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Abstract

The subject of this paper is about an interval linearization method for the
sensitivity analysis of manipulators to variations in their geometric param-
eters. First, the proposed method is presented. Then, three manipulators
are used as illustrative examples: The five-bar mechanism, the 3-RRR pla-
nar parallel manipulator and the Orthoglide. The benefits and restrictions
of the proposed method are also discussed and appropriate indices are de-
rived to show the efficiency of the method. The obtained results are also
compared with the results obtained with frequently used methods. The pro-
posed method is simple to implement and provides verified results in low
computational time and thus can be applied to complex robots such as the
Orthoglide. In particular, the standard linearization method computes un-
reliable results near singularities, whereas the proposed interval linearization
method automatically detects such situations.
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1. Introduction

Many robotic applications require high precision. This precision can not
be achieved unless all sources of errors have been identified and integrated
in dedicated computational methods. Amongst the well known sources of
errors we find manufacturing errors, joint clearances, and backlashes in the
actuators. The sensitivity analysis of a manipulator aims at knowing the
influence of variations in its geometric parameters and/or actuators on its
performance. This information is useful for the evaluation of the pose error of
the end-effector and for the tolerance synthesis. The three main methods used
for the sensitivity analysis to variations in geometric parameters and joint
clearances of serial and parallel robots are: (i) the probabilistic methods [1];
(ii) the linearization methods [2] and (iii) the interval analysis methods [3].

As indicated in [4], science was based in the last centuries on determin-
istic ideas, which consist in believing that since each phenomenon is due
to a determined cause, the behavior can be predicted. However, since it
is usually impossible to gather enough information for the behavior to be
predictable, probabilistic theories were born. The probabilistic approaches
are well known in several engineering fields such as nonlinear dynamics and
robotics. Recently, in [5], a probabilistic approach was used in the field of
Human-Robot communication. In [1], the sensitivity analysis for a two-link
planar manipulator and the Stanford arm was conducted according to a prob-
abilistic method. The authors pointed out that the probabilistic model of
the kinematics and dynamics of these robots will be reliable if a sufficient
number of experiments is conducted, which means that the results will not
be verified. The probabilistic approaches present the advantage of having a
competitive computational time while being simple and general. However,
they do not provide any verified result.

Other methods for sensitivity analysis do exist such as the linearization

method, which consists in analyzing the sensitivity of the linearized system.
The linearization method is a numerical method that does not provide verified
results [6, 7, 8]. In [2, 9, 10, 11], the authors worked on the sensitivity analysis
of planar parallel manipulators using the linearization method. This method
is suitable for small uncertainties and as long as the robot is not close to
singular configurations. The computed sensitivity may be lower than the
real one. For instance, the linearization method was used to analyze the

2



sensitivity of the Orthoglide to variations in its geometric parameters [12].
The sensitivity of parallel manipulators to joint clearances is also an im-

portant issue. The great impact that joint clearances can have on the end-
effector pose of the manipulator was highlighted in [13]. Furthermore, as
mentioned in [14], errors due to joint clearances can not be compensated by
calibration contrary to manufacturing and assembling errors. To analyze the
effect of joint clearances, a complete mathematical model of the joint should
be defined. For instance, a joint can be modeled as a journal bearing [15].
The same model was used in [16] in order to compute the effect of joint
clearances. A general approach was proposed in [17] but turns to be time
consuming. A general error-prediction model has been recently developed
in [18]. Accordingly, two optimization problems were formulated in order to
find the maximum positioning and orientation errors of the end-effector of
the manipulator due to joint clearances. Again, the previous research works
without minimizing their importance are based on algebraic methods that
do not provide verified results.

On the contrary, interval analysis based approaches provide verified re-
sults while being simpler than their counterparts. In [19] the authors used a
Newton-Raphson based interval analysis method combined with a bisection
algorithm in order to analyze the sensitivity of simple mechanisms to joint
clearances. However, their approach is complicated and time consuming be-
cause it requires a bisection algorithm. Moreover, the method has not been
applied to complex mechanisms, and the authors did not give enough infor-
mation about the behavior of their algorithm close to singular configurations.

The standard linearization method turns to be simple to use and provides
good results as long as the variations in the parameters are small enough.
Therefore, the standard linearization method may provide bad results.

In this paper, we propose an interval linearization method that combines
the simplicity of the standard linearization method and the verification of
the results. Moreover, the proposed method is simpler than the approach
described in [19] and allows us to analyze the sensitivity of complex robots
to geometric errors and joint clearances.

The paper is organized as follows. Section 2 introduces the proposed
interval linearization method for the sensitivity analysis of parallel manipu-
lators. An efficiency index of the method is also developed with regard to the
amount of uncertainties. Section 3 deals with the sensitivity analysis of the
five-bar mechanism and makes a comparison between the results obtained
with the proposed method and the ones obtained with a standard lineariza-
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tion method. Section 4 deals with the sensitivity analysis of the 3-RRR
planar parallel manipulator with the proposed interval linearization method.
Section 5 deals with the sensitivity analysis of the Orthoglide, a three degrees
of freedom translational parallel manipulator, using the proposed interval lin-
earization method and two geometric models of the manipulator.

