
fractures, while keeping the low cost of a nodal discretization on unstructured meshes. The convergence
of the scheme is proved under the assumption that the relative permeabilities are bounded from below
by a strictly positive constant. This assumption is needed in the convergence proof in order to take into
account discontinuous capillary pressures in particular at the matrix fracture interfaces. The efficiency of
our approach compared with CVFE discretizations is shown on two numerical examples of fracture networks
in 2D and 3D.

Introduction

This article deals with the discretization of two-phase Darcy flows in fractured porous media for which the
fractures are modelized as interfaces of codimension one. In this framework, the d − 1 dimensional flow in
the fractures is coupled with the d dimensional flow in the matrix leading to the so called, hybrid dimensional
Darcy flow model. We focus on the particular case where the pressure is continuous at the interfaces between
the fractures and the matrix domain. This type of hybrid dimensional Darcy flow model has been introduced
in [1] for single phase Darcy flows and in [27], [26], [19] for two-phase Darcy flows. It corresponds physically to
pervious fractures for which the ratio of the transversal permeability of the fracture to the width of the fracture
is large compared with the ratio of the permeability of the matrix to the size of the domain. Note that it does
not cover the case of fractures acting as barriers for which the pressure is discontinuous at the matrix fracture
interfaces (see [18], [24], [3] for discontinuous pressure models).

In the framework of two-phase Darcy flows in fractured porous media, high contrasts of capillary pressures are
expected in particular between the matrix and the fractures. Hence, it is crucial to take into account in the
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model formulation the saturation jumps at the matrix fracture interfaces. We refer to [11], [8], [9] for math-
ematical formulations taking into account discontinuous capillary pressures. In the present work, we employ
the phase pressures formulation (see e.g. [17]) which is an ideal framework to capture the saturation jump
condition at the interface between different rocktypes without introducing any additional unknowns at these
interfaces.

The discretization of the hybrid dimensional Darcy flow model with continuous pressures has been the object
of several works. In [22] a cell-centred Finite Volume scheme using a Two Point Flux Approximation (TPFA) is
proposed assuming the orthogonality of the mesh and isotropic permeability fields. Cell-centred Finite Volume
schemes can be extended to general meshes and anisotropic permeability fields using MultiPoint Flux Ap-
proximations (MPFA) following the ideas introduced in [29] for discontinuous pressure models. Nevertheless,
MPFA schemes can lack robustness on distorted meshes and large anisotropies due to the non symmetry of
the discretization. They are also very expensive compared with nodal discretizations on tetrahedral meshes.
In [1], a Mixed Finite Element (MFE) method is proposed for single Darcy flows. It is extended to two-phase
flows in [19] in an IMPES framework using a Mixed Hybrid Finite Element (MHFE) discretization for the
pressure equation and a Discontinuous Galerkin discretization of the saturation equation. These approaches
are adapted to general meshes and anisotropy but require as many degrees of freedom as faces. Control Volume
Finite Element Methods (CVFE) [27], [26] have the advantage to use only nodal unknowns leading to much
fewer degrees of freedom than MPFA and MHFE schemes on tetrahedral meshes. On the other hand, at the
matrix fracture interfaces, the control volumes have the drawback to be shared between the matrix and the
fractures. It results that a strong refinement of the mesh is needed at these interfaces in the case of large
contrasts between the permeabilities of the matrix and of the fractures.

In this article we extend the Vertex Approximate Gradient (VAG) scheme to the framework of hybrid di-
mensional two-phase Darcy flows. The VAG scheme has been introduced for the discretization of multiphase
Darcy flows in [14] for immiscible flows and in [15] for compositional models. The VAG scheme basically uses
nodal unknowns like the CVFE method but it also keep the cell-centred unknowns, which are eliminated at
the linear algebra level without any fill-in. Compared with CVFE methods, it has the advantage to provide a
large flexibility in the choice of the control volumes in order to avoid mixing rocks with highly contrasted ab-
solute permeabilities in a single control volume. In [17] it is further adapted to take into account discontinuous
capillary pressures using a phase pressures formulation in order to capture the saturation jumps at different
rocktype interfaces. It is this latter approach that is extended, in this article, to the case of hybrid dimensional
two-phase Darcy flows in fractured porous media.

The first convergence result for a finite volume discretization of single media two-phase Darcy flow models has
been obtained for cell-centred TPFA schemes on admissible meshes in [25] and [12]. In [12] the convergence is
obtained for the usual phase pressures and saturations formulation using a phase by phase upwinding of the
mobilities. In [25] the convergence is obtained for the global pressure formulation introduced in [10] (see also
[4]). This latter convergence result has been recently extended in [6] to the case of the VAG discretization.
The convergence is shown to hold whatever the choice of the volumes at the nodal unknowns. In the case of
two-phase Darcy flows with discontinuous capillary pressure, the convergence of a TPFA type discretization is
obtained in [7]. The extension to general meshes is done in [17] assuming the non degeneracy of the relative
permeabilities in the framework of gradient scheme discretizations introduced in [13].
To our knowledge, there is not yet a proof of convergence for hybrid dimensional two-phase Darcy flows. In
this paper, we propose to extend the results obtained in [17] in the particular case of the VAG scheme to the
hybrid dimensional Darcy flow model.

The outline of the article is the following. In section 1, the hybrid dimensional model is introduced and its
discretization using the VAG scheme is described in section 2. The convergence of the scheme is obtained in
section 3 assuming the non degeneracy of the relative permeabilities and whatever the choice of the volumes at
the nodal unknowns. The numerical tests presented in section 4 exhibit the efficiency of our approach in both
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2D and 3D cases. In particular, for large contrasts of permeability between the matrix and the fractures, it is
shown that the VAG scheme provides a much more accurate solution than CVFE approaches for a similar cost.

1 Hybrid dimensional Two-Phase Darcy Flow Model in Fractured

Porous Media

1.1 Hybrid Dimensional Model in Fractured Porous Media

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal for d = 2.
To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for instance in the naming of
the geometrical objects or for the space discretization in the next section. The adaptations to the case d = 2
are straightforward.

Let us consider the asymptotic model introduced in [1] where fractures are represented as interfaces of codi-
mension 1. We denote by

Γ =
⋃

i∈I

Γi

the network of fractures Γi ⊂ Ω, for i ∈ I, where each Γi is assumed to be a polygonal face included in a plane
denoted by Pi and such that Σi,0 = Γi ∩ ∂Ω has a vanishing d− 1 measure. We denote by I0 the subset of all
i ∈ I such that the d− 2 measure of Σi,0 is non vanishing. Let us also set Σ0 =

⋃

i∈I0
Σi,0, and define the trace

operators
γi,0 : H1(Γi) → L2(Σi,0),

for all i ∈ I0. Given two fractures Γi and Γj , with i 6= j, it is assumed that their intersection Σi,j = Γi ∩Γj has
a vanishing d− 1 measure. Then, we define I2Σ as the subset of all (i, j) ∈ I × I such that the d− 2 measure of
Σi,j is non vanishing.

On the fracture network Γ, let us define the function space

L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I},

endowed with the norm ‖v‖L2(Γ) =
(

∑

i∈I ‖vi‖L2(Γi)

)1/2

. We will denote by dτ(x) the d − 1 dimensional

Lebesgue measure on Γ. To define the space of functions on Γ with no jumps at the intersection between two
fractures, let us introduce the following trace operators

γi,j : H
1(Γi) → L2(Σi,j),

for each (i, j) ∈ I2Σ. We deduce the following function space on the fracture network Γ:

H1(Γ) = {v = (vi)i∈I , vi ∈ H1(Γi), i ∈ I, γi,jvi = γj,ivj , (i, j) ∈ I2Σ},

endowed with the norm ‖v‖H1(Γ) =
∑

i∈I ‖vi‖H1(Γi). Its subspace with vanishing traces on Σ0 is denoted by
H1

Σ0
(Γ) such that

H1
Σ0

(Γ) = {v = (vi)i∈I ∈ H1(Γ), γi,0vi = 0 for all i ∈ I0}.
To relate functions on the domain Ω to functions on Γ, we also need to define the following trace operator

γ : H1(Ω) → L2(Γ) such that (γv)i = γiv, i ∈ I,

where γi is for each i ∈ I the usual trace operator

γi : H
1(Ω) → L2(Γi).
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The next ingredients of the hybrid dimensional model are the gradient operators both on Ω and on Γ. On Ω
it is the usual gradient operator from H1(Ω) to L2(Ω)d denoted by ∇. On the fracture network Γ it is the
tangential gradient denoted by ∇τ from H1(Γ) to L2(Γ)d−1 and such that

∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1 by fixing a reference

Cartesian coordinate system of the plane Pi containing Γi.

We can now define the hybrid dimensional function spaces that will be used in the variational formulation of
the two-phase Darcy flow model in the next subsection:

V = {v ∈ H1(Ω), γv ∈ H1(Γ)}, and its subspace V 0 = {v ∈ H1
0 (Ω), γv ∈ H1

Σ0
(Γ)}.

