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Nonlinear Randomized Urn Models: a Stochastic

Approximation Viewpoint

Sophie Laruelle ∗ Gilles Pagès †

November 28, 2013

Abstract

This paper extend the link between stochastic approximation and randomized urn models inves-
tigated in [24] for application in clinical trials introduced in [2, 3, 4]. The idea is that the drawing
rule is not necessary uniform on the urn composition, but can be reinforced by a function f . Firstly,
by considering that f is concave or convex and by reformulating the dynamics of the urn com-
position as a standard stochastic approximation (SA) algorithm (with remainder), we derive the
a.s. convergence and the asymptotic normality (Central Limit Theorem CLT ) of the normalized
procedure by calling upon the ODE and SDE methods. An in-depth analysis of this reinforced
drawing rule in dimension d = 2 exhibit two different behaviours: either a single equilibrium point
when f is concave, or a single, two or three ones when f is convex. The last setting is solved using
results on traps for SA to remove the repulsive point and to deduce the a.s. towards one of the
attractive point. Secondly the Pólya urn is investigated with the point of view of bandit algorithm.
Finally, these results are applied to Finance for optimal allocation and to the case where f has
regular variation.

Keywords Stochastic approximation, extended Pólya urn models, reinforcement, nonhomogeneous
generating matrix, strong consistency, asymptotic normality, bandit algorithm.

2010 AMS classification: 62L20, 62E20, 62L05 secondary: 62F12, 62P10.

1 Introduction

The first aim of this paper is to illustrate the efficiency of Stochastic Approximation (SA) Theory by
applying it to generalized Pólya urn models with nonlinear drawing rules. The modeling appears as a
generalization of a previous work (see [24]) on randomized urn models applied to clinical trials. In this
paper, several recent results on the asymptotic behaviour (convergence weak rate) of the urn models
(especially [2, 3, 4]) were revisited using SA techniques. Considering nonlinear drawing rules leads
to dynamics for the (normalized) urn composition having several local attractors but also “parasitic”
equilibrium points (where equilibrium point means zero of the mean function associated to the stochas-
tic algorithm). This is a major difference with the linear case investigated in [24] since we will need to
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1



call upon the whole machinery of SA, in particular “second order” results about noisy non-attractive
equilibrium (repellers, saddle points) also known as “traps” in the SA literature (see [11]). We will
establish the a.s. convergence (strong consistency) and elucidate entirely the rate of convergence of the
normalized urn composition, even in the presence of multiple attractors.

Moreover, we study the classical Pólya urn model, namely when one ball of the drawing color is
added after each draw, with reinforced drawing rule. In this framework, the “second order” results
collapse because the trap are noiseless (since they lie on the boundary of the simplex). To elucidate
this problem, we go back over the idea introduced for the study of the bandit algorithm established
in [23, 22] where the authors introduce a non-negative martingale and applied the inequality presented
in Lemma 3.1. This result highlight the robustness of SA theory, even in presence of noiseless repulsive
equilibrium points.

We retrieve existing results (see for examples [18, 27, 13]) for classical Pólya urn model and be-
sides we extend them significantly with the addition of weak rates. Moreover we extend the nonlinear
drawing rule to randomized urn models where one ball is added on conditional average (introduced
in [3, 4] and studied with SA theory in [24]).

The generalized Pólya urn models (GPU) have been widely studied in the literature with different
points of view: martingale method (see for example [17]), algebraic approach (see for example [25]),
reinforcement process (see for example [25]), branching process (see for example [19]), stochastic ap-
proximation (see for example [7]). These models also have applications to many areas: biology, ran-
dom walks, statistics, computer science, clinical trials, psychology, economics or finance for instance
(see [27]).

In these adaptive models, the key point is the equation which governs the urn composition updating
after each drawing. Basically, we will show that (a normalized version of) this urn composition can be
formulated as a classical recursive stochastic algorithm with step γn = 1

n+Tr(Y0)
. Doing so, we will be in

position to first establish the a.s. convergence of the procedure by calling upon the so-called Ordinary
Differential Equation Method (ODE method) toward a finite set of equilibrium points (but usually
not reduced to a single point). As a second step, we will rely on non-convergence results toward traps
for SA (see [11, 14]) and on multiple targets (see [6, 14, 16]). As a third step, we entirely elucidate
the rate of convergence (namely a CLT or an a.s. rate) by using the Stochastic Differential Equation
Method (SDE method, see e.g. [15, 8]). The three main theoretical results from SA are recalled in a
self-contained form in the Appendix. They can be found in all classical textbooks on SA ([8, 14, 15, 21])
and go back to [20] and [10]. We will see that these general theorems are extremely efficient to solve
these questions and spare tedious lengthy computations and somewhat repetitive proofs.

Let us be more precise of the urn model of interest. We consider an urn containing balls of d different
types. All random variables involved in the model are supposed to be defined on the same probability
space (Ω,A,P). Denote Y0 = (Y i

0 )i=1,...,d ∈ R
d
+ \ {0} the initial composition of the urn, where Y i

0

denotes the number of balls of type i ∈ {1, . . . , d} (of course a more realistic though not mandatory
assumption would be Y0∈ N

d \ {0}). The urn composition at draw n is denoted by Yn = (Y i
n)i=1,...,d.

At the nth stage, one draws randomly (according to a law defined further on) a ball from the urn
with instant replacement. The urn composition is updated by adding Dij

n balls of type i ∈ {1, . . . , d}.
The procedure is then iterated. The urn composition at stage n, modeled by an R

d-valued vector Yn,
satisfies the following recursive procedure:

Yn = Yn−1 +DnXn, n ≥ 1, Y0∈ R
d
+ \ {0}, (1.1)

with Dn = (Dij
n )1≤i,j≤d is the addition rule matrix and Xn is the result of the nth draw and Xn :
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(Ω,A,P) → {e1, · · · , ed} models the selected ball ({e1, · · · , ed} denotes the canonical basis of Rd and
ej stands for ball of color j). We assume that there is no extinction i.e. Yn∈ R

d
+\{0} a.s. for every n ≥ 1:

so is the case if all the entries Dij
n are a.s. nonnegative (see [24]). Let Fn = σ(Y0,Xk, ξk, 1 ≤ k ≤ n)

be the filtration of the procedure. Two types of drawing rules are considered and will be analyzed:

• Normalized distorted empirical frequency (convex/concave distortion)

∀i ∈ {1, . . . , d}, P(Xn+1 = ei | Fn) =
f(Y i

n/(n +Tr(Y0)))∑d
j=1 f(Y

j
n/(n +Tr(Y0)))

, n ≥ 0, (1.2)

where f : R+ → R+ will satisfy convexity property.

• Normalized distorted colour distribution (distortion f with regular variations)

∀i ∈ {1, . . . , d}, P(Xn+1 = ei | Fn) =
f(Y i

n)∑d
j=1 f(Y

j
n )
, n ≥ 0, (1.3)

where f : R+ → R+ will be assumed to have regular variations in the following sense: ∀t > 0,
f(tx)
f(x) −→

x→∞
tα, uniformly in t.

Let us remark that when f = Id[0,1] both updating rules coincide. Moreover, the regular variation case
can be deduced from the convex one by noticing that, if f has regular variation and is bounded on
each interval (0,M ], then f(tx)

f(x) −→
x→∞

tα uniformly in t on each (0, b] (0 < b <∞) if α > 0 (see Theorem

1.5.2 p.22 in [9]), thus, if Yn

n+
∑d

i=1 Y
i
0

lies in a compact, then

max
1≤i≤d

∣∣∣∣∣
f(Y i

n)

f(n+
∑d

i=1 Y
i
0 )

−
(

Yn

n+
∑d

i=1 Y
i
0

)α∣∣∣∣∣ −→n→∞
0.

Then we can apply the convex framework to the special function x 7→ xα.

The generating matrices are defined as the Fn-compensator of the additions rule sequence i.e.

Hn =
(
E
[
Dij

n | Fn−1

])
1≤i,j≤d

, n ≥ 1.

We will also assume that the sequence of generating matrices a.s. converges toward a limit generating
matrix denoted by H.

Other fields of application can be considered for such procedures like the adaptive asset allocation
by an asset manager or a trader. One may also consider this type of procedure as a strategy to update
the composition of a portfolio or even a whole fund, based on the (recent) past performances of the
assets (see Section 4 for more details). We will study randomized urn models (based on those introduced
in [3]) with nonlinear drawing rules. We will consider that additional rule matrices are random and
that the limit generating matrix is different from the identity. Indeed, if Dn = H = Id (namely one
adds a ball of the same color as the drawing one), this corresponds to the classical framework of Pólya
urn and when one considers reinforced drawing rule, this leads to a “winner take all” behaviour closely
connected to bandit algorithm (see [23]) where the aim is to find the best arm. The purpose here
is more to classify according to their performances the different treatments without excluding one of
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them of the game: this is related to cooperative/competitive systems. The case of bandit algorithms
requires an independent study owing to the nature of the equilibria which lie on the boundary of the
state space, hence being noiseless. This case will be investigated in Section 3.

Here we will consider two kinds of nonlinear drawing rules: either f satisfies a convexity property,
or f has regular variations. In the first setting, an in-depth analysis of the zeros of the mean function
associated to the algorithm when d = 2 provides a new behaviour: namely, when f is concave, we have
a unique target, and when f is convex, we may have one, two or three possible equilibrium points. By
studying the attractiveness of the each equilibrium and the non-convergence of the algorithm towards
a trap and by applying the ODE method, we establish the a.s. convergence of the normalized urn
composition towards one of the attractive equilibrium points. Then we entirely elucidate the rate of
convergence. In particular, we emphasize the existence of three different convergence rates depending
on the spectrum of the differential matrix of the mean function of the algorithm at the equilibrium
point. Finally, we show that when f has regular variations with index α ∈ R+, then the procedure
behaves like y 7→ yα.