2. The Interval Linearization for Sensitivity Analysis

2.1. Interval analysis

Intervals are denoted by brackets: Intervals of reals are [x] = [x, x] with
x, x ∈ R and x ≤ x. Intervals of vectors (also called boxes) are [x] = [x,x]
with x,x ∈ R

n and x ≤ x (the inequality being defined component wise); in
this case the interval [xi] = [xi, xi] is the i

th component of the interval vector.
Interval of matrices are defined similarly by [A] = [A,A] with A,A ∈ R

n×m

and A ≤ A.
Interval analysis extends usual real operations (like scalar addition, mul-

tiplication, matrix/vector additions and multiplications) to interval objects.
These interval operations are defined and implemented so as to rigorously ver-
ify the following containment property: The result of the interval operation
contains all possible results of the corresponding real operation for real argu-
ments inside the interval arguments. For example, [x][y]+[x] ⊇ {xy+x : x ∈
[x], y ∈ [y]}. Matrix and vector operations are extended in the same way, e.g.
[A][x] ⊇ {Ax : A ∈ [A],x ∈ [x]}, or [A]+[B] ⊇ {A+B : A ∈ [A],B ∈ [B]}.
See [20] and references therein for more details. These interval operations are
implemented in many environments, we used the Matlab library Intlab [21].

The interval evaluation of an expression generally provides a pessimistic
enclosure of the range, which is a central issue in interval analysis. The so
called mean-value extension can provide a tighter enclosure of the range,
in particular when interval arguments have small widths. It uses interval
evaluations of the function derivatives in order to enclose the function’s graph
within an interval linearization, whose range contains the range of the original
function. More formally,

{f(x) : x ∈ [x]} ⊆ f(x̃) +
∑

i

[fxi ]([x]) ([xi]− x̃i), (1)

where x̃ ∈ [x], usually chosen as its midpoint, and [fxi ] is an interval extension
of the partial derivative of f with respect to xi, which can be computed either
as the interval evaluation of its derivatives or by using interval automatic
differentiation.
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2.2. Problem to be solved

We are given a function f : Rp × R
n → R

n, an interval vector [a] for
parameters and an approximate nominal solution (ã, x̃) ∈ R

p×R
n such that

f(ã, x̃) ≈ 01. Provided that the parameter domain [a] is small enough (which
is verified in practice and in the experimentations presented in this paper),
the solution set

Σ(f , [a]) := {x ∈ R
n : ∃a ∈ [a], f(a,x) = 0} (2)

can be split in connected components that correspond to the different as-
sembly modes of the robot. We are interested in enclosing the connected
component of Σ(f , [a]), which contains the nominal solution. This connected
component actually corresponds to the variations in the nominal solution
when parameters vary in the domain [a] and plays a key role in the analysis
of the robot sensitivity to geometric parameters. Let Σ(f , [a], x̃) denote this
connected component.

We aim at computing a box that contains Σ(f , [a], x̃). Such a box is
of great interest for sensitivity analysis, since it quantifies rigorously the
sensitivity of the pose of the manipulator with respect to variations in the
parameters for a given nominal pose. The smallest box is called its interval
hull, denoted by [xHull], and is depicted in Figure 1. However, [xHull] cannot
be computed in general so an outer approximation [xOut] of it will actually
be computed.

The smaller the distance between [xHull] and [xOut], the better the com-
puted enclosure. To formalize this overestimation and analyze it in the ex-
periments, we define the error for the variable xi of the pose vector by:

ǫxi = 1−
wid[xHulli ]

wid[xOuti ]
, (3)

wid denoting the width of the corresponding box. Since [xOut] ⊇ [xHull] we
have ǫxi ≥ 0. Moreover, ǫxi is null if and only if [xOuti ] = [xHulli ]. Moreover,

1A manipulator is usually modeled by f(a,u,x) = 0 where a are geometric parameters,
u are commands and x are positions. Since u is fixed in the scope of our study, we include
it into the geometric parameters in order to also deal with uncertainties in the command.
Note that x and u play symmetric roles, therefore the dual problem consisting in enclosing
the set of commands necessary to keep a pose constant in spite of variations in geometric
parameters could be solved similarly.
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Figure 1: The set Σ(f , [a], x̃) is depicted in light; the box in dashed line is its interval hull
[xHull]; the box in full line [xOut] is an outer approximation of the latter two boxes. The
dotted box [xIn] is computed by solving the system for 50 randomly chosen parameter
values inside [a] (solutions are illustrated with crosses) and considering the minimum and
maximum values of each variable, it is included inside [xHull].

the closer ǫxi to zero, the better the computed outer approximation [xOut].
Note that since [xHull] cannot be computed, ǫxi cannot be computed exactly
neither. Instead of using [xHull] we use an inner approximation of it [xIn] ⊆
[xHull] depicted in Figure 1, which is computed by solving several systems for
different values of parameters inside [a]. Such an inner approximation leads
to an upper bound of ǫxi .

2.3. The Krawczyk method

Our aim is to enclose the variations in the nominal solution x = x̃ + δx
when the nominal parameters change to a = ã + δa. To this end, the lin-
earization method linearizes the function in the neighborhood of the nominal
solution, which leads to the following relationship between x and a:

f(x̃, ã) + fx(x̃, ã)(x− x̃) + fa(x̃, ã)(a− ã) = 0, (4)

where fx and fa are the Jacobian of f with respect to x and a respectively.
This is a linear system with respect to x − x̃, and the linearization method
usually explicitly computes its solution as x = x̃ − fx(x̃, ã)

−1fa(x̃, ã)(a − ã)
(with the assumption that f(x̃, ã) = 0, i.e., the evaluation of the function
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at the approximate nominal solution is usually neglected). This leads to ac-
curate approximations of the variations in x provided that uncertainties in
parameters are small enough and the matrix fx(x̃, ã) is well enough condi-
tioned. These necessary conditions are difficult to quantify and verify and
therefore the result of the linearization method is not reliable in general.