From Poincaré inequality on H1
0 (Ω) and the continuity of the trace operator γ, we deduce the following result.

Proposition 1.1 There exists CP > 0 such that for all v ∈ V 0 one has

‖v‖L2(Ω) + ‖γv‖L2(Γ) ≤ CP ‖∇v‖L2(Ω)d .

Thus, the space V 0 is endowed with the following norm

‖v‖V =
(

‖∇v‖2L2(Ω)d + ‖∇τγv‖2L2(Γ)d−1

)1/2

.

1.2 Two-Phase Darcy Flows in Phase Pressures Formulation

In the framework of two-phase Darcy flows in fractured porous media high contrasts of capillary pressures
are expected in particular at the interfaces between the matrix and the fractures. Hence, it is crucial to take
into account in the model formulation the saturation jumps at these interfaces (see for example [8], [9] for
the mathematical formulations of two-phase Darcy flows with discontinuous capillary pressures). Our choice
focuses on the phase pressures formulation (see e.g. [17]) which is extended to the case of hybrid dimensional
two-phase Darcy flows in a variational formulation framework. The main advantage of this formulation is to
choose as primary unknowns the phase pressures which can be assumed to be continuous at the interfaces be-
tween different rocktypes while the jump of the saturation is captured using the inverse of the capillary pressure
monotone graph for each rocktype. An alternative choice using a global pressure approach is presented in [21].

Let u2 (resp. u1) denote the wetting (resp. non wetting) phase pressure , p = u1 − u2 the capillary pressure,
and pini ∈ V the initial capillary pressure. For the sake of simplicity in the convergence analysis, homogeneous
Dirichlet boundary conditions are assumed for u1 and u2 at the boundary ∂Ω, as well as at Σ0 for γu1 and
γu2. The gravity is also not taken into account in the model to simplify the analysis. The extension of the
convergence proof to the case with gravity and with non homogeneous Dirichlet boundary conditions can be
done easily following the same ideas as in [17].

Let us denote by S1
m(x, p) (resp. S1

f (x, p)) the inverses of the monotone graph extension of the capillary pressure

curves in the matrix domain Ω (resp. in the fracture network Γ), and let us set S2
m = 1−S1

m (resp. S2
f = 1−S1

f ).

In the matrix domain Ω (resp. in the fracture network Γ), let us denote by kαm(x, Sα
m) (resp. kαf (x, S

α
f )),

α = 1, 2, the phase mobilities, by φm(x) (resp. φf (x)) the porosity, and by Λm(x) (resp. Λf (x)) the perme-
ability tensor. We also denote by df (x),x ∈ Γ the width of the fractures, and by dτf (x) the weighted Lebesgue
d− 1 dimensional measure on Γ defined by dτf (x) = df (x)dτ(x).
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The hybrid dimensional phase pressures weak formulation amounts to find u1, u2 ∈ L2(0, T ;V 0) satisfying the
following variational equalities for α = 1, 2, and for all ϕ ∈ C∞

c ([0, T [×Ω):































































∫ T

0

∫

Ω

(

−φm(x)Sα
m(x, p)∂tϕ(x, t) + kαm(x, Sα

m(x, p))Λm(x)∇uα(x, t) · ∇ϕ(x, t)
)

dxdt

+

∫ T

0

∫

Γ

−φf (x)Sα
f (x, γp)∂tγϕ(x, t)dτf (x)dt

+

∫ T

0

∫

Γ

kαf (x, S
α
f (x, γp))Λf (x)∇τγu

α(x, t) · ∇τγϕ(x, t)dτf (x)dt

+

∫

Ω

φm(x)Sα
m(x, pini)ϕ(x, 0)dxdt+

∫

Γ

φf (x)S
α
f (x, γpini)ϕ(x, 0)dτf (x)dt

−
∫ T

0

∫

Ω

hαm(x, t)ϕ(x, t)dxdt−
∫ T

0

∫

Γ

hαf (x, t)γϕ(x, t)dτf (x)dt = 0,

(1)

where the function hαm (resp. hαf ), α = 1, 2 stands for the source term in the matrix domain Ω (resp. in the
fracture network Γ).

As in [17], the following assumptions are made on the data:

(H1) φm is a measurable function from Ω to R with φm(x) ∈ [φmin, φmax], φmax ≥ φmin > 0. φf is a
measurable function from Γ to R with φf (x) ∈ [φmin, φmax]. df is a measurable function from Γ to R

with df (x) ∈ [dmin, dmax], dmax ≥ dmin > 0.

(H2) Λm is a measurable function from Ω to Md(R) (where Mr(R) denotes the set of r× r matrices with real
coefficients) such that for a.e. x ∈ Ω, Λm(x) is symmetric and the set of its eigenvalues is included in
[λmin, λmax] with 0 < λmin ≤ λmax. Λf is a measurable function from Γ to Md−1(R) such that for a.e.
x ∈ Γ, Λf (x) is symmetric and the set of its eigenvalues is included in [λmin, λmax].

(H3) S1
m(x, p) ∈ [0, 1] for all (x, p) ∈ Ω × R with S1

m(x, p) = S1
m,j(p) for a.e. x ∈ Ωj and all p ∈ R, where

S1
m,j is a non decreasing Lipschitz continuous function with constant LS and (Ωj)j∈Jm

is a finite family

of disjoint connected polyhedral open sets such that
⋃

j∈Jm
Ωj = Ω. S1

f (x, p) ∈ [0, 1] for all (x, p) ∈ Γ×R

with S1
f (x, p) = S1

f,j(p) for a.e. x ∈ Υj and all p ∈ R, where S1
f,j is a non decreasing Lipschitz continuous

function with constant LS and (Υj)j∈Jf
is a finite family of disjoint connected polygonal open sets such

that
⋃

j∈Jf
Υj = Γ.

(H4) kαm(x, s) (resp. kαf (x, s)) ∈ [kmin, kmax] for (x, s) ∈ Ω × [0, 1] (resp. (x, s) ∈ Γ × [0, 1]), kmax ≥ kmin > 0
and kαm(·, s) (resp. kαf (·, s)) measurable, kαm(x, ·) (resp. kαf (x, ·)) continuous, α ∈ {1, 2}.

(H5) pini ∈ V , hαm ∈ L2(Ω× (0, T )), hαf ∈ L2(Γ× (0, T )), α ∈ {1, 2}.

Assumptions (H1-H5) are quite general, except for kmin > 0 of hypothesis H4. This assumption is needed in
the mathematical part of this paper. Remark that it is not needed in the implementation of the numerical
scheme and will be dropped in the numerical section. The influence of this parameter has already been studied
numerically in [17]. The hypothesis (H3) that the functions S1

m(x, p) and S1
f (x, p) are defined by given functions

in a partition of the domain is classical and the index j corresponds to the so called geological rocktypes.

2 Vertex Approximate Gradient Discretization

In the spirit of [13], we consider generalised polyhedral meshes of Ω. Let M be the set of cells that are disjoint
open polyhedral subsets of Ω such that

⋃

K∈MK = Ω. For all K ∈ M, xK denotes the so-called “centre” of
the cell K under the assumption that K is star-shaped with respect to xK . We then denote by FK the set of
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interfaces of non zero d − 1 dimensional measure among the interior faces K ∩ L, L ∈ M, and the boundary
interface K ∩ ∂Ω, which possibly splits in several boundary faces. Let us denote by

F =
⋃

K∈M

FK

the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence the term “generalised
polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non zero d− 2 dimensional measure among the
interfaces σ ∩ σ′, σ′ ∈ F/ Then, we denote by

E =
⋃

σ∈F

Eσ

the set of all edges of the mesh. Let Vσ be the set of all vertices of σ located at the boundary of σ. For each
K ∈ M we define VK =

⋃

σ∈FK
Vσ, and we also denote by

V =
⋃

K∈M

VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a so-called “centre”
of the face xσ ∈ σ̊ such that xσ =

∑

s∈Vσ
βσ,s xs, with

∑

s∈Vσ
βσ,s = 1, and βσ,s ≥ 0 for all s ∈ Vσ; moreover

the face σ is assumed to match with the union of the triangles Tσ,e defined by the face centre xσ and each edge
e ∈ Eσ.
The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense that for all i ∈ I there
exist the subsets FΓiof F such that Γi =

⋃

σ∈FΓi
σ. We will denote by FΓ the set of fracture faces

⋃

i∈I FΓi
.

This geometrical discretization of Ω and Γ is denoted in the following by D.

The VAG discretization has been introduced in [13] for diffusive problems on heterogeneous anisotropic media.
Its extension to the hybrid dimensional Darcy model is based on the following vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R,K ∈ M, s ∈ V, σ ∈ FΓ},

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext}.

where Vext = V ∩∂Ω denotes the set of boundary vertices, and Vint = V \∂Ω denotes the set of interior vertices.