The paper is organized as follows. Section 2 presents the framework of randomized urn models
with the required assumptions on both the addition rule matrices and the generating matrices. After
rewriting the dynamics of the urn composition as a SA procedure, we analyze in Section 2.1 the
equilibrium points and their stability for the associated ODE when d = 2 and the reinforced drawing
rule is convex/concave. We exhibit two kind of behaviours: either a unique stable equilibrium point
when f is concave, or a single, two or three ones with two attractive and one repulsive points when
f is convex. By calling upon result on traps in SA, we prove the a.s. convergence towards one of the
attractive equilibrium points; then we derive from SDE method all the possible rates of convergence.
In Section 3, we study the case of the classical Polya urn, namely where the addition rule matrix
equals to identity. We use results derive from the bandit algorithm to prove the convergence towards
the target and the non-convergence towards traps. Finally, Section 4 introduces applications of such
recursive procedures to drawing rule with regular variation and to portfolio allocation.

Notations For u = (ui)i=1,...,d ∈ R
d, ‖u‖ denotes the canonical Euclidean norm of the column vector

u on R
d, Tr(u) =

∑d
k=1 u

k denotes its “weight”, ut denotes its transpose; |||A||| denotes the operator
norm of the matrix A ∈ Md,q(R) with d rows and q columns with respect to canonical Euclidean norms.
When d= q, Sp(A) denotes the set of eigenvalues of A. 1=(1 · · · 1)t denotes the unit column vector
in R

d, Id denotes the d × d identity matrix and diag(u) = [δijui]1≤i,j≤d, where δij is the Kronecker
symbol.

2 Randomized urn models

With the notations and definitions described in the introduction, we then formulate the main assump-
tions to establish the a.s. convergence of the urn composition.

(A1) ≡





(i) Addition rule matrix: For every n ≥ 1, the matrix Dn a.s. has nonnegative
entries.

(ii) Generating matrix: For every n ≥ 1, the generating matrices

Hn = (H ij
n )1≤i,j≤d a.s. satisfies

∀ j ∈ {1, . . . , d},
d∑

i=1

H ij
n = c > 0.

(iii) Starting value: The starting urn composition vector Y0∈ R
d
+ \ {0}.
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The constant c is known as the balance of the urn. In fact, we may assume without loss of generality,
up to a renormalization of Yn, that c = 1: since Ŷn = Yn

c and D̂n+1 = Dn+1

c , n ≥ 0, formally satisfies
the dynamics (1.1), namely

Ŷn = Ŷn−1 + D̂nXn, n ≥ 1, Ŷ0∈ R
d
+ \ {0}.

From now on, throughout the paper, we will consider this normalized balance version. Nevertheless,
we will still denote by Yn and Dn the normalized quantities and assume that c = 1.

(A2) The addition rule Dn is conditionally independent of the drawing procedure Xn given Fn−1 and
satisfies

∀1 ≤ j ≤ d, sup
n≥1

E

[∥∥D·j
n

∥∥2 | Fn−1

]
< +∞ a.s. (2.4)

where D· j
n = (Dij

n )i=1,...,d.
(A3) Assume that there exists an irreducible d× d matrix H (with nonnegative entries) such that

Hn
a.s.−→

n→∞
H. (2.5)

and ∑

n≥1

|||Hn −H|||2 < +∞ a.s.. (2.6)

H is called the limit generating matrix.

2.1 Convex or concave function for the drawing rule

Let define the law of the drawing as follows

∀i ∈ {1, . . . , d}, P(Xn+1 = ei | Fn) =
f(Ỹ i

n)∑d
j=1 f(Ỹ

j
n )
, n ≥ 1, (2.7)

where Ỹn =
Yn

n+Tr(Y0)
, n ≥ 0, and f is a non-decreasing convex (or concave) function satisfying

f(0) = 0 and f(1) = 1. We use this renormalization since E [Tr(Yn)] = n+Tr(Y0) and thus Ỹn lies on
average in the simplex. Therefore this is a natural way to normalize the urn composition vector.

We can reformulate the dynamics (1.1)-(1.2) into a recursive stochastic algorithm to elucidate the
asymptotic properties (a.s. convergence) of both the urn composition and the treatment allocation.
We start from (1.1) with Y0∈ R

d
+ \ {0}. For n ≥ 0,

Yn+1 = Yn +Dn+1Xn+1 = Yn + E [Dn+1Xn+1 | Fn] + ∆Mn+1, (2.8)

where
∆Mn+1 := Dn+1Xn+1 − E [Dn+1Xn+1 | Fn]

is an Fn-martingale increment. By the definition of the generating matrix Hn, we have

E [Dn+1Xn+1 | Fn] =

d∑

i=1

E
[
Dn+11{Xn+1=ei}e

i | Fn

]
=

d∑

i=1

E [Dn+1 | Fn]P
(
Xn+1 = ei | Fn

)
ei

= Hn+1

d∑

i=1

f(Ỹ i
n)

Tr(f̃(Ỹn))
ei = Hn+1

f̃(Ỹn)

Tr(f̃(Ỹn))
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where f̃((y1, . . . , yd)t) =
(
f(yi)

)
1≤i≤d

∈ [0, 1]d is a column vector, so that

Yn+1 = Yn +Hn+1
f̃(Ỹn)

Tr(f̃(Ỹn))
+ ∆Mn+1.

Now we can derive a stochastic approximation for the normalized urn composition Yn. First we have
for every n ≥ 0,

Yn+1

n+ 1 + Tr(Y0)
=

Yn
n+Tr(Y0)

+
1

n+ 1 + Tr(Y0)

(
Hn+1

f̃(Ỹn)

Tr(f̃(Ỹn))
− Yn
n+Tr(Y0)

)
+

∆Mn+1

n+ 1 + Tr(Y0)
.

Consequently, Ỹn =
Yn

n+Tr(Y0)
, n ≥ 0, satisfies a canonical recursive stochastic approximation proce-

dure

Ỹn+1 = Ỹn +
1

n+ 1 + Tr(Y0)

(
Hn+1

f̃(Ỹn)

Tr(f̃(Ỹn))
− Ỹn

)
+

1

n+ 1 + Tr(Y0)
∆Mn+1 (2.9)

= Ỹn − 1

n+ 1 + Tr(Y0)

(
Ỹn −H

f̃(Ỹn)

Tr(f̃(Ỹn))

)
+

1

n+ 1 +Tr(Y0)
(∆Mn+1 + rn+1) (2.10)

with step γn = 1
n+Tr(Y0)

and a remainder term given by

rn+1 := (Hn+1 −H)
f̃(Ỹn)

Tr(f̃(Ỹn))
. (2.11)

Furthermore, in order to establish the a.s. boundedness of (Ỹn)n≥0 we will rely on the following
recursive equation satisfied by Tr(Yn):

Tr(Yn+1) = Tr(Yn) +
Tr(Hn+1f̃(Ỹn))

Tr(f̃(Ỹn))
+ Tr(∆Mn+1).

By the properties of the generating matrix Hn+1, we obtain

Tr(Hn+1f̃(Ỹn)) =

d∑

i=1

(Hn+1f̃(Ỹn))i =

d∑

i=1

d∑

j=1

H ij
n+1f(Ỹ

j
n ) =

d∑

j=1

(
d∑

i=1

H ij
n+1

)
f(Ỹ j

n ) = Tr(f̃(Ỹn)).

Consequently
Tr(Yn+1) = Tr(Yn) + 1 + Tr(∆Mn+1). (2.12)

Set Nn :=
∑n

k=1Xk. Then we have

Nn+1 = Nn +Xn+1 = Nn +
f̃(Ỹn)

Tr(f̃(Ỹn))
+ ∆M̃n+1,

where ∆M̃n+1 := Xn+1 − E [Xn+1 | Fn] = Xn+1 −
f̃(Ỹn)

Tr(f̃(Ỹn))
. Thus, for Ñn :=

Nn

n
we have, still for

every n ≥ 0,

Ñn+1 = Ñn − 1

n+ 1

(
Ñn − f̃(Ỹn)

Tr(f̃(Ỹn))

)
+

1

n+ 1
∆M̃n+1.

6



Proposition 2.1. Let (Yn)n≥0 be the urn composition sequence defined by (1.1)-(1.2).

(a) Under the assumptions (A1) and (A2),

Tr(Yn)

n+Tr(Y0)

a.s.−→
n→∞

1.

(b) If the addition rule matrices satisfy (A1)-(ii), then Tr(Yn) = n+Tr(Y0), therefore the sequence
(Ỹn)n≥0 lies in the simplex.

Proof. (a) We have

Dn+1Xn+1 =
d∑

j=1

D· j
n+11{Xn+1=ej}.

Therefore

‖Dn+1Xn+1‖2 =
d∑

j=1

∥∥∥D· j
n+1

∥∥∥
2
1{Xn+1=ej},

so that E

[
‖Dn+1Xn+1‖2 | Fn

]
=

d∑

j=1

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
P
(
Xn+1 = ej | Fn

)

≤ sup
n≥0

sup
1≤j≤d

E

[∥∥∥D·j
n+1

∥∥∥
2
| Fn

]
< +∞ a.s.

Consequently supn≥1 E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.. Therefore thanks to the strong law of large

numbers for conditionally L2-bounded martingale increments, we have Mn

n −→
n→∞

0 a.s.. Consequently

it follows from (2.12) that
Tr(Yn)

n+Tr(Y0)
= 1 +

Tr(Mn)

n+Tr(Y0)

a.s.−→
n→∞

1.

(b) In this case Tr(Mn) = 0, consequently for every n ≥ 0, Tr(Ỹn) = 1. �

The recursive procedure (2.10) is a zero search for the function h : Rd 7→ R
d defined by

h(y) =

(
y −H

f̃(y)

Tr(f̃(y))

)
, y ∈ R

d. (2.13)

Since the components of Ỹn = Yn

n+Tr(Y0)
are nonnegative and Tr(Ỹn) =

Tr(Yn)
n+Tr(Y0)

−→
n→∞

1 a.s., it is clear

that (Ỹn)n≥0 is a.s. bounded and that a.s. the set Y∞ of all its limiting value is contained in the simplex

V = Tr−1{1} =
{
y ∈ R

d
+ |Tr(y) = 1

}
.