In the context of interval computations, the inverse of an interval matrix is
usually avoided and linear systems are usually solved using iterative methods.
We build such an iterative scheme following the idea of the interval Krawczyk2

method:

x = x̃−Cf(x̃, ã)− (Cfx(x̃, ã)− I)(x− x̃)−Cfa(x̃, ã)(a− ã), (5)

where the preconditioning matrix C is any non-singular matrix. This fixed
point equation is obtained by first left-multiplying Eq. (4) by C and adding
and subtracting (x−x̃) (the subtracted (x−x̃) being collected with its original
occurrence, giving rise to the common factor (Cfx(x̃, ã)− I)). Thus Eq. (4)
and Eq. (5) have the same solutions, which can be computed by applying
iteratively the fixed point equation (5) to an initial guessed solution.

Now, we propose an interval linearization procedure by using interval
evaluations of functions and derivatives. Equation 5 is reformulated as:

[x] = x̃−C [f ](x̃, ã)−(C [fx]([x], [a])−I)([x]−x̃)−
(

C [fa](x̃, [a])
)

([a]−ã), (6)

where [f ], [fx] and [fa] are interval extensions of f , fx and fa respectively
(these expressions can be evaluated for interval arguments using interval
arithmetic). We denote the right hand side of Eq. (6) by [K]([x]). Using the
theory of [23], it can be proved that:

(A) If [x] satisfies [x] = [K]([x]) then ∀a ∈ [a], ∃x ∈ [x], f(x, a) = 0.

(B) If [x] satisfies [x] = [K]([x]) then the square interval matrix [fx]([x], [a])
is strongly regular, which implies according to the implicit function
theorem that x changes continuously with a.

2Other operators such as the Hansen-Sengupta operator exist and would lead to sim-
ilar results (see e.g. [22] for a comparison between the Krawczyk and Hansen-Sengupta
operators in the context of sensitivity analysis). We have chosen the Krawczyk operator
because it is straightforward to implement using e.g. the Matlab library Intlab [21].

7



Algorithm 1: Parametric Krawczyk iteration interleaved with in-
flation.

Input: f : Rp × R
n → R

n, [a] ∈ IR
p, x0 ∈ R

n

Output: [xOut] ∈ IR
n

1 kmax ← 10; /* Maximum number of iterations */

2 δ ← 1.01; /* Inter-step inflation ratio */

3 success← false;
4 [x]← x0;
5 repeat
6 [x′]← mid[x] + δ ([x]−mid[x]);
7 [x]← [K]([x′]);
8 if ( [x] ⊆ int[x′] ∧ x̃ ∈ [x] ) then success← true;
9 k ← k + 1;

10 until ( k > kmax );
11 if ( success ) then [xOut]← [x] else [xOut]← [−∞,∞]n;
12 return ( [xOut] );

Therefore, provided that x̃ ∈ [x] we have [x] ⊇ Σ(f , [a], x̃). Note that Prop-
erty (B) also implies that [x] does not contain any parallel singularity. How-
ever, the exact solution of [x] = [K]([x]) cannot be computed in practice,
because this iteration does not converge in general in a finite number of
steps. In order to overcome this issue, Algorithm 1 interleaves the fixed
point iteration [x] ← [K]([x]) with an inflation process at Line 6, which al-
lows obtaining the inclusion [K]([x′]) ⊆ int[x′] after a finite (usually very
small) number of steps. This latter strict inclusion also entails properties
(A) and (B) (see Appendix Appendix A) and the returned box [xOut] con-
tains Σ(f , [a], x̃). If the inclusion [K]([x′]) ⊆ int[x′] is not satisfied after kmax

iterations3, then the output [xOut] = [−∞,∞]n will be interpreted as a fail-
ure to enclose Σ(f , [a], x̃). In addition to its finite termination, Algorithm 1
presents the advantages to be easy to implement (e.g. it is straightforwardly
implemented in Matlab using Intlab [21]) and to have a low computational
complexity. The method we propose in Algorithm 1 can be summarized as
the application of a parametric version of the Krawczyk interval operator

3The fixed point iteration may converge slowly or diverge because of large uncertainties
or because [fx]([x], [a]) contains some singularities.
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interleaved with an inflation process, and we call it for short the Krawczyk

method in the rest of the paper (and [xOut] the Krawczyk box ).
Although the theory is correct for any non-singular preconditioning ma-

trix C, a bad choice can prevent the fixed point iteration from converging.
One typical preconditioning matrix used in the context of interval analysis is

the midpoint inverse preconditioning, i.e. C ≈
(

mid[fx]([x], [a])
)

−1
where an

approximate inverse can be used. This preconditioning matrix allows obtain-
ing good convergence properties and is easy to compute for low dimensional
systems. It is used for the illustrative examples presented in the next sections.

Related Work.. Intlab [21] provides the function verifynlss, which is simi-
lar to Algorithm 1. The main difference between them consists in the evalua-
tion of [f ](x̃, [a]): The proposed method uses a mean-value interval extension,
while verifynlss uses a simple natural interval extension. For small uncer-
tainties, the former is known to provide sharper results, although the former
can occasionally be better. Consider for example the following simple system
of two equations, two unknowns and three parameters:

(x1 + a1)
2 + (x2 − a2)

2 = a23 (7)

(x1 − a1)
2 + (x2 + a2)

2 = a23, (8)

where parameters domains are set to [a1] = 0.5 ± 0.025, [a2] = ±0.025 and
[a3] = 1.0 ± 0.025. Starting from the approximate solution x = [x1, x2]

T =
[0.01, 0.85]T , the proposed method computes an enclosure of the solution set
while verifynlss diverges. Nevertheless, since the interval natural exten-
sion can happen to compute sharper enclosures than the interval mean-value
extension, it is natural to use the following hybrid iteration:

[y] =
(

C [f ](x̃, ã) + (C [fa](x̃, [a]))([a]− ã)
)

∩
(

C [f ](x̃, [a])
)

(9)

[x] = x̃− [y]− (C [fx]([x], [a])− I)([x]− x̃). (10)

This hybrid iteration is named the Krawczyk method and is used in the rest
of the paper.