A finite element discretization of V is built using a tetrahedral sub-mesh of M and a second order interpolation
at the face centres xσ, σ ∈ F \ FΓ defined by the operator Iσ : XD → R such that

Iσ(v) =
∑

s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by T = {TK,σ,e, e ∈ Eσ, σ ∈ FK ,K ∈ M} where TK,σ,e is the tetrahedron
joining the cell centre xK to the triangle Tσ,e (see Figure 1 for examples of such tetrahedra).
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Figure 1: Degrees of freedom of the VAG scheme: cell unknowns vK , vL, fracture face unknown vσ, and node
unknowns vs, vs1 , vs2 , vs3 , vs4 . The fracture faces of FΓ are in bold. The value of vσ′ is obtained by interpolation
of the node unknowns vs1 , vs2 , vs3 , vs4 of the face σ′ ∈ F \ FΓ while vσ is kept as an unknown for σ ∈ FΓ.

For a given v ∈ XD, we define the function πT v ∈ V as the continuous piecewise affine function on each
tetrahedron of T such that πT v(xK) = vK , πT v(s) = vs, πT v(xσ) = vσ, and πT v(xσ′) = Iσ′(v) for all K ∈ M,
s ∈ V, σ ∈ FΓ, and σ

′ ∈ F \ FΓ. We define the conforming approximation of the space V by

VT = {πT v, v ∈ XD} ⊂ V

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

V 0
T = {πT v, v ∈ X0

D} = VT ∩ V 0.

The nodal basis of this finite element discretization will be denoted by ηK , ηs, ησ, for K ∈ M, s ∈ V, σ ∈ FΓ.
Discrete gradient operators are obtained from this finite element discretization of V , defining, for the matrix
domain, the operator

∇Dm
: XD → L2(Ω)d such that ∇Dm

v = ∇πT v,
and, for the fracture network, the operator

∇Df
: XD → L2(Γ)d−1 such that ∇Df

v = ∇τγπT v.

In addition to the conforming finite element discretization, the VAG discretization uses two non conforming
piecewise constant reconstructions of functions from XD into respectively L2(Ω) and L2(Γ) based on a partition
of the cells and of the fracture faces. These partitions are respectively denoted, for all K ∈ M, by

K = ωK

⋃

(

⋃

s∈VK∩Vint

ωK,s

)

⋃

(

⋃

σ∈FK∩FΓ

ωK,σ

)

,

and, for all σ ∈ FΓ, by

σ = Σσ

⋃

(

⋃

s∈Vσ∩Vint

ΣK,s

)

.

Then, the function reconstruction operators are defined by

πDmv(x) =







vK for all x ∈ ωK , K ∈ M,

vs for all x ∈ ωK,s, s ∈ VK ∩ Vint, K ∈ M,

vσ for all x ∈ ωK,σ, σ ∈ FK ∩ FΓ, K ∈ M,
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and

πDf
v(x) =

{

vσ for all x ∈ Σσ, σ ∈ FΓ,

vs for all x ∈ Σσ,s, s ∈ Vσ ∩ Vint, σ ∈ FΓ.

It is important to notice that in the particular case when the space discretization is conforming with respect
to the sets (Ωj)j∈Jm

,(Γj)j∈Jf
and when the source term hαm (resp. hαf ) is a cellwise (resp. facewise) constant

function, the implementation of the VAG scheme does not require to build these partitions. In that case, it is
sufficient to define the matrix volume fractions

αK,s =

∫

ωK,s
dx

∫

K
dx

, s ∈ VK ∩ Vint,K ∈ M, αK,σ =

∫

ωK,σ
dx

∫

K
dx

, σ ∈ FK ∩ FΓ,K ∈ M,

constrained to satisfy αK,s ≥ 0, αK,σ ≥ 0, and
∑

s∈VK∩Vint
αK,s +

∑

σ∈FK∩FΓ
αK,σ ≤ 1, as well as the fracture

volume fractions

ασ,s =

∫

Σσ,s
dτf (x)

∫

σ
dτf (x)

, s ∈ Vσ ∩ Vint, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ∩Vint
ασ,s ≤ 1. The convergence of the VAG scheme will be shown to

hold whatever the choice of these partitions or volume fractions. As will be detailed in the numerical section,
this flexibility is a crucial asset, compared with usual CVFE approaches, in order to improve the accuracy of
the scheme for highly heterogeneous test cases.

Let ρT denote the insphere diameter of a given tetrahedron T , hT its diameter, and hT = maxT∈T hT . We will
assume in the convergence analysis that the family of tetrahedral submeshes T is shape regular and that the
number of vertices of each cell K is uniformly bounded. Hence let us set

θT = max
T∈T

hT

ρT
and γM = max

K∈M
Card(VK).

We state without proof two results that can be readily adapted from [6] noticing that the shape regularity of
T implies the shape regularity of the triangular submesh of Γ defined by T ∩ Γ.

Lemma 2.1 There exist C1, C2 > 0 depending only on γM and θT such that for all u ∈ XD

‖πDmu‖L2(Ω) ≤ C1‖πT u‖L2(Ω) and ‖πDf
u‖L2(Γ) ≤ C2‖γπT u‖L2(Γ). (2)

Lemma 2.2 There exists C3 > 0 depending only on γM and θT such that, for all u ∈ XD,

‖πDmu− πT u‖L2(Ω) + ‖πDf
u− γπT u‖L2(Γ) ≤ C3 hT ‖πT u‖V . (3)

For any smooth function ϕ ∈ C∞(Ω), let us introduce the finite element interpolation operator

PT ϕ(x) =
∑

K∈M

ϕ(xK)ηK(x) +
∑

s∈V

ϕ(xs)ηs(x) +
∑

σ∈FΓ

ϕ(xσ)ησ(x).

We have the following classical finite element approximation result:

Proposition 2.1 For all ϕ ∈ C∞(Ω), then there exists C4 > 0 depending only on ϕ, γM, and θT such that

‖ϕ− PT ϕ‖V ≤ C4hT .

The VAG scheme has been introduced for the discretization of multiphase immiscible Darcy flows in [14] and
in [15] for compositional models. Its convergence has been proved for two-phase flows using a global pressure
formulation in [6]. In [17] it has been adapted to take into account discontinuous capillary pressures using a
phase pressures formulation and the convergence proof is done in the general framework of gradient schemes.
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We extend here this approach to the case of hybrid dimensional two-phase Darcy flows.

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T of the time
interval [0, T ]. We denote the time steps by ∆tn = tn− tn−1 for all n = 1, · · · , N while ∆t stands for the whole
sequence (∆tn)n∈{1,...,N}.

Let us denote by uα,n ∈ X0
D, α = 1, 2 the discrete phase pressures, and by pn = u1,n−u2,n the discrete capillary

pressure at time tn for all n = 1, · · · , N . Given an approximation p0 ∈ XD of the initial capillary pressure
pini, the VAG discretization of the two-phase Darcy flow model in phase pressures formulation (1) looks for

uα =
(

uα,n ∈ X0
D

)

n=1,··· ,N
, α = 1, 2, such that for α = 1, 2, and for all v ∈ X0

D one has



















































∫

Ω

φm
S
α,n
Dm

− S
α,n−1
Dm

∆tn
πDm

v dx +

∫

Ω

k
α,n
Dm

Λm∇Dm
uα,n · ∇Dm

v dx

+

∫

Γ

φf
S
α,n
Df

− S
α,n−1
Df

∆tn
πDf

v dτf (x) +

∫

Γ

k
α,n
Df

Λf∇Df
uα,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω

hαmπDmv dx+

∫

Γ

hαf πDf
v dτf (x)

)

dt,

(4)

where
S
α,n
Dm

(x) = Sα
m(x, πDm

pn(x)), Sα,n
Df

(x) = Sα
f (x, πDf

pn(x))

and
k
α,n
Dm

(x) = kαm(x, Sα,n
Dm

(x)), kα,nDf
(x) = kαf (x, S

α,n
Df

(x)).

3 Convergence Analysis

3.1 A priori estimates

Using the phase pressures as test functions in the discrete variational formulation (4), we deduce the following
a priori estimate.

Lemma 3.1 Assuming that hypotheses (H1−H5) hold, let uα, α = 1, 2, be a solution to (4), then, there exists
C5 > 0 depending only on the data and on γM and θT such that

∑

α∈{1,2}

N
∑

n=1

∆tn‖πT uα,n‖2V ≤ C5. (5)

Let us introduce the following notations. For all v ∈ XD we define the terms

A
α,n
Dm

(v) =

∫

Ω

φm
S
α,n
Dm

− S
α,n−1
Dm

∆tn
πDmv dx, A

α,n
Df

(v) =

∫

Γ

φf
S
α,n
Df

− S
α,n−1
Df

∆tn
πDf

v dτf (x), (6)

B
α,n
Dm

(v) =

∫

Ω

k
α,n
Dm

Λm∇Dm
uα,n · ∇Dm

v dx, B
α,n
Df

(v) =

∫

Γ

k
α,n
Df

Λf∇Df
uα,n · ∇Df

v dτf (x), (7)

C
α,n
Dm

(v) =
1

∆tn

∫ tn

tn−1

∫

Ω

hαmπDm
v dxdt, C

α,n
Df

(v) =
1

∆tn

∫ tn

tn−1

∫

Γ

hαf πDf
v dτf (x)dt. (8)
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In order to prove Lemma 3.1, we first derive some estimates of the accumulation, gradient and right hand side
terms of in the following propositions.