Consequently, we look for equilibrium points y ∈ V such that h(y) = 0.

Theorem 2.1. The function h defined by (2.13) has at least one zero in V.
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Proof. Let ψ : V → V be the function defined by

ψ : V → V
y 7→ H f̃(y)

Tr(f̃(y))
.

Notice that ψ is continuous since f is. Let y0 ∈ V. Then ψ(y0) = H f̃(y0)

Tr(f̃(y0))
. Using Assumptions (A1)-

(A3) on the generating matrices, we have that the entries of H are non-negative and that ∀1 ≤ j ≤ d,∑d
i=1H

ij = 1. Consequently, as f is non-negative, ψ(y0) ≥ 0 and

d∑

i=1

ψi(y0) =

d∑

i=1

d∑

k=1

H ik f(yk0)

Tr(f̃(y0))
=

d∑

k=1

d∑

i=1

H ik f(yk0)

Tr(f̃(y0))
= 1.

Therefore, the function ψ is defined on V to itself. As V is a convex set, by applying the Brouwer
fixed-point theorem, we obtain that ψ has at least a fixed point in V, i.e. h has at least a zero in V. �

⊲ First step: Search of equilibrium points

Let d = 2. Define the generating matrix H as follows

H =

(
p1 1− p2

1− p1 p2

)
, 0 < pi < 1, i = 1, 2.

Solving h(z) = 0, z ∈ R
2, on V is therefore equivalent to solve h((y, 1−y)t) = 0, y ∈ [0, 1]. Consequently,

we come down to an one-dimensional problem, namely solving the following equation

(p1 − y)f(y) + (1− p2 − y)f(1− y) = 0. (2.14)

First we remark that if p1 = 1 − p2, then y = p1 is the unique solution of (2.14) because f > 0 on
(0, 1).

Assume now that p1 6= 1− p2. Then it is obvious that the solutions of (2.14) are different from p1
or 1− p2. Define the following two functions

g1(y) =
f(1− y)

p1 − y
, y ∈ [0, 1] \ {p1}, and g2(y) =

f(y)

y − 1 + p2
, y ∈ [0, 1] \ {1− p2}. (2.15)

Consequently, solving (2.14) for p1 6= 1−p2 is equivalent to solve g1(y) = g2(y) on S = [0, 1]\{p1 , 1−p2}.
Let us compute the first and second derivatives of these functions: we obtain for y ∈ S,

g′1(y) =
f(1− y)− f ′(1− y)(p1 − y)

(p1 − y)2
, g′2(y) =

f ′(y)(y − 1 + p2)− f(y)

(y − 1 + p2)2
,

g′′1 (y) =
f ′′(1− y)(p1 − y)2 + 2 (f(1− y)− f ′(1− y)(p1 − y))

(p1 − y)3
=
f ′′(1− y) + 2g′1(y)

p1 − y

and

g′′2 (y) =
f ′′(y)(y − (1− p2))

2 − 2 (f ′(y)(y − 1 + p2)− f(y))

(y − 1 + p2)3
=
f ′′(y)− 2g′2(y)

y − 1 + p2
.

Proposition 2.2. 1. If f is concave, then h has a unique zero in (p1 ∧ (1− p2), p1 ∨ (1− p2)).
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2. If f is strictly convex, 1− p2 < p1 and there exist ξ1, ξ2 ∈ [0, 1] such that g′1(ξ1) = 0, g′2(ξ2) = 0,
g1(ξ1) < g2(ξ1), g2(ξ2) < g1(ξ2), then h has three zeros in (p1 ∧ (1− p2), p1 ∨ (1− p2)).

3. If f is strictly convex and 2. is not satisfied, then h has a unique zero of h in (p1 ∧ (1− p2), p1 ∨
(1− p2)).

Proof.

1. If f is concave, then g′1 > 0 and g′2 < 0, and we have a unique solution y∗ ∈ (p1 ∧ (1 − p2), p1 ∨
(1− p2)).

3. (a) If f is strictly convex and p1 ∨ p2 ≤ 1
f ′(1) , then g′1 ≥ 0 and g′2 ≤ 0, and we have a unique

solution y∗ ∈ (p1 ∧ (1− p2), p1 ∨ (1− p2)).
(b) If f is strictly convex, p1 ≤ 1

f ′(1) and p2 >
1

f ′(1) , then g′1 ≥ 0 and we have to study the

variations of g2. We have that g′2 < 0 on [0, 1 − p2), g
′
2((1 − p2)+) < 0 and g′2(1) > 0. As

g′2(y) =
ϕ2(y)

(y−1+p2)2
with ϕ2(y) = f ′(y)(y − 1 + p2)− f(y) and ϕ′

2(y) = f ′′(y)(y − 1 + p2), then ϕ2

is non-decreasing on (1− p2, 1] since f is convex. Therefore there exists ξ2 ∈]1− p2, 1) such that
ϕ2(y) = 0, namely g′2(ξ2) = 0. As p2 > p1, then

1
p1
> 1

p2
, therefore there exists a unique solution

y∗ ∈ (p1 ∧ (1− p2), p1 ∨ (1− p2)).
(c) If f is strictly convex, p1 >

1
f ′(1) and p2 ≤ 1

f ′(1) , then g′2 ≤ 0 and we have to study the

variations of g1. We have that g′1 > 0 on (p1, 1], g
′
1((p1)−) > 0 and g′1(0) < 0. As g′1(y) =

ϕ1(y)
(p1−y)2

with ϕ1(y) = f(1−y)−f ′(1−y)(p1−y) and ϕ′
1(y) = f ′′(1−y)(p1−y), then ϕ1 is non-decreasing

on [0, p1) since f is convex. Moreover y 7→ (p1−y)2 is non-increasing and non-negative on [0, p1),
consequently g′1 is non-decreasing on [0, p1) and g1 is convex. Therefore there exists ξ1 ∈]0, p1)
such that g′1(ξ1) = 0. As p1 > p2, then 1

p1
< 1

p2
, therefore there exists a unique solution

y∗ ∈ (p1 ∧ (1− p2), p1 ∨ (1− p2)).

2. If f is strictly convex and p1 ∧ p2 > 1
f ′(1) , then following the lines of the two previous cases, we

have that there exist ξ1 ∈ (0, p1) and ξ2 ∈ (1 − p2, 1) such that g′1(ξ1) = 0 and g′2(ξ2) = 0. If
ξ1 < p1 < 1 − p2 < ξ2, ξ1 < 1 − p2 < p1 < ξ2, ξ1 < 1 − p2 < ξ2 < p1, 1 − p2 < ξ1 < p1 < ξ2 or
1−p2 < ξ1 < ξ2 < p1, then there exists a unique equilibrium point y∗ ∈ (p1∧(1−p2), p1∨(1−p2)).
If 1− p2 < ξ2 < ξ1 < p1, then we may have one, two or three equilibrium points.

In fact, we have the following conditions for each case:

• if g1(ξ1) < g2(ξ1) and g2(ξ2) < g1(ξ2), then we have three equilibrium points in (1− p2, p1)
(one in (1− p2, ξ2), one in (ξ2, ξ1) and one in (ξ1, p1)),

• if g1(ξ1) ≥ g2(ξ1) and g2(ξ2) < g1(ξ2) (or g2(ξ2) ≥ g1(ξ2) and g1(ξ1) < g2(ξ1) respectively),
then we have a unique equilibrium point in (1− p2, ξ2) (or in (ξ1, p1) resp.). �

Remark. By a change of variable z = 1 − y, we have that g̃2(z) = g2(y) = g2(1 − z) = f(1−z)
p2−z ,

therefore as g1 is convex on [0, p1), g̃2 is convex on [0, p2) and as g̃′′2 (z) = g′′2 (y), then g2 is convex on
(1 − p2, 1]. Using the fact that g1 and g2 are convex on (p1 ∧ (1 − p2), p1 ∨ (1 − p2)), then we deduce
that there exist at most three zeros in (p1 ∧ (1− p2), p1 ∨ (1− p2)).

Example of phase transitions
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Figure 1: Equilibrium points for f(y) = yα depending on α with p1 = 0.7 and p2 = 0.75.

⊲ Second step: attractiveness

After the study of the equilibrium points, we have to compute the eigenvalues of the differential
matrix at the equilibrium point to deduce its attractiveness for ODEh.

Indeed, as the set of limiting values of the algorithm is included in the simplex V, we come down to
a one dimensional problem, where all the equilibrium points belong to (p1∨(1−p2), p1∧(1−p2)). This
amounts to studying the zeros of h1, the first component of h, namely h1(y) = y − p1f(y)+(1−p2)f(1−y)

f(y)+f(1−y) .

By simple computations, we obtain that, for every zeros y∗ of h1,

(h1)′(y∗) =
f(y∗) + f ′(y∗)(y∗ − p1) + f(1− y∗) + f ′(1− y∗)(1− p2 − y∗)

f(y∗) + f(1− y∗)
, y∗ ∈ [0, 1], h1(y∗) = 0.

Therefore, for each zero y∗ of h1, we have three possibilities:

• y∗ is uniformly attractive ((h1)′(y∗) > 0),

• y∗ is repulsive ((h1)′(y∗) < 0),

• y∗ is undetermined ((h1)′(y∗) = 0).

Theorem 2.2. (i) If h has a unique equilibrium point, then it is attractive.

(ii) If h has two equilibrium points, then the first equilibrium point is attractive (the smallest for h1)
and the second is undetermined.

(iii) If h has three equilibrium points, then the first and the last (the smallest and the biggest for h1)
are attractive and the one in the middle is repulsive.