3. Case study 1: Five-bar mechanism

3.1. Manipulator architecture

The five-bar mechanism consists of a closed kinematic chain composed of
five revolute joints and five links of lengths l0, l1, l2, l3 and l4, as shown in
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Figure 2. The two revolute joints attached to link l0 are actuated. Point P
denotes the end of the manipulator, xp and yp are its Cartesian coordinates.

Figure 2: Five-bar mechanism

3.2. Sensitivity analysis of the five-bar mechanism

Since the main sources of errors in the five-bar mechanism are the uncer-
tainties in the leg lengths and the joint clearances, the Cartesian coordinates
of point P are the components of the variable vector x of the problem at
hand, while its leg lengths are its parameters, namely, the components of
vector a. Here, there is no variation in l0 as the base of the manipulator is
supposed to be rigid. As a consequence, only parameters l1, l2, l3 and l4 are
considered.

Thus, the five-bar mechanism is described with the following system of
equations [24]:

(

xp +
l0
2
− l1 cos θ1

)2

+ (yp − l1 sin θ1)
2 − l23 = 0

(

xp −
l0
2
− l2 cos θ2

)2

+ (yp − l2 sin θ2)
2 − l24 = 0 (11)

that takes the form f(a,x) = 0.
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We consider the following nominal values for the geometric parameters
of the five-bar mechanism under study: l0 = 3 m, l1 = 1 m, l2 = 1 m,

l3 = 1 m and l4 = 1 m. Let the uncertainties in the links li be
∆li
li

= 10−6

for i = 1, . . . , 4.
θ1 and θ2 are the actuated joint angles, whereas θ3 and θ4 are the passive

joint angles. Let point P be above line CD and θ1 and θ2 be equal to π/6 rad
and 3π/4 rad, respectively. Note that such a configuration is not singular
and the mechanism is in a given assembly mode.

Figure 3 illustrates the possible positioning errors of point P in this con-
figuration. The crosses represent the possible positions of point P of the
end-effector due to geometric errors in the legs. The crosses are obtained by
evaluating the position of the end-effector by means of the direct kinematic
model for a finite set of parameter values inside [a] = [a, a]. The values to
select in each interval [a], is the lowest value a and the highest value a. This
will result in 2n different possible positions, where n represents the number
of parameters. It is obvious that this method cannot provide a verified en-
closure. The set of values chosen in each interval cannot guarantee that the
calculated pose of the end-effector is a minimum or a maximum. Otherwise,
there is no need of proposing an interval linearization method. It is also time
consuming, especially for a high number of parameters.

Another drawback of such a technique is the need of the direct kinematic
model of the manipulator under study, which may be complicated for some
manipulators. The box containing all of the crosses is an inner approxi-
mation [xIn] (see Sec 2.2) of the optimal box [xOut] containing all possible
positions of the end-effector due to all combinations of parameter errors.
This inner approximation [xIn] and the Krawczyk box are represented with
two boxes, the largest one being the Krawczyk box shown in Fig. 3. The two
boxes are similar in Fig. 3.2. As a matter of fact, the overestimation of the
method is ǫx = 0.00029%, and ǫy = 0.00029%, ǫx and ǫy being defined
with Eq. (3).

However, the higher the uncertainties in the parameters, the less accurate
the method. Table 1 represents the evolution of the overestimation of the
method with respect to the uncertainties in the leg lengths. Figure 3.2 shows
that the overestimation of the Krawczyk method becomes too high for relative
errors larger than 10−2. This is the price to pay for a rigorous interval
linearization. However, manufacturing errors are usually quite smaller, and
the Krawczyk method overestimation is then accurate and acceptable.
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(a) ∆li/li = 10−6

(b) ∆li/li = 10−2

Figure 3: Accuracy of the Krawczyk method
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Table 1: Efficiency of the Krawczyk operator

Relative Uncertainties ∆li/li, i = 1, . . . , 4
10−6 10−5 10−4 10−3 10−2

ǫx 0.00029 % 0.0029 % 0.0296 % 0.296 % 2.939 %
ǫy 0.00029 % 0.0029 % 0.0296 % 0.295 % 2.898 %

To analyze more carefully the error due to the Krawczyk method (given
in Table 1), it can be plotted in a logarithmic scale with respect to the un-
certainties in the leg lengths as illustrated in Fig. 4. It turns out that the
error due to the Krawczyk operator is, in the case of the five-bar mecha-
nism, a linear function of the uncertainties in the leg lengths. The lower the
uncertainties, the more accurate the Krawczyk operator.

Figure 4: Efficiency of the Krawczyk method

Let ∆a denote the uncertainties in the parameters and ǫ be the error due
to the method. The linear relation shown in Fig. 4 leads to the following
error model:

ǫ ≈

(

∆a

a

)0.991

. (12)

It is obvious that the method is very accurate for low uncertainties.
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3.3. Isocontours of the position error of the end-effector

The standard linearization methods are so far the most common methods
used for sensitivity analysis of mechanisms. It consists in finding the rela-
tionship between the pose error of the end-effector δp and the uncertainties
δa in the geometric parameters:

δp = Jsδa. (13)

Matrix Js characterizes the mapping between the end-effector pose error δp
and the variations in the geometric parameters.

The maximum position error ∆pmax is defined as follows:

∆pmax =
√

∆x2p +∆y2p, (14)

∆xp = xp − xp, xp and xp being the lower and upper bounds of [xp], respec-

tively. [xp] is the box containing the position of the end-effector along the
x-axis. Likewise, ∆yp = yp−yp, yp and yp are the lower and upper bounds of

[yp], respectively. [yp] is the box containing the position of the end-effector
along the y-axis.