Firstly, the following estimate of the accumulation terms is a straightforward adaptation from Lemma 3.1 of
[17].

Proposition 3.1 Let uα, α = 1, 2, be a solution of (4), then

N
∑

n=1

∑

α∈{1,2}

∑

j=m,f

∆tnAα,n
Dj

(uα,n) ≥ −φmaxLS

2

(

‖πDmp
0‖2L2(Ω) + dmax‖πDf

p0‖2L2(Γ)

)

.

Secondly, thanks to the assumptions (H2) and (H4) the following estimate readily holds for the gradient terms.

Proposition 3.2 Let uα, α = 1, 2, be a solution of (4), then

N
∑

n=1

∑

j=m,f

∆tnBα,n
Dj

(uα,n) ≥ kminλmin

N
∑

n=1

∆tn
(

‖∇Dmu
α,n‖2L2Ω)d + dmin‖∇Df

uα,n‖2L2(Γ)d−1

)

,

for all α ∈ {1, 2}.

Thirdly, we have the following estimate for the right hand side.

Proposition 3.3 Let uα, α = 1, 2, be a solution of (4), then there exists C > 0 depending only on dmax, CP ,
γM and θT such that

N
∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(uα,n) ≤ C
(

‖hαm‖2L2(Ω×(0,T )) + dmax‖hαf ‖2L2(Γ×(0,T ))

)1/2( N
∑

n=1

∆tn‖πT uα,n‖2V
)1/2

for all α ∈ {1, 2}.

Proof: Applying Cauchy-Schwardz inequality and Lemma 2.1 we have

N
∑

n=1

∆tnCα,n
Dm

(uα,n) ≤ ‖hαm‖L2(Ω×(0,T ))

(

N
∑

n=1

∆tn‖πDmu
α,n‖2L2(Ω)

)1/2

≤ C1‖hαm‖L2(Ω×(0,T ))

(

N
∑

n=1

∆tn‖πT uα,n‖2L2(Ω)

)1/2

.

Similarly,
N
∑

n=1

∆tnCα,n
Df

(uα,n) ≤ dmax‖hαf ‖L2(Γ×(0,T ))

(

N
∑

n=1

∆tn‖πDf
uα,n‖2L2(Γ)

)1/2

≤ C2dmax‖hαf ‖L2(Γ×(0,T ))

(

N
∑

n=1

∆tn‖γπT uα,n‖2L2(Γ)

)1/2

.

Applying Cauchy-Schwardz inequality again we obtain the following estimate

N
∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(uα,n) ≤ max(C1, C2)
(

‖hαm‖2L2(Ω×(0,T )) + dmax‖hαf ‖2L2(Γ×(0,T ))

)1/2

(

N
∑

n=1

∆tn
(

‖πT uα,n‖2L2(Ω) + dmax‖γπT uα,n‖2L2(Γ)

))1/2

.
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The proof is completed using Proposition 1.1. �

Proof of Lemma 3.1: To complete the proof of Lemma 3.1, it follows from (4) that

N
∑

n=1

∑

α∈{1,2}

∑

j=m,f

∆tn
(

A
α,n
Dj

(uα,n) +B
α,n
Dj

(uα,n)− C
α,n
Dj

(uα,n)
)

= 0,

so that in view of Propositions 3.1, 3.2 and 3.3 there exists C > 0 depending only on the data and on γM and
θT such that

∑

α∈{1,2}

N
∑

n=1

∆tn‖πT uα,n‖2V ≤ C






1 +





∑

α∈{1,2}

N
∑

n=1

∆tn‖πT uα,n‖2V





1/2





.

The estimate (5) is then obtained using Young’s inequality. �

Lemma 3.2 Assuming that hypotheses (H1−H5) hold, there exists at least one solution to the problem (4).

Proof: Let us consider the functions S1,θ
m = θS1

m + (1− θ) and S1,θ
f = θS1

f + (1− θ) instead of S1
m and S1

f as

well as the functions S2,θ
m = 1− S1,θ

m and S2,θ
f = 1− S

1,θ
f instead of S2

m and S2
f . The problem corresponding to

θ = 0 reads : For each α ∈ {1, 2} and for each n ∈ {1, . . . N} find uα,n ∈ X0
D satisfying







































































∫

Ω

k1m(x, 1)Λm∇Dm
u1,n · ∇Dm

v dx+

∫

Γ

k1f (x, 1)Λf∇Df
u1,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω

h1mv dx+

∫

Γ

h1fπDf
v dτf (x)

)

dt ∀v ∈ X0
D,

∫

Ω

k2m(x, 0)Λm∇Dmu
2,n · ∇Dmv dx+

∫

Γ

k2f (x, 0)Λf∇Df
u2,n · ∇Df

v dτf (x)

=
1

∆tn

∫ tn

tn−1

(

∫

Ω

h2mv dx+

∫

Γ

h2fπDf
v dτf (x)

)

dt ∀v ∈ X0
D.

(9)

In view of Lemma 2.1 and the assumptions on the data one deduces from Lax-Milgram theorem the existence
and uniqueness of the solution to (9). We remark that the estimate (5) holds for all θ ∈ [0, 1]. Therefore the
existence of a solution for all θ ∈ [0, 1] can be deduced from a classical topological degree argument. �

3.2 Estimates on the time and space translates

Proposition 3.4 Let T > 0, N ∈ N and (tn)n∈{0,...,N} ∈ R such that 0 = t0 < t1 < . . . < tN = T . Let v be a
piecewise constant mapping from [0, T ] to some space X (endowed with a semi-norm ‖ ·‖X) such that v(0) = v0

and v(t) = vn for all t ∈ (tn−1, tn]. Then,

∫ T−τ

0

‖v(t+ τ)− v(t)‖X ≤ τ

N
∑

n=1

‖vn − vn−1‖X ∀τ ∈ [0, T ].

Proof: For all t ∈ [0, T ] we set

n∆t(t) =

{

0 if t = 0,
n if t ∈ (tn−1, tn],
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so that
∫ T−τ

0

‖v(t+ τ)− v(t)‖Xdt ≤
∫ T−τ

0

n∆t(t+τ)
∑

k=n∆t(t)+1

‖vk − vk−1‖Xdt.

We conclude the proof by applying Lemma 6.1 of [2]. �

Let us set XD,∆t = (XD)
N , and for all v = (vn)n=1,··· ,N ∈ XD,∆t let us define

πDm,∆tv(x, t) = πDmv
n(x) for all (x, t) ∈ Ω× (tn−1, tn],

πDf ,∆tv(x, t) = πDf
vn(x) for all (x, t) ∈ Γ× (tn−1, tn],

πT ,∆tv(x, t) = πT v
n(x) for all (x, t) ∈ Ω× (tn−1, tn].

We also define the functions Sα
Dm,∆t(x, t) = Sα(x, πDm,∆tp(x, t)) and S

α
Df ,∆t(x, t) = Sα(x, πDf ,∆tp(x, t)).

Lemma 3.3 Assuming that hypotheses (H1−H5) hold, let uα, α = 1, 2, be a solution to (4), then there exists
C > 0 only depending on the data, on γM and θT such that for all τ > 0 one has

∑

α∈{1,2}

‖Sα
Dm,∆t(·, ·+ τ)− Sα

Dm,∆t‖2L2(Ω×(0,T )) + ‖Sα
Df ,∆t(·, ·+ τ)− Sα

Df ,∆t‖2L2(Γ×(0,T )) ≤ C
√
τ ,

where we have set Sα
Dm,∆t(x, t) = Sα

Df ,∆t(x, t) = 0 for all t > T .

Proof: Let us denote by U the space L2(Ω)×L2(Γ) equipped with the scalar product 〈u, v〉U =
∫

Ω
φmumvmdx+

∫

Γ
φfufvfdτf (x). For all u = (um, uf ) ∈ U we also define the dual semi-norm ‖u‖−1,D by

‖u‖−1,D = sup
v∈X0

D
,v 6=0

〈u, (πDm
v, πDf

v)〉U
‖πT v‖V

.

Setting Sα,n
D = (Sα,n

Dm
, S

α,n
Df

) ∈ U , and using the assumptions (H1), (H2), (H4), (H5) on the data, we deduce

from (4) that there exists C > 0 depending only on the data and on γM and θT such that

∣

∣

∣

∣

1

∆tn
〈Sα,n

D − S
α,n−1
D , (πDmv, πDf

v)〉U
∣

∣

∣

∣

≤ C
(

‖πT uα,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω)+‖hf (., t)‖L2(Γ))dt
)

‖πT v‖V

for all v ∈ X0
D. Therefore, one obtains the estimate

1

∆tn
‖Sα,n

D − S
α,n−1
D ‖−1,D ≤ C

(

‖πT uα,n‖V +
1

∆tn

∫ tn

tn−1

(‖hm(., t)‖L2(Ω) + ‖hf (., t)‖L2(Γ))dt
)

.