Proof. We have that h1(0) = −(1 − p2) < 0 and h1(1) = 1 − p1 > 0. Then, if there exists a unique
equilibrium point, the derivative at this point is positive, therefore the equilibrium point is attractive.
Since there exists at most three equilibrium points, then:

10



• if h1 has two zeros, then the first equilibrium point is attractive and the second is undetermined;

• if h1 has three zeros, then we have two attractive equilibrium points (the first and the last) and
one repulsive point (in the middle). �

Examples of function h1
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−0.2
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0.3
 Functions h1

 

 

α=2.5

α=3.1
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α=5

Figure 2: Function h1 for f(y) = y3 with p1 = 0.75 and p2 = 0.75.

It remains to show that the algorithm does not converge towards the repulsive equilibrium point
denoted by ŷ.To show that there is an excitation in the repulsive direction, we have to prove that
assumption (A.27) (see Theorem A.2 in the appendix).

Theorem 2.3. Let ŷ be a repulsive equilibrium point for h1, namely (h1)′(ŷ) < 0. Then

P(Ỹ 1
n → ŷ) = 0.

Proof. As we consider the one-dimensional problem (namely the algorithm satisfied by the first
component Ỹ 1

n ), we have using the notations of Theorem A.2 in the appendix that

∆M
(r)
n+1 = ∆M1

n+1.

Using Assumption (A1), we obtain

∆M
(r)
n+1 = D11

n+1X
1
n+1 +D12

n+1X
2
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))
.

Therefore

E

[∥∥∥∆M (r)
n+1

∥∥∥ | Fn

]
= E

[∣∣∆M1
n+1

∣∣ | Fn

]

=
f(Ỹ 1

n )

Tr(f̃(Ỹn))
E

[∣∣∣∣∣D
11
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣ | Fn

]

+
f(Ỹ 2

n )

Tr(f̃(Ỹn))
E

[∣∣∣∣∣D
12
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣ | Fn

]
.
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By Jensen’s inequality

E

[∥∥∥∆M (r)
n+1

∥∥∥ | Fn

]
≥ f(Ỹ 1

n )

Tr(f̃(Ỹn))

∣∣∣∣∣H
11
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣

+
f(Ỹ 2

n )

Tr(f̃(Ỹn))

∣∣∣∣∣H
12
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣ .

Owing to (A5), H ij
n+1

a.s.−→
n→∞

H ij, where H ii = pi and H ij = 1 − pj , 1 ≤ i, j ≤ 2. Furthermore, on

Ŷ =
{
ω : Ỹ 1

n (ω) → ŷ
}
,

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

a.s.−→
n→∞

ŷ.

Consequently,

f(Ỹ 1
n )

Tr(f̃(Ỹn))

∣∣∣∣∣H
11
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣
a.s.−→

n→∞

f(ŷ)

Tr(f̃(ŷ))
|p1 − ŷ| > 0

and
f(Ỹ 2

n )

Tr(f̃(Ỹn))

∣∣∣∣∣H
12
n+1 −

H11
n+1f(Ỹ

1
n ) +H12

n+1f(Ỹ
2
n )

Tr(f̃(Ỹn))

∣∣∣∣∣
a.s.−→

n→∞

f(ŷ)

Tr(f̃(ŷ))
|1− p2 − ŷ| > 0

because ŷ ∈ (1− p2, p1). Thus (A.27) is satisfied. Then, by using (2.6) and by applying Theorem A.2
in the appendix (see [11, 14]), P(Ŷ) = 0. �

⊲ Third step: a.s. convergence

Theorem 2.4. Let (Yn)n≥0 be the urn composition sequence defined by (1.1)-(1.2). Under the as-
sumptions (A1), (A2) and (A3),

(a)
Yn

Tr(Yn)

a.s.−→
n→∞

y∗.

(b) Ñn
a.s.−→

n→∞

f̃(y∗)

Tr(f̃(y∗))
.

Proof. We will first prove that (a) ⇒ (b), then we will prove (a).

(a) ⇒ (b). We have

E [Xn | Fn−1] =
d∑

i=1

f(Ỹ i
n−1)

Tr(f̃(Ỹn−1))
ei =

f̃(Ỹn−1)

Tr(f̃(Ỹn−1))

and, by construction ‖Xn‖2 = 1 so that E
[
‖Xn‖2 | Fn−1

]
= 1. Hence the martingale

M̃n =
n∑

k=1

Xk − E [Xk | Fk−1]

k

a.s.&L2

−→
n→∞

M̃∞ ∈ L2,
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and by the Kronecker Lemma we obtain

1

n

n∑

k=1

Xk −
1

n

n∑

k=1

f̃(Ỹk−1)

Tr(f̃(Ỹk−1))

a.s.−→
n→∞

0.

This yields the announced implication owing to the Cesaro Lemma.

(a) Assumption (A2) implies that supn≥n0
E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s. and Assumption (A3)

implies that rn
a.s.−→

n→∞
0.

• If h has a unique zero y∗ ∈ V, then he fundamental result derived from the ODE method (see
Theorem A.1 in Appendix) yields

Ỹn
a.s.−→

n→∞
y∗.

• If ODEh has two attractive equilibrium points, the set of limiting value is a.s. compact connected
and stable by the flow of ODEh and the trap of the algorithm cannot be a limiting value (see
the study of the attractiveness). Thus the stable chain recurrent sets are reduced to each of the
two attractive equilibrium points (see [6]) and consequently, the stochastic algorithm converges
towards one of the two attractive equilibrium points. �

⊲ Fourth step: rate of convergence

To establish a CLT for the sequence (Ỹn)n≥0 we need to make the following additional assumptions:

(A4) The addition rules Dn a.s. satisfy

∀1 ≤ j ≤ d,





supn≥1 E

[
‖D·j

n ‖2+δ | Fn−1

]
≤ C <∞ for a δ > 0,

E

[
D·j

n (D
·j
n )t | Fn−1

]
−→
n→∞

Cj,

where Cj = (Cj
il)1≤i,l≤d, j = 1, . . . , d, are d× d positive definite matrices.

Note that (A4) ⇒(A2) since E

[
‖D·j

n ‖2 | Fn−1

]
≤
(
E

[
‖D·j

n ‖2+δ | Fn−1

]) 2
2+δ

.

(A5) The matrix H satisfies
nE

[
|||Hn −H|||2

]
−→
n→∞

0. (2.16)

Theorem 2.5. Assume (A1), (A3), (A4) and (A5).

1. If p1 < 1− p2, then

√
n
(
Ỹn − y∗

)
L−→

n→∞
N (0,Σ) with Σ =

∫ +∞

0
eu(Dh(y∗)− I

2
)Γeu(Dh(y∗)− I

2
)tdu

and Γ =
f(y∗1)C1 + f(1− y∗1)C2

Tr(f̃(y∗))
− y∗(y∗)t = a.s.- lim

n→∞
E
[
∆Mn∆M

t
n | Fn−1

]
. (2.17)

2. If 1− p2 < p1, we have three possible rate of convergence depending on the second eigenvalue:

13



(i) If

1− λ :=
f ′(y∗1)(p1 − y∗1) + f ′(1− y∗1)(y∗1 − (1− p2))

f(y∗1) + f(1− y∗1)
<

1

2
, (2.18)

then √
n
(
Ỹn − y∗

)
L−→

n→∞
N
(
0,

1

2λ− 1
Σ

)
.

(ii) If λ = 1
2 , then √

n

log n

(
Ỹn − y∗

)
L−→

n→∞
N (0,Σ) .

(iii) If λ < 1
2 , then nλ

(
Ỹn − y∗

)
a.s. converges as n → +∞ towards a positive finite random

variable.

Remark. • Condition (2.18) is satisfied as soon as





(f ′(1− p1) + f ′(1− p2))(p1 + p2 − 1)

f(1− p1) + f(1− p2)
<

1

2
if f is concave,

(f ′(p1) + f ′(p2))(p1 + p2 − 1)

f(1− p1) + f(1− p2)
<

1

2
if f is convex,

by using the monotony of f and f ′ and that y∗ ∈ (1− p2, p1).
• If f(y) = y, then the above criteria reads

2(p1 + p2 − 1)

2− p1 − p2
<

1

2
i.e. p1 + p2 <

2

5
,

which ensures a CLT for the unique equilibrium point. This case has already been investigated (see
[3, 4, 24]) and we can compute the equilibrium point and the second eigenvalue, namely

y∗1 =
1− p2

2− p1 − p2
, y∗2 =

1− p1
2− p1 − p2

and λ2 = 2− p1 − p2.

Thus, if p1+ p2 <
3
2 , then the recursive procedure (2.10) satisfies a CLT; if p1+ p2 =

3
2 , (2.10) satisfies

Theorem 2.5-2.(ii); and if p1 + p2 >
3
2 , (2.10) admits a a.s.-rate of convergence.

• In [12], they study some properties on the a.s. limit in claim (iii).

Proof. We will check the three assumptions of the CLT for SA algorithms recalled in the Appendix
(Theorem A.3). Let us begin by computing the general differential matrix Dh(y). We obtain

Dh(y) =




1 + f ′(y1)
f(y1)+f(y2)

(
p1f(y1)+(1−p2)f(y2)

f(y1)+f(y2)
− p1

)
f ′(y2)

f(y1)+f(y2)

(
p1f(y1)+(1−p2)f(y2)

f(y1)+f(y2)
− (1− p2)

)

f ′(y1)
f(y1)+f(y2)

(
(1−p1)f(y1)+p2f(y2)

f(y1)+f(y2)
− (1− p1)

)
1 + f ′(y2)

f(y1)+f(y2)

(
(1−p1)f(y1)+p2f(y2)

f(y1)+f(y2)
− p2

)


 .

14



As the equilibrium points y∗ lie in the simplex V, we have that y∗2 = 1− y∗1. Furthermore, using that
h(y∗) = 0, we obtain

Dh(y∗) |V =



1 + f ′(y∗1)

f(y∗1)+f(1−y∗1)

(
y∗1 − p1

) f ′(1−y∗1)
f(y∗1)+f(1−y∗1)

(
y∗1 − (1− p2)

)

f ′(y∗1)
f(y∗1)+f(1−y∗1)

(
p1 − y∗1

)
1 + f ′(1−y∗1)

f(y∗1)+f(1−y∗1)

(
1− p2 − y∗1

)


 .

