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A GENERALIZED RECIPROCAL THEOREM FOR PREDICTING THE FORCE AND TORQUE
ON BODIES MOVING IN AN INHOMOGENEOUS FLOW AT ARBITRARY REYNOLDS NUMBER

Jacques Magnaudet∗

∗Université de Toulouse and CNRS, Institut de Mécanique des Fluides de Toulouse, Allée Camille Soula,
31400, Toulouse, France

Summary We present the main ideas behind the derivation and some applications of a theorem that parallels Lorentz’s reciprocal the-

orem and provides general expressions for the force and torque acting on a rigid body of arbitrary shape moving in an inhomogeneous

incompressible flow at arbitrary Reynolds number. We show that this theorem allows a clear physical interpretation of the various

contributions to the loads and encompasses all results available in both limits of inviscid and creeping flows.

Predicting the forces and torques acting on bodies moving in arbitrary flow fields has always been a central concern in

Fluid Mechanics. Specific formulations of the problem have been developed in the two limits where the governing equa-

tions become linear, namely Stokes flows and potential flows. However the general case where inertial and viscous effects

are both present poses much greater difficulties, owing to the nonlinear interplay between the various contributions. In

general, no closed-form expression of the loads can be expected in this regime and the best that can be achieved is to

express them as the sum of various surface and volume integrals involving solely the velocity field U and its derivatives,

especially the local vorticity ω = ∇ × U. The situation may however be more favourable with high-Reynolds-number

bubbles because the boundary layer induced by the shear-free condition at a bubble surface only induces secondary

changes in the flow field.

The work described in this communication summarizes the main findings of a recent investigation [1] in which the above

goal has been pursued with the objective of obtaining general expressions for the loads on a body or arbitrary shape that

obeys either a no-slip or a shear-free condition at its surface SB and moves in an inhomogeneous flow field with a trans-

lational velocity V(t) and a rotation rate Ω(t), flow inhomogeneity being either due to velocity gradients in the carrying

flow UU(x, t) or to the presence of a bounding wall SW (figure 1). The approach we follow stems directly from the

complete Navier-Stokes equations an parallels the well-known Lorentz reciprocal theorem widely used in low-Reynolds-

number hydrodynamics. It appears to be the proper way to derive rationally the generalized Kelvin-Kirchhoff equations

to predict all components of the force and torque acting on a rigid body moving in an incompressible inhomogeneous flow

at arbitrary Reynolds number. The key to this approach, which extends that of [2] and [3], stands in the use of auxiliary

velocity fields Û which are both incompressible and irrotational and correspond to the flow disturbance induced by a unit

translational velocity î or rotation rate ĵ of the body moving in a fluid at rest. Such auxiliary fields are exact solutions of

the full Navier-Stokes equations since the viscous stress associated with an irrotational velocity field Û = ∇φ̂ has zero

flux. By properly selecting the orientation of î and ĵ, all required components of the loads can be evaluated, irrespective

of their orientation with respect to the relative motion between the body and fluid.

When the fluid is at rest at infinity and the vorticity distribution is compact within the flow domain V , suitable combina-

tions of the governing equations and proper use of Green and Stokes theorems provide each component of the hydrody-

namic force F in the form

î.F =
d

dt

∫
SB

φ̂W.ndS +

∫
V

{(ω + ωB)×U}.(Ŵ − Û)dV

−
1

Re

∫
SB

[(Û− Ŵ)× ω].n−

∫
SW

{
1

2
(U.U)Ŵ.n+

1

Re
(Û× ω).n}dS , (1)

where W = V + Ω × r and Ŵ = î + ĵ × r, r being the local position from the body centroid and n the local unit

normal directed towards the fluid interior. Expression (1) and its counterpart for the torque achieve a clear splitting be-

tween the various contributions to the loads: in (1), the two integrals on SB correspond to the added-mass and viscous

force, respectively, while the volume integral is the vortex-induced contribution which involves the vorticity ω in the bulk

but also the bound vorticity ωB corresponding to the difference on SB between the tangential component n ×U of the

actual velocity field and that of the virtual irrotational velocity field ∇Φ that satisfies the same kinematic condition on SB

and SW . The wall provides an inertial contribution normal to itself and an additional viscous force. When the Reynolds

number goes to zero, only contributions proportional to Re−1 remain in (1), possibly supplemented by the added-mass

term if unsteadiness is large.