Multiplying by ∆tn, summing over n ∈ {1, . . . , N}, and using Lemma 3.1, there exists C > 0 depending only
on the data and on γM and θT such that

N
∑

n=1

‖Sα,n
D − S

α,n−1
D ‖−1,D ≤ C. (10)

Next setting p = u1 − u2 and Sα,n
D,∆t = (Sα

Dm,∆t, S
α
Df ,∆t) ∈ L2(U × (0, T )) we have

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖Udt

≤
√

LS

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖1/2−1,D ‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖1/2V dt

≤
√
LS

2
√
τ

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖−1,Ddt+

√
LS

√
τ

2

∫ T

0

‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖V dt.
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In view of Proposition 3.4, the estimates (10), Lemma 3.1, and the assumption (H3), there exists C > 0
depending only on the data and on γM and θT such that

√
LS

2
√
τ

∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖−1,Ddt ≤ C
√
τ ,

and
∫ T

0

‖πT ,∆tp(t+ τ)− πT ,∆tp(t)‖V dt ≤ C,

which implies that
∫ T

0

‖Sα
D,∆t(t+ τ)− Sα

D,∆t(t)‖Udt ≤ C
√
τ

with C > 0 depending only on the data and on γM and θT . One concludes the proof using 0 ≤ Sα
m, S

α
f ≤ 1 . �

Lemma 3.4 It is assumed that hypotheses (H1−H5) hold. Let (D(m),∆t(m))m∈N be a sequence of space-time
discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all
m ∈ N and such that hT (m) → 0 as m → ∞. Let uα,(m), Sα

D
(m)
m ,∆t(m)

and Sα

D
(m)
f ,∆t(m)

, α = 1, 2, be such that

(4) holds for all m ∈ N.

1. Let ξ ∈ Rd, then

lim
|ξ|→0

sup
m∈N







∑

α∈{1,2}

‖Sα

D
(m)
m ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
m ,∆t(m)

‖L2(Rd×(0,T ))







= 0,

where Sα

D
(m)
m ,∆t(m)

is extended by 0 on
(

Rd \ Ω
)

× (0, T ).

2. For all i ∈ I let τ(Pi) denote the vector subspace tangent to Pi and let ξ ∈ τ(Pi), then

lim
|ξ|→0

sup
m∈N







∑

α∈{1,2}

‖Sα

D
(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
f,i ,∆t(m)

‖L2(Pi×(0,T ))







= 0,

where Sα

D
(m)
f,i ,∆t(m)

denotes the restriction of Sα

D
(m)
f ,∆t(m)

to Γi, extended by 0 on
(

Pi \ Γi

)

× (0, T ).

Proof: For each i ∈ I and for all ξ ∈ τ(Pi) let us define the set Γξ
i = {x ∈ Γi,x+ ξ ∈ Γi}. Since 0 ≤ Sα

Df,i
≤ 1

there exists a positive C depending only on the geometry of Γi and on T such that

‖Sα

D
(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
f,i ,∆t(m)

‖2L2(Γi×(0,T )) ≤ C|ξ|+ ‖Sα

D
(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
f,i ,∆t(m)

‖2
L2(Γξ

i×(0,T ))
.

Denoting by π
D

(m)
f,i ,∆t(m)p

(m) the restriction of π
D

(m)
f ,∆t(m)p

(m) to Γi, one deduces from Lemma 2.2 and Lemma

3.1 that

‖Sα

D
(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
f,i ,∆t(m)

‖L2(Γξ
i×(0,T ))

≤ LS‖πD(m)
f,i ,∆t(m)p

(m)(·+ ξ, ·)− π
D

(m)
f,i ,∆t(m)p

(m)‖L2(Γξ
i×(0,T ))

≤ LS‖γiπT (m),∆t(m)p(m)(·+ ξ, ·)− γiπT (m),∆t(m)p(m)‖L2(Γξ
i×(0,T )) + 2LSC3

√
C5hT (m) .

Therefore, using Lemma 5.2 in the Appendix and Lemma B.2 of [16], we deduce that

lim
ξ→0

sup
m∈N

‖Sα

D
(m)
f,i ,∆t(m)

(·+ ξ, ·)− Sα

D
(m)
f,i ,∆t(m)

‖L2(Pi×(0,T )) = 0 ∀i ∈ I.

One proves the first statement of the lemma using similar arguments. �
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3.3 Convergence

In view of Lemma 3.3 and Lemma 3.4, the Kolmogorov-Fréchet theorem allows to establish the following relative
compactness result for the saturation.

Lemma 3.5 It is assumed that hypotheses (H1−H5) hold. Let (D(m),∆t(m))m∈N be a sequence of space-time
discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all
m ∈ N and such that hT (m) ,max∆t(m) → 0 as m → ∞. Let uα,(m), Sα

D
(m)
m ,∆t(m)

and Sα

D
(m)
f ,∆t(m)

, α = 1, 2, be

s.t (4) holds for all m ∈ N. Then, for each α = 1, 2 one has the following result.

1. The sequence (Sα

D
(m)
m ∆t(m)

)m∈N is relatively compact in L2(Ω× (0, T )).

2. For each i ∈ I the sequence (Sα

D
(m)
f,i ,∆t(m)

)m∈N is relatively compact in L2(Γi × (0, T )).

The limit of the saturation can be identified thanks to the following result.

Lemma 3.6 It is assumed that hypotheses (H1−H5) hold. Let (D(m),∆t(m))m∈N be a sequence of space-time
discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all
m ∈ N and such that hT (m) ,max∆t(m) → 0 as m → ∞. Let uα,(m), Sα

D
(m)
m ,∆t(m)

and Sα

D
(m)
f ,∆t(m)

, α = 1, 2, be

s.t (4) holds for all m ∈ N. Then, there exists a function pair (uα)α∈{1,2} ∈
(

L2(0, T ;V 0)
)2

such that up to a

subsequence

πT (m),∆t(m)uα,(m) ⇀ uα in L2(Ω× (0, T )) and γπT (m),∆t(m)uα,(m) ⇀ γuα in L2(Γ× (0, T ))

as m→ ∞; moreover setting p = u1 − u2, one has

Sα

D
(m)
m ,∆t(m)

→ Sα
m(., p) in L2(Ω× (0, T )) and Sα

D
(m)
f ,∆t(m)

→ Sα
f (., γp) in L

2(Γ× (0, T ))

as m→ ∞.

Proof: The existence of the weak limit (uα)α∈{1,2} follows from Lemma 3.1 and Lemma 5.1. In order to prove
the second statement we remark that it follows from Lemma 2.2 that π

D
(m)
m ,∆t(m)u

α and π
D

(m)
f ,∆t(m)u

α also

converge weakly to uα in L2(Ω × (0, T )) and to γuα in L2(Γ × (0, T ))) respectively. From Lemma 3.5, there
exist four functions sαm ∈ L2(Ω× (0, T )) and sαf ∈ L2(Γ× (0, T )), α = 1, 2, with s1m + s2m = 1, s1f + s2f = 1, such

that, up to a subsequence, Sα

D
(m)
m ∆t(m)

converges strongly to sαm in L2(Ω × (0, T )), and Sα

D
(m)
f ∆t(m)

converges

strongly to sαf in L2(Γ× (0, T )). Then, one can conclude the proof using the Minty trick stated in Lemma 3.6

of [17] to show that sαm = Sα
m(., u1 − u2) and sαf = Sα

f (., γ(u
1 − u2)). �

Theorem 3.1 It is assumed that hypotheses (H1 − H5) hold. Let (D(m),∆t(m))m∈N be a sequence of space-
time discretizations such that there exist two positive constants θ and γ satisfying θT (m) ≤ θ, γM(m) ≤ γ for all
m ∈ N and such that hT (m) ,maxn ∆t

(m),n → 0 as m → ∞. Let uα,(m), Sα

D
(m)
m ,∆t(m)

and Sα

D
(m)
f ,∆t(m)

, α = 1, 2,

be s.t (4) holds for all m ∈ N. It is also assumed that π
D

(m)
m
p0,(m) converges strongly to pini in L2(Ω), and that

π
D

(m)
f

p0,(m) converges strongly to γpini in L2(Γ). Then there exists a weak solution (u1, u2) to the problem (1)

such that for each phase α ∈ {1, 2}

πT (m),∆t(m)uα,(m) ⇀ uα in L2(Ω× (0, T )) and γπT (m),∆t(m)uα,(m) ⇀ γuα in L2(Γ× (0, T ))

up to a subsequence.
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Proof: For all α ∈ {1, 2} we denote by uα a weak limit of πT (m),∆t(m)uα,(m), whose existence is stated by

Lemma 3.6. We show below that (u1, u2) satisfies the variational formulation (1). In order to simplify the
notation we drop the index (m).
Let ψ be an arbitrary function from C∞

c (Ω × [0, T )) and ψ(t) the projection of ψ(., t) to X0
D defined by

ψν(t) = ψ(xν , t) for all ν ∈ M∪ V ∪ FΓ. Taking v = ψ(tn−1) in (4) for all n ∈ {1, . . . , N} and summing over
n ∈ {1, . . . , N} we obtain that

N
∑

n=1

∑

j=m,f

∆tn
(

A
α,n
Dj

(ψ(tn−1)) +B
α,n
Dj

(ψ(tn−1))
)

=
N
∑

n=1

∑

j=m,f

∆tnCα,n
Dj

(ψ(tn−1)).

for each phase α ∈ {1, 2}.
Accumulation terms. Let us consider the term

∑N
n=1 ∆t

nA
α,n
Dm

(ψ(tn−1)). Applying the chain rule we obtain
that

N
∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) = −
N
∑

n=1

∫ tn

tn−1

∫

Ω

φm S
α,n
Dm

∂tπDmψ(t) dxdt−
∫

Ω

φm S
α,0
Dm

πDmψ(t
0) dx.