Thus

Sp
(
Dh(y∗) |V

)
=

{
1,
f(y∗1) + f ′(y∗1)(y∗1 − p1) + f(1− y∗1) + f ′(1− y∗1)(1− p2 − y∗1)

f(y∗1) + f(1− y∗1)

}
.

The condition (A.30) on the spectrum of Dh(y∗) requested for algorithms with step 1
n in Theorem A.3

reads ℜe (Sp(Dh(y∗))) > 1
2 .

Secondly Assumption (A4) ensures that Condition (A.28) is satisfied since

sup
n≥1

E

[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s. and E

[
∆Mn∆M

t
n | Fn−1

] a.s.−→
n→∞

Γ as n→ ∞,

where Γ is the symmetric nonnegative matrix given by

E
[
∆Mn+1∆M

t
n+1 | Fn

]
=

2∑

q=1

P(Xn+1 = eq | Fn)
(
E
[
D·q

n+1(D
·q
n+1)

t | Fn

]

−E [Dn+1Xn+1 | Fn]E [Dn+1Xn+1 | Fn]
t)

=

2∑

q=1

f(Ỹ q
n )

Tr(f̃(Ỹn))
E
(
D·q

n+1(D
·q
n+1)

t | Fn

)
−
(
Hn+1

f̃(Ỹn)

Tr(f̃(Ỹn))

)(
Hn+1

f̃(Ỹn)

Tr(f̃(Ỹn))

)t

a.s.−→
n→∞

Γ =
f(y∗1)C1 + f(1− y∗1)C2

Tr(f̃(y∗))
− y∗(y∗)t.

Finally, using (A5), the remainder sequence (rn)n≥1 satisfies (A.29). �

3 Pólya urn with reinforced drawing rule: a bandit approach

Assume that the drawing rule is given by (2.7), that Dn = Id, n ≥ 1, and that the initial urn
composition vector Y0 ∈ R

d
+ \ {0}. Then we normalize Yn into Ỹn := Yn

n+Tr(Y0)
, n ≥ 0. The sequence

(Ỹn)n≥0 satisfies the following recursive stochastic algorithm

Ỹn+1 = Ỹn − 1

n+ 1 + Tr(Y0)


Ỹn − f̃(Ỹn)

Tr
(
f̃(Ỹn)

)


+

1

n+ 1 + Tr(Y0)
∆Mn+1, n ≥ 1, (3.19)

where
∆Mn+1 := Xn+1 − E [Xn+1 | Fn]

is an (Fn)n≥0-martingale increment. Let us remark that in this case Tr(Yn)
n+Tr(Y0)

= n+Tr(Y0)
n+Tr(Y0)

= 1, so that

the sequence (Ỹn)n≥0 is bounded and lies in the simplex since it is a non-negative sequence.

The special case where f(x) = x follows from the following result
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Theorem 3.1. Let (Yn)n≥0 be the urn composition sequence defined by (1.1)-(1.2). Under the as-

sumption (2.7) with f(x) = x, there exists a random vector Ỹ∞ having values in the simplex such
that

Ỹn =
Yn

Tr(Yn)

a.s.−→
n→∞

Ỹ∞ a.s.

Furthermore, if d = 2,

(i) when Y 1
0 = Y 2

0 = 1, Ỹ 1
∞ has a uniform distribution on [0, 1].

(ii) in general, Ỹ 1
∞ has a beta distribution with parameter Y 1

0 and Y 2
0 .

Proof. Since the components of Ỹn = Yn

n+Tr(Y0)
are nonnegative and Tr(Ỹn) = 1, n ≥ 0, it is clear that

(Ỹn)n≥0 is bounded and lies in the simplex and that the set Y∞ of all its limiting values is contained
in

V = Tr−1{1} =
{
u ∈ R

d
+ |Tr(u) = 1

}
.

We can rewrite the recursive procedure (3.19) for f(x) = x in the following form

Ỹn+1 = Ỹn +
∆Mn+1

n+ 1 + Tr(Y0)
,

therefore Ỹn is a non-negative bounded martingale. Moreover, the series
∑

n≥1
∆Mn

n a.s. converges in

R
d since supn≥0 E

[
∆M2

n+1 | Fn

]
≤ C < +∞ a.s.. Consequently Ỹn

a.s.−→
n→∞

Ỹ∞ < +∞ a.s..

Claim (i) will be a consequence of (ii), so we will prove the second claim. We will use the moment
method to prove that the law of Ỹ 1

∞ is the beta law with parameter Y 1
0 and Y 2

0 . Indeed, by Lebesgue’s

theorem limn→∞ E[(Ỹn)
k] = E[(Ỹ∞)k].

Let us recall the moments of the beta law. Assume that a random variable X has the beta
distribution with parameters α and β. Then for every k ≥ 1,

E[Xk] =

k−1∏

i=0

α+ i

α+ β + i
.

We set, for n ≥ 0,

M̃n =
Y 1
n (Y

1
n + 1) · · · (Y 1

n + k − 1)

(n+Tr(Y0))(n +Tr(Y0) + 1) · · · (n+Tr(Y0) + k − 1)
.

Let show that (M̃n)n≥0 is a (Fn)n≥0-martingale. We have a.s.

E[M̃n+1|Fn] = E[M̃n+11{X1
n+1=0}|Fn] + E[M̃n+11{X1

n+1=1}|Fn]

=
n+Tr(Y0)− Y 1

n

n+Tr(Y0)

Y 1
n (Y

1
n + 1) · · · (Y 1

n + k − 1)

(n +Tr(Y0) + 1)(n +Tr(Y0) + 2) · · · (n+Tr(Y0) + k)

+
Y 1
n

n+Tr(Y0)

(Y 1
n + 1)(Y 1

n + 2) · · · (Y 1
n + k)

(n+Tr(Y0) + 1)(n +Tr(Y0) + 2) · · · (n+Tr(Y0) + k)

=
Y 1
n (Y

1
n + 1) · · · (Y 1

n + k − 1)[(n +Tr(Y0)− Y 1
n ) + (Yn + k)]

(n+Tr(Y0))(n +Tr(Y0) + 1) · · · (n+Tr(Y0) + k)

=
Y 1
n (Y

1
n + 1) · · · (Y 1

n + k − 1)

(n+Tr(Y0))(n +Tr(Y0) + 1) · · · (n+Tr(Y0) + k − 1)
= M̃n.
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Since Ỹ 1
n −→

n→∞
Ỹ 1
∞ a.s. then also Y 1

n+r
n+Tr(Y0)+r −→

n→∞
Ỹ 1
∞ a.s. for every fixed r, so that M̃n −→

n→∞
(Ỹ 1

∞)k a.s.

and, as 0 ≤ M̃n ≤ 1, limn→∞ E[M̃n] = E[(Ỹ 1
∞)k]. (M̃n)n≥1 being a martingale

E[M̃n] = E[M̃0] =
k−1∏

r=0

Y 1
0 + r

Tr(Y0) + r
. �

Remark. For arbitrary d ≥ 2, it is known (see [1]) that Ỹ∞ has a Dirichlet distribution with param-
eter Y0.

By the same kind of analysis as in Proposition 2.2, we can prove for d = 2 that if f is strictly
convex or strictly concave, the algorithm has exactly three equilibrium points, namely (1, 0)t,

(
1
2 ,

1
2

)t
and (0, 1)t. The attractiveness study of these equilibrium points leads to the following results

Dh((1, 0)t) |V =

(
1 f ′r(0)
0 1− f ′r(0)

)
so Sp

(
Dh

(
(1, 0)t

)
|V

)
= {1, 1 − f ′r(0)},

Dh

((
1

2
,
1

2

)t
)

|V

=



1− f ′( 1

2
)

4f( 1
2
)

f ′( 1
2
)

4f( 1
2
)

f ′( 1
2
)

4f( 1
2
)

1− f ′( 1
2
)

4f( 1
2
)


 so Sp


Dh

((
1

2
,
1

2

)t
)

|V


 =

{
1, 1 − f ′(12 )

2f(12 )

}

and

Dh((0, 1)t) |V =

(
1− f ′r(0) 0
f ′r(0) 1

)
so Sp

(
Dh

(
(0, 1)t

)
|V

)
= {1, 1 − f ′r(0)}.

Consequently, if f is strictly convex, (1, 0)t and (0, 1)t are attractive equilibrium points. Moreover(
1
2 ,

1
2

)t
is a “noisy” repulsive equilibrium point by the same argument as in Theorem 2.2. Still following

the lines of Theorem 2.3, it follows that the recursive procedure (3.19) never converges toward
(
1
2 ,

1
2

)t
.

Then Yn

Tr(Yn)

a.s.−→
n→∞

{
(1, 0)t, (0, 1)t

}
.

If f is strictly concave, then
(
1
2 ,

1
2

)t
is an attractive equilibrium point and (1, 0)t and (0, 1)t are

repulsive (for the ODE), but they are “noiseless” since they lie on the boundary of the limit set.
Therefore, we have to analyze this case in another way, namely like for the two-armed bandit algorithm
investigated in [23, 22, 26]. We will follow the approach introduced and developed in [22]: in particular
we will prove that the algorithm never converges toward one of the traps.

Theorem 3.2. If f satisfies 1 < f ′r(0) or f
′
r(0) = 1 and f ′l (1)+

f ′′
r (0)
2 > 1, then for every deterministic

initial value Y0 ∈ R
2 \ {(1, 0)t, (0, 1)t},

P

(
Ỹ∞ =

{
(1, 0)t, (0, 1)t

})
= 0,

thus

Ỹn
a.s.−→

n→∞

(
1

2
,
1

2

)t

.
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Remark. Notice that in the previous theorem, no convexity property is requested on the function f .
This result is indeed more general that the convex/concave framework that we study in this section.