Figure 5 shows the isocontours of the maximum position error ∆pmax of
the end-effector of the five-bar mechanism under study and for uncertainties
in the parameters equal to ∆li/li = 10−4 for i = 1, 2, 3 and 4. Figure 3.3 rep-
resents the isocontours obtained with the Krawczyk operator, while Fig. 3.3
represents the isocontours plotted by means of the standard linearization
method (all values are multiplied by 1000 for a better clarity).

However, since the chosen working mode of the mechanism contains par-
allel singularities, and since the sensitivity of a mechanism is highly affected
by the singular configurations, it is important to detect the location of the
singular configurations for a given working mode and to compare the sen-
sitivity of the mechanism in singular and non-singular configurations using
the two different methods.

Figure 6 represents the singularities of the five-bar mechanism for the
chosen working mode in its Cartesian workspace.

Figure 7 illustrates a deeper comparison between the values of the sensi-
tivity obtained with the standard linearization and the Krawczyk method by
checking the sensitivity at different points along segment AF (see Figure 6)
with both methods.
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(a) The linearization method

(b) The Krawczyk method

Figure 5: Isocontours of the maximum position error of the end-effector throughout the
manipulator Cartesian workspace
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Figure 6: Singularities for the selected working mode

Figure 7: Comparison between the linearization and Krawczyk method along segment AF
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For non-singular configurations, the values obtained with the Krawczyk
operator are slightly higher than those obtained with the standard lineariza-
tion method: The latter is based on a linearization of the mathematical
model, while the Krawczyk method considers non linearities inside the inter-
val linearization process and provides verified results.

However, the Krawczyk method stops in the vicinity of parallel singu-
larities. The Krawczyk method and the standard linearization method do
not diverge in the neighbourhood of serial singularities. Both the methods
provide good results close to serial singularities as explained in Sec 2.3.

Nevertheless, the Krawczyk method stops working while the standard lin-
earization method still works but provides numbers that do not make any
sense in the vicinity of parallel singularities as shown in Figure 7. As the
standard linearization model is badly conditioned when approaching the par-
allel singularities, the values provided by the standard linearization method
tend toward infinity, while the Krawczyk method stops working before giving
values that do not make sense. It is noteworthy that the Krawczyk method
always provides verified results. Contrary to the Krawczyk method, there is
no criterion indicating when the results obtained with the standard lineariza-
tion method are not reliable.

4. Case study 2: 3-RRR planar parallel manipulator

4.1. Manipulator architecture

The 3-RRR planar parallel manipulator under study is shown in Figure 8.
It is composed of three identical limbs attached to the moving platform at
one end and to the base at the other end. Each limb contains two links and
three revolute joints of axes normal to the moving platform. R stands for
revolute joint. As a result, the moving platform can translate along the x-
axis and the y-axis and rotate about an axis normal to the moving platform.
The equations of motion of the manipulator can be found in [11, 25].

4.2. Efficiency of the Krawczyk algorithm

The Krawczyk method is used to evaluate the position error of the moving-
platform for a given configuration of the manipulator. The corresponding
configuration of the manipulator and the geometric parameters of the ma-
nipulator are defined thereafter:
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Figure 8: 3-RRR planar parallel manipulator

1. The command variables in the case of the 3-RRR manipulator are
θ1, θ2, and θ3. For illustrating the efficiency of the Krawczyk method
we choose the following position of the geometric center of the moving-
platform expressed in the base frame R0: xp = 0.35 m and yp = 0.35 m.

The orientation of the moving-platform is set to: φ =
π

4
rad.

2. The geometric parameters depicted in Fig. 8 take the following values:
l11 = l12 = l21 = l22 = l31 = l32 = r = 1 m and R = 2 m. They
are also the components of vector a defined in Sec. 2.2 for this problem,
i.e., a = [l11 l12 l21 l22 l31 l32 r R]

T .

The crosses in Fig. 4.2 represent the possible positions of the geometric
center P of the moving-platform for relative errors in the geometric parame-
ters equal to 10−6, i.e., ∆ai/ai = 10−6. The Krawczyk box contains all crosses
without significant overestimation. Table 2 shows the overestimations ǫx, ǫy
and ǫφ along the x- and y-axes and about the z-axis, respectively. Those
overestimations are evaluated with Eq. (3) and characterize the efficiency of
the Krawczyk algorithm for the 3-RRR planar parallel manipulator in a given
configuration. It is noteworthy that the higher the relative errors ∆ai/ai, the

18



(a) ∆ai/ai = 10−6, i = 1, . . . , 8

(b) ∆ai/ai = 10−6, i = 1, . . . , 8

Figure 9: Possible positions of point P
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Table 2: Overestimations ǫx, ǫy and ǫφ along the x- and y-axes and about the z-axis

∆ai/ai = 10−6 ∆ai/ai = 10−5 ∆ai/ai = 10−4 ∆ai/ai = 10−3

ǫx 0.00373 % 0.0373 % 0.3739 % 3.8204 %
ǫy 0.00453 % 0.0453 % 0.4543 % 4.6043 %
ǫφ 0.00366 % 0.0366 % 0.3670 % 3.7482 %

higher the overestimations, the less efficient the Krawczyk algorithm.
The crosses in Fig. 4.2 illustrate the possible positions of point P for

relative errors in geometric parameters equal to 10−3, i.e., ∆ai/ai = 10−3.
Figure 4.2 also highlights a large overestimation case.