Thanks to the strong convergence of the function Sα
Dm,∆t given by Lemma 3.6, to the regularity of ψ, and to

the convergence of πDmp
0, one deduces that

N
∑

n=1

∆tnAα,n
Dm

(ψ(tn−1)) → −
∫ T

0

∫

Ω

φmS
α
m(., p)∂tψ dxdt−

∫

Ω

φmS
α
m(., pini)ψ(x, 0) dxdt.

Similarly we obtain that

N
∑

n=1

∆tnAα,n
Df

(ψ(tn−1)) → −
∫ T

0

∫

Γ

φfS
α
f (., γp)∂tγψ dτf (x)dt−

∫

Γ

φfS
α
f (., γpini)γψ(x, 0) dτf (x)dt.

Diffusion terms. From Lemma 5.1 in the Appendix, Proposition 2.1, Lemma 3.6 and hypothesis (H4), we
deduce that

N
∑

n=1

∆tnBα,n
Dm

(ψ(tn−1)) →
∫ T

0

∫

Ω

kαm(x, Sα
m(., p))Λm∇u · ∇ψ dx

and
N
∑

n=1

∆tnBα,n
Df

(ψ(tn−1)) →
∫ T

0

∫

Γ

kαf (x, S
α
f (., p))Λf∇τγu · ∇τγψ dτf (x).

Source terms. From Lemma 2.2 and Proposition 2.1, we deduce that

N
∑

n=1

∆tnCα,n
Dm

(ψ(tn−1)) =

N
∑

n=1

∫ tn

tn−1

∫

Ω

hαmπDm
ψ(tn−1) dxdt→

∫ T

0

∫

Ω

hαmψ dxdt

and
N
∑

n=1

∆tnCα,n
Df

(ψ(tn−1)) =

N
∑

n=1

∫ tn

tn−1

∫

Γ

hαf πDf
ψ(tn−1) dτf (x)dt→

∫ T

0

∫

Γ

hαf γψ dτf (x)dt.

�
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4 Numerical experiments

The implementation of the VAG scheme is based on a flux formulation with upwinding of the mobilities rather
than the discrete variational formulation (4) in order to improve the stability of the solution on coarse meshes
for convective dominant regimes. For a given u ∈ XD, the definition of the fluxes follows the same ideas as in
[15], [6]. The matrix fluxes connect the cell K ∈ M to its vertices or fracture faces ν ∈ ΞK = VK ∪ (FΓ ∩FK):

FK,ν(u) = −
∫

K

Λm(x)∇πT u(x) · ∇ην(x)dx =
∑

ν′∈ΞK

aν
′

K,ν(uK − uν′)

with aν
′

K,ν =
∫

K
Λ(x)∇ην(x) · ∇ην′(x)dx. The fracture fluxes connect the face σ ∈ FΓ to its vertices s ∈ Vσ:

Fσ,s(u) = −
∫

σ

Λf (x)∇τγπT u(x) · ∇τγηs(x)dτf (x) =
∑

s
′∈Vσ

as
′

σ,s(uσ − us′)

with as
′

σ,s =
∫

σ
Λf (x)∇τγηs(x) · ∇τγηs′(x)dτf (x).

Given cellwise constant rocktypes in the matrix and facewise constant rocktypes in the fracture network, let
us define for α = 1, 2

Sα
K = Sα

m(xK , pK), K ∈ M, Sα
K,ν = Sα

m(xK , pν), K ∈ M, ν ∈ ΞK ,

and
Sα
σ = Sα

f (xσ, pσ), σ ∈ FΓ, Sα
σ,s = Sα

f (xσ, ps), σ ∈ FΓ, s ∈ Vσ.

Let us set φK =
∫

K
φm(x)dx and φσ =

∫

σ
φf (x)dτf (x). Given p0 ∈ X0

D, the VAG upwind scheme looks for
u1,n ∈ X0

D, u
2,n ∈ X0

D, n = 1, · · · , N , such that for all α = 1, 2 and for all v ∈ X0
D one has:























































∑

K∈M

( φK

∆tn
(1−

∑

ν∈ΞK∩Vint

αK,ν)(S
α,n
K − S

α,n−1
K ) +

∑

ν∈ΞK

kα(xK , S
α,n
K,ν,up)FK,ν(u

α,n)
)

vK

+
∑

K∈M

∑

ν∈ΞK∩Vint

( φK

∆tn
αK,ν(S

α,n
K,ν − S

α,n−1
K,ν )− kα(xK , S

α,n
K,ν,up)FK,ν(u

α,n)
)

vν

+
∑

σ∈FΓ

( φσ

∆tn
(1−

∑

s∈Vσ∩Vint

ασ,s)(S
α,n
σ − Sα,n−1

σ ) +
∑

s∈Vσ

kαf (xσ, S
α,n
σ,s,up)Fσ,s(u

α,n)
)

vσ

+
∑

σ∈FΓ

∑

s∈Vσ∩Vint

( φσ

∆tn
ασ,s(S

α,n
σ,s − Sα,n−1

σ,s )− kαf (xσ, S
α,n
σ,s,up)Fσ,s(u

α,n)
)

vs = 0,

(11)

with the upwinding

{

S
α,n
K,ν,up = S

α,n
K if FK,ν(u

α,n) ≥ 0,

S
α,n
K,ν,up = S

α,n
K,ν if FK,ν(u

α,n) < 0,

{

Sα,n
σ,s,up = Sα,n

σ if Fσ,s(u
α,n) ≥ 0,

Sα,n
σ,s,up = Sα,n

σ,s if Fσ,s(u
α,n) < 0.

In the following numerical experiments, the volume fractions αK,ν , ασ,s are chosen to avoid the mixing of the
fracture and matrix rocktypes. They are such that αK,ν = 0 if ν ∈ ΞK belongs to the fracture network Γ,
αK,ν = ωm otherwise, and such that ασ,s = ωf for s ∈ Vσ.
To illustrate the importance of non mixing rocktypes with large permeability contrasts, this choice denoted
by VAG-1 will be compared with a second choice denoted by VAG-2 for which we simply set αK,ν = ωm and
ασ,s = ωf for all ν ∈ ΞK , s ∈ Vσ. In order to roughly balance the volumes, the parameters ωm and ωf are set
in the following tests to ωm = 0.15 in 2D and 0.05 in 3D, and to ωf = 0.25 in 2D and 0.1 in 3D.

The nonlinear systems obtained at each time step are solved by a Newton Raphson algorithm. The time
stepping is defined by an initial time step, a maximum time step and the following rule: if the Newton solver
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does not converge after 20 iterations, the time step is chopped by a factor 2 and recomputed. The time step
is increased by a factor 1.2 after each successful time step until it reaches again the maximum time step. The
stopping criteria are fixed to 10−7 for the GMRes solver and to 10−6 for the Newton solver. A CPR-AMG right
preconditioner [23], [28] is used in the GMRes iterative solver. Let us also stress that, using the two equations
in each cell, the cell unknowns are eliminated from the discrete linearized system at each Newton iteration
without any fill-in, reducing the Jacobian system to nodal and fracture face unknowns only. Note that the
above discretization is readily extended to take into account gravity using the fluxes

Fα
K,ν(u

α) = FK,ν(u
α) + ραgFK,ν(z), Fα

σ,s(u
α) = Fσ,s(u

α) + ραgFσ,s(z),

where g is the gravitational constant, ρα is the density of the phase α, and z =
(

zK ,K ∈ M, zσ, σ ∈ FΓ, zs, s ∈
V
)

. The upwinding of the mobilities is defined with respect to these new fluxes.