Proof. We will prove that P

(
Ỹ∞ = (0, 1)t

)
= 0 by considering the one-dimensional problem, i.e.

we will prove that P

(
Ỹ 1
∞ = 0

)
= 0. The other result, namely P

(
Ỹ∞ = (1, 0)t

)
= 0, can be de-

duced likewise by applying the method to the second component of the state vector (i.e. prove that

P

(
Ỹ 2
∞ = 0

)
= 0).

Starting from the dynamics of Ỹ 1
n given by (3.19), we have, for n ≥ 0,

Ỹ 1
n+1 = Ỹ 1

n − 1

n+ 1 + Tr(Y0)

(
Ỹ 1
n − f(Ỹ 1

n )

f(Ỹ 1
n ) + f(1− Ỹ 1

n )

)
+

1

n+ 1 + Tr(Y0)
∆M1

n+1

= Ỹ 1
n


1− 1

n+ 1 +Tr(Y0)


1− f(Ỹ 1

n )

Ỹ 1
n

(
f(Ỹ 1

n ) + f(1− Ỹ 1
n )
)




+

1

n+ 1 + Tr(Y0)
∆M1

n+1.

Set h̃(y) = 1− f(y)
y(f(y)+f(1−y)) . We have that h̃(y) < 1 for y ∈]0, 1], therefore Ỹ 1

1 = Y 1
1 6= 0 implies that

Ỹ 1
n 6= 0 for every n because Ỹ 1

n ≥ Ỹ 1
1 . We derive that

M̃n :=
Ỹ 1
n∏n

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
) , n ≥ 0, M̃0 = 0,

is a positive martingale satisfying M̃1 = Ỹ1 and

M̃n+1 = M̃n +
1

n+ 1 + Tr(Y0)

∆M1
n+1∏n+1

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
) , n ≥ 0.

• If 1 < f ′r(0), then h̃(y) −→
y→0

1 − f ′d(0) =: κ < 0. Therefore, on
{
Y 1
n → 0

}
, h̃
(
Y 1
n−1

) a.s.∼ κ < 0, so

that
∏n

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
)

a.s.−→ +∞ a.s.. M̃n
a.s.−→ 0 on {Y 1

n → 0}. Consequently
{
Y 1
n → 0

}
⊂

{
M̃n → 0

}
.

• If f ′r(0) = 1 and f ′l (1) +
f ′′
r (0)
2 > 1, then h̃(y) < 0 for y in the neighborhood of 0. So we still have

{
Y 1
n → 0

}
⊂
{
M̃n → 0

}
.

Remark. If f(0) = 0, f(1) = 1, f ′(0) = 1 and f is convex or concave, then f = Id so the previous
condition takes out of the convex framework.

Consequently
P(Y 1

∞ = 0 | Fn) ≤ P(M̃∞ = 0 | Fn).

The end of the proof is based on the following lemma (see [23]) reproduced here for convenience.

Lemma 3.1. Let (Mn)n≥0 be a non-negative martingale. Then

∀n ≥ 0, P(M∞ = 0 | Fn) ≤
E
[
∆ 〈M〉∞n+1 | Fn

]

M2
n

.
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Proof of Lemma 3.1. It is sufficient to observe that, for every n ≥ 0,

P(M∞ = 0 | Fn) =
E
[
1{M∞=0}M

2
n | Fn

]

M2
n

≤
E

[
(M∞ −Mn)

2 | Fn

]

M2
n

=
E
[
∆ 〈M〉∞n+1 | Fn

]

M2
n

. �

We have that

E

[
(∆M̃n+1)

2 | Fn

]
=

(
1

n+ 1 + Tr(Y0)

)2
E
[
(∆M1

n+1)
2 | Fn

]
(∏n+1

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
))2

=
1

(n+ 1 + Tr(Y0))2
(∏n+1

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
))2

f(Ỹ 1
n )f(1− Ỹ 1

n )(
f(Ỹ 1

n ) + f(1− Ỹ 1
n )
)2 .

Then, by applying Lemma 3.1 to the positive martingale M̃ , we obtain

P(M̃∞ = 0 | Fn)

≤
E

[
∆
〈
M̃
〉∞
n+1

| Fn

]

M̃2
n

=
1

M̃2
n

E




∞∑

k=n+1

1

(k +Tr(Y0))2
(∏k

ℓ=1

(
1− 1

ℓ+Tr(Y0)
h̃(Ỹ 1

ℓ−1)
))2

f(Ỹ 1
k−1)f(1− Ỹ 1

k−1)(
f(Ỹ 1

k−1) + f(1− Ỹ 1
k−1)

)2 | Fn


 .

Besides the function F : y 7→ f(y)f(1−y)

(f(y)+f(1−y))2
is continuous on (0, 1] and has f ′r(0) as a finite limit

when y goes to 0. Therefore the function F is positive and bounded on [0, 1] by a constant κf .
Consequently

P(M̃∞ = 0 | Fn)

≤ κf

M̃2
n

∞∑

k=n+1

1

(k +Tr(Y0))2
E




Ỹ 1
k−1∏k−1

ℓ=1

(
1− 1

ℓ+Tr(Y0)
h̃(Ỹ 1

ℓ−1)
)

︸ ︷︷ ︸
=M̃k−1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 1

k−1)
)−1

∏k
ℓ=1

(
1− 1

ℓ+Tr(Y0)
h̃(Ỹ 1

ℓ−1)
) | Fn



.

As h̃ ≤ h̃+ := max(h̃, 0) ≤
∥∥∥h̃+

∥∥∥
∞

and
∥∥∥h̃+

∥∥∥
∞
< 1 since h̃+(y) < 1, y ∈ [0, 1], since f(y) > 0 and

h̃(y) −→
y→0

1− f ′r(0) < 1 since f ′r(0) > 0, we have

(
1− 1

k +Tr(Y0)
h̃(Ỹ 1

k−1)

)−1

≤
(
1− 1

k +Tr(Y0)

∥∥∥h̃+
∥∥∥
∞

)−1

, k ≥ 1.
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Then, as E
[
M̃k−1 | Fn

]
= M̃n since M̃ is a (P,Fn)-martingale,

P(M̃∞ = 0 | Fn)

≤ κf

M̃2
n

∞∑

k=n+1

1

(k +Tr(Y0))2
M̃n(

1− 1
k+Tr(Y0)

∥∥∥h̃+
∥∥∥
∞

)∏n
ℓ=1

(
1− 1

ℓ+Tr(Y0)
h̃(Ỹ 1

ℓ−1)
)∏k

ℓ=n+1

(
1− 1

ℓ+Tr(Y0)

∥∥∥h̃+
∥∥∥
∞

)

=
κf

M̃n
∏n

ℓ=1

(
1− 1

ℓ+Tr(Y0)
h̃(Ỹ 1

ℓ−1)
)

∞∑

k=n+1

1(
1− 1

k+Tr(Y0)

∥∥∥h̃+
∥∥∥
∞

)
(k +Tr(Y0))2

∏k
ℓ=n+1

(
1− 1

ℓ+Tr(Y0)

∥∥∥h̃+
∥∥∥
∞

)

=
κfCn0

Ỹ 1
n

∞∑

k=n+1

1

(k +Tr(Y0))2
exp


−

k∑

ℓ=n+1

ln


1−

∥∥∥h̃+
∥∥∥
∞

ℓ+Tr(Y0)






≤ κfCn0Ch̃
(n+Tr(Y0))

Y 1
n

∞∑

k=n+1

e‖h̃
+‖

∞
ln

k+Tr(Y0)
n+Tr(Y0)

(k +Tr(Y0))2
since Ỹ 1

n =
Y 1
n

n+Tr(Y0)

=
κfCn0Ch̃

(n+Tr(Y0))

Y 1
n

∞∑

k=n+1

(n +Tr(Y0))
−‖h̃+‖

∞

(k +Tr(Y0))
2−‖h̃+‖

∞

=
κfCn0Ch̃

(n+Tr(Y0))
1−‖h̃+‖

∞

Y 1
n

∞∑

k=n+1

1

(k +Tr(Y0))
2−‖h̃+‖

∞

≤ κfCn0Ch̃

Y 1
n

.

Now we will prove that Y 1
n

a.s.−→ +∞.

Y 1
n+1 = Y 1

n +
f(Ỹ 1

n )

f(Ỹ 1
n ) + f(1− Ỹ 1

n )
+ ∆M1

n+1

where (∆M1
n)n≥1 is a sequence of martingale increments satisfying supn E

[
|∆M1

n|2 | Fn−1

]
< +∞ since

M1
n is bounded.
Moreover, one checks that

{
Y 1
∞ < +∞

}
=
⋃

n≥0

⋂

k>n



Uk >

f( Y 1
n

k−1+Tr(Y0)
)

f( Y 1
n

k−1+Tr(Y0)
) + f(1− Y 1

n

k−1+Tr(Y0)
)



 ,

then

∀n ∈ N, P
(
Y 1
∞ < +∞ |Y 1

n = y
)
=
∏

k>n

(
1− f(y/(k − 1 + Tr(Y0)))

f(y/(k − 1 + Tr(Y0))) + f(1− y/(k − 1 + Tr(Y0)))

)
= 0

since
∑

k
f(y/k+Tr(Y0))

f(y/k+Tr(Y0))+f(1−y/k+Tr(Y0))
= +∞ because f ′r(0) > 0. Therefore Y 1

∞ = limn Y
1
n = +∞ a.s..

Consequently, we obtain

P

(
Ỹ 1
∞ = 0

)
= 0.

20



The second result follows from the same method applied to Ỹ 2
n by setting as the positive martingale

M̂n :=
Ỹ 2
n∏n

k=1

(
1− 1

k+Tr(Y0)
h̃(Ỹ 2

k−1)
) .