Figure 10: Efficiency of the Krawczyk algorithm for the 3-RRR planar parallel manipulator

Figure 10 illustrates the linear relation between the logarithm of the po-
sitioning error of the moving-platform along the x-axis and the logarithm of
relative errors ∆ai/ai. From Fig 10, it turns out that:

ǫx ≈

(

∆ai
ai

)1.0034

. (15)

4.3. Isocontours of the positioning and orientation errors

The maximal positioning error of the geometric center P of the moving
platform is defined as in Eq. (14). The maximal orientation error of the
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moving platform is defined as:

∆φmax = φ− φ (16)

[φ] denotes the box containing the orientation of the moving platform.
Figures 11 and 12 show the isocontours of ∆pmax and ∆φmax throughout

the Cartesian workspace of the manipulator evaluated with the Krawczyk
method and the standard linearization method, respectively. The nominal
geometric parameters of the manipulator are the following l11 = l12 = l21 =
l22 = l31 = l32 = r = 1 m and R = 2 m. The nominal orientation of

the moving platform is equal to
π

6
and the relative errors in the geometric

parameters are equal to ∆ai/ai = 10−5, i = 1, . . . , 8.
It is apparent that the results obtained with the Krawczyk method and

the standard linearization method are similar as long as the manipulator is far
from singularities. In the neighborhood of singularities, which appear on the
edge of the Cartesian workspace, the Krawczyk method still works while the
standard linearization method provides unreliable results. Table 3 shows the
comparison between the maximum and minimum values for the sensitivity
obtained with the Krawczyk method and the standard linearization method.
The maximum positioning and orientation errors computed by the standard
linearization method do not make any sense. On the contrary, the Krawczyk
method is always reliable.

Table 3: Comparison between the minimum and maximum values of ∆pmax and ∆φmax
obtained with the Krawczyk and the standard linearization methods

Krawczyk Method Standard linearization method
Min ∆pmax [m] 4.4899 10−5 4.4878 10−5

Max ∆pmax [m] 43.4090 10−5 2.4889 10−2

Min ∆φmax [rad] 3.6326 10−5 3.6314 10−5

Max ∆φmax [rad] 26.4128 10−5 2.1387 10−2

Therefore, we can rely on the Krawczyk method for the sensitivity anal-
ysis of 3-RRR planar parallel manipulators even in the vicinity of singular
configurations. The standard linearization method cannot provide verified
results. This makes the Krawczyk method more robust since it can be ap-
plied without a prior investigation of the singular configurations of the robot.
The Krawczyk method is reliable near serial and parallel singularities.
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(a) Krawczyk method

(b) standard linearization method

Figure 11: Isocontours of ∆pmax [10−5 m]
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(a) Krawczyk method

(b) standard linearization method

Figure 12: The isocontours of ∆φmax [10−5 rad]
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The Krawczyk method is used in the next section to analyze the sen-
sitivity of the Orthoglide, which is a three degrees-of-freedom translational
parallel manipulator.

5. Case study 3: Sensitivity analysis of the Orthoglide

5.1. Introduction

The Orthoglide is a three degrees-of-freedom translational parallel ma-
nipulator and is depicted in Fig. 13. It is composed of three identical limbs
connected to a moving platform at one end and to the base at the other end.
Each limb is a serial kinematic chain containing a prismatic joint P , a revo-
lute joint R, a parallelogram joint Pa and another revolute joint mounted in
series. The frame Fb is attached to the base and the frame Fp is attached to
the moving-platform.

Figure 13: CAD modeling of the Orthoglide
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The dimensions of the Orthoglide are given in [12, 26] and are the follow-
ing:

• li = 310.58 mm for i = 1, 2, 3.

• di = 80 mm for i = 1, 2, 3.

• ri = 31 mm for i = 1, 2, 3.

The manipulator has a regular cubic dexterous workspace of size 200 mm×
200 mm × 200 mm. ρ1, ρ2, and ρ3 are the actuated joint variables of the
robot, namely, its command variables .

The sensitivity analysis of the Orthoglide is conducted using two paral-
lelogram joint modelings:

1. The parallelogram joints are modeled with their global length, i.e., the
variations in li are considered only, i = 1, 2, 3.

2. The variations in the small and large links of the the parallelogram
joints are considered.

5.2. First modeling of the parallelogram joints

Based on [12], we can create a mathematical model of the Orthoglide.
The parallelograms are modeled by their global length as shown in Fig. 14.

This model does not allow us to take into account the orientation errors
of the end-effector and the variations in the links of the parallelogram joints,
namely, variations in parameters di1, di2, li1 and li2 as they are all replaced
by the global length of the parallelogram.

Figure 14: Parameterization of the ith parallelogram joint
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Let a1, a2, and a3 denote the Cartesian coordinates of points A1, A2 and
A3 expressed in frame Fb:

a1 =
[

−a1 0 0
]T

(17a)

a2 =
[

0 −a2 0
]T

(17b)

a3 =
[

0 0 −a3
]T
. (17c)

Let b1, b2 and b3 denote the Cartesian coordinates of points B1, B2 and
B3 expressed in Fb:

b1 =
[

−a1 + ρ1 b1y b1z
]T

(18a)

b2 =
[

b2x −a2 + ρ2 b2z
]T

(18b)

b3 =
[

b3x b3y −a3 + ρ3
]T
, (18c)

b1y, b1z, b2x, b2z, b3x and b3y represent the uncertainties in the positions of
points Bi for i = 1, 2, 3.

Likewise, let c1, c2 and c3 denote the Cartesian coordinates of points C1,
C2 and C3 expressed in Fb. Therefore,

c1 =
[

xp − r1 0 0
]T

(19a)

c2 =
[

0 yp − r2 0
]T

(19b)

c3 =
[

0 0 zp − r3
]T
, (19c)

xp, yp and zp being the Cartesian coordinates of point P and ri the distance
between point Ci and point P , i = 1, 2, 3.