As an application of this formulation, we shall discuss the case on a pair of spherical bubbles translating side-by-side at

high Reynolds number. We will show that, by successively selecting î to be along the path and along the line of centres,

one recovers the leading O(Re−1) expression for the viscous drag (including corrections due to the interaction with the

second bubble) and the inertial transverse attractive force. The viscous correction due to the boundary layer will also be

shown to be of O(Re−3/2) in the direction of the motion and of O(Re−1) in the transverse direction, a result which could

not be obtained with available integral approaches but was recently inferred from direct numerical simulations.



Figure 1. Sketch of the general flow configuration.

When the body moves in a nonuniform carrying flow, new contributions arise, in addition to the net force and torque

exerted by the undisturbed flow on the volume of fluid VB occupied by the body. To make all couplings between the

undisturbed velocity gradients and the body translational and rotational velocities explicit, we consider the case of a

general linear carrying flow UU (x, t) = U0+r.∇U0 in the weakly inhomogeneous limit where the undisturbed velocity

varies over distances much larger than the body size. Setting Ũ = U − U0, ω̃ = ω − ω0, etc. and expanding the

various contributions involving the undisturbed strain rate S0 and vorticity ω0, we show for instance that the net force on

a non-rotating body moving in an unbounded flow domain is the sum of the viscous contribution on SB and of the vortical

contribution in V as given in (1) plus an extra force F0 due to the underlying linear flow which writes

î.F0 = î.{
D0U0

Dt
VB −A.(

dV

dt
−

D0U0

Dt
) + [A.S0 − S0.A].Ṽ + (

I

2
+

A

VB

).[ω0 × (A.Ṽ)]−
1

2
A.(Ṽ × ω0)}

−

∫
V

{φ̂ω0.(ω̃ + ω̃B)0 + 2(Ũ0 −∇Φ̃0).S0.Û}dV , (2)

where D0/Dt denotes the material derivative following U0, I is the unit tensor and A is the translational added-mass

tensor. The terms in closed form in the r.h.s. of (2) may receive a clear physical interpretation. In particular the last two

of them provide a contribution to the lift force, the first of them being nonzero only when the principal axes of the body

are not aligned with those of S0. The volume integral in (2) results from the distortion of the vortical disturbance due

to the body by the underlying strain rate and vorticity. It vanishes in the special case of inviscid two-dimensional flows

and is negligibly small at short time in inviscid three-dimensional flows. The present formulation recovers all available

inviscid predictions of [4] (which themselves encompass the original theoretical findings of [5]), and [6] for irrotational

and vortical undisturbed flows, respectively. Also, all available inviscid predictions for spheres and circular cylinders

immersed in linear flows, such as those of [7], appear as particular cases of (2). As an application of (2) we will discuss

the inviscid lift force acting on circular cylinder translating steadily along a plane wall parallel to a linear shear flow, and

will show that if the cylinder lags behind the fluid, there is a critical distance to the wall at which the net lift force vanishes.

To conclude we will emphasize that, beyond theoretical predictions with high-Reynolds-number bubbles or inviscid sit-

uations, the present theorem may be useful in the context of experimental studies at finite Reynolds number, especially

those in which the determination of the pressure distribution at the body surface is difficult, such as with flapping wings

or fins. Indeed, once the velocity and vorticity distributions have been determined (using Particle Image Velocimetry for

instance), this theorem provides a direct tool for evaluating the various contributions to the loads. We will also indicate

some directions to generalize this approach, in particular to deformable bodies and flows with density gradients.
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