�

4 Applications

4.1 Function with regular variation for the drawing rule

Let define the law of the drawings as follows

∀1 ≤ i ≤ d, P(Xn+1 = ei | Fn) =
f(Y i

n)∑d
j=1 f(Y

j
n )
, n ≥ 0, (4.20)

where f has regular variation with index α > 0, namely ∀t > 0,
f(tx)

f(x)
−→
x→∞

tα and f is bounded on

each interval (0,M ]. Then, by applying Theorem 1.5.2 p.22 in [9],
f(tx)

f(x)
−→
x→∞

tα uniformly in t on

each (0, b], 0 < b <∞.
We can reformulate the dynamics (1.1)-(1.2) into a recursive stochastic algorithm like in the Sec-

tion 2.1, and we obtain the following recursive procedure satisfied by the sequence (Ỹn)n≥0, namely

Ỹn+1 = Ỹn − 1

n+Tr(Y0) + 1

(
Ỹn −H

Ỹ α
n

Tr(Ỹ α
n )

)
+

1

n+Tr(Y0) + 1
(∆Mn+1 + r̂n+1) (4.21)

where Ỹ α
n =

(
(Ỹ i

n)
α
)
1≤i≤d

with step γn = 1
n+Tr(Y0)

and a remainder term given by

r̂n+1 := Hn+1
f̃(Yn)

Tr(f̃(Yn))
−H

Ỹ α
n

Tr(Ỹ α
n )

∈ Fn. (4.22)

Notice that, in the convex case, the remainder term was rn+1 = (Hn+1 − H) f̃(Ỹn)

Tr(f̃(Ỹn))
, therefore as-

sumption (A3) implied directly that rn
a.s.−→

n→∞
0. Here we have to use the uniform convergence of the

regular variation to prove the required assumption on r̂n+1.

By the same arguments like in Section 2.1, Tr(Yn) satisfies (2.12). Moreover, for the quantity
Ñn := 1

n

∑n
k=1Xk, we also devise a stochastic recursive procedure in the same way as before, namely

Ñn+1 = Ñn − 1

n+ 1

(
Ñn − Ỹ α

n

Tr(Ỹ α
n )

)
+

1

n+ 1

(
∆M̃n+1 + r̃n+1

)
,

where r̃n+1 =
f̃(Yn)

Tr(f̃(Yn))
− Ỹ α

n

Tr(Ỹ α
n )

, thus r̃n+1 ∈ Fn.
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Theorem 4.1. Assume that (A1), (A2) and (A3) hold.

1. If 0 < α ≤ 1, then h has a unique zero y∗ ∈ (p1 ∧ (1− p2), p1 ∨ (1− p2)) and

Tr(Yn)

n+Tr(Y0)

a.s.−→
n→∞

1,
Yn

Tr(Yn)

a.s.−→
n→∞

y∗ and Ñn
a.s.−→

n→∞

(y∗)α

Tr((y∗)α)
.

2. If α > 1, then h has a unique zero y∗ ∈ (p1 ∧ (1− p2), p1 ∨ (1− p2)) or ODEh has two attractive
equilibrium points in (p1 ∧ (1− p2), p1 ∨ (1− p2)) (as we have established in Section 2.1). Thus,
the stochastic recursive procedure a.s. converges to one of the possible limit values.

Proof. By the same arguments like in Section 2.1, Tr(Yn) satisfies (2.12), therefore Proposition 2.1
holds. Consequently, Ỹn lies in a compact of R+, thus

max
1≤i≤d

∣∣∣∣
f(Y i

n)

f(n+Tr(Y0))
−
(

Yn
n+Tr(Y0)

)α∣∣∣∣ −→n→∞
0.

Set ain = f(Y i
n)

f(n+Tr(Y0))
and bin = (Ỹ i

n)
α, i ∈ {1, . . . , d}. Then, for every i ∈ {1, . . . , d},

ain
Tr(an)

− bin
Tr(bn)

=
ain − bin
Tr(bn)

+
ain

Tr(an)

(
1− Tr(an)

Tr(bn)

)
.

But

Tr(bn) =

d∑

i=1

(Ỹ i
n)

α ≥
{ (∑d

i=1 Ỹ
i
n

)α
= Tr(Ỹn)

α if α ∈ [0, 1]

d1−αTr(Ỹn)
α if α > 1,

therefore

Tr(bn) ≥
Tr(Ỹn)

α

d(α−1)+
∼
a.s.

(n+Tr(Ỹ0))
α

d(α−1)+
.

Consequently, for every i ∈ {1, . . . , d},

ain
Tr(an)

− bin
Tr(bn)

≤
max1≤i≤d |ain − bin|+

∑d
j=1 |a

j
n − bjn|

Tr(bn)

i.e.

max
1≤i≤d

∣∣∣∣
ain

Tr(an)
− bin

Tr(bn)

∣∣∣∣ ≤
d+ 1

Tr(bn)
max
1≤i≤d

|ain − bin|
a.s.−→

n→∞
0.

Thus

|r̂n+1| ≤ |||H||| max
1≤i≤d

∣∣∣∣
ain

Tr(an)
− bin

Tr(bn)

∣∣∣∣+ |||Hn+1 −H||| a.s.−→
n→∞

0

and in the same way r̃n+1
a.s.−→

n→∞
0. Consequently item 1. follows from Proposition 2.2-1. and Theo-

rem 2.4.
2. We have to check the assumption on the remainder term to apply result on traps for SA. We have
that

max
1≤i≤d

∣∣∣∣
ain

Tr(an)
− bin

Tr(bn)

∣∣∣∣ <∼
(d+ 1)d(α−1)+

(n+Tr(Y0))α
max
1≤i≤d

|ain − bin| = o(n−α). (4.23)
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So, for α > 1, under assumption (A3) on the generating matrices,

∑

n≥0

‖rn+1‖2 < +∞.

The end of the proof follows from Proposition 2.2-2.-3. and Theorem 2.4. �

To establish a CLT for the sequence (Ỹn)n≥0 we need that the remainder term (rn)n≥1 satisfies (A.29).

Then we will assume that the addition rule matrices (Dn)n≥1 satisfy (A1)-(ii) to ensure that (Ỹn)n≥0

lies in the simplex (which implies that the rate in (4.23) is no more a.s.) and we assume also that
α > 1/2.

Theorem 4.2. Assume that the index of regular variation α > 1/2, that the addition rule matrices
(Dn)n≥1 satisfy (A1)-(ii) and (A1), (A3) and (A4) hold.

1. If p1 < 1− p2, then

√
n
(
Ỹn − y∗

)
L−→

n→∞
N (0,Σ) with Σ =

∫ +∞

0
eu(Dh(y∗)− I

2
)Γeu(Dh(y∗)− I

2
)tdu

and Γ =
(y∗1)αC1 + (1− y∗1)αC2

Tr((y∗)α)
− y∗(y∗)t = a.s.- lim

n→∞
E
[
∆Mn∆M

t
n | Fn−1

]
. (4.24)

2. If 1− p2 < p1, we have three possible rate of convergence depending on the second eigenvalue:

(i) If

1− λ := α
(y∗1)α−1(p1 − y∗1) + (1− y∗1)α−1(y∗1 − (1− p2))

(y∗1)α + (1− y∗1)α
<

1

2
,

then √
n
(
Ỹn − y∗

)
L−→

n→∞
N
(
0,

1

2λ− 1
Σ

)
.

(ii) If λ = 1
2 , then √

n

log n

(
Ỹn − y∗

)
L−→

n→∞
N (0,Σ) .

(iii) If λ < 1
2 , then nλ

(
Ỹn − y∗

)
a.s. converges as n → +∞ towards a positive finite random

variable.

This result follows from Theorem A.3 and Theorem 2.5.

4.2 Application to Finance

Such urn based recursive procedures can be applied to adaptive portfolio allocation by an asset man-
ager or a trader or to optimal split across liquidity pools. Indeed the first setting has already been done
in [23] and successfully implemented with multi-armed bandit procedure. We develop in this section
the adaptive portfolio allocation, but the optimal split across liquidity pools can be implemented in
the same way, by considering that the different colors represent the different liquidity pools, and the
trader want to optimally split a large volume of a single asset among the different possible destinations.
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Imagine an asset manager who deals with a portfolio of d tradable assets. To optimize the yield of
her portfolio, she can modify the proportions invested in each asset. She starts with the initial allocation
vector Y0. At stage n, she chooses a tradable asset according to the distribution (1.2) or (1.3) of Xn,
then evaluates its performance over one time step and modifies the portfolio composition accordingly
(most likely virtually) and proceeds. Thus the normalized urn composition Ỹn represents the allocation
vector among the assets and the addition rule matrices Dn model the successive reallocations depending
on the past performances of the different assets. The evaluation of the asset performances can be carried
out recursively with an estimator like with multi-arm clinical trials (see [4, 24]). In practice, it can be
used to design the addition rule matrices Dn. For example, we may consider sequences of d independent
[0, 1]-valued random variables (T i

n)n≥1, i ∈ {1, . . . , d}, independent of the drawing Xn, such that

E[T i
n] = pi, 0 < pi < 1, i ∈ {1, . . . , d}.

If (T i
n)n≥1, i ∈ {1, . . . , d}, is simply a success indicator, namely d independent sequences of i.i.d. {0, 1}-

valued Bernoulli trials with respective parameter pi, then the convention is to set T i
n = 1 if the return

of the ith asset in the nth reallocation is positive and T i
n = 0 otherwise.

Let N i
n :=

∑n
k=1X

i
k be the number of times the ith asset is selected among the first n stages with

N i
0 = 1, i ∈ {1, . . . , d}, and let Sn be the d dimensional vector defined by

Si
n = Si

n−1 + T i
nX

i
n, n ≥ 1, Si

0 = 1, i ∈ {1, . . . , d},

denoting the number of successes of the ith asset among these N i
n reallocations. Define Πn an estimator

of the vector of success probabilities, namely Πi
n = Si

n

N i
n
, i ∈ {1, . . . , d}. We can prove that Πn

a.s.−→
n→∞

p := (p1, . . . , pd)t (see [4, 24]). Then we build the following addition rule matrices

Dn+1 =




T 1
n+1

Π1
n(1−T 2

n+1)∑
j 6=2 Π

j
n

· · · Π1
n(1−T d

n+1)∑
j 6=d Πj

n

Π2
n(1−T 1

n+1)∑
j 6=1 Π

j
n

T 2
n+1 · · · Π2

n(1−T d
n+1)∑

j 6=d Πj
n

...
...