4.1 Oil migration in a basin with a random network of fractures

We consider the migration of oil in the 2D cross section Ω = (0, L) × (0, H) of a basin with H = L = 100
m. The basin comprises a random network of 927 fractures exhibited in Figure 2. The permeability of the
matrix Λm = λmId and the permeability of the fractures Λf = λf Id are highly contrasted with λm = 10−15

m2, λf = 10−10 m2. The width of the fractures is fixed to df = 0.01 m and their porosity to φf = 0.3. The
porosity of the matrix is set to φm = 0.1.
The inverses of the capillary pressure monotone graph in the matrix (j = m) and in the fractures (j = f) are
exhibited in Figure 2 and defined by the Corey law

S1
j (p) =

{

0 if p < 0,

(1− s2r,j)(1− e
−p
bj ) if p ≥ 0,

(12)

with the rocktype bm = 5 103 Pa, s2r,m = 0.2, s1r,m = 0 in the matrix and the rocktype bf = 102 Pa,
s2r,f = s1r,f = 0 in the fractures. The mobilities are defined for j = m and j = f by the following Corey law

kαj (x, s
α) =











0 if s̄α < 0,
1
µα if s̄α > 1,
(s̄α)2

µα else,

(13)

for phase α = 1 (oil), and phase α = 2 (water) where s̄1 =
s1−s1r,j

1−s1r,j−s2r,j
, and s̄2 =

s2−s2r,j
1−s2r,j−s1r,j

are the reduced

saturations, and µ1 = 0.005 Pa.s and µ2 = 0.001 Pa.s are the viscosities of the phases.
The densities of phases are fixed to ρ1 = 700 Kg/m3 for the oil phase and ρ2 = 1000 Kg/m3 for the water
phase.
Phase 1 is injected at the bottom boundary (25, 75)× {0} with imposed pressures u2(x) = 8.1 106 + ρ2gH Pa,
u1(x) = u2(x)+(S1

f )
−1(0.999999) corresponding to an input phase 1 saturation s1 = 0.999999 in the fractures.

At the top boundary, the phase pressures are fixed to u2(x) = 8 106 and u1(x) = u2(x). The remaining
boundaries of the basin are assumed to be impervious. The boundaries of the fracture network not located at
the top boundary of the basin nor at the bottom boundary (25, 75)× {0} are also assumed impervious.
At initial time the porous media is saturated with phase 2 with a hydrostatic pressure u2ini(x) = 8 106 +
ρ2g(H − y), and a phase 1 pressure defined by u1ini(x) = u2ini(x).

The mesh is a nx × nx topologically Cartesian quadrangular grid obtained by a uniform refinement of a given
randomly disturbed 30 × 30 Cartesian grid (see figure 2). The simulation is fixed to 75 days with an initial
time step of 0.01 day and a maximum time step of 0.1 day. All the runs for this test case are performed on a
laptop equipped with a dual core 3GHz.
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Figure 3 exhibits the discrete oil saturation at final time obtained with nx = 480, the choice VAG-1 of the
volume fractions αK,ν , ασ,s, and a non uniform refinement of the mesh at the matrix fracture interfaces down
to 2 cm. We have checked numerically the convergence of this solution which will be our reference solution.
The Figures 4, 5 compare the convergence of the oil saturation on the family of uniformly refined meshes with
nx = 60, 120, 240, 480, for the two choices of the volume fractions. It is clear that the choice VAG-1 which
avoids to mix matrix and fracture volumes provides a much better convergence. It is explained in Figure 6
exhibiting that the choice VAG-2 of the volume distribution yields a too large volume of oil in the matrix and
a too small volume of oil in the fractures due to the enlarged volumes at the matrix fracture interfaces. This is
a clear advantage of the VAG scheme compared with usual CVFE approaches which cannot avoid the mixing
of fracture and matrix volumes due to the use of a dual mesh and the absence of cell unknowns.
The numerical behavior of the simulations for both choices of the distribution of the volumes and for the family
of meshes is exhibited in Table 4.1 showing the number of successful time steps, the number of time step
chops, the number of Newton iterations by successful time steps, the number of GMRes iterations by Newton
iteration, the CPU time in seconds, and the maximum CFL number. This maximum CFL number is the one
obtained for the oil saturation Buckley Leverett equation (without the capillary diffusion) discretized by an
upwind monotone scheme and an Euler explicit time integration, and using the total Darcy velocity and the
buoyancy forces of the simulation.
In both cases a rather good scalability is obtained both in terms of nonlinear and linear solvers although very
large CFL numbers are observed in the fracture network. The results are slightly better for VAG-2 due to the
larger volumes at the matrix fracture interfaces as can be checked on the comparison of the maximum CFL
numbers.

Figure 2: Network of 927 fractures and mesh obtained for nx = 60. Inverses of the extended monotone graphs
of the capillary pressures S1

m in the matrix, and S1
f in the fractures.

Figure 3: Discrete oil saturation at final time obtained for nx = 480 with refinement at the matrix fracture
interfaces and the choice VAG-1 of the volumes.
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Figure 4: Discrete oil saturation at final time obtained for the family of uniformly refined meshes nx =
60, 120, 240, 480, and the choice VAG-1 of the volumes.

Figure 5: Discrete oil saturation at final time obtained for the family of uniformly refined meshes nx =
60, 120, 240, 480, and the choice VAG-2 of the volumes.
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Figure 6: Volume of oil in the fracture and in the matrix function of time for nx = 60, 120, 240, 480, and for
the two choices VAG-1 and VAG-2 of the distribution of the volumes.

Volumes nx N∆t NChop NNewton NGMRes CPU (s) CFL
VAG-1 60 759 0 2.62 8.08 164 210
VAG-1 120 759 0 2.90 8.84 535 420
VAG-1 240 777 14 3.94 9.44 2480 840
VAG-1 480 889 69 5.79 9.85 15062 1675

VAG-2 60 759 0 2.08 6.26 126 6.4
VAG-2 120 759 0 2.48 6.81 441 27
VAG-2 240 759 0 3.16 7.83 1868 106
VAG-2 480 788 21 4.98 8.53 11074 384

Figure 7: For each choice VAG-1 and VAG-2 of the volume distribution and each mesh size nx =
60, 120, 240, 480: number N∆t of successful time steps, number NChop of time step chops, number NNewton

of Newton iterations per successful time step, number NGMRes of GMRes iterations by Newton iteration, CPU
time in seconds, maximum CFL number.

4.2 3D network of fractures

This test case considers the migration of oil in a 3D basin Ω = (0, L) × (0, L) × (0, H) with H = L = 100
m. Figure 8 exhibits the test case geometry where the fractures in the cube are represented by parallelograms
and are intersected with the top and the bottom of the basin. The family of tetrahedral meshes is generated
using TetGen [30] in order to be refined at the neighbourhood of the fracture network. Figure 8 shows the
coarsest mesh imesh = 1, and Table 9 defines for each mesh the number Nbcells of cells, the number Nbnodes of
nodes, the number NbFracF of fracture faces, the number of d.o.f. Card(V ∪M∪FΓ) of the scheme (with two
unknowns per d.o.f.), and the number of d.o.f. Card(V�VD ∪ FΓ) of the linear system (with two unknowns
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per d.o.f.) after elimination without fill-in of the cells and Dirichlet nodes, where VD is the set of Dirichlet
nodes at the boundary of Ω. It also specifies for each mesh the cubic root of the mean volume of all cells at
the matrix fracture interface, denoted by ρi, and defined by

̺i =
( 1

Card{K ∈ M|K ∩ Γ 6= ∅}
∑

K∈M|K∩Γ 6=∅

|K|
)1/3

. (14)

Figure 8: Geometry of the basin, fracture network, and coarsest three-dimensional Delaunay mesh imesh = 1.

imesh Nbcells Nbnodes NbFracF ̺i scheme d.o.f. linear system d.o.f.
1 47 670 8 348 1 678 2.42 57 696 9 278
2 124 245 20 525 3 735 1.63 148 505 23 187
3 253 945 41 043 6 655 1.23 301 643 46 283
4 452 401 72 320 10 364 0.98 535 085 80 965
5 837 487 132 778 16 497 0.78 986 762 147 148
6 1 589 556 250 685 26 728 0.62 1 866 969 274 763
7 3 076 262 483 786 42 966 0.48 3 603 014 523 453

Figure 9: For each mesh: number Nbcells of mesh cells, number Nbnodes of nodes, number NbFracF of fracture
faces, scheme and linear system number of d.o.f. (with 2 unknowns per d.o.f), cubic root of the average cell
volume at the matrix fracture interface ̺i.

We suppose again a high contrast between the permeability of the matrix Λm = λmId and the permeability
of the fractures Λf = λf Id with λm = 10−17 m2, λf = 10−11 m2. The porosities, the phase densities, the
mobilities and the capillary pressures are the same than in the previous test case. The initial and boundary
conditions are also the same except that the oil phase is injected at the full bottom side of the domain. The
simulation is run over a period of 10 years with an initial time step of 0.2 days, and a maximum time step fixed
to 5 days, except on mesh 7 for which a smaller maximum time step of 2.5 days is used. All the numerical tests
have been performed on the Cicada Cluster located at the University Nice Sophia-Antipolis and which includes
1152 nodes equipped with two eight-core Intel(R) E5-2670 processors. Figure 10 exhibits the oil saturation
obtained on the coarsest mesh imesh = 1 at final simulation time. We observe that the oil phase injected at the
bottom side in the domain initially saturated with water, quickly rises by gravity along the faults and slowly
penetrate in the matrix.
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Figure 10: Discrete solution obtained by the VAG-1 scheme with the first mesh imesh = 1 at final simulation
time: oil saturation in the fracture network and in the matrix using the lower threshold in the matrix equal to
0.001.