Thus, the equation system that is suitable for the Krawczyk method takes
the form:

||B1C1||
2 − l21 = 0 (20)

||B2C2||
2 − l22 = 0 (21)

||B3C3||
2 − l23 = 0 (22)

Let us consider the uncertainties in the following twelve parameters: b1y,
b1z, b2x, b2z, b3x, b3y, ri, and li for i = 1, 2, 3. The direct method requires
212 pose errors to be computed. It gives us the boundaries of the possible
end-effector positions represented with crosses in Figs. 5.2 and 5.2.
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Figure 5.2 shows the efficiency of the Krawczyk method in the (xp, yp)
plane for errors in the parameters equal to 10−4 m. The results are sim-
ilar in planes (xp, zp) and (yp, zp). Figure 5.2 depicts the efficiency of the
method when the relative geometric errors are equal to 10−2 m. We can no-
tice that the overestimation is large when the geometric errors become larger
than 10−2 m.

Table 4 shows the efficiency of the method with regard to the relative
errors in the geometric parameters.

Table 4: Efficiency of the Krawczyk method for the sensitivity analysis of the Orthoglide

Relative Uncertainties

10−4 10−3 10−2

ǫx 0.071632 0.719432 7.559653

ǫy 0.071632 0.719432 7.559653

ǫz 0.071628 0.719072 7.525974

Figure 16 shows the logarithm of the overestimation ǫ defined in Eq. (3)
as a function of the logarithm of the relative errors in the geometric param-
eters, namely log(∆a/a). It appears that this overestimation is the same
along the x-, y- and z-axes. From Fig. 16, the evolution of the efficiency
of the Krawczyk method with respect to uncertainties in parameters a is
polynomial. Indeed,

ǫ ≈

(

∆a

a

)1.011

. (23)

The Orthoglide has a cubic dexterous workspace as shown in Fig. 17. The
Cartesian coordinates of points Q1 and Q2, two opposite vertices of the cubic
workspace, are expressed in frame Fb as follows:

• Q1 = (−73.21, −73.21, −73.21) [mm]

• Q2 = (126.79, 126.79, 126.79) [mm]

Here the sensitivity of the Orthoglide to variations in its geometric parame-
ters is analyzed along segment Q1Q2.
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(a)

(b)

Figure 15: Orthoglide’s end-effector positions in the (xp, yp) plane for relative geometric
errors equal to (a) 10−4 and (b) 10−2
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Figure 16: Efficiency of the Krawczyk method for the sensitivity analysis of the Orthoglide

Figure 17: The Orthoglide’s workspace
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(a)

(b)

(c)

30



The sensitivity of the Orthoglide along the x-, y- and z-axes is conducted
separately. The sensitivity indices are the differences between the upper and
lower bounds of the end-effector position along the x-, y- and z-axes and are
denoted by ∆xp, ∆yp and ∆zp.

Figures 5.2-(c) represent the sensitivity of the Orthoglide’s end-effector
pose to variations in the twelve geometric parameters that are considered
along the x-, y- and z-axes. The uncertainties in parameters li and ri, i =
1, 2, 3, are chosen arbitrarily to be equal to 1/1000 times the leg length and
the uncertainties in parameters b1y, b1z, b2x, b2z, b3x, and b3y are supposed to
be equal to 10−3 mm.

From Figs. 5.2-(c), it is apparent that the sensitivity of the Orthoglide’s
end-effector position is highly dependent of the robot configuration. As a
matter of fact, this sensitivity is a minimum in the isotropic configuration,
namely, when point P and the origin O of the base frame coincide. It also
appears that the sensitivity of the Orthoglide’s end-effector position is a
maximum to variations in lengths l1, l2 and l3, while it is a minimum to
uncertainties in the location of points Bi, namely to variations in geometric
parameters b1y, b1z, b2x, b2z, b3x and b3y.

5.3. Second modeling of the parallelogram joints

Figure 19 represents the kinematic model of the Orthoglide considering
variations in all its geometric parameters. Nevertheless, links AiBi and CiP
are supposed to remain orthogonal to Bi1Bi2 and Ci1Ci2, respectively, i =
1, 2, 3.

As shown in Fig. 20, di1 = di2 = di and li1 = li2 = li in the nominal case,
i.e., when the variations in the geometric parameters are null.

First, let ni be a unit vector orthogonal to the parallelogram plane, i.e,
ni is orthogonal to the parallelogram Bi1Bi2Ci2Ci1, namely,

ni =
Bi2Ci ×Bi2B11

||Bi2Ci ×Bi2B11||2
, i = 1, 2, 3. (24)

Let ui and vi be the unit vectors directed along vector CiP and vector
Ci2Ci1, respectively.

vi =
CiP

||CiP||2
, i = 1, 2, 3. (25)

Vector ui is defined such that

ui = ni × vi, i = 1, 2, 3. (26)
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Figure 19: Schematic representation of the Orthoglide with variations in all its geometric
parameters

32



Figure 20: Parametrization of the ith leg of the Orthoglide

The latter amounts to

ui =
Ci2Ci1

||Ci2Ci1||2
, i = 1, 2, 3 (27)

where ||.||2 denotes the 2-norm.
Contrary to the modeling used in Sec 5.2 that only considers the position-

ing errors of the Orthoglide’s end-effector, the modeling introduced in this
section deals with both its positioning and orientation errors as the geomet-
ric variations in the parallelogram joints are considered in the mathematical
model.

In order to take into account the positioning and orientation errors of the
end-effector, we should have six variables. It means that we need to write
six independent expressions that connect the variables to the parameters in
the form f(a,x) = 0.

Frame Fp of origin Op is attached to the end-effector as shown in Fig. 19,
whereas frame Fb of origin Ob is attached to the base.