. . .
...

Πd
n(1−T 1

n+1)∑d
j 6=1 Π

j
n

Πd
n(1−T 2

n+1)∑d
j 6=2 Π

j
n

· · · T d
n+1




, (4.25)

i.e. at stage n + 1, if the return of the jth asset is positive, then one ball of type j is added in the

urn. Otherwise, Πi
n∑

k 6=j Π
k
n
(virtual) balls of type i, i 6= j, are added. This addition rule matrix clearly

satisfies (A1)-(i) and (A2). Then, one easily checks that the generating matrices are given by

Hn+1 = E [Dn+1 | Fn] =




p1
Π1

n(1−p2)∑
j 6=2 Π

j
n

· · · Π1
n(1−pd)∑
j 6=d Π

j
n

Π2
n(1−p1)∑
j 6=1 Π

j
n

p2 · · · Π2
n(1−pd)∑
j 6=d Π

j
n

...
...

. . .
...

Πd
n(1−p1)∑
j 6=1 Π

j
n

Πd
n(1−p2)∑
j 6=2 Π

j
n

· · · pd



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and satisfy (A1)-(ii). As soon as Y0 ∈ R
d
+ \ {0}, Hn

a.s.−→ H (see [4, 24]) where

H =




p1 p1(1−p2)∑
j 6=2 p

j · · · p1(1−pd)∑
j 6=d pj

p2(1−p1)∑
j 6=1 p

j p2 · · · p2(1−pd)∑
j 6=d pj

...
...

. . .
...

pd(1−p1)∑
j 6=1 p

j

pd(1−p2)∑
j 6=2 p

j · · · pd




.

Therefore, the number of each asset in the portfolio Yn follows the dynamics (1.1) and the repartition
of the portfolio in each asset follows the dynamics (2.10) or (4.21) depending on the drawing rule.

Here the components of the limit generating matrix H can be interpreted as constraints on the
composition of the portfolio. Indeed, in presence of two assets (or colors), we prove that the first com-
ponent of the allocation vector y∗1 lies in (p1 ∨ (1− p2), p1 ∧ (1− p2)) (see Proposition 2.2), therefore
the portfolio will contain at least p1∨(1−p2)% and no more than p1∧(1−p2)% of the first asset. Such
rules may be prescribed by the regulation, the bank policy or the bank customer, and our approach is
a natural way to have them satisfied (at least asymptotically).

The idea of reinforcing the drawing rule (instead of considering the uniform drawing) like in (1.2)
or (1.3) can be interpreted as a way to take into account the risk aversion of the trader or the customer.
Indeed, if f is concave the equilibrium point will be in the middle of the simplex (see Theorem 2.2
and Theorem 2.3), so the trader prefers to have diversification in her portfolio. On the contrary, if
f is convex, the equilibrium points will lie on the boundary of the set of constraints induced by the
limit generating matrix H, so she prefers to take advantage of the most money-making asset (like in a
“winner take all” or a “0-1” strategy).

Numerical experiments. We present some numerical experiment for the drawing rule defined
by (1.2), firstly with a concave function f : y 7→ √

y and secondly with a convex function f : y 7→ y4.
Therefore we have a unique equilibrium point in the first setting and two attractive targets in the
second framework. We consider an asset manager who deal with a portfolio of 2 tradable assets. We
model the addition rule matrices like in the multi-arm clinical trials, namely Dn is defined by (4.25).
We use the same success probabilities, namely p1 = 0.7 and p2 = 0.75, and the initial urn composition
is chosen randomly in the simplex V.
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⊲ Convergence of the portfolio allocation with concave drawing rule We have that y∗1 ∈ (0.25, 0.7) and
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Figure 3: Convergence of Ỹn toward y∗ for f(y) =
√
y with p1 = 0.7 and p2 = 0.75.

y∗1 and y∗2 are close to 1
2 , so the portfolio is diversified because in this case the investor is risk adverse.

⊲ Convergence of the portfolio allocation with convex drawing rule
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Figure 4: Convergence of Ỹn toward y∗ for f(y) = y4 with p1 = 0.7 and p2 = 0.75.
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Figure 5: Convergence of Ỹn toward y∗ for f(y) = y4 with p1 = 0.7 and p2 = 0.75.

In the convex framework, we have two possible strategies and they are close to the boundaries
defined by regulation. Moreover the repartition of the portfolio between the two assets is more asym-
metric, because the trader chooses to invest two times more in one asset than in the other.

Acknowledgement. We thank Frédéric Abergel (MAS Laboratory, ECP) for suggesting us to inves-
tigate the nonlinear case in randomized urn models and for helpful discussions in view of application
to financial frameworks.
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Appendix

A Basic tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space (Ω,A, (Fn)n≥0,P)

∀n ≥ n0, θn+1 = θn − γn+1h(θn) + γn+1 (∆Mn+1 + rn+1) , (A.26)

where h : Rd → R
d is a locally Lipschitz continuous function, θn0 an Fn0-measurable finite random

vector and, for every n ≥ n0, ∆Mn+1 is an Fn-martingale increment and rn is an Fn-adapted remainder
term.

Theorem A.1. (A.s. convergence with ODE method, see e.g. [8, 15, 21, 16, 5]). Assume that h is
locally Lipschitz, that

rn
a.s.−→

n→∞
0 and sup

n≥n0

E

[
‖∆Mn+1‖2 | Fn

]
< +∞ a.s.,

and that (γn)n≥1 is a positive sequence satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞.

Then the set Θ∞ of its limiting values as n → +∞ is a.s. a compact connected set, stable by the flow
of

ODEh ≡ θ̇ = −h(θ).
Let Θ∗ be the set of the uniformly stable equilibriums on Θ∞ of ODEh. Then, the algorithm a.s.
converges to one of the limiting values in Θ∗, namely

θn
a.s.−→

n→∞
θ∗ ∈ Θ∗.

Comments. By uniformly stable we mean that

sup
θ∈Θ∞

|θ(θ0, t)− θ∗| −→ 0 as t→ +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+ is the flow of ODEh on Θ∞.

Theorem A.2. (Non-a.s. convergence toward a trap, see e.g. [11, 14]). Assume that z∗ ∈ R
d is a trap

for the stochastic algorithm (A.26), i.e.

(i) h(z∗) = 0,

(ii) there exists a neighborhood V (z∗) of z∗ in which h is differentiable with a Lipschitz differential,

(iii) the eigenvalue of Dh(z∗) with the lowest real part, denoted by λmin, satisfies ℜe(λmin) < 0.
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Assume furthermore that a.s. on Γ(z∗) = {θn a.s.−→
n→∞

z∗},

∑

n≥1

‖rn‖2 < +∞ and lim sup
n

E

[
‖∆Mn+1‖2 | Fn

]
< +∞.

Let K+ the subset of Rd spanned by the eigenvectors whose associated eigenvalues have a non-negative
real part and K− the subset of Rd spanned by the eigenvectors whose associated eigenvalues have a

negative real part (then R
d = K+⊕K−). By setting ∆M

(r)
n+1 the projection of ∆Mn+1 on K− alongside

K+, assume that a.s. on Γ(z∗)

lim inf
n

E

[∥∥∥∆M (r)
n+1

∥∥∥ | Fn

]
> 0. (A.27)

Moreover, if the positive sequence (γn)n≥1 satisfies

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞,

then the event Γ(z∗) is negligible.

Theorem A.3. (Rate of convergence see [15] Theorem 3.III.14 p.131 (for CLT see also e.g. [8, 21])).
Let θ∗ be an equilibrium point of {h = 0}. Assume that the function h is differentiable at θ∗ and all
the eigenvalues of Dh(θ∗) have positive real parts. Assume that for some δ > 0,

sup
n≥n0

E

[
‖∆Mn+1‖2+δ | Fn

]
< +∞ a.s., E

[
∆Mn+1∆M

t
n+1 | Fn

] a.s.−→
n→∞

Γ, (A.28)

where Γ is a deterministic symmetric definite positive matrix and for an ǫ > 0,

E

[
(n+ 1) ‖rn+1‖2 1{‖θn−θ∗‖≤ǫ}

]
−→
n→∞

0. (A.29)

Specify the gain parameter sequence as follows

∀n ≥ 1, γn =
1

n
. (A.30)

(a) If Λ := ℜe(λmin) >
1
2 , where λmin denotes the eigenvalue of Dh(θ∗) with the lowest real part, then,

the above a.s. convergence is ruled on the convergence set {θn −→ θ∗} by the following Central Limit
Theorem

√
n (θn − θ∗)

L−→
n→∞

N
(
0,

1

2Λ− 1
Σ

)
with Σ :=

∫ +∞

0

(
e
−
(
Dh(θ∗)−

Id
2

)
u
)t

Γe
−
(
Dh(θ∗)−

Id
2

)
u
du.

(b) If Λ = 1
2 , then √

n

log n
(θn − θ∗)

L−→
n→∞

N (0,Σ).

(c) If Λ < 1
2 , then n

Λ (θn − θ∗) a.s. converges as n→ +∞ towards a positive finite random variable.

29



References

[1] K. B. Athreya and S. Karlin. Embedding of urn schemes into continuous time Markov branching processes
and related limit theorems. Ann. Math. Statist., 39:1801–1817, 1968.

[2] Z.-D. Bai and F. Hu. Asymptotic theorems for urn models with nonhomogeneous generating matrices.
Stochastic Process. Appl., 80(1):87–101, 1999.

[3] Z.-D. Bai and F. Hu. Asymptotics in randomized urn models. Ann. Appl. Probab., 15(1B):914–940, 2005.

[4] Z.-D. Bai, F. Hu, and L. Shen. An adaptive design for multi-arm clinical trials. J. Multivariate Anal.,
81(1):1–18, 2002.
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