Figure 11 compares the convergence of the oil saturation on the family of refined meshes for the two choices of
the volume fractions VAG-1 and VAG-2. It is clear, as in the 2D test case, for such high ratio of the fracture
and matrix permeabilities, that VAG-1 provides a much better convergence than VAG-2 since it does not mix
porous volumes from the matrix and the fracture network. It illustrates again the advantage of the VAG scheme
compared with CVFE discretizations which cannot avoid such mixing of porous volumes. Table 4.2 presents
the numerical behavior of the simulations for both choices of the distribution of the volumes and for the family
of meshes. The results obtained demonstrate the good robustness and scalability of the proposed numerical
scheme both in terms of Newton convergence, linear solver convergence and CPU time.

Figure 11: Volumes of oil in the fracture and in the matrix function of time for the family of meshes imesh =
1, .., 7, and for both choices VAG-1 and VAG-2 of the volume distribution.
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Volumes imesh N∆t NChop NNewton NGMRes CPU (s)
VAG-1 1 384 6 2.20 10.05 588
VAG-1 2 391 8 2.54 11.47 2 046
VAG-1 3 390 10 3.08 15.11 5 898
VAG-1 4 403 17 3.57 15.03 13 435
VAG-1 5 415 21 4.02 15.93 31 806
VAG-1 6 437 27 4.66 17.77 77 915
VAG-1 7 784 30 3.37 16.75 209 485

VAG-2 1 373 0 1.87 6.94 482
VAG-2 2 373 0 2.11 8.58 1 629
VAG-2 3 373 0 2.42 13.05 4 452
VAG-2 4 373 0 2.62 12.78 9 224
VAG-2 5 375 1 3.02 14.56 21 645
VAG-2 6 380 4 3.75 17.44 55 343
VAG-2 7 747 13 2.92 16.55 172 946

Figure 12: For each choice VAG-1 and VAG-2 of the volume distribution and for each mesh imesh = 1, .., 7:
number N∆t of successful time steps, number NChop of time step chops, number NNewton of Newton iterations
per successful time step, number NGMRes of GMRes iterations by Newton iteration, CPU time in seconds.

5 Conclusion

This paper has introduced the VAG discretization of hybrid dimensional two-phase Darcy flows modelling
discrete fracture networks with mass exchange between the matrix and the fractures. Our discretization takes
into account general polyhedral meshes, general discrete fracture networks, the anisotropy of the matrix and
of the fracture permeability fields, and discontinuous rocktypes.
Compared with CVFE approaches, the numerical tests clearly exhibit that the VAG scheme has the advantage
to avoid the mixing of the fracture and matrix rocktypes at the interfaces between the matrix and the fractures,
while keeping the low cost of a nodal discretization on unstructured meshes.
The convergence of the scheme to a weak solution of the model has been proved for arbitrary choices of the
volumes at the nodal unknowns assuming the non degeneracy of the relative permeabilities and a network of
planar fractures. To our knowledge, this is the first convergence result for this type of hybrid dimensional
two-phase Darcy flow model, and it also provides an existence result for such models.

Appendix

This appendix presents two technical lemmas used in the convergence proof. The following lemma states the
weak compactness of bounded sequences in L2(0, T ;V 0).

Lemma 5.1 Let (v(m))m∈N be a sequence of functions in L2(0, T ;V 0) such that ‖v(m)‖L2(0,T ;V ) ≤ C for some
positive C. Then, there exists v ∈ L2(0, T ;V 0) such that up to the same subsequence

v(m) ⇀ v in L2(Ω× (0, T )) and γv(m) ⇀ γv in L2(Γ× (0, T ));

moreover
∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d and ∇γv(m) ⇀ ∇γv in L2(Γ× (0, T ))d−1.

Proof: First, let us recall that the normal trace operator γn : Hdiv(Ω) → H−1/2(∂Ω) is surjective. Indeed, for
any l ∈ H−1/2(∂Ω) we consider the unique weak solution u ∈ H1(Ω) of −∆u+ u = 0 on Ω with ∇u · n = l on
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∂Ω defined by 〈u, v〉H1(Ω) = 〈l, γ∂Ωv〉H−1/2(∂Ω),H1/2(∂Ω) for all v ∈ H1(Ω), where γ∂Ω is the trace operator from

H1(Ω) to H1/2(∂Ω). Hence the function G := ∇u is in Hdiv(Ω) and satisfies γnG = l.

Next, from the Poincaré inequality and the continuity of the trace operators γi, the sequence v(m) is bounded

in L2(0, T ;H1(Ω)) and the sequences v
(m)
i = γiv

(m) are bounded in L2(0, T ;H1(Γi)) for all i ∈ I. Hence, it is
classical to show that there exist v ∈ L2(0, T ;H1

0 (Ω)) and vi ∈ L2(0, T ;H1
Σi,0

(Γi)) such that up to the same
subsequence:



















v(m) ⇀ v in L2(Ω× (0, T )),
∇v(m) ⇀ ∇v in L2(Ω× (0, T ))d,

v
(m)
i ⇀ vi in L2(Γi × (0, T )),

∇v(m)
i ⇀ ∇vi in L2(Γi × (0, T ))d−1,

for all i ∈ I, with H1
Σi,0

(Γi) = {vi ∈ H1(Γi) | γi,0vi = 0}. It remains to show that v ∈ L2(0, T ;V 0) with

(γv)i = vi. Let us first show that γiv = vi. We extend the fracture Γi in the direction of the plane Pi in
order to reach ∂Ω and to decompose the domain Ω into two subdomains, say Ωi and Ωi′ . Now let us introduce
ri ∈ L2(Γi) and a function l ∈ L2(∂Ωi) which is defined by

l =

{

ri on Γi,

0 otherwise.

Thus, since l ∈ L2(∂Ωi) ⊂ H−1/2(∂Ωi) and, thanks to the surjectivity of the normal trace operator recalled
above, there exists qi ∈ Hdiv(Ωi) such that qi · ni = l. Then, passing to the limit in the equality

∫ T

0

∫

Ωi

(

qi(x) · ∇v(m)(x, t) + v(m)(x, t)divqi(x)
)

ϕ(t)dxdt =

∫ T

0

∫

Γi

ϕ(t)ri(x)v
(m)
i (x, t)dτ(x)dt,

yields
∫ T

0

∫

Γi

ϕ(t)ri(x)(vi(x, t)− γiv(x, t))dτ(x)dt = 0,

for all ri ∈ L2(Γi) and ϕ ∈ L2(0, T ), hence vi = γiv. Next, we will prove that γi,jvi = γj,ivj for all (i, j) ∈ I2Σ.
Let us introduce ri,j = −rj,i ∈ L2(Σi,j) and the function li and lj defined by

li =

{

ri,j on Σi,j ,

0 on ∂Γi \ Σi,j ,

and

lj =

{

rj,i on Σi,j ,

0 on ∂Γj \ Σi,j .

Thus, thanks again to the surjectivity of the normal trace operator, there exist qi ∈ Hdiv(Γi) and qj ∈ Hdiv(Γj)
such that qi · ni = li and qj · nj = lj . Then, passing to the limit in the equality

∫ T

0

ϕ(t)

∫

Γi

∇v(m)
i · qi + v

(m)
i div(qi) dτ(x)dt+

∫ T

0

ϕ(t)

∫

Γj

∇v(m)
j · qj + v

(m)
j div(qj) dτ(x)dt = 0,

we obtain that
∫ T

0

∫

Σi,j

ϕ(t)ri,j(x)
(

γi,jvi(x, t)− γj,ivj(x, t)
)

dl(x)dt = 0,

for all ri,j ∈ L2(Σi,j), ϕ ∈ L2(0, T ) which implies that γi,jvi = γj,ivj , and hence that v ∈ L2(0, T ;V 0). �

The following Lemma states an estimate on the space translates for bounded sequences in L2(0, T ;H1
0 (Ω)) or

in L2(0, T ;H1
0 (Γi)).
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Lemma 5.2 Let d ∈ N∗, t > 0 and let Υ be an open polyhedral (d = 3) or polygonal (d = 2) domain in Rd.
Let (u(m))m∈N be a sequence of functions from L2(0, T ;H1

0 (Υ)) such that ‖u(m)‖L2(0,T ;H1(Υ)) < C for some

positive C. Then, extending the functions u(m) by 0 on (Rd \Υ)× (0, T ), one has

sup
m∈N

‖u(m)(·, ·+ ξ)− u(m)‖2L2(Rd×(0,T )) → 0 as |ξ| → 0.

Proof : It is sufficient to notice that for all ϕ ∈ Cc
∞(Rd × (0, T )) one has

‖ϕ(·+ ξ)− ϕ‖L2(Rd×(0,T )) = |ξ|‖∇ϕ‖(L2(Rd×(0,T )))d .

Therefore the result is deduced form the density of the set Cc
∞(Rd × (0, T )) in L2(0, T ;H1(Rd)) and from the

fact that u(m) ∈ L2(0, T ;H1(Rd)). �
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