The transformation matrix from frame Fp to frame Fb takes the form4:

Tb
p =

[

Rb
p [op]b

03 1

]

, (28)

with

Rb
p =





cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ − cφcψ sφsθcψ + cφsψ
−sθ cθsψ cθcψ



 . (29)

4cφ, cθ, cψ, sφ, sθ and sψ stand for cosφ, cos θ, cosψ, sinφ, sin θ and sinψ, respectively.
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Euler angles φ, θ and ψ are used to parameterize the orientation of the end-
effector. [op]b is the position vector of point Op expressed in frame Fb and
03 denotes the three-dimensional zero vector.

In order to formulate the required expressions for the Krawczyk operator,
we first express the Cartesian coordinates of points Ai and Bi in frame Fb.
Since joints are supposed to be perfect, Bi1Bi2 remains perpendicular to AiBi

and we can easily get the Cartesian coordinates of points Bi1 and Bi2.
In frame Fp, we can get the coordinates of points Ci as a function of the

pose of the end-effector. The Cartesian coordinates of points Ci expressed in
frame Fb are obtained by means of matrix Rb

p.
As a result, the six equations required for the Krawczyk operator can be

formulated as:

||Bi1Ci1||
2
2 − l

2
i1 = 0 (30)

||Bi2Ci2||
2
2 − l

2
i2 = 0, i = 1, 2, 3

The relative geometric errors are supposed to be equal to 10−4. Moreover,
the positioning error of the end-effector is expressed as:

∆p =
√

∆x2p +∆y2p +∆z2p (31)

where ∆xp, ∆yp, and ∆zp denote the positioning error of the end-effector
along the x-, y- and z-axes, respectively.

The orientation error µr of the end-effector is expressed as:

µr = arccos
Tr(Rb

p)− 1

2
(32)

where Tr(Rb
p) is the trace of the rotation matrix Rb

p expressed in Eq. (29).
The sensitivity analysis of the Orthoglide to the variations in its geometric

parameters is conducted along segment Q1Q2 like in Sec. 5.2,. Uncertainties
are considered separately in each parameter.

Figures 21 and 22 represent the sensitivity of the orientation and position
of the end-effector to variations in all geometric parameters along segment
Q1Q2, respectively.

From Figs. 21 and 22, links li2, i = 1, 2, 3, have the largest influence
on the pose of the end-effector. We can also notice that the position of
the end-effector is more sensitive to the variations in the actuated joints
than its orientation with regard to the sensitivity to the variations in the
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Figure 21: Sensitivity of the orientation of the end-effector to variations in geometric
parameters along segment Q1Q2.

Figure 22: Sensitivity of the orientation of the end-effector to variations in geometric
parameters along segment Q1Q2.
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other geometric parameters. However, it is apparent that the varitions in the
actuated joints have larger influence on the end-effector’s pose than variations
in link lentghs di1 and di2.

The comparison of these results with those obtained in [12] also shows that
the Krawczyk operator is efficient and relevant for the sensitivity analysis of
the Orthoglide.

6. Conclusions

The interval linearization method proposed in this paper provides verified
results for the sensitivity analysis of serial and parallel manipulators since it
is based on a rigorous linearity that takes nonlinearities into consideration.
This fact represents a major advantage in comparison with probabilistic and
standard linearization methods. The method turns to give accurate results
even when the manipulator under study is close to a singular configuration.
As a matter of fact, as long as the algorithm converges, it will provide verified
and relevant results. It means that we provided an auto validation algorithm:
If it provides results, they will be verified even close to singular configurations.
It is a major advantage in comparison with the standard linearization method
where results are provided even too close to singular configurations, but
are not reliable. It has also proved to be general since it works for simple
mechanisms such as the five-bar mechanism, and complex ones such as the
Orthoglide.

The method proposed in this paper was implemented using the Interval
Laboratory Intlab [21] that works under Matlab. Implemented on a 1.86
GHz Intel Pentium Dual-core CPU, and a 3 GHz memory, thirty seconds
were required to draw the isocontours for the five-bar mechanism, whereas
up to one minute was required to analyze the sensitivity of the Orthoglide.
However, when the full mathematical model of the Orthoglide was used, the
computational time had been higher, since the corresponding model is very
complex and implements hundreds of trigonometric functions in each of the
six equations. We can say that our method is faster that the algorithm
presented in [19] since no bisection is needed.

As a conclusion, the proposed method for the sensitivity analysis of serial
and parallel manipulators provides verified results and the computation time
is acceptable. Later on, the method will be used to compute the maximum
pose errors of serial and parallel manipulators due to joint clearances.
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Appendix A. Proof of the main result

We prove here that [K]([x]) ⊆ int[x] implies properties (A) and (B) of
Section 2.3. First of all, by Corollary 4.4.7 of [23] [K]([x]) ⊆ int[x] implies
that C[fx]([x], [a]) is an H-matrix, and thus by definition of strong regularity
that [fx]([x], [a]) is strongly regular, which proves Property (B).

For an arbitrary a ∈ [a], let us define g(x) := f(x, a). Using the well
known properties of interval centered extensions,

(

C[fa](x̃, [a])
)

([a]− ã) +C[f ](x̃, ã) ⊇ Cf(x̃, a), (A.1)

which is Cg(x̃). Furthermore, we have gx(x) = fx(x, a) and therefore
[fx]([x], [a]) is an interval extension of the derivatives of g. So far we have
proved that

[K]([x]) ⊇ x̃−Cg(x̃)− (C[gx]− I)([x]− x̃). (A.2)

We can finally apply Theorem 5.1.8 of [23] which proves that [K]([x]) ⊆ int[x]
implies g has an unique solution inside [x]. Since this holds for an arbitrary
a ∈ [a], we have proved Property (A).
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